JP2006073932A - フォーカス状態検出方法とその装置、フォーカス調整方法とその装置、位置検出方法とその装置及び露光方法とその装置 - Google Patents

フォーカス状態検出方法とその装置、フォーカス調整方法とその装置、位置検出方法とその装置及び露光方法とその装置 Download PDF

Info

Publication number
JP2006073932A
JP2006073932A JP2004258266A JP2004258266A JP2006073932A JP 2006073932 A JP2006073932 A JP 2006073932A JP 2004258266 A JP2004258266 A JP 2004258266A JP 2004258266 A JP2004258266 A JP 2004258266A JP 2006073932 A JP2006073932 A JP 2006073932A
Authority
JP
Japan
Prior art keywords
stage
focus
detection
optical system
wafer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004258266A
Other languages
English (en)
Inventor
Shinko Morita
眞弘 森田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004258266A priority Critical patent/JP2006073932A/ja
Publication of JP2006073932A publication Critical patent/JP2006073932A/ja
Pending legal-status Critical Current

Links

Images

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Container, Conveyance, Adherence, Positioning, Of Wafer (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

【課題】ウエハステージ110の移動後に振動が静定するのを待つ必要なく直ちにアライメントAFを行なうことのできる方法を提供する。
【解決手段】ウエハWのウエハ・アライメントセンサー117の合焦面に対するずれを検出すると同時に、Z干渉計及びリニアスケールにより、ウエハステージ110が載置される定盤131とカラム132との距離S及び定盤131とウエハステージ110との間隔dを計測する。この計測結果に基づいて、ウエハWを載置したウエハステージ110の位置ずれを算出し、これにより合焦面に対するずれ量を補正する。ウエハステージ110が振動していても適正なずれ量が検出できる。
【選択図】 図5

Description

本発明は、例えば半導体素子等の電子デバイスを製造する際の露光装置のアライメントマーク等を検出してその位置を検出するアライメント系等に適用して好適なフォーカス状態検出方法とその装置、フォーカス調整方法とその装置、及び位置検出方法とその装置、及びそのような位置検出方法及び装置を適用した露光方法とその装置に関する。
半導体デバイス、液晶表示素子、CCD等の撮像素子、プラズマディスプレイ素子或いは薄膜磁気ヘッド等の電子デバイス(以下、電子デバイスと総称する)を製造する際には、露光装置を用いて、フォトマスクやレチクル(以下、レチクルと総称する)に形成された微細なパターンの像を、フォトレジスト等の感光剤を塗布した半導体ウエハやガラスプレート等の基板上に投影露光する。
この時用いられる露光装置としては種々の方式のものがあるが、ステップ・アンド・リピート方式の投影露光装置(ステッパ)やステップ・アンド・スキャン方式の投影露光装置(スキャニング・ステッパ)が広く使用されている。ステッパは、レチクルと感光基板との相対的な位置合わせを行った後で、レチクルに形成されたパターンを感光基板上に設定された1つのショット領域に一括して転写し、転写後に感光基板をステップ移動させて他のショット領域の露光を順次行なう露光装置である。また、スキャニング・ステッパは、レチクルと感光基板とを連続的に相対移動(走査)させつつレチクルに形成されたパターンを逐次感光基板に転写し、転写後に感光基板を移動させて他のショット領域に対して再度走査露光を行なう露光装置である。
例えば半導体デバイスの製造においては、このような露光装置を用いて基板としてのウエハ上の各ショット領域に複数層の回路パターンを重ねて形成するが、2層目以降の回路パターンをウエハ上に投影露光する際には、ウエハ上の既に形成されているパターン上にこれから露光するレチクルのパターン像を正確に位置合わせする必要がある。すなわち、レチクルのパターン像の投影位置に、ウエハを高精度に位置合わせ(アライメント)する必要がある。そのためのウエハ或いはウエハ上の各ショットの位置検出方法(アライメント計測方法)としては、数箇所(3箇所以上であって、通常は例えば6〜8箇所)のサンプルショット(以下、EGAショットと称する)について計測した位置情報に基づいて統計演算処理を行ないウエハ上の全てのショット領域の位置情報を得るエンハンスド・グローバル・アライメント(EGA)方式が主流となっている(例えば、特許文献1参照)。
また、ウエハステージにロードされるウエハは、プリアライメントされた状態でウエハステージに載置されるが、ファインアライメントとしてのEGA計測を実行できるレベル(精度)での位置決めはされていない。そのため、通常、EGA計測を実行する前にEGA計測に支障を来さない程度にウエハの位置を粗調整する、いわゆるサーチアライメントが行なわれる。サーチアライメントは、予め指定されたショット領域(例えば2箇所、以下サーチショットと称する)においてアライメントマーク(サーチアライメント用マーク)の位置を検出し、この検出結果に基づいてショット領域の座標値を補正するものである。
また、前述したファインアライメントとしてのEGAやサーチアライメントにおいてアライメントマークの計測を行なう場合には、対象物のクリアな画像を得るためウエハ上のマーク形成面にアライメント光学系の結像面(合焦面)を一致させる必要がある。そのため、光学系の結像面に対するウエハの相対的な位置を検出し、これが一致するように、例えばウエハステージの高さを調整するアライメントAF(オートフォーカス)が行なわれる。光学系の結像面とウエハ表面の相対的な位置を検出する方法としては、スリット状の光束でウエハ表面を照明し、照明されたウエハからの光束を対物光学系の瞳面で瞳分割し、瞳分割された光束の位置に基づいて結像面とウエハ表面の光軸方向の相対的な位置を検出するいわゆる瞳分割方式が知られている(例えば、特許文献2参照)。
ところで、電子デバイスの製造工程における露光処理においては、従来よりスループットの向上が要求されており、アライメント処理についても、これを短時間で効率よく行ないたいという要望がある。そのための一方法として、例えば、サーチアライメント及び前述したファインアライメントとしてのEGA計測を含む一連のアライメント処理において、サーチショットとEGAショットとの位置関係を考慮し、アライメント計測を行なうショットの順序を最適化することにより、ショット間の移動距離を少なくし、複数のマークを計測する際に要する時間を短縮した位置計測方法が提案されている(例えば、特許文献3参照)。
特開昭61−44429号公報 特開平8−167550号公報 特開2001−135559号公報
このような露光装置においてFIA系によりウエハアライメントを行なう場合には、前述したように、各ウエハ毎に、例えばサーチ計測2回とEGA計測(ファイン計測)8回というようなアライメントマークの位置計測を行なうことになる。従って、ウエハステージ(ウエハ)は10回程度順次位置を移動することになり、その各位置においてアライメントAF及びマークの位置計測が行なわれる。
この時、ウエハステージが移動したことによって、ウエハステージが停止した後もウエハステージが僅かに振動するという現象が生じる。このような状態においては、正確なフォーカス状態の計測や位置計測を行なうことができない。そのために、ウエハステージが移動した直後(停止後所定期間)は、ウエハステージの振動が静定する(収束する)のを待ってから、後段の計測を行なうことになる。すなわち、ウエハステージの移動直後は、直ちに計測処理を行なるのではなく、ある程度の時間待機し、振動が収まってから計測を行なうようにしている。
