JP2006074650A - Oscillating frequency adjustment method for resonator, and the resonator - Google Patents

Oscillating frequency adjustment method for resonator, and the resonator Download PDF

Info

Publication number
JP2006074650A
JP2006074650A JP2004258016A JP2004258016A JP2006074650A JP 2006074650 A JP2006074650 A JP 2006074650A JP 2004258016 A JP2004258016 A JP 2004258016A JP 2004258016 A JP2004258016 A JP 2004258016A JP 2006074650 A JP2006074650 A JP 2006074650A
Authority
JP
Japan
Prior art keywords
resonator
vibration frequency
support beam
adjusting
support beams
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004258016A
Other languages
Japanese (ja)
Inventor
Akira Sato
彰 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiko Epson Corp
Original Assignee
Seiko Epson Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiko Epson Corp filed Critical Seiko Epson Corp
Priority to JP2004258016A priority Critical patent/JP2006074650A/en
Publication of JP2006074650A publication Critical patent/JP2006074650A/en
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Piezo-Electric Or Mechanical Vibrators, Or Delay Or Filter Circuits (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an oscillating frequency adjustment method for a resonator, capable of being realized using a simple facility, in a short time, with high accuracy and at a low cost, and to provide the resonator. <P>SOLUTION: The oscillating frequency adjustment method of the resonator 10 is a oscillating frequency adjustment method of the resonator 10 for applying a bias voltage to a moving part 30 formed by a semiconductor manufacturing process to oscillate the moving part 30, applies a current to a support beam selected from among a plurality of support beams 31 to 42 at a border between a base part 50 and each part of which is respectively provided with a notched part (31A to 34A), acting as a greater electrical resistance part, a plurality of the support beams 31 to 42 being radially extended from a base part 50 of the moving part 30 and the widths of a plurality of the support beams 31 to 42 that are different from each other, to melt and cut off the notched part of the selected support beam, resulting in changing at least the mass or the spring constant of the moving part 30, thereby adjusting the oscillating frequency of the resonator 10. Further, the resonator 10 adjusted in this way provides a stable oscillating frequency with high accuracy and can be realized at a low cost. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レゾネータの振動周波数調整方法と、この振動周波数調整方法によって振動周波数が調整されるレゾネータに関する。   The present invention relates to a method for adjusting the vibration frequency of a resonator and a resonator whose vibration frequency is adjusted by the vibration frequency adjusting method.

従来、振動型素子(レゾネータ)の可動部表面に予め加工用物質を付着形成しておき、この加工用物質にレーザービームまたは集束イオンビームを当てて加工用物質をスパッタ除去する工程と、振動型素子の可動部表面に成膜物質の蒸着または成膜物質の集束イオンビーム照射によって成膜物質を付着する工程とを適宜繰り返すことによって振動型素子の振動周波数を調整する振動型素子の振動周波数調整方法が知られている(例えば、特許文献1参照)。   Conventionally, a process material is attached and formed in advance on the surface of a movable part of a vibration type element (resonator), and the process material is sputtered off by applying a laser beam or a focused ion beam to the process material. Adjusting the vibration frequency of the vibration-type element by adjusting the vibration frequency of the vibration-type element by repeating the process of depositing the film-forming substance on the surface of the movable part of the element by depositing the film-forming substance or irradiating the film with the focused ion beam. A method is known (see, for example, Patent Document 1).

特開平8−114460号公報(第3,4頁、図1)JP-A-8-114460 (pages 3, 4 and FIG. 1)

このような特許文献1では、振動型素子の振動周波数調整を行なうために、振動型素子の可動部表面に予め加工用物質を付着しておき、この加工用物質をスパッタ除去し、または、振動型素子の可動部表面に成膜物質を蒸着あるいは集束イオンビームを照射しているが、このような方法においては、予め加工用物質を付着成形する工程を要している。また、振動周波数調整を行なうために、レーザービーム装置や集束イオンビーム等の加工装置が必要とされ、これらの装置は高価であり、その結果、振動型装置の製造コストが高くなるという課題がある。
さらには、前述した加工装置は真空中や、特定のガス雰囲気中で行なわれるため、製造装置全体として大型化するという課題もある。
In such a patent document 1, in order to adjust the vibration frequency of the vibration type element, a processing substance is attached in advance to the surface of the movable part of the vibration type element, and the processing substance is removed by sputtering or vibration is performed. The surface of the movable part of the mold element is deposited with a film forming material or irradiated with a focused ion beam. In such a method, a process of depositing a processing material in advance is required. Further, in order to adjust the vibration frequency, a processing device such as a laser beam device or a focused ion beam is required, and these devices are expensive, resulting in an increase in the manufacturing cost of the vibration type device. .
Furthermore, since the above-described processing apparatus is performed in a vacuum or in a specific gas atmosphere, there is a problem that the manufacturing apparatus as a whole is increased in size.

本発明の目的は、レゾネータの振動周波数調整を、簡単な設備で短時間で精度よく、しかも低コストで実現できるレゾネータの振動周波数調整方法と、この調整方法で製造されるレゾネータを提供することである。   SUMMARY OF THE INVENTION An object of the present invention is to provide a method for adjusting the vibration frequency of a resonator that can realize the vibration frequency adjustment of a resonator with a simple facility in a short time with high accuracy and at low cost, and a resonator manufactured by this adjustment method. is there.

本発明のレゾネータの振動周波数調整方法は、半導体製造プロセスによって成形される可動部にバイアス電圧が印加され振動するレゾネータの振動周波数調整方法であって、前記可動部の基部から放射状に延出される複数の支持梁を備え、該複数の支持梁の幅がそれぞれ異なって形成されると共に、前記複数の支持梁の前記基部との境界部に電気抵抗が大きい部位を設け、前記複数の支持梁のうちの選択された支持梁に電流を印加し、前記電気抵抗が大きい部位を溶断することによって、前記可動部の質量及びばね定数を変えて、前記レゾネータの振動周波数を調整することを特徴とする。
ここで、半導体製造プロセスとしては、例えば、MEMS(Micro Electronics Mechanical System)を含む。
The method for adjusting the vibration frequency of the resonator according to the present invention is a method for adjusting the vibration frequency of a resonator that vibrates when a bias voltage is applied to a movable part formed by a semiconductor manufacturing process, and includes a plurality of radial extensions extending from the base of the movable part. The plurality of support beams are formed to have different widths, and a portion having a large electric resistance is provided at a boundary portion between the plurality of support beams and the base portion. The vibration frequency of the resonator is adjusted by changing the mass and the spring constant of the movable part by applying a current to the selected support beam and fusing the portion having a large electric resistance.
Here, the semiconductor manufacturing process includes, for example, MEMS (Micro Electronics Mechanical System).

この発明によれば、レゾネータの支持梁に電気抵抗が大きい部位を設け、支持梁に電流を印加することで、電気抵抗が大きい部位に抵抗熱が発生し支持梁が溶断されるために、溶断される支持梁の分だけ可動部の質量が小さくなり、また、可動部を支持する支持梁の数が減少するためにばね定数が小さくなることから、質量とばね定数を変更して所定の振動周波数に調整することができる。また、複数設けられた支持梁それぞれの幅が異なるので、所望のばね定数を有する支持梁を選択すれば、所定の振動周波数に容易に調整することができる。   According to the present invention, a portion having a large electrical resistance is provided on the support beam of the resonator, and by applying a current to the support beam, resistance heat is generated in the portion having a large electrical resistance, and the support beam is fused. The mass of the movable part is reduced by the amount of the support beam to be reduced, and the spring constant is reduced because the number of support beams supporting the movable part is reduced. Can be adjusted to frequency. In addition, since the width of each of the plurality of support beams provided is different, if a support beam having a desired spring constant is selected, it can be easily adjusted to a predetermined vibration frequency.

