JP2006077963A - Power transmission structure - Google Patents

Power transmission structure Download PDF

Info

Publication number
JP2006077963A
JP2006077963A JP2004265782A JP2004265782A JP2006077963A JP 2006077963 A JP2006077963 A JP 2006077963A JP 2004265782 A JP2004265782 A JP 2004265782A JP 2004265782 A JP2004265782 A JP 2004265782A JP 2006077963 A JP2006077963 A JP 2006077963A
Authority
JP
Japan
Prior art keywords
shaft
spline
inner member
power transmission
universal joint
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004265782A
Other languages
Japanese (ja)
Inventor
Katsuhiro Sakurai
勝弘 櫻井
Akira Nakagawa
亮 中川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NTN Corp
Original Assignee
NTN Corp
NTN Toyo Bearing Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NTN Corp, NTN Toyo Bearing Co Ltd filed Critical NTN Corp
Priority to JP2004265782A priority Critical patent/JP2006077963A/en
Publication of JP2006077963A publication Critical patent/JP2006077963A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Shafts, Cranks, Connecting Bars, And Related Bearings (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To relax stress concentration to a root part of a spline. <P>SOLUTION: A spline 1b formed in the outer periphery of the end part of a shaft 1 is fitted to a spline 3d formed in the inner periphery of an inner member 3 of a fixed constant speed universal joint, and further the shaft 1 and the inner member 3 are welded to each other on the shaft end face 5 of the shaft 1 to be united into one body. The shaft 1 and the inner member 3 are constrained in the axial direction and in the rotating direction by the welded part 6. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車等の動力伝達系に用いられる動力伝達構造に関し、特に等速自在継手を使用した動力伝達構造に関する。   The present invention relates to a power transmission structure used in a power transmission system of an automobile or the like, and more particularly to a power transmission structure using a constant velocity universal joint.

例えば、自動車の動力伝達系において、減速装置(ディファレンシャル)から駆動輪に動力を伝達する動力伝達シャフトは、ドライブシャフト(駆動軸)と呼ばれることがある。特にFF車に使用されるドライブシャフトでは、前輪操舵時に大きな作動角と等速性が要求され、また、懸架装置との関係で軸方向の変位を吸収する機能が要求されるので、その一端部をダブルオフセット型等速自在継手やトリポード型等速自在継手等の摺動型等速自在継手を介して減速装置側に連結し、その他端部をバーフィールド型等速自在継手(ゼッパジョイントと呼ばれることもある。)等の固定側等速自在継手を介して駆動輪側に連結する機構が多く採用されている。   For example, in a power transmission system of an automobile, a power transmission shaft that transmits power from a speed reducer (differential) to drive wheels may be called a drive shaft (drive shaft). In particular, drive shafts used in front-wheel drive vehicles require a large operating angle and constant velocity during front wheel steering, and also require a function to absorb axial displacement in relation to the suspension system. Are connected to the speed reducer via a sliding type constant velocity universal joint such as a double offset type constant velocity universal joint or a tripod type constant velocity universal joint, and the other end is connected to a barfield type constant velocity universal joint (Zepper joint). In many cases, a mechanism that is connected to the drive wheel side via a fixed-side constant velocity universal joint is used.

図8は、中空状の動力伝達シャフト1と、動力伝達シャフト1の一端部に連結された摺動型等速自在継手2と、動力伝達シャフト1の他端部に連結された固定型等速自在継手3とを備えた自動車の動力伝達機構を示している。   FIG. 8 shows a hollow power transmission shaft 1, a sliding type constant velocity universal joint 2 connected to one end of the power transmission shaft 1, and a fixed type constant speed connected to the other end of the power transmission shaft 1. The power transmission mechanism of the motor vehicle provided with the universal joint 3 is shown.

この動力伝達機構において、摺動型等速自在継手2は減速装置(ディファレンシャル)に連結され、固定型等速自在継手3は駆動輪側に連結される。動力伝達シャフト1の一端部は摺動型等速自在継手2の内方部材(トリポード部材)2aに連結され、摺動型等速自在継手2の外方部材2bの端部外周と動力伝達シャフト1の外周にブーツ2cが固定される。   In this power transmission mechanism, the sliding type constant velocity universal joint 2 is connected to a reduction gear (differential), and the fixed type constant velocity universal joint 3 is connected to the drive wheel side. One end portion of the power transmission shaft 1 is connected to an inner member (tripod member) 2a of the sliding type constant velocity universal joint 2, and the outer periphery of the end portion of the outer member 2b of the sliding type constant velocity universal joint 2 and the power transmission shaft. A boot 2 c is fixed to the outer periphery of 1.