しかしながら、アライメント処理においても少しでもスループットを向上させることが要望されている中において、このような待機時間を要することは好ましくない。
実際、具体的な一例を挙げると、例えばウエハ上の8点程度の位置計測を3秒程度の時間で行なう露光装置において、ウエハステージの移動が終了してからステージが静定するまでの待機時間(計測を開始するまでの時間)としては、1計測箇所あたり10msec〜20msec程度の時間が必要となっている場合がある。従って、EGAショットの位置計測に要する約3秒のうち、80msec〜160msecはステージの移動後の静定待ち時間に費やされていることになり、決して無視できる時間ではない。
本発明はこのような課題に鑑みてなされたものであって、その目的は、ウエハステージ移動後にウエハステージの振動が静定するのを待機することなく直ちにアライメント系のフォーカス状態を検出することができるフォーカス状態検出方法及びその装置を提供することにある。
また本発明の他の目的は、そのフォーカス状態検出結果に基づいてフォーカス状態を調整することにより、ウエハステージ移動後においても迅速にアライメント系のフォーカス状態を調整することのできるフォーカス調整方法及びその装置を提供することにある。
また本発明の他の目的は、そのようなフォーカス調整を行なった上でウエハ等の物体の所望の箇所の位置を計測する検出ことにより、ウエハステージの移動後に迅速にその位置検出を行なうことのできる位置検出方法及びその装置を提供することにある。
さらに、本発明の他の目的は、そのようにな位置検出方法及び装置を適用することにより、ウエハに対するアライメント計測を短時間で効率よく行ない、もって高スループットで露光処理を行なうことのできる露光方法及びその装置を提供することにある。
前記課題を解決するために、本発明に係るフォーカス状態検出方法は、ステージ上に載置された物体の位置を検出する位置検出光学系の合焦面に対する、前記位置検出光学系の焦点方向における前記物体のフォーカス状態を検出するフォーカス状態検出方法であって、前記物体上に検出光を照射して該検出光の反射光を検出することにより、前記物体の前記合焦面に対するずれ量を検出し、前記ずれ量の検出と同時に、前記焦点方向における前記ステージの位置情報を検出し、前記ずれ量を前記位置情報に基づいて補正することにより前記物体の前記フォーカス状態を算出する(請求項1)。
このような構成のフォーカス状態検出方法においては、ウエハ等の物体のフォーカス方向のずれ(合焦面に対するずれ)を検出すると同時に、焦点方向における物体を載置したステージの位置情報も検出し、検出された物体のずれ量をステージの位置情報により補正している。従って、例えばステージが振動しているような場合においても、その振動によるステージの位置の変位分は直ちに補正されるため、常に正しい物体のずれ量を検出することができる。
また、本発明に係るフォーカス調整方法は、前述したフォーカス状態検出方法により検出された前記フォーカス状態に基づいて、前記物体の前記焦点方向の位置が前記位置検出光学系の合焦面と一致するように、前記ステージの前記焦点方向の位置を調整する(請求項2)。
また、本発明に係る位置検出方法は、前述したフォーカス調整方法により前記焦点方向の位置が調整された前記物体上の所定箇所の位置を、前記位置検出光学系により検出する(請求項3)。
好適には、前記位置検出光学系による前記物体の前記所定箇所の位置の検出は、当該物体が載置される前記ステージが静定した状態で行なう(請求項4)。
また好適には、前記物体としての基板に形成された所望のパターンの位置を検出する方法であって、前記基板に形成された前記パターンが前記位置検出光学系の検出視野内に入るように前記ステージを移動し、前記基板が移動された直後に、前述したフォーカス調整方法により、前記位置検出光学系の検出視野内に配置された前記基板上のパターン領域が、前記位置検出光学系の合焦面と一致するように、前記ステージの前記焦点方向の位置を調整し、前記焦点方向の位置が調整された前記ステージに載置された前記基板に形成された前記パターンの前記焦点方向と直交する2次元平面内での位置を、前記位置検出光学系により検出する(請求項5)。
また好適には、前記基板の前記パターン領域の前記位置検出光学系の合焦面に対する前記焦点方向のずれ量の検出、及び、前記ステージの前記焦点方向の位置情報の検出は、前記ステージの前記移動の直後に、当該移動に伴う前記ステージの振動が収束していない状態において行なう(請求項6)。
また、本発明に係る露光方法は、前述した何れかの位置検出方法により、ステージ上に載置された基板に形成された位置計測対象のパターンの位置を検出し、前記検出された位置に基づいて前記基板の位置合わせを行ない、前記位置合わせされた基板上に、所定のパターンを転写露光する(請求項7)。
また、本発明に係るフォーカス状態検出装置は、ステージ上に載置された物体の位置を検出する位置検出光学系の合焦面に対する、前記位置検出光学系の焦点方向における前記物体のフォーカス状態を検出するフォーカス状態検出装置であって、前記物体上に検出光を照射して該検出光の反射光を検出することにより、前記物体の前記合焦面に対するずれ量を検出するずれ量検出手段(117,231,239)と、前記ずれ量の検出と同時に、前記焦点方向における前記ステージの位置情報を検出するステージ位置検出手段(261,262,269)と、前記ずれ量を前記位置情報に基づいて補正することにより、前記物体の前記フォーカス状態を算出するフォーカス状態算出手段(280)とを有する(請求項8)。
また、本発明に係るフォーカス調整装置は、前述したフォーカス状態検出装置と、前記フォーカス状態検出装置により検出された前記フォーカス状態に基づいて、前記物体の前記焦点方向の位置が前記位置検出光学系の合焦面と一致するように、前記ステージの前記焦点方向の位置を調整するステージ位置調整手段とを有する(請求項9)。
また、本発明に係る位置検出装置は、前述したフォーカス調整装置と、前記フォーカス調整装置により前記焦点方向の位置が調整された前記物体上の所定箇所の位置を検出する前記位置検出光学系とを有する(請求項10)。
好適には、前記位置検出光学系による前記物体の前記所定箇所の位置の検出は、当該物体が載置される前記ステージが静定した状態で行なう(請求項11)。
また好適には、前記物体としての基板に形成された所望のパターンの位置を検出する位置検出装置であって、前記基板に形成された前記パターンが前記位置検出光学系の検出視野内に入るように前記ステージを移動するステージ移動手段と、前記基板が移動された直後に、前記位置検出光学系の検出視野内に配置された前記基板上のパターン領域が、前記位置検出光学系の合焦面と一致するように、前記ステージの前記焦点方向の位置を調整する前述したフォーカス調整装置と、前記焦点方向の位置が調整された前記ステージに載置された前記基板に形成された前記パターンの前記焦点方向と直交する2次元平面内での位置を検出する前記位置検出光学系とを有する(請求項12)。
また好適には、前記ずれ量検出手段による前記基板の前記パターン領域の前記位置検出光学系の合焦面に対する前記焦点方向のずれ量の検出、及び、前記ステージ位置検出手段による前記ステージの前記焦点方向の位置情報の検出は、前記ステージ移動手段による前記ステージの移動の直後に、当該移動に伴う前記ステージの振動が収束していない状態において行なう(請求項13)。
また、本発明に係る露光装置は、ステージ上に載置された基板に形成された位置計測対象のパターンの位置を検出して当該基板の位置合わせを行なう前述した何れかの位置検出装置と、前記位置合わせされた基板上に、所定のパターンを転写露光する露光手段とを有する(請求項14)。
本発明によれば、ウエハステージ移動後にウエハステージの振動が静定するのを待機することなく直ちにアライメント系のフォーカス状態を検出することができるフォーカス状態検出方法及びその装置を提供することができる。
また、そのフォーカス状態検出結果に基づいてフォーカス状態を調整することにより、ウエハステージ移動後においても迅速にアライメント系のフォーカス状態を調整することのできるフォーカス調整方法及びその装置を提供することができる。
また、そのようなフォーカス調整を行なった上でウエハ等の物体の所望の箇所の位置を計測する検出ことにより、ウエハステージの移動後に迅速にその位置検出を行なうことのできる位置検出方法及びその装置を提供することができる。
さらに、そのようにな位置検出方法及び装置を適用することにより、ウエハに対するアライメント計測を短時間で効率よく行ない、もって高スループットで露光処理を行なうことのできる露光方法及びその装置を提供することができる。