さらに、複数の支持梁、及び支持梁の電気抵抗が大きい部位は、半導体製造プロセスで形成し、所定の電流を支持梁に印加することで溶断し、振動周波数を調整することができるため、前述した従来技術のようなレーザービーム装置や集束イオンビーム等の高価な設備を必要としないので、低コストのレゾネータを提供することができる。   Further, the plurality of support beams and the portions where the electrical resistance of the support beams is large can be formed by a semiconductor manufacturing process, and can be melted by applying a predetermined current to the support beams, and the vibration frequency can be adjusted. Since expensive equipment such as a laser beam apparatus and a focused ion beam as in the prior art is not required, a low-cost resonator can be provided.

また、支持梁に溶断のための電流を印加するだけで振動周波数調整が可能であるため、短時間で振動周波数調整を行なうことができる。
さらに、レゾネータの振動周波数は、支持梁溶断後の形状だけで規制されるので、正確で、且つ安定した振動周波数を長期間にわたって維持することができる。
Further, since the vibration frequency can be adjusted only by applying a current for fusing to the support beam, the vibration frequency can be adjusted in a short time.
Furthermore, since the vibration frequency of the resonator is regulated only by the shape after the supporting beam is blown, an accurate and stable vibration frequency can be maintained over a long period of time.

また、前述したレゾネータの振動周波数調整方法では、前記可動部の重心位置から前記電気抵抗が大きい部位までの距離が、前記複数の支持梁それぞれ等距離であり、前記複数の支持梁のうちの選択された支持梁に電流を印加し、前記電気抵抗が大きい部位を溶断することによって、前記レゾネータの振動周波数を調整することが好ましい。   In the resonator frequency adjustment method described above, the distance from the position of the center of gravity of the movable portion to the portion having the large electrical resistance is equal to each of the plurality of support beams, and the selection among the plurality of support beams is performed. It is preferable to adjust the vibration frequency of the resonator by applying a current to the support beam thus formed and fusing a portion having a large electric resistance.

このようにすれば、支持梁は、重心から溶断されるまでの位置が等距離で且つ、基部との境界部に設けられているため、溶断後の可動部の形状は、基部と可動部の支持部材としての支持梁とから構成される単純形状なので、安定した振動周波数を得ることができる。   In this way, since the support beam is equidistant from the center of gravity to the position where it is fused, and is provided at the boundary with the base, the shape of the movable part after fusing is the same between the base and the movable part. Since it is a simple shape composed of a support beam as a support member, a stable vibration frequency can be obtained.

また、前記電気抵抗が大きい部位は、前記複数の支持梁の前記基部との境界部の断面積が減縮されて電気抵抗が大きい部位が形成され、選択された前記支持梁に電流を印加して支持梁を溶断することによって、前記レゾネータの振動周波数を調整することが好ましい。   Further, the portion having the high electrical resistance is formed by reducing the cross-sectional area of the boundary portion with the base portion of the plurality of support beams to form a portion having a high electrical resistance, and applying a current to the selected support beam. It is preferable to adjust the vibration frequency of the resonator by fusing the support beam.

電気抵抗は、同じ材料の場合、断面積に反比例することが知られている。従って、支持梁の断面積を減縮した部位は電気抵抗が高まり、所定の電流を印加することによって抵抗熱が発生し、支持梁を溶断することができる。   It is known that the electrical resistance is inversely proportional to the cross-sectional area for the same material. Accordingly, the electrical resistance of the portion where the cross-sectional area of the support beam is reduced increases, and resistance heat is generated by applying a predetermined current, so that the support beam can be fused.

また、前記複数の支持梁は、前記基部との境界部の幅が減縮されて電気抵抗が大きい部位が形成され、選択された前記支持梁に電流を印加して支持梁を溶断することによって、前記レゾネータの振動周波数を調整することが好ましい。   Further, the plurality of support beams are formed by reducing the width of the boundary portion with the base and forming a portion having a large electric resistance, and by applying current to the selected support beams to blow the support beams, It is preferable to adjust the vibration frequency of the resonator.

ここで、支持梁の幅を減縮する方法としては、例えば、支持梁の幅方向両側から切欠き部を形成し、支持梁の断面積を小さくする方法を採用することができる。   Here, as a method of reducing the width of the support beam, for example, a method of forming a notch from both sides in the width direction of the support beam and reducing the cross-sectional area of the support beam can be employed.

このようにすれば、切欠き部を設けることで支持梁の幅を減縮して断面積を小さくすることで、他の部分よりも電気抵抗が大きい部位を容易に形成することができ、そこに電流を印加することで抵抗熱を発生し、支持梁を溶断することができる。このように切欠き部を設けて支持梁の幅をを小さくする工程は、可動部を半導体製造プロセスで成形する際に同じ工程で成形できるため、レゾネータ製造時間を短縮できると共に、電気抵抗が大きい部位を形成するための特別な製造設備も必要としない効果もある。   In this way, by providing a notch, the width of the support beam is reduced and the cross-sectional area is reduced, so that a portion having a higher electrical resistance than other portions can be easily formed. Resistance heat can be generated by applying an electric current, and the support beam can be blown. The step of reducing the width of the support beam by providing the notch portion in this way can be formed in the same step when forming the movable portion in the semiconductor manufacturing process, so that the resonator manufacturing time can be shortened and the electric resistance is large. There is also an effect that no special manufacturing equipment for forming the part is required.

また、前記支持梁は、前記基部との境界部の厚みが減縮されて電気抵抗が大きい部位が形成され、選択された前記支持梁に電流を印加して支持梁を溶断することによって、前記レゾネータの振動周波数を調整することが好ましい。
ここで、厚みを減縮する手段としては、例えば、エッチング等の加工手段で、支持梁の幅方向に溝を形成することで実現できる。
In addition, the support beam is formed with a portion having a large electric resistance by reducing the thickness of the boundary portion with the base portion, and by applying current to the selected support beam and fusing the support beam, the resonator It is preferable to adjust the vibration frequency.
Here, the means for reducing the thickness can be realized, for example, by forming a groove in the width direction of the support beam by a processing means such as etching.

支持梁に電気抵抗が大きい部位を形成する方法としては、支持梁の厚みを薄くすることで支持梁の断面積を小さくし、その部位の電気抵抗を高め溶断しやすくすることができる。このように、支持梁の厚みを薄くする場合には、溶断されない支持梁は、前述した幅方向に切欠きを設ける方法にくらべ、可動部が駆動(振動)された際に、支持梁に捩じれ等の複合振動が発生しにくくなるため、安定した振動周波数を得ることができる。また、厚みを減縮する手段としてエッチングを採用すれば、半導体製造プロセスの中で加工することができ、特別な加工設備等を必要としない。   As a method of forming a portion having a large electric resistance in the support beam, the thickness of the support beam can be reduced to reduce the cross-sectional area of the support beam, thereby increasing the electric resistance of the portion and facilitating fusing. Thus, when the thickness of the support beam is reduced, the support beam that is not melted is twisted by the support beam when the movable part is driven (vibrated), compared to the method in which the notch is provided in the width direction described above. Therefore, a stable vibration frequency can be obtained. Further, if etching is employed as a means for reducing the thickness, it can be processed in the semiconductor manufacturing process, and no special processing equipment or the like is required.