また、動力伝達シャフト1の他端部は固定型等速自在継手3の内方部材3aに連結され、固定型等速自在継手3の外方部材3bの端部外周と動力伝達シャフト1の外周にブーツ3cが固定される。   The other end of the power transmission shaft 1 is connected to the inner member 3 a of the fixed type constant velocity universal joint 3, and the outer periphery of the outer member 3 b of the fixed type constant velocity universal joint 3 and the outer periphery of the power transmission shaft 1. The boot 3c is fixed to the front.

シャフト1の他端部と固定型等速自在継手3の内方部材3aとの連結は、例えば、図9に拡大して示すように、シャフト1の他端部外周に形成されたスプライン1bと、内方部材3aの内周に形成されたスプライン3dとを相互に嵌合すると共に、シャフト1の一端部の軸端側に形成された止め輪溝1aに止め輪4を装着し、シャフト1と内方部材3aとの相対移動を軸方向に規制することにより行われる。同様に、シャフト1の一端部と摺動型等速自在継手2の内方部材2aとの連結は、シャフト1の一端部外周に形成されたスプライン1bと、内方部材2aの内周に形成されたスプライン2dとを相互に嵌合すると共に、シャフト1の一端部の軸端側に形成した止め輪溝1aに止め輪を装着し、シャフト1と内方部材2aとの相対移動を軸方向に規制することにより行われる。   The connection between the other end of the shaft 1 and the inner member 3a of the fixed type constant velocity universal joint 3 is, for example, an enlarged view of the other end of the shaft 1 as shown in FIG. The spline 3d formed on the inner periphery of the inner member 3a is mutually fitted, and a retaining ring 4 is mounted in a retaining ring groove 1a formed on the shaft end side of one end of the shaft 1, so that the shaft 1 And the inner member 3a are controlled by restricting relative movement in the axial direction. Similarly, the connection between one end portion of the shaft 1 and the inner member 2a of the sliding type constant velocity universal joint 2 is formed on the outer periphery of the one end portion of the shaft 1 and the inner periphery of the inner member 2a. The splines 2d are fitted to each other, and a retaining ring is attached to a retaining ring groove 1a formed on the shaft end side of one end of the shaft 1, so that the relative movement between the shaft 1 and the inner member 2a is axially performed. It is done by restricting to.

また、下記の特許文献1では、スプライン嵌合に際し、シャフト側のスプラインに捩れ角を付与し、これを継手内方部材のスプラインに圧入することにより、スプライン嵌合部のガタを抑えると共に、シャフトのスプラインの反軸端側において、トルク負荷時の内方部材とシャフトのスプラインの歯面にかかる応力を圧入による応力により打ち消して最大応力を軽減している。
実公平6−33220号公報
In addition, in the following Patent Document 1, when a spline is fitted, a twist angle is given to the spline on the shaft side, and this is press-fitted into the spline of the joint inner member. At the opposite end of the spline, the stress applied to the inner surface of the inner member and the shaft spline at the time of torque load is canceled out by the stress caused by the press-fitting to reduce the maximum stress.
Japanese Utility Model Publication No. 6-33220

従来のスプライン嵌合構造では、シャフトに捩りトルクが加わると、捩りの支点がシャフトのスプラインの根元部になるため、スプラインの根元部に応力が集中する傾向がある。特に、特許文献1のように、スプライン嵌合部のガタを抑えるために、シャフト側のスプラインに捩れ角を付与した構造では、スプラインの根元部への応力集中がさらに顕著になる。   In the conventional spline fitting structure, when torsional torque is applied to the shaft, the torsion fulcrum becomes the root part of the spline of the shaft, and therefore stress tends to concentrate on the root part of the spline. In particular, as in Patent Document 1, in a structure in which a twist angle is given to the spline on the shaft side in order to suppress the play of the spline fitting portion, the stress concentration on the root portion of the spline becomes more remarkable.