本発明の一実施形態について、図1〜図6を参照して説明する。
本実施形態においては、レチクルに形成された回路パターンの像を投影光学系を介してウエハ上の複数のショット領域に投影し転写する露光装置、及び、そのアライメント系を説明することにより本発明を説明する。
まず、その露光装置の主要部の全体構成について説明する。
図1は、露光装置100の概略構成を示す図である。
露光装置100においては、超高圧水銀ランプやエキシマレーザ等の光源102から射出された照明光が反射鏡103で反射され、露光に必要な波長の光のみを透過させる波長選択フィルタ104に入射される。波長選択フィルタ4を透過した照明光は、オプティカルインテグレータ(フライアイレンズ又はロッド)105によって均一な強度分布の光束に調整され、レチクルブラインド(視野絞り)106に到達する。レチクルブラインド106は、複数のブレードが駆動系106aによってそれぞれ駆動されることにより開口Sの大きさを変化させ、照明光によるレチクルR上の照明領域を設定するものである。
レチクルブラインド106の開口Sを通過した照明光は、反射鏡107で反射されてレンズ系108に入射する。このレンズ系108によってレチクルブラインド106の開口Sの像がレチクルステージ120上に保持されたレチクルR上に結像され、レチクルRの所望のパターン領域が照明される。なお、これら波長選択フィルタ104、オプティカルインテグレータ105、レチクルブラインド106及びレンズ系108により、露光装置100の照明光学系が構成される。
レチクルステージ120は、投影光学系109の光軸と垂直な面内で2次元移動可能である。レチクルステージ120(レチクルR)の位置及び回転量は、図示しないレーザ干渉計によって検出され、その測定値であるレチクルステージ120(レチクルR)の位置情報は、ステージ制御系114、主制御系115及びアライメント制御系119にそれぞれ出力される。
レチクルRの照明領域に存在する回路パターンやアライメントマークの像は、レジストが塗布されたウエハW上に投影光学系109によって結像される。これにより、ウエハステージ110上に載置されるウエハW上のショット領域に、レチクルRのパターン像やアライメントマーク像が露光される。
ウエハステージ110は、ウエハWを真空吸着する図示せぬウエハホルダを有し、リニアモータ等の駆動装置111によって、投影光学系109の光軸と垂直で互いに直交するX方向及びY方向に移動される。これにより、投影光学系109に対してその像面側でウエハWが2次元移動され、例えばステップ・アンド・リピート方式(又はステップ・アンド・スキャン方式)で、ウエハW上(ウエハWの位置合わせせれたショット領域上)にレチクルRのパターン像が転写される。
また、ステージ移動座標系XY上でのウエハステージ110(ウエハW)のX、Y方向の位置、及び回転量(ヨーイング量、ピッチング量、ローリング量)は、ウエハステージ110の端部に設けられた移動鏡(反射鏡)12にレーザ光を照射するレーザ干渉計113によって検出される。レーザ干渉計113の測定値(位置情報)は、ステージ制御系114、主制御系115及びアライメント制御系119にそれぞれ出力される。
ステージ制御系114は、主制御系115及びレーザ干渉計113等からの位置情報に基づいて、駆動装置111等を介してレチクルステージ120及びウエハステージ110の移動をそれぞれ制御する。
主制御系115は、駆動系106aを介したレチクルブラインド106の開口Sの大きさや形状の制御、アライメント制御系119から出力されるウエハW上のアライメントマークの位置情報に基づくEGA計算等を行ない、露光装置100全体を統括制御する。
また、主制御系115には、各種露光データを入力するための入力部121が接続されている。露光データとしては、ショット領域の各位置、サーチショットの位置、EGAショットの位置、サーチマークの位置及びファインマーク(EGAマーク)の位置等が入力される。
露光装置100には、レチクルRとウエハWとの位置合わせを行なうために、例えばTTR(スルー・ザ・レチクル)方式のレチクル・アライメントセンサー116及びオフアクシス方式のウエハ・アライメントセンサー117が備えられている。
レチクル・アライメントセンサー116は、露光光アライメント方式のアライメント系であって、露光用照明光を用いてレチクルR及び投影光学系109を介して基準マーク部材118上の基準マークを検出し、レチクルR上に形成されたアライメントマーク(レチクル・アライメントマーク)及び基準マークの像を撮像素子(CCD)により撮像し、その撮像信号をアライメント制御系119に出力する。これにより、レチクル・アライメントマークと基準マークの位置関係を直接的に観察できる。
なお、基準マーク部材118は、ウエハステージ110上に固定され、そのウエハWの表面と同じ高さに基準マークが形成されている。
レチクル・アライメントセンサー116に関して、アライメント制御系119は、レチクル・アライメントセンサー116から入力されるレチクル・アライメントマークと基準マークの撮像信号に基づいて両マークの位置ずれ量を検出する。さらに、レーザ干渉計113等から入力されるウエハステージ110の位置測定値及びレチクルステージ120の位置測定値に基づいて、両マークの位置ずれ量が0(零)となる時のレチクルステージ120及びウエハステージ110の各位置を求める。これにより、ウエハステージ移動座標系XY上でのレチクルRの位置が検出される。換言すればレチクルステージ移動座標系とウエハステージ移動座標系XYとの対応付け(相対位置関係の検出)が行なわれる。アライメント制御系119は、その結果の位置情報を主制御系115に出力する。
ウエハ・アライメントセンサー117は、FIA(Field Image Alignment)方式のアライメント系である。ウエハ・アライメントセンサー117は、投影光学系109とは別設される対物光学系を介して、ウエハW上のレジストを感光させない波長域の照明光、例えば波長が530〜800nm程度の広帯域光(ブロードバンド光)をウエハW上のアライメントマーク(ウエハ・アライメントマーク)に照射し、その対物光学系を通して撮像素子(CCD)の受光面上に指標マークの像とともにそのアライメントマークの像を形成し、両マーク像の撮像信号(光電変換信号、画像信号)をアライメント制御系119に出力する。
また、ウエハ・アライメントセンサー117は、AF(オートフォーカス)機能を有する。ウエハ・アライメントセンサー117のAF機能は、ウエハW上のアライメントアーク形成面における照明光のフォーカス状態を検出するフォーカス状態検出部、及び、ウエハステージ110をウエハ・アライメントセンサー117の対物光学系の光軸に沿った方向に駆動し、ウエハW上のアライメントマーク形成面を対物光学系の焦点面に一致するように調整するフォーカス調整部を有する。フォーカス状態検出部は、例えばスリット状の光束でウエハ表面を照明し、照明されたウエハからの光束を対物光学系の瞳面で瞳分割し、瞳分割された光束の位置に基づいて結像面とウエハ表面の光軸方向の相対的な位置を検出するいわゆる瞳分割方式の検出部とする。
また、ウエハ・アライメントセンサー117は、ウエハWを観察する1つの対物レンズに対して、サーチアライメント(サーチ計測)用の光学系とファインアライメント(EGA計測)用の光学系との2つの別個(一部共通)の光学系を有する構成である。すなわち、1つの対物レンズを介してウエハW上の所定の箇所に照明光を照射して得た観察光(反射光)を、ウエハ・アライメントセンサー117内でサーチ用光学系又はファイン用光学系に入射させる構成となっている。
サーチ用光学系は、ファイン用光学系よりは低倍率であるものの広い視野範囲でウエハWを観察できるようになっており、また、ファイン用光学系は、サーチ用光学系よりも視野範囲は狭いものの高倍率でウエハWを観察できるようになっている。また、各光学系は各々2次元撮像素子を具備しており、各観察視野の画像を撮像できる構成となっている。これら各光学系を介して各撮像素子で撮像された撮像信号(光電変換信号)が、アライメント制御系119に出力される。
なお、ウエハ・アライメントセンサー117のサーチ用光学系及びファイン用光学系の観察視野については、後述するウエハアライメントに係る信号処理系の説明の際に図面を参照して詳細に説明する。