また、前記支持梁は、前記基部との境界部に絶縁性物質がイオン注入されることによって電気抵抗が大きい部位が形成され、選択された前記支持梁に電流を印加して支持梁を溶断することによって、前記レゾネータの振動周波数を調整することが好ましい。   In addition, the support beam is formed with a portion having a large electric resistance by ion implantation of an insulating material at the boundary with the base, and the support beam is blown by applying current to the selected support beam. Therefore, it is preferable to adjust the vibration frequency of the resonator.

このようにすれば、複数備えられる支持梁の溶断される部位が、切欠き部や溝が必要ないため、可動部を支持する支持部材は、単純形状の梁であるため、振動周波数調整要素としてのばね定数は、単純梁の振動として算出することができ、周波数の調整量設定のための溶断支持梁の選択、組み合わせが容易になるという効果がある。
さらに、絶縁性物質のイオン注入は、半導体製造プロセスにおいて汎用的に用いられるプロセスであるために、容易に電気抵抗が大きい部位を形成することができる。
In this way, since the parts to be fused of the plurality of supporting beams are not required to have a notch or groove, the supporting member that supports the movable part is a simple-shaped beam, so that the vibration frequency adjustment element The spring constant can be calculated as the vibration of a simple beam, which has the effect of facilitating the selection and combination of a fusing support beam for setting the frequency adjustment amount.
Furthermore, since the ion implantation of the insulating substance is a process that is widely used in the semiconductor manufacturing process, it is possible to easily form a portion having a large electric resistance.

また、前述した構成のレゾネータは、前記可動部の重心位置を移動しないように、選択された前記支持梁を溶断し、前記レゾネータの振動周波数を調整することが好ましい。   Moreover, it is preferable that the resonator having the configuration described above adjusts the vibration frequency of the resonator by fusing the selected support beam so as not to move the center of gravity of the movable portion.

前述したように、支持梁を溶断して可動部の質量、ばね定数を変更して振動周波数調整を調整する方法においては、溶断後の支持梁の形状が異なり、溶断する支持梁の選択によって重心位置が溶断前から移動することが考えられる。このような場合、可動部が振動する際に複合的な振動になり、振動周波数が安定しない。従って、支持梁を溶断する際には、重心が移動しないように溶断する支持梁を選択することで安定した振動周波数を得ることができる。   As described above, in the method of adjusting the vibration frequency adjustment by fusing the support beam and changing the mass of the movable part and the spring constant, the shape of the support beam after fusing differs, and the center of gravity depends on the selection of the support beam to be fused. It is conceivable that the position moves before fusing. In such a case, complex vibration occurs when the movable part vibrates, and the vibration frequency is not stable. Therefore, when fusing the support beam, a stable vibration frequency can be obtained by selecting the fusing beam so that the center of gravity does not move.

本発明のレゾネータは、前述したレゾネータの振動周波数調整方法によって、振動周波数が調整されることを特徴とする。   The resonator of the present invention is characterized in that the vibration frequency is adjusted by the above-described method for adjusting the vibration frequency of the resonator.

この発明によれば、短時間で精度よく振動周波数の調整ができるとともに、長期間にわたって安定した振動周波数を有する低コストのレゾネータを提供することができる。   According to the present invention, it is possible to provide a low-cost resonator that can accurately adjust the vibration frequency in a short time and has a stable vibration frequency over a long period of time.

以下、本発明の実施の形態を図面に基づいて説明する。
図1〜図5は本発明の実施形態1に係るレゾネータが示され、図6〜図7には実施形態1の変形例が示されている。
(実施形態1)
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
1 to 5 show a resonator according to a first embodiment of the present invention, and FIGS. 6 to 7 show a modification of the first embodiment.
(Embodiment 1)

図1〜図5は実施形態1に係るレゾネータが示されている。
図1は、本実施形態1のレゾネータ10の断面図を示す。図1において、レゾネータ10は、基本構成として、半導体基板20上に形成される固定部としてのシリコン層(Si層)21と可動部30とから構成されている。半導体基板20は、シリコン層21内に、図示しない駆動回路や検出回路等の機能回路素子が備えられている。シリコン層21は、外周部に壁部23が形成されており、この壁部23に囲まれた内側には、可動部30が形成される空間61が形成されている。
1 to 5 show a resonator according to the first embodiment.
FIG. 1 is a cross-sectional view of the resonator 10 according to the first embodiment. In FIG. 1, the resonator 10 includes a silicon layer (Si layer) 21 as a fixed portion formed on a semiconductor substrate 20 and a movable portion 30 as a basic configuration. The semiconductor substrate 20 is provided with functional circuit elements such as a drive circuit and a detection circuit (not shown) in a silicon layer 21. A wall portion 23 is formed on the outer peripheral portion of the silicon layer 21, and a space 61 in which the movable portion 30 is formed is formed on the inner side surrounded by the wall portion 23.

半導体基板20のシリコン層21の空間61の底部には、図示しない絶縁層が形成され、その上面には出力電極としての固定電極25が形成されている。この固定電極25は半導体基板20の機能回路素子(図示せず)に接続されている。前記絶縁層の上面に、可動部30が形成されている。   An insulating layer (not shown) is formed at the bottom of the space 61 of the silicon layer 21 of the semiconductor substrate 20, and a fixed electrode 25 as an output electrode is formed on the upper surface thereof. The fixed electrode 25 is connected to a functional circuit element (not shown) of the semiconductor substrate 20. A movable portion 30 is formed on the upper surface of the insulating layer.

可動部30は、ポリシリコン層で形成され、固定電極25と所定の間隙を有するように立ち上げ部45に連続して12本の支持梁31〜42を有している(図2、参照)。支持梁31〜42は、可動部の円形状の基部50からそれぞれ円周方向に等間隔で放射状に延出されている。可動部30は、MEMS等の手段によって半導体基板20と一体で形成される。可動部30は、一方がバイアス電圧を供給する駆動回路のパッド70に接続され、他方が支持梁を溶断するための電流供給端子71に接続されている。なお、駆動回路のパッド70は半導体基板20に設けられ、電流供給端子71に電流を供給する電源部は、図示しない振動周波数調整装置に備えられる。   The movable portion 30 is formed of a polysilicon layer, and has twelve support beams 31 to 42 in succession to the rising portion 45 so as to have a predetermined gap with the fixed electrode 25 (see FIG. 2). . The support beams 31 to 42 extend radially from the circular base 50 of the movable part at equal intervals in the circumferential direction. The movable part 30 is formed integrally with the semiconductor substrate 20 by means such as MEMS. One of the movable parts 30 is connected to a pad 70 of a drive circuit that supplies a bias voltage, and the other is connected to a current supply terminal 71 for fusing the support beam. Note that the pad 70 of the drive circuit is provided on the semiconductor substrate 20, and a power supply unit that supplies current to the current supply terminal 71 is provided in a vibration frequency adjusting device (not shown).