本発明の課題は、スプラインの根元部への応力集中を緩和し、シャフトと継手内部方部材の強度を高めた動力伝達構造を提供することである。   The subject of this invention is providing the power transmission structure which relieve | moderated the stress concentration to the root part of a spline, and raised the intensity | strength of the shaft and the joint internal member.

本発明の他の課題は、従来構造と同等以上の強度を確保しつつ、シャフトと継手内部方部材のサイズダウンを図り、動力伝達構造の軽量コンパクト化を図ることである。 Another object of the present invention is to reduce the size of the shaft and the joint inner member while ensuring a strength equal to or higher than that of the conventional structure, and to reduce the weight and size of the power transmission structure.

上記課題を解決するため、本発明は、等速自在継手の内方部材の内周に形成したスプラインと、シャフトの端部外周に形成したスプラインとを互いに嵌合させた動力伝達構造において、内方部材とシャフトとを軸方向及び回転方向に相互に拘束する拘束部を設け、シャフトに捩りトルクが負荷されたときの捩りの支点が、シャフトのスプラインの根元部と拘束部になるようにした。   In order to solve the above problems, the present invention provides a power transmission structure in which a spline formed on the inner periphery of an inner member of a constant velocity universal joint and a spline formed on an outer periphery of an end of a shaft are fitted to each other. A constraining part that constrains the side member and the shaft in the axial direction and the rotational direction is provided so that the torsion fulcrum when the torsional torque is applied to the shaft becomes the root part of the shaft spline and the constraining part. .

上記構成において、拘束部は、シャフトの軸端と内方部材とを相互に固着することにより構成することができる。ここでの固着には、溶着、圧着、接着等が含まれる。   In the above configuration, the restraining portion can be configured by fixing the shaft end of the shaft and the inner member to each other. The fixing here includes welding, pressure bonding, adhesion, and the like.

また、上記構成において、拘束部は、シャフトと内方部材とを摩擦力により拘束するものとすることができる。   Further, in the above configuration, the restraining portion can restrain the shaft and the inward member with a frictional force.

本発明によれば、シャフトに捩りトルクが負荷されたときの捩りの支点が、シャフトのスプラインの根元部と拘束部になるので、スプラインの根元部の応力集中が従来構造に比べて緩和される。これにより、シャフトと継手内方部材の強度が向上する。   According to the present invention, since the torsion fulcrum when the torsional torque is applied to the shaft becomes the root portion and the restraint portion of the shaft spline, the stress concentration at the root portion of the spline is alleviated compared to the conventional structure. . Thereby, the intensity | strength of a shaft and a joint inner member improves.

また、従来構造と同等以上の強度を確保しつつ、シャフトと継手内部方部材のサイズダウンを図り、動力伝達構造の軽量コンパクト化を図ることができる。 In addition, the shaft and the joint inner member can be reduced in size while ensuring a strength equal to or higher than that of the conventional structure, and the power transmission structure can be reduced in weight and size.

以下、本発明の実施の形態を図面に基づいて説明する。尚、以下で説明する実施の形態は、図8に示す自動車の動力伝達機構において、シャフト1の他端部と固定型等速自在継手3の内方部材3aとの間に設けられる動力伝達構造に関するものであるが、シャフト1の一端部と摺動型等速自在継手2の内方部材2aとの間に設けられる動力伝達構造にも同様に適用することができる。また、図8、9に示す従来構造の部材又は部分については同一符号を付与してその詳細な説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings. The embodiment described below is a power transmission structure provided between the other end of the shaft 1 and the inner member 3a of the fixed type constant velocity universal joint 3 in the power transmission mechanism of the automobile shown in FIG. However, the invention can be similarly applied to a power transmission structure provided between one end of the shaft 1 and the inner member 2a of the sliding type constant velocity universal joint 2. Further, members or portions of the conventional structure shown in FIGS. 8 and 9 are given the same reference numerals and detailed description thereof is omitted.

図1に示す実施の形態1では、固定型等速自在継手3の内方部材3aの内周に形成されたスプライン3dに、シャフト1の端部外周に形成されたスプライン1bが嵌合され、さらに、シャフト1と内方部材3aとが、シャフト1の軸端面5の側で相互に溶着(溶接)されて一体化されている。シャフト1と内方部材3aとは、溶着部6により軸方向及び回転方向に相互に拘束される。したがって、実施の形態1では、溶着部6が拘束部になる。   In Embodiment 1 shown in FIG. 1, a spline 1b formed on the outer periphery of the end of the shaft 1 is fitted to a spline 3d formed on the inner periphery of the inner member 3a of the fixed type constant velocity universal joint 3, Further, the shaft 1 and the inner member 3a are welded (welded) to each other on the shaft end surface 5 side of the shaft 1 and integrated. The shaft 1 and the inner member 3a are mutually restrained in the axial direction and the rotational direction by the welded portion 6. Therefore, in Embodiment 1, the welding part 6 becomes a restraint part.