ウエハ・アライメントセンサー117に関して、アライメント制御系119は、例えばファインアライメント計測の際に、ウエハ・アライメントセンサー117からの撮像信号に基づいて、ファイン用光学系内に配置されており、ファイン計測を行なう際に基準となる指標マークとアライメントマーク(ウエハ・アライメントマーク)との位置ずれ量を検出する。さらに、レーザ干渉計113から入力されるウエハステージ110の位置測定値を参照して、その位置ずれ量が0(零)となる時のウエハステージ110の位置をウエハステージ移動座標系XY上でのアライメントマークの座標値として求める。そして、アライメント制御系119は、その位置情報を主制御系115に出力する。
主制御系115は、アライメント制御系119に対して信号処理条件等の指令を与えるとともに、アライメント制御系119から出力されるアライメントマークの位置情報(座標値)に基づいてサーチ計測及びファイン計測(EGA計算)を行なう。また、主制御系115は、計測したアライメントマークの位置情報に基づいて、ウエハWの位置の制御、及び、ウエハWの各ショット領域へのレチクルRのパターンの像の転写を制御する。
具体的には、主制御系115は、予め指定された例えば2箇所のサーチショット領域のアライメントマーク(サーチアライメント用マーク)の位置を計測し、この計測結果に基づいてEGA計測が可能なようにウエハWの位置を調整する。また、サーチアライメントにより位置調整されたウエハWにおける予め指定された例えば6箇所のEGAショット領域のアライメントマーク(ファインアライメント用マーク)の位置を計測し、この計測結果に基づいてウエハW上の全てのショット領域の位置(例えばショットセンタ等の基準点の位置)の座標値を算出する。
そして、主制御系115は、ウエハ・アライメントセンサー117のベースライン量に基づいてその算出した座標値を補正し、この補正した座標値をステージ制御系114に出力する。
ステージ制御系114は、主制御系115からの位置情報に基づいて、駆動装置11を介してウエハステージ10の移動を制御する。
そして、主制御系115の制御により、例えばステップ・アンド・リピート方式(又はステップ・アンド・スキャン方式)で、ウエハW上の各ショット領域にレチクルRのパターン像が転写される。
以上、露光装置100の全体の構成の説明である。
次に、このような構成の露光装置100で用いるウエハW、及び、ウエハWに形成されたアライメントマークについて、図2及び図3を参照して説明する。
図2は、露光装置100で用いるウエハW上のアライメントに用いるショット領域の例を示す図であり、図3は、アライメント計測対象のマークM及びウエハ・アライメントセンサー117の観察視野を説明するための図である。
露光装置100で用いるウエハWには、複数のショット領域がマトリックス状に配列されており、各ショット領域には前工程での露光及び現像等により各々回路パターンが形成されている。本実施形態においては、これらのショット領域に対して、図2に示すように、2箇所のサーチショット領域SS1及びSS2、及び、6箇所のファインアライメント(EGA)ショット領域ES1〜ES6の8箇所のショット領域を、位置計測対象のショット領域として設定している。
これらのアライメント計測対象の各ショット領域SS1、SS2及びES1〜ES6には、各パターン領域の外側に、図3に示すような、サーチ計測とファイン計測(EGA計測)で同一のマークであり、また、X方向の位置計測とY方向の位置計測の両方に用いるアライメントマークMが形成されている。アライメントマークMは、X方向及びY方向を各々計測方向とする2次元方向計測用マークである。
このようなウエハW及び各アライメントマークMに対して、後に詳述する本発明に係るウエハアライメント処理においては、まず、第1のサーチショット領域SS1に付随するアライメントマークM、及び、第2のサーチショット領域SS2に付随するアライメントマークMが、各々サーチ計測時のウエハ・アライメントセンサー117の観察視野VS(図3参照)内に配置されるようにウエハステージ110を順次移動し、移動した各位置においてアライメントAFを行ない、順次そのマークの位置を計測することにより、サーチアライメントを行なう。
また、サーチアライメントの結果に基づいて、第1のEGAショット領域ES1〜第6のEGAショット領域ES6に各々付随するアライメントマークMが、各々EGA計測時のウエハ・アライメントセンサー117の観察視野VF内に配置されるようにウエハステージ110を順次移動し、移動した各位置においてアライメントAFを行ない、順次そのマークの位置を計測し、その位置計測結果に基づいてウエハW上の全ショット領域の位置を検出するEGA計測を行なう。
本発明に係るアライメント処理は、これらサーチアライメント或いはEGA計測を行なう際に、各ショット領域に付随するアライメントマークMがウエハ・アライメントセンサー117の観察視野VS又はVF内に配置されるようにウエハステージ110を移動した直後のアライメントAFを行なうタイミング及びそのアライメントAFの方法に特徴を有するものである。
次に、このような構成の露光装置100における、ウエハ・アライメントセンサー117とウエハステージ110の相対的な位置関係、及び、本発明に係るウエハ・アライメントセンサー117のフォーカス状態検出方法について図4を参照して説明する。
図4は、露光装置100のウエハステージ110、投影光学系109及びウエハ・アライメントセンサー117の設置状況及びその相対的な位置関係を説明するための図である。
図4に示すように、ウエハステージ110は、定盤131上に載置され設置されている。また、投影光学系109及びウエハ・アライメントセンサー117は、カラム132に設置されている。これら定盤131及びカラム132は、各々アクティブな防振装置140を介して露光装置100のフレームに対して設置され、各々所定の基準位置に維持されている。また、定盤131、投影光学系109及びウエハ・アライメントセンサー117は、定盤131及びカラム132に設置されることで、各々所定の基準位置に維持されている。
なお、図4においては図示のごとくXYZ軸を規定する。この場合、Z方向正の向きが実空間における鉛直上向きの方向となる。
このような各構成部の設置状況において、定盤131の上面とカラム132の下面との距離Sは、図4ではZ干渉計261により計測され、また、定盤131の上面とウエハステージ110の底面との間隔dは、リニアスケール262により計測される。また、ウエハステージ110の厚みaは、一定の値に維持されるとみなすことができる。従って、ウエハ・アライメントセンサー117とウエハステージ110の上面との距離は、Z干渉計261による距離Sの計測値、リニアスケール262による間隔dの計測値及び固定値であるウエハステージ110の厚さaに基づいて算出することができる。
通常、このウエハ・アライメントセンサー117とウエハステージ110の距離は、所定の基準間隔となるように維持されているが、例えばアライメント計測時等においてウエハステージ110が定盤131上を移動してZ方向に振動している場合には、この距離は変動する。しかしこのこの変動、すなわち、ウエハ・アライメントセンサー117とウエハステージ110との距離の相対的なずれ量は、前述したようにZ干渉計261及びリニアスケール262の計測結果から算出することができる。
そこで本発明に係るフォーカス状態検出方法においては、ウエハステージ110上に載置されたウエハWのウエハ・アライメントセンサー117の光学系の合焦面に対するずれ量Δzをウエハ・アライメントセンサー117で計測すると同時に(並行して)、その時のカラム132と定盤131との距離S及び定盤131とウエハステージ110との間隔dを、各々Z干渉計261及びリニアスケール262で計測しておく。
これにより、距離S及び間隔dよりウエハステージ110の変位量が算出できるので、ウエハ・アライメントセンサー117で検出されたフォーカスずれ量Δzを、このウエハステージ110の変位量で補正する。その結果、ウエハステージ110が基準位置にある状態、すなわちウエハステージ110が移動した後に十分に時間が経過してウエハステージ110の振動が静定した状態に対する、ウエハ・アライメントセンサー117のフォーカスずれ量を検出することができる。
次に、このような処理を行なう露光装置100のウエハアライメントに関する信号処理系(以下、ウエハアライメント系と称する)の構成について図5を参照して説明する。
図5は、そのウエハアライメント系200の構成を示す図である。
図5に示すように、ウエハアライメント系200は、後述する2台のサーチ系カメラ211及び212、サーチ部219、後述する3台のファイン系カメラ221〜223、ファイン部229、1台のフォーカスカメラ231、フォーカス部239、位置モニター部240、Z干渉計261、リニアスケール262、その他の各センサー部269、データ通信用光伝送路(光ファイバー)270、モニター用映像出力ライン271、位置データ通信用光伝送路272、フォーカス信号蓄積制御線273、信号処理部280及びモニター290を有する。