空間61は、シリコン層21の周縁の壁部23に封止部材60を接着等の固着手段によって密閉封止され、外部の湿気や塵埃が可動部30に付着することを防止している。
可動部30の形状は、図2を参照して詳しく説明する。
The space 61 is hermetically sealed to the peripheral wall portion 23 of the silicon layer 21 by an adhering means such as bonding the sealing member 60 to prevent external moisture and dust from adhering to the movable portion 30.
The shape of the movable part 30 will be described in detail with reference to FIG.

図2は、可動部30を平面上方から視認して模式的に示す平面図である。円盤状の基部50からそれぞれ円周方向に等間隔で放射状に延出された支持梁31〜42は、この可動部30の重心Gから端部まで同じ長さの弾性を有する梁である。また、各支持梁は、重心Gを中心として点対称の関係にある。支持梁31〜42の先端部は、図1で示した立ち上げ部45であり、図2では省略しているが、全ての支持梁に同形状で形成されている。支持梁31〜42の基部50と支持梁31〜42の境界部には、それぞれ、支持梁の幅方向両側から切欠き部31A〜34A等が形成されている。これらの切欠き部は、徐徐に幅が減縮され境界部の幅が最も小さく形成される。この幅が減縮された部位は、他の減縮されない部位よりも断面積が小さくなり、支持梁に電流を印加したときに、他の部位よりも電気抵抗が大きいので発熱し、所定の電流を印加すると切欠き部で溶断される。   FIG. 2 is a plan view schematically showing the movable unit 30 as viewed from above the plane. The support beams 31 to 42 extending radially from the disk-shaped base 50 at equal intervals in the circumferential direction are beams having the same length from the center of gravity G to the end of the movable portion 30. Each support beam has a point-symmetric relationship with the center of gravity G as the center. The front end portions of the support beams 31 to 42 are the rising portions 45 shown in FIG. 1 and are omitted in FIG. 2, but are formed in the same shape on all the support beams. Notch portions 31A to 34A and the like are formed at the base portion 50 of the support beams 31 to 42 and the boundary portions of the support beams 31 to 42 from both sides in the width direction of the support beams, respectively. These notches are gradually reduced in width and formed with the smallest width at the boundary. The part where the width is reduced has a smaller cross-sectional area than the other parts that are not reduced, and when a current is applied to the support beam, it generates heat because it has a higher electrical resistance than the other parts, and a predetermined current is applied. Then it is blown out at the notch.

支持梁31の幅はA、支持梁32の幅はB、支持梁33の幅はC、に設定され、それぞれの幅はA>B>Cの関係にある。そして、支持梁31とは直角方向にある支持梁34の幅はAに設定され、支持梁35の幅はB、支持梁36の幅はCというように、他の支持梁も同じ順列で幅が設定されている。また、切欠き部の最小幅は、所定の電流を印加した際に、これら最小幅の部位で溶断できる電気抵抗を有する断面積にするとともに、可動部30が振動するときに切欠き部の構造的強度が保たれる大きさに設定されるが、概ね、各支持梁の幅の70%程度の幅に設定されることが好ましい。   The width of the support beam 31 is set to A, the width of the support beam 32 is set to B, and the width of the support beam 33 is set to C. The respective widths have a relationship of A> B> C. The width of the support beam 34 perpendicular to the support beam 31 is set to A, the width of the support beam 35 is B, the width of the support beam 36 is C, and the other support beams have the same permutation. Is set. Further, the minimum width of the notch has a cross-sectional area having an electric resistance that can be melted at a portion of the minimum width when a predetermined current is applied, and the structure of the notch when the movable part 30 vibrates. Although it is set to such a size that the desired strength is maintained, it is generally preferable to set the width to about 70% of the width of each support beam.

次に、本発明のレゾネータ10の駆動方法について説明する(図1、参照)。可動部30にバイアス電圧が供給されると、可動部30と固定電極25との間に静電力が発生し、この静電力で可動部30が縦方向(厚み方向)に振動する。   Next, a driving method of the resonator 10 of the present invention will be described (see FIG. 1). When a bias voltage is supplied to the movable part 30, an electrostatic force is generated between the movable part 30 and the fixed electrode 25, and the movable part 30 vibrates in the vertical direction (thickness direction) by this electrostatic force.

ところで、レゾネータの振動に大きく関係する要素である可動部30の質量mと、ばね定数kと、振動周波数frと、の関係は、(2πfr)2=k/mで表される。この式によれば、質量mを小さくすれば振動周波数frは高くなり、ばね定数kが小さくなれば振動周波数frは低くなる。
本発明は、この質量m、または、ばね定数kの大きさを構造的に変更することでレゾネータ10の振動周波数frを調整する振動周波数調整方法として、支持梁に電流を印加して選択された支持梁を溶断することで実現することを要旨としている。
By the way, the relationship between the mass m of the movable part 30 which is an element greatly related to the vibration of the resonator, the spring constant k, and the vibration frequency fr is expressed by (2πfr) 2 = k / m. According to this equation, if the mass m is decreased, the vibration frequency fr is increased, and if the spring constant k is decreased, the vibration frequency fr is decreased.
The present invention was selected as a vibration frequency adjusting method for adjusting the vibration frequency fr of the resonator 10 by structurally changing the mass m or the magnitude of the spring constant k by applying a current to the support beam. The gist is to achieve this by fusing the support beam.

続いて、レゾネータ10の振動周波数調整方法について説明する。
図3は、実施形態1に係るレゾネータ10の振動周波数調整方法の1例を示す可動部30を平面視した説明図である。図1、図3を参照して説明する。
まず、可動部30の支持梁31〜42を切断しない状態で、可動部30にバイアス電圧を供給し、可動部30を振動させながら振動周波数を測定し、所定の周波数(設計値)との差を検出する。所定の振動周波数との差を確認し、所定の振動周波数に一致させるために、どの支持梁を溶断すればよいか周波数調整装置(図示せず)において演算処理し、その組み合わせを選択し、選択された支持梁に溶断に必要な電流を印加する。
Next, a method for adjusting the vibration frequency of the resonator 10 will be described.
FIG. 3 is an explanatory diagram viewed from above the movable unit 30 showing an example of the vibration frequency adjusting method of the resonator 10 according to the first embodiment. This will be described with reference to FIGS.
First, in a state where the support beams 31 to 42 of the movable part 30 are not cut, a bias voltage is supplied to the movable part 30, and the vibration frequency is measured while vibrating the movable part 30, and the difference from a predetermined frequency (design value) is measured. Is detected. Check the difference from the predetermined vibration frequency, and in order to match it with the predetermined vibration frequency, which support beam should be blown out is calculated in the frequency adjustment device (not shown), the combination is selected and selected A current necessary for fusing is applied to the supported support beam.

支持梁溶断の方法としては、選択された溶断すべき支持梁は、必要な電流を印加する図示しない振動数周波数調整装置に備えられる電源部、他の溶断されない支持梁は、GNDに接続され、予め設定された溶断に必要な電流が選択された支持梁に印加される。   As a method of fusing the support beam, the selected support beam to be blown is connected to a power supply unit provided in a frequency frequency adjusting device (not shown) that applies a necessary current, and the other non-fusing support beams are connected to GND, A preset current required for fusing is applied to the selected support beam.