上記のように、シャフト1と内方部材3aとが、溶着部6によりシャフト1の軸端面5の側で相互に拘束されるので、シャフト1に捩りトルクが負荷されたとき、捩りの支点は、シャフト1のスプライン1bの根元部Aと溶着部6の2箇所になる。そのため、スプライン1bの根元部Aへの応力集中が緩和される。 As described above, the shaft 1 and the inner member 3a are mutually restrained on the shaft end surface 5 side of the shaft 1 by the welded portion 6, and therefore when the torsional torque is applied to the shaft 1, the torsion fulcrum is The root portion A of the spline 1b of the shaft 1 and the welded portion 6 are provided. Therefore, the stress concentration on the root portion A of the spline 1b is alleviated.

シャフト1のスプライン1bにかかる応力状態を見てみると、図2に示すように、図9に示す従来構造(実線)では、スプライン1bの根元部Aと軸端部Bとで応力差が大きく、根元部Aへの応力集中が認められたが、実施の形態1(本発明:一点鎖線)では、根元部Aでの応力が減少する一方、軸端部Bでの応力が増大し、従来構造に比べて、根元部Aと軸端部Bとで応力が均一化され、根元部Aへの応力集中が緩和されていた。これは、上記のように、捩りの支点が、シャフト1のスプライン1bの根元部Aと溶着部6の2箇所に増えたことにより、シャフト1にかかる応力が分散されたためである。   When the stress state applied to the spline 1b of the shaft 1 is seen, as shown in FIG. 2, in the conventional structure (solid line) shown in FIG. 9, there is a large stress difference between the root portion A and the shaft end portion B of the spline 1b. In the first embodiment (the present invention: one-dot chain line), the stress at the root portion A decreases while the stress at the shaft end portion B increases. Compared with the structure, the stress was made uniform between the root portion A and the shaft end portion B, and the stress concentration on the root portion A was alleviated. This is because, as described above, the stress applied to the shaft 1 is dispersed because the fulcrum of torsion has increased to two locations, that is, the root portion A of the spline 1b of the shaft 1 and the welded portion 6.

上記のように、シャフト1のスプライン1bの根元部Aへの応力集中が緩和される結果、シャフト1の強度は向上する。また、内方部材3aのスプライン3dについても根元部Aへの応力集中が緩和される結果、内方部材3aの強度は向上する。また、シャフト1と内方部材3aの強度を従来品と同等以上に確保した場合、シャフト1と内方部材3aをサイズダウンして、軽量コンパクト化を図ることができる。   As described above, the stress concentration on the root portion A of the spline 1b of the shaft 1 is alleviated. As a result, the strength of the shaft 1 is improved. Further, the stress concentration on the root portion A of the spline 3d of the inner member 3a is alleviated, so that the strength of the inner member 3a is improved. Further, when the strength of the shaft 1 and the inner member 3a is ensured to be equal to or higher than that of the conventional product, the size of the shaft 1 and the inner member 3a can be reduced to achieve a lighter and more compact size.

次に、本発明の実施の形態2を図3、図4を用いて説明する。   Next, a second embodiment of the present invention will be described with reference to FIGS.