なお、図5に示すサーチ系カメラ211及び212、サーチ部219、ファイン系カメラ221〜223、ファイン部229、フォーカスカメラ231、フォーカス部239及びその他の各センサー部269は、図1に示した露光装置100においてウエハ・アライメントセンサー117を構成するものである。また、位置モニター部240は、図1においてはステージ制御系114に含まれる構成である。また、信号処理部280は、図1におけるアライメント制御系119と主制御系115を合わせて1の制御部として示したものである。
図5に示すウエハアライメント系200において、2台のサーチ系カメラ211及び212は、サーチカメラ211及び観察カメラ212である。
サーチカメラ211は、ウエハWの所望のサーチマーク検出領域を、図3に示すような観察視野VSを所定の倍率で観察し、その映像信号(ビデオ信号)をサーチ部219に出力する2次元CCDカメラである。
サーチカメラ211の観察視野VSは、図3に示すように、計測対象のアライメントマークMのウエハプリアライメント(ウエハステージにウエハを載せる前に行なわれるアライメント処理)による位置合わせ誤差を十分に吸収できる程度にある程度広い領域である。また、後述するファイン計測の際の観察視野VFよりも広い領域である。但し、サーチカメラ211の観察倍率は、後述するX方向計測用ファインカメラ221及びY方向計測用ファインカメラ222の観察倍率よりも低い。観察領域VSのウエハW上の配置は、主制御系115及びステージ制御系114により駆動装置111を介してウエハWの位置が制御されることにより設定される。
観察カメラ212は、アシスト及び調整等のためにサーチカメラ211よりさらに広い視野でウエハW上を観察するためのカメラである。
サーチ部219は、サーチカメラ211及び観察カメラ212の制御部であるとともに、これらサーチ系カメラ211及び212と信号処理部280とのインターフェイス部である。サーチ部219には、データ伝送路270を介して信号処理部280からサーチカメラ211及び観察カメラ212の制御信号が入力される。サーチ部219は、これをサーチカメラ211及び観察カメラ212に出力する。これにより、サーチカメラ211及び観察カメラ212は、各々所望の動作に制御される。
また、サーチ部219は、サーチカメラ211及び観察カメラ212から入力される映像信号(アナログ映像信号)から、信号処理部280から入力される制御信号に基づいて所望のタイミングの画像を取り込む。そして、その画像信号をAD変換してデジタル画像信号に変換した後、データ通信用光伝送路270を介して信号処理部280に送出する。
その際サーチ部219は、信号処理部280からの制御信号に基づいて、必要に応じてデジタル画像信号の圧縮等の符号化処理(信号の加工)を行った上で、その符号化した信号をデータ通信用光伝送路270を介して信号処理部280に送出する。
また、サーチ部219は、サーチカメラ211及び観察カメラ212から入力される映像信号(アナログ映像信号)をモニター用映像出力ライン271を介してモニター290に出力する。本実施形態においては、サーチカメラ211及び観察カメラ212から各々独立にモニター290に対して映像信号が出力されるものとする。サーチ部219は、オペレータの選択操作に基づいて図示せぬ信号線を介して入力される選択信号に基づいて、各映像信号のモニター290への出力を制御する。これにより、サーチカメラ211又は観察カメラ212での観察映像或いは取り込んだ画像が、例えばオペレータ等の確認のためにモニター290に表示される。
ウエハアライメント系200の3台のファイン系カメラ221〜223は、X方向計測用ファインカメラ221、Y方向計測用ファインカメラ222及び指標マーク計測用カメラ223である。
X方向計測用ファインカメラ221及びY方向計測用ファインカメラ222は、ウエハWの所望のファインマーク検出領域を、各々図3に示すような観察視野VFX及びVFYで所定の倍率により観察し、その映像信号(ビデオ信号)をファイン部229に出力する2次元CCDカメラである。
X方向計測用ファインカメラ221は、X方向を走査方向(走査線方向)として観察視野VFX内を撮像し、Y方向計測用ファインカメラ222は、Y方向を走査方向(走査線方向)として観察視野VFY内を撮像する。本実施形態においては、X方向計測用ファインカメラ221の観察視野VFXとY方向計測用ファインカメラ222の観察視野VFYとは同一の観察視野(観察視野VF)とするが、例えば計測対象のアライメントマークの各方向の計測に無効な成分を少しでも除外するように、異なる領域に設定してもよい。
なお、X方向計測用ファインカメラ221及びY方向計測用ファインカメラ222の観察倍率は、前述したサーチカメラ211の観察倍率よりも高い。また、X方向計測用ファインカメラ221及びY方向計測用ファインカメラ222の観察視野VFの範囲は、サーチカメラ211の観察視野VSよりも狭い。
観察視野VFX及びVFYは、図3に示すように、サーチ計測時の観察視野VSよりも狭い領域である。
観察視野VFのウエハW上の配置は、主制御系115及びステージ制御系114により駆動装置111を介してウエハWの位置が制御されることにより設定される。
指標マーク計測用カメラ223は、FIAの光学系の対物レンズの先端に付されているリファレンス用の指標マークを検出するためのカメラである。ウエハ・アライメントセンサー117の対物レンズに、温度や気圧等の環境条件等による位置変動、何らかの理由による機械的な位置変動、或いは、振動又はドリフト等が生じた場合、ウエハ・アライメントセンサー117においては相対的に観察する像が移動したように見える。このような位置変動をキャンセルするために、対物レンズの先端に指標マークが付されており、指標マーク計測用カメラ223はこの指標マークの位置を検出する。なお、この指標マークを計測する際には、専用の赤外検出光が用いられる。指標マークに照射され該マーク上で反射された赤外光は、指標カメラ223以外では検出されないように、他のカメラ211,212、221,222及び231の直前には赤外光カットフィルタが設けられている。
ファイン部229は、X方向計測用ファインカメラ221〜指標マーク計測用カメラ223の制御部であるとともに、これらファイン系カメラ221〜223と信号処理部280とのインターフェイス部である。ファイン部229には、データ通信用光伝送路270を介して信号処理部280からX方向計測用ファインカメラ221〜指標マーク計測用カメラ223の制御信号が入力される。ファイン部229は、これを各カメラ221〜223に出力する。これにより、X方向計測用ファインカメラ221〜指標マーク計測用カメラ223は、各々所望の動作に制御される。
また、ファイン部229は、X方向計測用ファインカメラ221〜指標マーク計測用カメラ223から入力される映像信号(アナログ映像信号)から、信号処理部280から入力される制御信号に基づいて所望のタイミングの画像を取り込む。そして、その画像信号をAD変換してデジタル画像信号に変換した後、データ通信用光伝送路270を介して信号処理部280に送出する。
その際ファイン部229は、信号処理部280からの制御信号に基づいて、必要に応じてデジタル画像信号の圧縮等の符号化処理(信号の加工)を行った上で、その符号化した信号をデータ通信用光伝送路270を介して信号処理部280に送出する。
また、ファイン部229は、X方向計測用ファインカメラ221、Y方向計測用ファインカメラ222及び指標マーク計測用カメラ223から入力される映像信号(アナログ映像信号)をモニター用映像出力ライン271を介してモニター290に出力する。本実施形態においては、ファイン系カメラ221〜223から各々独立にモニター290に対して映像信号が出力されるものとする。ファイン部229は、オペレータの選択操作に基づいて図示せぬ信号線を介して入力される選択信号に基づいて、各映像信号のモニター290への出力を制御する。これにより、ファイン系カメラ221〜223で撮像された画像が、例えばオペレータ等の確認のためにモニター290に表示される。
ウエハアライメント系200のフォーカスカメラ231は、ウエハ・アライメントセンサー117の照明光の光軸方向(フォーカス方向)における、その照明光の結像面に対するウエハW表面の相対的位置関係を検出するために、ウエハWの表面に斜め方向から入射した光束を検出するためのCCDカメラである。