なお、振動周波数調整工程としては、基本となる支持梁溶断前の振動周波数の測定工程、修正量の演算、支持梁の溶断による振動周波数の調整、再測定(検査)等、必要があれば再度前述の工程を繰り返す。これらの一連の工程は連続して行なうことができる。   As the vibration frequency adjustment process, the basic measurement process of vibration frequency before fusing the support beam, calculation of correction amount, adjustment of vibration frequency by fusing the support beam, re-measurement (inspection), etc. are necessary again. Repeat the above steps. These series of steps can be performed continuously.

図3においては、支持梁32,33,35,36,38,39,41,42が溶断されている。従って、支持梁31,34,37,40の4本の十字方向に延出された支持梁で可動部30は支持されている。ここで、全ての支持梁が溶断される前に比べ、溶断後では、可動部30の質量mは小さくなり、振動周波数は高い方向に変化する。また、このとき、可動部30を支持している支持梁の数が減少しているので、ばね定数kは小さくなり振動周波数は低い方向に変化する。この質量mとばね定数kと振動周波数frとの関係をテーブルに設定し、そのテーブルから溶断する支持梁の組み合わせを選択し所定の振動周波数に調整することができる。   In FIG. 3, the support beams 32, 33, 35, 36, 38, 39, 41, and 42 are blown out. Accordingly, the movable portion 30 is supported by the four support beams 31, 34, 37, and 40 that extend in the cross direction. Here, the mass m of the movable part 30 becomes smaller and the vibration frequency changes in a higher direction after the fusing than before all the supporting beams are fused. At this time, since the number of support beams supporting the movable portion 30 is decreased, the spring constant k is decreased and the vibration frequency is changed in a lower direction. The relationship between the mass m, the spring constant k, and the vibration frequency fr can be set in a table, and a combination of support beams to be fused from the table can be selected and adjusted to a predetermined vibration frequency.

なお、図3において、溶断された後の可動部30の形状は、31,34,37,40の幅と長さが等しく、切欠き部の位置、大きさもそれぞれ等しく、また、延出される位置が十字方向等間隔であるため、可動部の重心Gも支持梁溶断前と変わらないので振動モードは変わらない。溶断する支持梁の組み合わせは、幾通りも選択できるが、図4、図5においてその組み合わせを例示する。   In FIG. 3, the shape of the movable part 30 after being melted is the same in width and length as 31, 34, 37, and 40, and the positions and sizes of the notch parts are also the same, and the extended positions Since the center of gravity G of the movable part is not changed from that before the supporting beam is blown, the vibration mode is not changed. Various combinations of the supporting beams to be fused can be selected, and such combinations are illustrated in FIGS. 4 and 5.

図4、図5は、可動部30を平面視して支持梁の溶断の組み合わせを模式的に示す平面図である。図4においては、支持梁31,33,34,36,37,39,40,42が溶断され、十字状に4本の支持梁32,35,38,41が半導体基板20に接続されている。従って、前述した図3の例示に比べ、溶断された支持梁の質量mが大きく、また、可動部を支持する支持梁の幅が小さくなるためばね定数kが小さい方向に変化しており、異なった振動周波数に設定することができる。このような支持梁の溶断の組み合わせにおいても、重心Gの位置は移動しない。   4 and 5 are plan views schematically showing combinations of fusing of the support beams in a plan view of the movable portion 30. FIG. In FIG. 4, the support beams 31, 33, 34, 36, 37, 39, 40, and 42 are melted and the four support beams 32, 35, 38, and 41 are connected to the semiconductor substrate 20 in a cross shape. . Therefore, compared to the example of FIG. 3 described above, the mass m of the fused support beam is large, and the width of the support beam supporting the movable portion is small, so that the spring constant k is changed in a small direction. Vibration frequency can be set. Even in such a combination of fusing of support beams, the position of the center of gravity G does not move.

また、図5においては、支持梁31,32,34,35,37,38,40,41が溶断され、十字状に4本の支持梁33,36,39,42が半導体基板20に接続されている。従って、前述した図3及び図4における例示に比べ、質量m、ばね定数kともに小さい方向に変化しており、図3、図4に例示した構成とは異なった振動周波数に調整することができる。   Further, in FIG. 5, the support beams 31, 32, 34, 35, 37, 38, 40, 41 are melted and the four support beams 33, 36, 39, 42 are connected to the semiconductor substrate 20 in a cross shape. ing. Therefore, both the mass m and the spring constant k are changed in a smaller direction as compared with the examples in FIGS. 3 and 4 described above, and can be adjusted to a vibration frequency different from the configuration illustrated in FIGS. .

なお、支持梁は、前述した実施形態1(図3、図4、図5、参照)では、12本で構成されているが、支持梁の数は12本に限定されるのもではなく、振動周波数の調整範囲や1本毎の調整量に応じて任意に設定することができる。
また、支持梁の幅もA,B,Cの3段階の設定に限らず支持梁の数に対応して増減することができ、さらには、幅A,B,Cの差や順列を任意に設定することができる。
Note that the number of support beams is 12 in the above-described first embodiment (see FIGS. 3, 4, and 5), but the number of support beams is not limited to 12, It can be arbitrarily set according to the adjustment range of the vibration frequency and the adjustment amount for each one.
In addition, the width of the support beam is not limited to the three stages of A, B, and C, and can be increased or decreased according to the number of support beams. Furthermore, the difference or permutation of the widths A, B, and C can be arbitrarily set. Can be set.

また、図3、図4、図5では、ともに溶断しない支持梁を十字状の4本を備えた例を示しているが、4本に限らず2本または3本でもよく、溶断することによって重心Gの位置が移動せず、安定した振動が得られるという条件を満たせば何本でもよく、その配置も任意に設定することができる。   3, 4, and 5 show an example in which four supporting beams that are not fused are provided with four cross-shaped beams, but the number is not limited to four and may be two or three. Any number may be used as long as the condition that the position of the center of gravity G does not move and a stable vibration can be obtained, and the arrangement can be arbitrarily set.

従って、前述した実施形態1によれば、可動部30の支持梁31〜42に電気抵抗が大きい切欠き部を設け、これらの支持梁に電流を印加することで、電気抵抗が大きい部位に抵抗熱が発生し支持梁が溶断され、溶断された支持梁の分だけ可動部の質量mが小さくなり、また、可動部を支持する支持梁の数が減少するとともに、支持梁の幅が変更されるためにばね定数kが小さくなることから、所定の振動周波数に調整することができる。また、複数設けられた支持梁それぞれの幅が異なるので、所望のばね定数を有する支持梁を選択すれば、所定の振動周波数に容易に調整することができる。   Therefore, according to the above-described first embodiment, the support beams 31 to 42 of the movable portion 30 are provided with the notched portions having a large electrical resistance, and a current is applied to these support beams to thereby resist the portion having a large electrical resistance. Heat is generated and the support beam is blown, and the mass m of the movable portion is reduced by the amount of the blown support beam, and the number of support beams supporting the movable portion is reduced, and the width of the support beam is changed. Therefore, since the spring constant k becomes small, it can be adjusted to a predetermined vibration frequency. In addition, since the width of each of the plurality of support beams provided is different, if a support beam having a desired spring constant is selected, it can be easily adjusted to a predetermined vibration frequency.