図3に示す実施の形態2では、固定型等速自在継手3の内方部材3aの内周に形成されたスプライン3dに、シャフト1の端部外周に形成されたスプライン1bが嵌合され、さらに、シャフト1と内方部材3aとが、シャフト1の軸端面7の側に配置された端面部材8によって相互に固定されている。すなわち、シャフト1の軸端面7と内方部材3の一方の端面に端面部材8をあてがい、端面部材8をシャフト1の軸端面7に螺子9で締め付けて、内方部材3aの他方の端部をシャフト1の肩部1dに押し当てることにより、内方部材3aを端面部材8とシャフト1の肩部1dとで軸方向に挟持固定している。これにより、シャフト1と内方部材3aとは、端面部材8と内方部材3の端面との当接部C1、内方部材3aの端部とシャフト1の肩部1dとの当接部C2、及び、螺子9と端面部材8との当接部C3に発生する摩擦力により軸方向及び回転方向に相互に拘束される。したがって、実施の形態2では、当接部C1、C2、C3が拘束部になる。   In Embodiment 2 shown in FIG. 3, a spline 1b formed on the outer periphery of the end of the shaft 1 is fitted to a spline 3d formed on the inner periphery of the inner member 3a of the fixed type constant velocity universal joint 3. Further, the shaft 1 and the inner member 3 a are fixed to each other by an end surface member 8 disposed on the shaft end surface 7 side of the shaft 1. That is, the end surface member 8 is applied to the shaft end surface 7 of the shaft 1 and one end surface of the inner member 3, and the end surface member 8 is fastened to the shaft end surface 7 of the shaft 1 with the screw 9, and the other end portion of the inner member 3 a. Is pressed against the shoulder 1d of the shaft 1 so that the inner member 3a is clamped and fixed in the axial direction by the end face member 8 and the shoulder 1d of the shaft 1. Thereby, the shaft 1 and the inner member 3a are in contact with the end face member 8 between the end face member 8 and the end face of the inner member 3, and the contact part C2 between the end portion of the inner member 3a and the shoulder 1d of the shaft 1. And, they are mutually restrained in the axial direction and the rotational direction by the frictional force generated at the contact portion C3 between the screw 9 and the end face member 8. Accordingly, in the second embodiment, the contact portions C1, C2, and C3 are the restraining portions.

上記のように、シャフト1と内方部材3aとが、当接部C1、C2、C3によりシャフト1のスプライン1bを挟んで軸方向両側で相互に拘束されるので、シャフト1に捩りトルクが負荷されたとき、捩りの支点は、シャフト1のスプライン1bの根元部Aと当接部C1、C2、C3の4箇所になる。そのため、スプライン1bの根元部Aへの応力集中が緩和される。 As described above, the shaft 1 and the inner member 3a are mutually restrained on both sides in the axial direction with the splines 1b of the shaft 1 sandwiched between the contact portions C1, C2, and C3. When this is done, there are four fulcrum points for twisting: the root portion A of the spline 1b of the shaft 1 and the contact portions C1, C2, and C3. Therefore, the stress concentration on the root portion A of the spline 1b is alleviated.

実施の形態2について、シャフト1のスプライン1bにかかる応力状態を見てみると、図4に示すように、図9に示す従来構造(実線)に比べ、実施の形態2(本発明:一点鎖線)では、根元部Aから軸端部Bにかけて応力が均一に減少していた。その結果、根元部Aへの応力集中が従来構造に比べて緩和されていた。これは、上記のように、捩りの支点が、シャフト1のスプライン1bの根元部Aと当接部C1、C2、C3の4箇所に増えたことにより、シャフト1にかかる応力が分散されたためである。 When the stress state applied to the spline 1b of the shaft 1 in the second embodiment is seen, as shown in FIG. 4, the second embodiment (the present invention: one-dot chain line) is compared with the conventional structure (solid line) shown in FIG. ), The stress was uniformly reduced from the root A to the shaft end B. As a result, the stress concentration on the root portion A was relaxed compared to the conventional structure. This is because the stress applied to the shaft 1 is dispersed because the fulcrum of torsion has increased to four locations of the root portion A of the spline 1b of the shaft 1 and the contact portions C1, C2, and C3 as described above. is there.

図5は、本発明の実施の形態3を示している。この実施の形態3が、上記の実施の形態2と異なる点は、シャフト1の肩部1dを大径にして、内方部材3aとの接触面積を大きくした点にある。これにより、内方部材3aの端部とシャフト1の肩部1dとの当接部C2の摩擦力が増大し、スプライン1bの根元部Aへの応力集中がより一層緩和される。   FIG. 5 shows a third embodiment of the present invention. The third embodiment is different from the second embodiment in that the shoulder 1d of the shaft 1 has a large diameter and the contact area with the inner member 3a is increased. As a result, the frictional force of the contact portion C2 between the end portion of the inner member 3a and the shoulder portion 1d of the shaft 1 increases, and the stress concentration on the root portion A of the spline 1b is further alleviated.