フォーカス部239は、フォーカスカメラ231の制御部であるとともに、フォーカスカメラ231と信号処理部280とのインターフェイス部である。フォーカス部239は、データ通信用光伝送路270を介して信号処理部280から入力される制御信号に基づいて、フォーカスカメラ231を制御する。
また、フォーカス部239は、フォーカスカメラ231から入力される映像信号(アナログ映像信号)から、信号処理部280から入力される制御信号、或いはまた、位置モニター部240からフォーカス信号蓄積制御線273を介して入力されるフォーカス情報の蓄積指示信号に基づいてフォーカスカメラ231からの画像をフォーカス情報として取り込む。そして、その画像信号をAD変換してデジタル画像信号に変換した後、データ通信用光伝送路270を介して信号処理部280に送出する。
その際フォーカス部239は、信号処理部280からの制御信号に基づいて、必要に応じてデジタル画像信号の圧縮等の符号化処理(信号の加工)を行った上で、その符号化した信号をデータ通信用光伝送路270を介して信号処理部280に送出する。
また、フォーカス部239は、フォーカスカメラ231から入力される映像信号(アナログ映像信号)をモニター用映像出力ライン271を介してモニター290に出力する。ファイン部229は、オペレータの選択操作に基づいて図示せぬ信号線を介して入力される選択信号に基づいて、各映像信号のモニター290への出力を制御する。これにより、フォーカスカメラ231で撮像された画像が、例えばオペレータ等の確認のためにモニター290に表示される。
位置モニター部240は、レーザ干渉計113から入力されるウエハステージ110の位置を示す干渉計データ(位置座標情報)を、位置データ通信用光伝送路272を介して信号処理部280に送出する。
また、位置モニター部240は、その干渉計データを監視し、ウエハステージ110の位置座標値が、信号処理部280より図示せぬ制御線を介して予め設定されたフォーカス信号蓄積位置と等しくなった場合に、フォーカス信号蓄積制御線273を介してフォーカス部239に対して、フォーカス情報の蓄積を指示する信号を出力する。
Z干渉計261は、図4を参照して説明したように、定盤131とカラム132との距離Sを計測する干渉計である。
また、リニアスケール262は、図4を参照して説明したように、定盤131とウエハステージ110との間隔を計測する干渉計である。
その他の各センサー部269は、サーチ系カメラ211及び212、ファイン系カメラ221〜223及びフォーカスカメラ231以外の他のセンサーとのインターフェイス部であり、例えば、Z干渉計261やリニアスケール262等が接続される。
その他の各センサー部269には、信号処理部280からこれらのセンサーの制御信号が入力される。その他の各センサー部269は、これを各センサーに出力する。これにより、各センサーが各々所望の動作に制御される。
また、その他の各センサー部269は、接続される各センサーから入力される信号を、データ伝送路270を介して信号処理部280に送出する。その他の各センサー部269は、信号処理部280から入力される制御信号に基づいて所望のタイミングで各センサーからの信号を取り込み、その信号をAD変換してデジタル信号として、信号処理部280に送出する。
また、その他の各センサー部269は、接続されるセンサーからの入力信号が映像信号である場合、その映像信号をモニター用映像出力ライン271を介してモニター290に出力する。その他の各センサー部269は、オペレータの選択操作に基づいて図示せぬ信号線を介して入力される選択信号に基づいて映像信号のモニター290への出力を制御する。
データ通信用光伝送路270は、サーチ部219、ファイン部229、フォーカス部239、その他の各センサー部269及び信号処理部280を接続する伝送手段である。本実施形態において、データ通信用光伝送路270は、光ファイバーを伝送媒体として構成された光リンク等の高速なデジタル光信号伝送路、すなわち光通信ネットワークである。
データ通信用光伝送路270は、サーチ部219、ファイン部229、フォーカス部239、その他の各センサー部269及び信号処理部280(データ通信用光伝送路270に接続されるこれらの構成部をノードと総称する)をループ状に接続する。これらの各ノードは、各々がデータ通信用光伝送路270のデータの送受信をコントロールするバスコントローラを具備しており、これらのコントローラが順次データパケットを送信し、受信し、或いは中継することにより、任意のノード間で所望のデータパケットの送受信が行なわれる。
このような構成のデータ通信用光伝送路270を介して、サーチ部219、ファイン部229、フォーカス部239及びその他の各センサー部269から信号処理部280へ、画像信号やセンサー出力信号等のデジタルデータが伝送される。
また、本実施形態においては、信号処理部280からサーチ部219、ファイン部229、フォーカス部239及びその他の各センサー部269へのコマンド、パラメータ等の転送も、このデータ通信用光伝送路270を介して行なわれる。
モニター用映像出力ライン271は、サーチ部219、ファイン部229、フォーカス部239及びその他の各センサー部269からモニター290へモニター用の映像信号を伝送する伝送系である。
位置データ通信用光伝送路272は、位置モニター部240から信号処理部280にレーザ干渉計113の干渉計データを送信するための伝送手段であり、光伝送路270と同様に、光ファイバーを伝送媒体として構成された光リンク等の高速なデジタル光信号伝送路、すなわち光通信ネットワークである。
信号処理部280は、露光装置100の各部を制御する制御部である。ウエハアライメント系200に係る処理として、信号処理部280は、サーチ系カメラ211及び212、ファイン系カメラ221〜223、及び、フォーカスカメラ231を介して入力されるアライメントマーク等の撮像信号に基づいて、そのマークの所望方向の1次元信号波形を検出する。また、そのマークの信号波形に基づいて、そのマークの位置を検出する処理を行なう。また、ウエハ上の6箇所のEGAショットの位置計測結果に基づいて、演算統計処理によりウエハ上の全てのショット領域の位置を算出するEGA演算処理を行なう。
また、それらマークの位置計測に先だって、信号処理部280はアライメントAFを行なう。露光装置100においてアライメントAFは、ウエハ・アライメントセンサー117のサーチ系光学系或いはファイン系光学系の観察視野VS又はVFに計測対象のアライメントマークMが配置されるようにウエハステージ110が移動されたら、移動が終了した直後に直ちに行なう。すなわち、ウエハステージ110の移動に伴ってウエハステージ110が振動しており、未だ静定していない状態に置いて、直ちに、その光学系の合焦面に対するウエハWのフォーカス方向の位置ずれを検出する。
この時、信号処理部280は、フォーカス部239を介してフォーカスカメラ231に制御信号を送出すると同時に、その他の各センサー部269を介してZ干渉計261及びリニアスケール262からのデータもフォーカス信号の取り込みに同期して取り込むように指示する。そして、この時のフォーカス状態検出結果(フォーカスずれ量)を、Z干渉計261及びリニアスケール262で計測した定盤131とカラム132との距離S及びウエハステージ110と定盤131との間隔dに基づいて補正し、フォーカスずれ量の正しい値を求める。そして、そのずれ量が零になるように、ステージ制御系114及び駆動装置111を介してウエハステージ110を駆動する。
モニター290は、例えばオペレータ等が、サーチ系カメラ211及び212、ファイン系カメラ221〜223及びフォーカスカメラ231で撮像した画像を観察するためのモニターであり、モニター用映像出力ライン271を介して転送された画像信号が表示される。
次に、このような構成のウエハアライメント系200の動作について図7を参照して説明する。
図7は、そのアライメント処理の流れを示すフローチャートである。
前工程が完了したウエハWがウエハステージ110にプリアライメントされた状態でロードされることによりアライメントが開始される(ステップS10)。
まず、ステージ制御系114が駆動装置111を介してウエハステージ110を駆動することでウエハ・アライメントセンサー117のサーチ用観察視野VSの視野中心に、第1のサーチショット領域SS1のアライメントマーク(第1のサーチマーク)を移動させる(ステップS12)。なお、ウエハWの位置は、ウエハステージ110を介してレーザ干渉計113により高精度にモニターされており、このモニター結果に基づきステージ制御系114がウエハWの位置を高精度に位置決めする。