さらに、複数の支持梁、及び切欠き部は、半導体製造プロセスで形成し、所定の電流を支持梁に印加することで溶断し、振動周波数を調整することができるため、前述した従来技術のようなレーザービーム装置や集束イオンビーム等の高価な設備を必要としないので、低コストのレゾネータを提供することができる。   Further, since the plurality of support beams and the notches can be formed by a semiconductor manufacturing process and melted by applying a predetermined current to the support beams, and the vibration frequency can be adjusted. Since expensive equipment such as a simple laser beam apparatus and focused ion beam is not required, a low-cost resonator can be provided.

また、支持梁31〜42に溶断のための電流を印加するだけで振動周波数調整が可能であるため、短時間で振動周波数調整を行なうことができる。
さらに、レゾネータの振動周波数は、支持梁溶断後の形状だけで規制されるので、正確で、且つ安定した振動周波数を長期間にわたって維持することができる。
Further, since the vibration frequency can be adjusted only by applying a current for fusing to the support beams 31 to 42, the vibration frequency can be adjusted in a short time.
Furthermore, since the vibration frequency of the resonator is regulated only by the shape after the supporting beam is blown, an accurate and stable vibration frequency can be maintained over a long period of time.

また、支持梁31〜42は、重心Gから溶断されるまでの位置が等距離で且つ、基部50との境界部に設けられているため、溶断後の可動部30の形状は、基部50と可動部30の支持部材としての支持梁とから構成される単純形状であるので、安定した振動周波数を得ることができる。   Further, since the support beams 31 to 42 are equidistant from the center of gravity G and are provided at the boundary with the base 50, the shape of the movable part 30 after the cutting is the same as that of the base 50. Since it is a simple shape comprised from the support beam as a support member of the movable part 30, the stable vibration frequency can be obtained.

さらに、実施形態1による振動周波数調整工程は、基本となる支持梁溶断前の振動周波数の測定工程、修正量の演算、支持梁の溶断による振動周波数の調整、再測定(検査)等の工程が連続して行なうことができるので、振動周波数調整を短時間で行なうことができるうえ、このことによって、低コストのレゾネータを提供することができる。
(変形例1)
Furthermore, the vibration frequency adjustment process according to the first embodiment includes the basic measurement process of the vibration frequency before the supporting beam is blown, the calculation of the correction amount, the adjustment of the vibration frequency by the cutting of the support beam, and the remeasurement (inspection). Since it can be performed continuously, it is possible to adjust the vibration frequency in a short time and to provide a low-cost resonator.
(Modification 1)

続いて、実施形態1の変形例1について図面を参照して説明する。変形例1は、実施形態1に対して、電気抵抗を大きくする部位の形状を支持梁の厚みを減縮することで実現したことを特徴としている。
図6(a)は、変形例1に係る可動部30の平面図、図6(b)は、その部分断面図を示している。図6(a),(b)において、支持梁31は幅がA、支持梁32は幅がB、支持梁33は幅がCというように実施形態1と同様に構成されている。基部50と支持梁31〜42のそれぞれの境界部には、溝が設けられ、支持梁の厚みが減縮されている。支持梁31を例示して詳しく説明する。
Subsequently, Modification 1 of Embodiment 1 will be described with reference to the drawings. The first modification is characterized in that the shape of the portion that increases the electrical resistance is realized by reducing the thickness of the support beam, as compared with the first embodiment.
6A is a plan view of the movable portion 30 according to the first modification, and FIG. 6B is a partial cross-sectional view thereof. 6 (a) and 6 (b), the support beam 31 is configured in the same manner as in the first embodiment such that the width is A, the support beam 32 is B, and the support beam 33 is C. A groove is provided at each boundary between the base 50 and the support beams 31 to 42 to reduce the thickness of the support beam. The support beam 31 will be exemplified and described in detail.

支持梁31の基部50との境界部には、幅方向に溝31Bが形成されている。溝31Bの端部は、基部50の端部に一致する位置であり、図6では、説明を分かりやすくするために幅を広く表示しているが、溝幅は、溝深さと略同じ程度に設定することが好ましい。これは、溶断する際に、溶断位置がばらつかないようにすることを目的としている。また、溝31Bによって形成される支持梁31の残肉部の断面積は、実施形態1で説明した切欠き部の残肉部と同じ大きさに設定されている。   A groove 31 </ b> B is formed in the width direction at the boundary between the support beam 31 and the base 50. The end of the groove 31B is a position that coincides with the end of the base 50, and in FIG. 6, the width is shown wide for easy understanding, but the groove width is approximately the same as the groove depth. It is preferable to set. This is intended to prevent the fusing position from fluctuating when fusing. Further, the cross-sectional area of the remaining portion of the support beam 31 formed by the groove 31B is set to the same size as the remaining portion of the notch portion described in the first embodiment.

このようにすれば、溝31B部分の断面積が周辺の断面積よりも小さくなるため、電気抵抗が大きくなり、所定の電流を印加すれば、この溝31B部で支持梁31を溶断することができ、前述した実施形態1と同様な効果を得ることができる。また、各支持梁の溝31Bの幅、厚みを一定にすれば、可動部30が振動する際に、捻り力が発生し難いために、安定した振動モードが得られるという効果がある。
なお、図6(b)では、溝31Bは、厚み方向上面のみに設けられているが、溝は、支持梁の表裏両面に形成することもできる。
(変形例2)
In this way, since the cross-sectional area of the groove 31B portion is smaller than the peripheral cross-sectional area, the electrical resistance increases, and if a predetermined current is applied, the support beam 31 can be fused at the groove 31B portion. It is possible to obtain the same effects as those of the first embodiment described above. Further, if the width and thickness of the groove 31B of each support beam are made constant, it is difficult to generate a twisting force when the movable part 30 vibrates, and thus there is an effect that a stable vibration mode can be obtained.
In FIG. 6B, the groove 31B is provided only on the upper surface in the thickness direction, but the groove may be formed on both the front and back surfaces of the support beam.
(Modification 2)

続いて、変形例2について図面を参照して説明する。変形例2は、前述した実施形態1における支持梁に電気抵抗を大きくする部位を形成するという技術思想を基本として、形状として支持梁の断面積を減ずることなく、電気抵抗を大きくする部位を構成することを特徴とする。
図7は、変形例2の支持梁の構成を示す。図7(a)は、その部分断面図、図7(b)は他の変形例を示す部分断面図である。支持梁31を例示して説明する。図7(a)において、支持梁31には、絶縁性物質がイオン注入された絶縁層31Cが形成されている。絶縁物質としては酸素(O2)等を採用し、絶縁層として酸化シリコン(SiO2)を形成することができる。絶縁層31Cの幅、深さは、溶断するために必要な大きさに設定される。
Subsequently, Modification 2 will be described with reference to the drawings. Modification 2 is based on the technical idea of forming a portion for increasing the electric resistance in the support beam in Embodiment 1 described above, and forms a portion for increasing the electric resistance without reducing the cross-sectional area of the support beam as a shape. It is characterized by doing.
FIG. 7 shows a configuration of the support beam of the second modification. FIG. 7A is a partial cross-sectional view, and FIG. 7B is a partial cross-sectional view showing another modification. The support beam 31 will be described as an example. In FIG. 7A, the support beam 31 is formed with an insulating layer 31C into which an insulating material is ion-implanted. Oxygen (O 2 ) or the like can be employed as the insulating material, and silicon oxide (SiO 2 ) can be formed as the insulating layer. The width and depth of the insulating layer 31C are set to a size necessary for fusing.