図6は、本発明の実施の形態4を示している。この実施の形態4では、シャフト1の軸端面7に形成した圧入部10に端面部材11を圧入して、内方部材3aの他方の端部をシャフト1の肩部1dに押し当てることにより、内方部材3aを端面部材11とシャフト1の肩部1dとで軸方向に挟持固定している。これにより、シャフト1と内方部材3aとは、端面部材11と内方部材3aの端面との当接部C1、内方部材3aの端部とシャフト1の肩部1dとの当接部C2に発生する摩擦力により軸方向及び回転方向に相互に拘束される。この実施の形態4では、捩りの支点は、シャフト1のスプライン1bの根元部Aと当接部C1、C2の3箇所になり、上述した実施の形態2、3に対して捩りの支点が1箇所少なくなる。   FIG. 6 shows a fourth embodiment of the present invention. In the fourth embodiment, the end surface member 11 is press-fitted into the press-fit portion 10 formed on the shaft end surface 7 of the shaft 1, and the other end portion of the inner member 3a is pressed against the shoulder portion 1d of the shaft 1, The inner member 3a is clamped and fixed in the axial direction by the end face member 11 and the shoulder 1d of the shaft 1. Thereby, the shaft 1 and the inner member 3a are in contact with the end face member 11 and the end face of the inner member 3a, and the contact part C2 between the end of the inner member 3a and the shoulder 1d of the shaft 1 Are mutually restrained in the axial direction and the rotational direction by the frictional force generated in In the fourth embodiment, there are three twisting fulcrums, that is, the root portion A of the spline 1b of the shaft 1 and the contact portions C1 and C2, and the twisting fulcrum is 1 in the second and third embodiments. There are fewer places.

図7は、本発明の実施の形態5を示している。この実施の形態5では、端面部材12に螺子部13を一体に設け、端面部材12をシャフト1の軸端面7に締め付けて、内方部材3aの他方の端部をシャフト1の肩部1dに押し当てることにより、内方部材3aを端面部材12とシャフト1の肩部1dとで軸方向に挟持固定している。この実施の形態5でも、捩りの支点は、シャフト1のスプライン1bの根元部Aと当接部C1、C2の3箇所になり、上述した実施の形態2、3に対して捩りの支点が1箇所少なくなる。   FIG. 7 shows a fifth embodiment of the present invention. In the fifth embodiment, the end surface member 12 is integrally provided with the screw portion 13, the end surface member 12 is fastened to the shaft end surface 7 of the shaft 1, and the other end portion of the inner member 3 a is connected to the shoulder portion 1 d of the shaft 1. By pressing, the inner member 3a is clamped and fixed in the axial direction by the end face member 12 and the shoulder portion 1d of the shaft 1. Also in the fifth embodiment, there are three torsion fulcrums, that is, the root portion A of the spline 1b of the shaft 1 and the contact portions C1 and C2, and the torsion fulcrum is 1 in comparison with the second and third embodiments described above. There are fewer places.

実施の形態1を示す一部断面図である。1 is a partial cross-sectional view showing a first embodiment. 図1のスプライン部にかかる応力状態を示す図である。It is a figure which shows the stress state concerning a spline part of FIG. 実施の形態2を示す一部断面図である。5 is a partial cross-sectional view showing a second embodiment. FIG. 図3のスプライン部にかかる応力状態を示す特性図である。It is a characteristic view which shows the stress state concerning the spline part of FIG. 実施の形態3を示す一部断面図である。6 is a partial cross-sectional view showing a third embodiment. FIG. 実施の形態4を示す一部断面図である。FIG. 6 is a partial cross-sectional view showing a fourth embodiment. 実施の形態5を示す一部断面図である。FIG. 10 is a partial cross-sectional view showing a fifth embodiment. 自動車の動力伝達系を示す図である。It is a figure which shows the power transmission system of a motor vehicle. 従来の動力伝達構造を示す一部断面図である。It is a partial sectional view showing a conventional power transmission structure.