ウエハWの移動が完了すると、ウエハステージ110の振動が静定したか否かにかかわらず、直ちにウエハ・アライメントセンサー117はウエハ・アライメントセンサー117のフォーカス調整を行なう(ステップS13)。すなわち、ウエハ・アライメントセンサー117のフォーカス状態検出機能により、ウエハWのアライメントマークの形成面のウエハ・アライメントセンサー117の光学系の合焦面に対するずれ量を検出する。またこの時同時に、Z干渉計261及びリニアスケール262により定盤131とカラム132との距離S(図4参照)及びウエハステージ110と定盤131との間隔dを検出する。これらの距離を計測したら、その距離S及び間隔dに基づいて、ウエハステージ110の位置を検出し、基準の位置からのずれ量を検出する。そして、ウエハWのアライメントマークの形成面のフォーカス方向のずれ量を、このウエハステージ110のずれ量で補正して、真のフォーカス方向のずれ量を検出する。そして、主制御系115、ステージ制御系114及び駆動装置111を介してウエハステージ110をZ方向に駆動し、アライメントマーク形成面をウエハ・アライメントセンサー117の合焦面と一致するように調整する。
このようにしてアライメントAFが終了したら、ハロゲンランプ等からの照明ビームで照明されたサーチショット領域SS1を撮像する(ステップS14)。すなわち、サーチ用光学系のサーチカメラ211で、例えば図3に示すように設定される観察視野VSの画像を撮像する。
撮像して得られた撮像信号(画像信号)は、サーチ部219でデジタル信号に変換された後、データ通信用光伝送路270を介して信号処理部280に出力され、信号処理部280内のメモリ281に記憶される。
なおこの時に指標マーク計測用カメラ223でも赤外光を用いて指標マークの計測を行なう。
第1のサーチショット領域SS1の画像を取り込んだ信号処理部280は、取り込んだ画像信号に基づいて、第1のサーチマークの位置計測(サーチ計測)を行なう(ステップS16)。すなわち、第1のサーチマークのサーチカメラ211の視野を基準とした座標値(位置情報)を計測する。
第1のサーチマークのサーチ位置計測が終了したら、次に計測すべきサーチマークの有無を判別する(ステップS18)。ここでは、次に計測すべきサーチマークとして第2のサーチマーク(サーチショットSS2に付随したマーク)が存在するので、この第2のサーチマークのサーチ位置計測を上記と同様にして行なう(ステップS12〜S16)。
すなわち、ステップS12の処理に戻って、ウエハ・アライメントセンサー117のサーチ用観察視野VSの視野中心に第2のサーチショット領域SS2のアライメントマークを移動させ(ステップS12)、フォーカス調整を行ない(ステップS13)、ウエハ・アライメントセンサー117のサーチ用光学系のサーチカメラ211により、そのサーチ視野内を撮像する(ステップS14)。なお、ステップS13のフォーカス調整の際には、前述したように、フォーカスカメラ231の計測結果を、Z干渉計261及びリニアスケール262の出力に基づいて補正した値に基づいてステージ110をZ方向に駆動することにより行われる。撮像された画像信号は、サーチ部219内でAD変換してデジタル信号に変換され、データ通信用光伝送路270を介して信号処理部280に転送される。そして、サーチカメラ211で撮像された撮像信号に基づいて、第2のサーチショット領域SS2のサーチマークの座標値(位置情報)が求められる(ステップS16)。
第1及び第2の2つのサーチマークの撮像が終了し、計測すべきサーチマークの計測が全て終了したら(ステップS18)、信号処理部280は、計測された各サーチマークの座標値、及び、対応する設計上の座標値に基づいて演算処理を行ない、EGAショット毎にウエハステージ移動座標系XY上でのファインマークの設計上の座標値を補正する(ステップS20)。
このようなサーチアライメントによりファインマークの座標値(EGAショットの座標値)が補正されたら、次に、ファインアライメントとしてのEGAを実行する。
本実施形態においては、6箇所のEGAショットES1〜ES6に付随したアライメントマークの位置を計測(ファインアライメント計測)してEGA処理を行なう。
まず、ウエハ・アライメントセンサー117のファイン光学系の観察視野VFの位置に、第1のEGAショットES1のファインアライメント用マークが配置されるようにウエハステージ110(ウエハW)を移動させる(ステップS24)。
ウエハWの移動が完了すると、ウエハ・アライメントセンサー117は、サーチ計測時と同様な手法(上述した手法)でフォーカス調整を行ない(ステップS25)、ハロゲンランプ等からの照明ビームで照明されたEGAショット領域ES1を撮像する(ステップS26)。すなわち、X方向計測用ファインカメラ221及びY方向計測用ファインカメラ222で、各々観察視野VFX及びVFYの画像を撮像する。
撮像して得られた撮像信号(画像信号)は、ファイン部229でデジタル信号に変換された後、データ通信用光伝送路270を介して信号処理部280に出力され、信号処理部280内のメモリ281に記憶される。
そして、信号処理部280は、取り込んだ画像信号に基づいて、ファインマークの位置計測を行なう(ステップS28)。
第1のEGAショット領域ES1のアライメントマーク(ファインマーク)の位置計測が終了したら、次に計測すべきファインマークの有無を判別する(ステップS30)。ここでは、次に計測すべきファインマークとして第2のファインマーク(EGAショットES2に付随したマーク)が存在するので、この第2のファインマークの位置計測を上記と同様にして行なう(ステップS24〜S28)。
すなわち、ステップS24の処理に戻って、ウエハ・アライメントセンサー117のファイン用観察視野VFの視野中心に第2のEGAショット領域ES2のアライメントマークを移動させ(ステップS24)、フォーカス調整の後、ウエハ・アライメントセンサー117のファイン用光学系のX方向計測用ファインカメラ221及びY方向計測用ファインカメラ222により、ファイン視野(VFX及びVFY)内を撮像する(ステップS26)。撮像された画像信号は、ファイン部229内でAD変換してデジタル信号に変換され、データ通信用光伝送路270を介して信号処理部280に転送される。そして、X方向計測用ファインカメラ221及びY方向計測用ファインカメラ222で各々撮像された撮像信号に基づいて、第2のEGAショット領域ES2のファインマークの座標値(位置情報)が求められる(ステップS28)。
このような処理を、位置計測すべきEGAショットが存在する間順次繰り返し、全てのEGAショット(本実施形態においては、6個のEGAショットES1〜ES6)のマークMの位置計測が終了したら、それらの位置計測結果を用いてEGA演算を行なう。
すなわち、各アライメントマークの計測値と設計値とに基づいて最小二乗法等の統計演算処理を行ない、ウエハW上のショット領域の配列特性に関する位置情報としてのXシフト、Yシフト、Xスケール、Yスケール、回転、直交度等の誤差パラメータを算出する。
そして、これらの誤差パラメータに基づいて、ウエハW上の全てのショット領域に対して設計上の座標位置を補正する(ステップS32)。
露光装置100においては、順次投入されるウエハWに対して、このようなアライメント処理を行なって各ショット領域の位置情報を獲得し、以後、順次その位置情報に基づいてウエハWを位置合わせし、ウエハWの各ショット領域に露光を行なう。
このように、本実施形態の露光装置100においては、サーチ計測及びEGA計測のアライメント計測時に、ウエハ・アライメントセンサー117の観察視野内にアライメントマークMが配置されたら、ウエハステージ110の振動が静定する前に直ちにアライメントAFを行っている。従って、従来、ウエハステージ110が静定するまで待機していた時間分だけ処理時間を短縮することができ、アライメント計測を短時間で効率よく、高スループットで行なうことができる。
なお、本実施形態ではサーチ計測、EGA(ファイン)計測の何れの計測においても、その計測前に上述のアライメントAFを行うように構成しているが、本発明はこれに限られるものではない。例えば、EGA計測(ファインアライメント計測)よりも要求される精度が比較的に緩いサーチ計測においては、上述したアライメントAF処理は行わずにサーチ計測を行うようにしてスループットを向上させるようにしても良い。
また、Z干渉計261及びリニアスケール262における計測結果に基づいてウエハ・アライメントセンサー117におけるフォーカス状態検出結果を補正しているので、ウエハステージ110が振動していたとしても適切なフォーカス状態を検出することができ、結果的に適切にフォーカス状態を調整することができる。