図7(b)は、図7(b)で示した例示に対して絶縁層のイオン注入範囲を変えたもので、絶縁層31Cは、基部50との境界部が深く、支持梁の先端方向は浅くなるように形成されている。
このようにすれば、溶断する際に、最も絶縁層が深く形成されている部分の電気抵抗が高い部位が形成されるので、基部50の周縁部で溶断することができる。
FIG. 7B is a diagram in which the ion implantation range of the insulating layer is changed with respect to the example shown in FIG. 7B. The insulating layer 31C has a deep boundary with the base 50, and the tip direction of the support beam. Is formed to be shallow.
In this way, when fusing, a portion having the highest electrical resistance in the portion where the insulating layer is deepest is formed, so that the fusing can be performed at the peripheral portion of the base 50.

なお、絶縁物質は、イオン注入する際に、イオン注入量を適宜調整することで、完全な絶縁層にせずに、周辺よりも電気抵抗が高い部位を形成することができる。このようにすれば、絶縁層31Cは、支持梁31の厚み全体にわたって形成してもよい。   Note that the insulating material can be formed by appropriately adjusting the ion implantation amount at the time of ion implantation, so that a portion having a higher electrical resistance than the periphery can be formed without forming a complete insulating layer. In this way, the insulating layer 31 </ b> C may be formed over the entire thickness of the support beam 31.

従って、このような変形例2によれば、前述した実施形態1、及び変形例1のように、切欠き部、溝等を設ける構造に比べ、構造的強度が低い部位を設けることなく、電気抵抗が大きい部位を形成することができ、より一層安定した振動周波数を得ることができる。振動周波数調整においても、ばね定数kの算出において、単純梁の計算によって算出が可能で、振動周波数調整のためのテーブル作成も単純化することができる。
また、支持梁に応力集中する部位がなくなるため、長期間にわたって正確な振動周波数を維持することができるという効果がある。
Therefore, according to the second modification, the electrical strength can be reduced without providing a portion having a lower structural strength than the structure in which the cutout portion, the groove, and the like are provided as in the first embodiment and the first modification. A portion having a large resistance can be formed, and a more stable vibration frequency can be obtained. In the vibration frequency adjustment, the spring constant k can be calculated by calculating a simple beam, and the creation of a table for adjusting the vibration frequency can be simplified.
Further, since there is no portion where stress is concentrated on the support beam, there is an effect that an accurate vibration frequency can be maintained over a long period of time.

なお、本発明は前述の実施形態に限定されるものではなく、本発明の目的を達成できる範囲での変形、改良等は本発明に含まれるものである。
例えば、前述した実施形態では、レゾネータ10は、機能回路素子が備えられる半導体基板20上に形成されているが、機能回路素子を備えない半導体基板上に形成することができる。
It should be noted that the present invention is not limited to the above-described embodiments, and modifications, improvements, and the like within the scope that can achieve the object of the present invention are included in the present invention.
For example, in the above-described embodiment, the resonator 10 is formed on the semiconductor substrate 20 provided with the functional circuit elements, but can be formed on a semiconductor substrate not provided with the functional circuit elements.

また、実施形態1のように切欠き部を設ける構造と、切欠き部に加えて、変形例1のように溝を設ける構造や、切欠き部と変形例2で説明した絶縁層を設ける構造とを組み合わることもできる。   Further, a structure in which a notch is provided as in the first embodiment, a structure in which a groove is provided in a modified example 1 in addition to the notched part, and a structure in which an insulating layer described in the modified example 2 is provided in the notched part. Can also be combined.

従って、前述の実施形態1、及び変形例1,2によれば、レゾネータの振動周波数調整を、簡単な設備で短時間で精度よく、しかも低コストで実現できるレゾネータの振動周波数調整方法と、この調整方法で製造されるレゾネータを提供することができる。   Therefore, according to the above-described first embodiment and the first and second modifications, the resonator vibration frequency adjustment method can be realized with simple equipment in a short time with high accuracy and at low cost. A resonator manufactured by the adjustment method can be provided.

本発明に係る実施形態1のレゾネータの概略構成を示す断面図。Sectional drawing which shows schematic structure of the resonator of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の可動部を模式的に示す平面図。The top view which shows typically the movable part of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1のレゾネータの振動周波数調整方法の1例を示す平面図。The top view which shows one example of the vibration frequency adjustment method of the resonator of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の支持梁溶断の組み合わせを模式的に示す平面図。The top view which shows typically the combination of the support beam fusing of Embodiment 1 which concerns on this invention. 本発明に係る実施形態1の支持梁溶断の組み合わせを模式的に示す平面図。The top view which shows typically the combination of the support beam fusing of Embodiment 1 which concerns on this invention. 本発明に係る変形例1の可動部を模式的に示す図面。(a)は平面図、(b)は部分断面図。The figure which shows typically the movable part of the modification 1 which concerns on this invention. (A) is a top view, (b) is a fragmentary sectional view. 本発明に係る変形例2の可動部を模式的に示す図面。(a)は部分断面図、(b)は他の変形例を示す部分断面図。The figure which shows typically the movable part of the modification 2 which concerns on this invention. (A) is a fragmentary sectional view, (b) is a fragmentary sectional view which shows another modification.

符号の説明Explanation of symbols

10…レゾネータ、20…半導体基板、30…可動部、31〜42…支持梁、31A〜34A…電気抵抗が大きい部位としての切欠き部、50…基部。
DESCRIPTION OF SYMBOLS 10 ... Resonator, 20 ... Semiconductor substrate, 30 ... Movable part, 31-42 ... Support beam, 31A-34A ... Notch part as a site | part with large electrical resistance, 50 ... Base part.

Claims (8)