符号の説明Explanation of symbols

1 シャフト
3a 内方部材
1b,3d スプライン
6 溶着部(拘束部)
7 軸端面
C1、C2、C3 当接部(拘束部)
A スプラインの根元部
DESCRIPTION OF SYMBOLS 1 Shaft 3a Inner member 1b, 3d Spline 6 Welding part (restraint part)
7 Shaft end faces C1, C2, C3 Contact part (restraint part)
A Spline root

Claims (3)

等速自在継手の内方部材の内周に形成したスプラインと、シャフトの端部外周に形成したスプラインとを互いに嵌合させた動力伝達構造において、
前記内方部材とシャフトとを軸方向及び回転方向に相互に拘束する拘束部を設け、
前記シャフトに捩りトルクが負荷されたときの捩りの支点が、前記シャフトのスプラインの根元部と前記拘束部になるようにしたことを特徴とする動力伝達構造。
In the power transmission structure in which the spline formed on the inner periphery of the inner member of the constant velocity universal joint and the spline formed on the outer periphery of the end of the shaft are fitted to each other,
Providing a restraining portion that restrains the inner member and the shaft in the axial direction and the rotational direction;
A power transmission structure characterized in that a torsion fulcrum when a torsional torque is applied to the shaft is a root portion of the spline of the shaft and the restraint portion.
前記拘束部は、前記シャフトの軸端と前記内方部材とを相互に固着することにより構成されていることを特徴とする請求項1記載の動力伝達構造。   The power transmission structure according to claim 1, wherein the restraining portion is configured by fixing the shaft end of the shaft and the inner member to each other. 前記拘束部は、前記シャフトと前記内方部材とを摩擦力により拘束するものであることを特徴とする請求項1記載の動力伝達構造。

The power transmission structure according to claim 1, wherein the restraining portion restrains the shaft and the inward member by a frictional force.

JP2004265782A 2004-09-13 2004-09-13 Power transmission structure Withdrawn JP2006077963A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004265782A JP2006077963A (en) 2004-09-13 2004-09-13 Power transmission structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004265782A JP2006077963A (en) 2004-09-13 2004-09-13 Power transmission structure

Publications (1)

Publication Number Publication Date
JP2006077963A true JP2006077963A (en) 2006-03-23

Family

ID=36157582

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004265782A Withdrawn JP2006077963A (en) 2004-09-13 2004-09-13 Power transmission structure

Country Status (1)

Country Link
JP (1) JP2006077963A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463176A1 (en) * 2010-12-07 2012-06-13 JTEKT Corporation Shaft-and-yoke coupling structure and vehicle steering system

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2463176A1 (en) * 2010-12-07 2012-06-13 JTEKT Corporation Shaft-and-yoke coupling structure and vehicle steering system
CN102530052A (en) * 2010-12-07 2012-07-04 株式会社捷太格特 Shaft-and-yoke coupling structure and vehicle steering system
US8500564B2 (en) 2010-12-07 2013-08-06 Jtekt Corporation Shaft-and-yoke coupling structure and vehicle steering system

Similar Documents

Publication Publication Date Title
JP2009511839A (en) Direct torque flow connection with optimum ratio in mounting method
US10183691B2 (en) Torque transmission joint and electric power steering system
JP6206341B2 (en) Vehicle power transmission structure
WO2016047188A1 (en) Torque transmitting joint and electric power steering device
JP2001287122A (en) Manufacturing method and fitting structure for spline shaft for constant velocity joint
JP2006077963A (en) Power transmission structure
JP2006298297A (en) Constant velocity universal joint for steering
JP4846216B2 (en) Power transmission structure
JP2001343023A (en) Fitting structure of spline shaft for constant velocity joint
JP2007040531A (en) Driving shaft with driving joint for use in automobile
JP4133415B2 (en) Fixed type constant velocity universal joint
JP4619662B2 (en) Fixed constant velocity universal joint for steering devices
JP3736571B2 (en) Rolling bearing unit for driving wheel and method for manufacturing driving unit for wheel
JP3389721B2 (en) Elastic universal joint
JPH0633220Y2 (en) Vehicle driving force transmission structure
JP4501384B2 (en) Drive pinion support structure of final reduction gear
JP4766236B2 (en) Vehicle drive shaft and manufacturing method thereof
JP2012076724A (en) Intermediate shaft and electric power steering device
JP4115320B2 (en) Power transmission shaft
JP2005009615A (en) Spline fitting structure of power transmitting member
JP2001140918A (en) Elastic shaft coupling
EP1632419A2 (en) Joint section between shaft and universal joint yoke
JP2008089112A (en) Constant velocity universal joint
JP2005214399A (en) Uniform motion unversal joint
JP3640766B2 (en) Wheel bearing device

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071204