半導体製造プロセスによって成形される可動部にバイアス電圧が印加され振動するレゾネータの振動周波数調整方法であって、
前記可動部の基部から放射状に延出される複数の支持梁を備え、該複数の支持梁の幅がそれぞれ異なって形成されると共に、前記複数の支持梁の前記基部との境界部に電気抵抗が大きい部位を設け、前記複数の支持梁のうちの選択された支持梁に電流を印加し、前記電気抵抗が大きい部位を溶断することによって、前記可動部の質量及びばね定数を変えて、前記レゾネータの振動周波数を調整することを特徴とするレゾネータの振動周波数調整方法。
A method for adjusting a vibration frequency of a resonator that vibrates when a bias voltage is applied to a movable part formed by a semiconductor manufacturing process,
A plurality of support beams extending radially from a base portion of the movable portion; the plurality of support beams are formed with different widths; and an electric resistance is provided at a boundary between the plurality of support beams and the base portion. Providing a large portion, applying a current to a selected support beam among the plurality of support beams, and fusing the portion having a large electrical resistance, thereby changing the mass and spring constant of the movable portion, thereby the resonator A method for adjusting the vibration frequency of a resonator, wherein the vibration frequency of the resonator is adjusted.
請求項1に記載のレゾネータの振動周波数調整方法において、
前記可動部の重心位置から前記電気抵抗が大きい部位までの距離が、前記複数の支持梁それぞれ等距離であり、前記複数の支持梁のうちの選択された支持梁に電流を印加し、前記電気抵抗が大きい部位を溶断することによって、前記レゾネータの振動周波数を調整することを特徴とするレゾネータの振動周波数調整方法。
The method for adjusting the vibration frequency of the resonator according to claim 1,
The distance from the position of the center of gravity of the movable part to the portion where the electric resistance is large is equal to each of the plurality of support beams, and an electric current is applied to the selected support beam among the plurality of support beams, and the electric A method for adjusting a vibration frequency of a resonator, wherein the vibration frequency of the resonator is adjusted by fusing a portion having a large resistance.
請求項1または請求項2に記載のレゾネータの振動周波数調整方法において、
前記電気抵抗が大きい部位は、前記複数の支持梁の前記基部との境界部の断面積が減縮されて電気抵抗が大きい部位が形成され、選択された前記支持梁に電流を印加して支持梁を溶断することによって、前記レゾネータの振動周波数を調整することを特徴とするレゾネータの振動周波数調整方法。
In the resonator frequency adjusting method according to claim 1 or 2,
The portion having the large electrical resistance is formed by reducing the cross-sectional area of the boundary portion with the base portion of the plurality of support beams to form a portion having a large electrical resistance, and applying a current to the selected support beam A method for adjusting the vibration frequency of the resonator, wherein the vibration frequency of the resonator is adjusted by fusing the filter.
請求項1ないし請求項3のいずれか一項に記載のレゾネータの振動周波数調整方法において、
前記複数の支持梁は、前記基部との境界部の幅が減縮されて電気抵抗が大きい部位が形成され、選択された前記支持梁に電流を印加して支持梁を溶断することによって、前記レゾネータの振動周波数を調整することを特徴とするレゾネータの振動周波数調整方法。
The method for adjusting the vibration frequency of the resonator according to any one of claims 1 to 3,
In the plurality of support beams, a portion having a large electric resistance is formed by reducing a width of a boundary portion with the base portion, and by applying an electric current to the selected support beam, the support beam is melted to cut the resonator. A method for adjusting the vibration frequency of a resonator, wherein the vibration frequency of the resonator is adjusted.
請求項1ないし請求項3のいずれか一項に記載のレゾネータの振動周波数調整方法において、
前記支持梁は、前記基部との境界部の厚みが減縮されて電気抵抗が大きい部位が形成され、選択された前記支持梁に電流を印加して支持梁を溶断することによって、前記レゾネータの振動周波数を調整することを特徴とするレゾネータの振動周波数調整方法。
The method for adjusting the vibration frequency of the resonator according to any one of claims 1 to 3,
The support beam is formed with a portion having a large electrical resistance by reducing the thickness of the boundary with the base, and applying a current to the selected support beam to melt the support beam, thereby vibrating the resonator. A method for adjusting a vibration frequency of a resonator, wherein the frequency is adjusted.
請求項1ないし請求項3のいずれか一項に記載のレゾネータの振動周波数調整方法において、
前記支持梁は、前記基部との境界部に絶縁性物質がイオン注入されることによって電気抵抗が大きい部位が形成され、選択された前記支持梁に電流を印加して支持梁を溶断することによって、前記レゾネータの振動周波数を調整することを特徴とするレゾネータの振動周波数調整方法。
The method for adjusting the vibration frequency of the resonator according to any one of claims 1 to 3,
The support beam is formed by ion-implanting an insulating material at the boundary with the base to form a portion having a large electrical resistance, and by applying a current to the selected support beam to blow the support beam. A method for adjusting the vibration frequency of the resonator, wherein the vibration frequency of the resonator is adjusted.
請求項1ないし請求項6のいずれか一項に記載のレゾネータの振動周波数調整方法において、
前記可動部の重心位置を移動しないように、選択された前記支持梁を溶断し、前記レゾネータの振動周波数を調整することを特徴とするレゾネータの振動周波数調整方法。
The method for adjusting the vibration frequency of the resonator according to any one of claims 1 to 6,
A method for adjusting a vibration frequency of a resonator, wherein the selected support beam is blown so as not to move the position of the center of gravity of the movable portion, and the vibration frequency of the resonator is adjusted.
請求項1ないし請求項7のいずれか一項に記載のレゾネータの振動周波数調整方法によって、振動周波数が調整されることを特徴とするレゾネータ。
A resonator having a vibration frequency adjusted by the method for adjusting a vibration frequency of a resonator according to any one of claims 1 to 7.
JP2004258016A 2004-09-06 2004-09-06 Oscillating frequency adjustment method for resonator, and the resonator Withdrawn JP2006074650A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258016A JP2006074650A (en) 2004-09-06 2004-09-06 Oscillating frequency adjustment method for resonator, and the resonator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258016A JP2006074650A (en) 2004-09-06 2004-09-06 Oscillating frequency adjustment method for resonator, and the resonator

Publications (1)

Publication Number Publication Date
JP2006074650A true JP2006074650A (en) 2006-03-16

Family

ID=36154735

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258016A Withdrawn JP2006074650A (en) 2004-09-06 2004-09-06 Oscillating frequency adjustment method for resonator, and the resonator

Country Status (1)

Country Link
JP (1) JP2006074650A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5225840B2 (en) * 2006-06-14 2013-07-03 パナソニック株式会社 Vibrator, resonator using the same, and electromechanical filter using the same
JP2016119517A (en) * 2014-12-18 2016-06-30 セイコーエプソン株式会社 Oscillator, electronic apparatus and movable body

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5225840B2 (en) * 2006-06-14 2013-07-03 パナソニック株式会社 Vibrator, resonator using the same, and electromechanical filter using the same
JP2016119517A (en) * 2014-12-18 2016-06-30 セイコーエプソン株式会社 Oscillator, electronic apparatus and movable body

Similar Documents

Publication Publication Date Title
US8596121B2 (en) Structural member having a plurality of conductive regions
US6996884B2 (en) Method for manufacturing piezo-electric vibrator
WO2017090380A1 (en) Resonator device and method for producing same
KR20070083478A (en) Angular speed sensor
JP2004205523A (en) Vertical mems gyroscope of horizontal vibration and manufacturing method therefor
JP2001133477A (en) Integrated semiconductor inertia sensor having microactuator
JP2010050499A (en) Tuning fork crystal oscillator and frequency adjustment method thereof
CN105819396B (en) The method of trimming assembly and the component finely tuned by this method
JP2008054273A (en) Piezoelectric vibration chip, frequency adjusting method thereof, and piezoelectric vibrator
JPWO2015108124A1 (en) MEMS element
JP2006074650A (en) Oscillating frequency adjustment method for resonator, and the resonator
JP2006320963A (en) Electrostatic capacity type mems actuator
TW200945640A (en) Piezoelectric oscillator and method of the same
JP2006074543A (en) Oscillating frequency adjustment method for resonator, and the resonator
JPH10206458A (en) External force-measuring apparatus and its manufacture
JP2011176426A (en) Resonant vibration device
JP2023031298A (en) Fabrication of mems structures from fused silica for inertial sensors
JP5601463B2 (en) MEMS vibrator, oscillator, and method for manufacturing MEMS vibrator
JP2009122155A (en) Micro-device manufacturing method and micro--device
JP2005172690A (en) Manufacturing method of anode junction type sealed case and anode junction type device
JPH11271064A (en) Angular velocity sensor
JP4696488B2 (en) Method for adjusting frequency of piezoelectric vibrator and piezoelectric vibrator
JP6548067B2 (en) Gyro sensor
JP2006033354A5 (en)
JP2012222760A (en) Mems resonator and resonance frequency regulation method thereof

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070403

A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20071106