また、本実施の形態の方法によれば、ウエハステージ110の振動に起因するフォーカス状態検出結果の誤差のみならず、その他の要因によるフォーカス状態検出結果の誤差をも補正が可能である。従って、従来と比べてアライメントAFを適切に行なうことができる。
なお、本実施の形態は、本発明の理解を容易にするために記載されたものであって本発明を何ら限定するものではない。本実施の形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含み、また任意好適な種々の改変が可能である。
例えば、前述したウエハアライメント系200においては、サーチ系カメラ211及び212に対してサーチ部219、ファイン系カメラ221〜223に対してフォーカス部239、及び、フォーカスカメラ231に対してフォーカス部239というように、各CCDカメラに対してインターフェイス部を設けていた。しかしながら、このような入力センサーとインターフェイス部との構成は、このような場合に限られるものではなく、任意に変更してよい。
また、サーチ部219、ファイン部229及びフォーカス部239等は、必要に応じて信号処理部280への送出対象のデジタル信号に対して、圧縮等の符号化処理(信号の加工)を行なうものとしたが、この加工の形態、種類も、信号圧縮にのみ限られるものではなく任意の加工を行なってよい。例えば、画像信号に対するフィルタリング、必要な信号のみの抽出、所望の関数に基づく変換等の任意の処理を行なってよい。
また、ウエハアライメント系200は、信号波形を生成したりEGA計測等を行なう信号処理部として、1つの信号処理部280のみを具備する構成であったが、複数の信号処理部が協働して前述したような各処理を行なうような構成であってもよい。その場合には、それら複数の信号処理部もデータ通信用光伝送路270を介して接続するのが好適である。
また、そのような複数の信号処理部を具備する構成において、サーチ部219、ファイン部229及びフォーカス部239、それらから送出されるデータ、及び、その複数の信号処理部の間でのデータ処理の形態、機能の分散形態、信号処理の方式等、すなわち信号処理系としてのアーキテクチャーは、任意に構成でよい。
また、前述したデータ通信用光伝送路270及び位置データ通信用光伝送路272としての光ネットワークの物理的な仕様、通信プロトコル等も任意の規格、任意のプロトコルを使用してよい。
また、サーチ計測のショット数は2以上であれば任意の数でよく、EGA計測のショット数は3以上であれば任意の数でよい。また、そのマークの形状も任意でよい。
その他、露光装置100の構成、EGA計測の方式(演算モデルや算出パラメータ等)等も、何ら本実施形態に限定されるものではなく、任意の構成、方式でよい。
図1は、本発明の一実施形態の露光装置の概略構成を示す図である。 図2は、図1に示した露光装置で処理するウエハ上に配置されるアライメント計測ショットを説明するための図である。 図3は、図1に示した露光装置のウエハ・アライメントセンサーの観察視野及び観察対象のマークの例を説明するための図である。 図4は、図1に示した露光装置のウエハステージとウエハ・アライメントセンサーの相対的な位置関係及び設置方法を説明するための図である。 図5は、図1に示した露光装置のウエハアライメント系の構成を示す図である。 図6は、図1に示した露光装置を用いたウエハアライメント方法を示すフローチャートである。
符号の説明
100…露光装置
102…光源
103…反射鏡
104…波長選択フィルタ
105…オプティカルインテグレータ
106…レチクルブラインド
107…反射鏡
108…レンズ系
109…投影光学系
110…ウエハステージ
111…駆動装置
112…移動鏡
113…レーザ干渉計
114…ステージ制御系
115…主制御系
116…レチクル・アライメントセンサー
117…ウエハ・アライメントセンサー
118…基準マーク部材
119…アライメント制御系
120…レチクルステージ
121…入力部
131…定盤
132…カラム
200…ウエハアライメント系
211…サーチカメラ
212…観察カメラ
219…サーチ部
221…X方向計測用ファインカメラ
222…Y方向計測用ファインカメラ
223…指標マーク計測用カメラ
229…ファイン部
231…フォーカスカメラ
239…フォーカス部
240…位置モニター部
261…Z干渉計
262…リニアスケール
269…その他の各センサー部
270…データ通信用光伝送路
271…モニター用映像出力ライン
272…位置データ通信用光伝送路
273…フォーカス信号蓄積制御線
280…信号処理部
290…モニター

Claims (14)

  1. ステージ上に載置された物体の位置を検出する位置検出光学系の合焦面に対する、前記位置検出光学系の焦点方向における前記物体のフォーカス状態を検出するフォーカス状態検出方法であって、
    前記物体上に検出光を照射して該検出光の反射光を検出することにより、前記物体の前記合焦面に対するずれ量を検出し、
    前記ずれ量の検出と同時に、前記焦点方向における前記ステージの位置情報を検出し、
    前記ずれ量を前記位置情報に基づいて補正することにより前記物体の前記フォーカス状態を算出する
    ことを特徴とするフォーカス状態検出方法。
  2. 請求項1に記載のフォーカス状態検出方法により検出された前記フォーカス状態に基づいて、前記物体の前記焦点方向の位置が前記位置検出光学系の合焦面と一致するように、前記ステージの前記焦点方向の位置を調整することを特徴とするフォーカス調整方法。
  3. 請求項2に記載のフォーカス調整方法により前記焦点方向の位置が調整された前記物体上の所定箇所の位置を、前記位置検出光学系により検出することを特徴とする位置検出方法。
  4. 前記位置検出光学系による前記物体の前記所定箇所の位置の検出は、当該物体が載置される前記ステージが静定した状態で行なうことを特徴とする請求項3に記載の位置検出方法。
  5. 前記物体としての基板に形成された所望のパターンの2次元平面内における位置を検出する方法であって、
    前記基板に形成された前記パターンが前記位置検出光学系の検出視野内に入るように前記ステージを移動し、
    前記基板が移動された直後に、請求項2に記載のフォーカス調整方法により、前記位置検出光学系の検出視野内に配置された前記基板上のパターン領域が、前記位置検出光学系の合焦面と一致するように、前記ステージの前記焦点方向の位置を調整し、
    前記焦点方向の位置が調整された前記ステージに載置された前記基板に形成された前記パターンの前記焦点方向と直交する2次元平面内での位置を、前記位置検出光学系により検出する
    ことを特徴とする位置検出方法。
  6. 前記基板の前記パターン領域の前記位置検出光学系の合焦面に対する前記焦点方向のずれ量の検出、及び、前記ステージの前記焦点方向の位置情報の検出は、前記ステージの前記移動の直後に、当該移動に伴う前記ステージの振動が収束していない状態において行なうことを特徴とする請求項5に記載の位置検出方法。
  7. 請求項5又は6に記載の位置検出方法により、ステージ上に載置された基板に形成された位置計測対象のパターンの位置を検出し、
    前記検出された位置に基づいて前記基板の位置合わせを行ない、
    前記位置合わせされた基板上に、所定のパターンを転写露光する
    ことを特徴とする露光方法。
  8. ステージ上に載置された物体の位置を検出する位置検出光学系の合焦面に対する、前記位置検出光学系の焦点方向における前記物体のフォーカス状態を検出するフォーカス状態検出装置であって、
    前記物体上に検出光を照射して該検出光の反射光を検出することにより、前記物体の前記合焦面に対するずれ量を検出するずれ量検出手段と、
    前記ずれ量の検出と同時に、前記焦点方向における前記ステージの位置情報を検出するステージ位置検出手段と、
    前記ずれ量を前記位置情報に基づいて補正することにより、前記物体の前記フォーカス状態を算出するフォーカス状態算出手段と、
    を有することを特徴とするフォーカス状態検出装置。
  9. 請求項8に記載のフォーカス状態検出装置と、
    前記フォーカス状態検出装置により検出された前記フォーカス状態に基づいて、前記物体の前記焦点方向の位置が前記位置検出光学系の合焦面と一致するように、前記ステージの前記焦点方向の位置を調整するステージ位置調整手段と、
    を有することを特徴とするフォーカス調整装置。
  10. 請求項9に記載のフォーカス調整装置と、
    前記フォーカス調整装置により前記焦点方向の位置が調整された前記物体上の所定箇所の位置を検出する前記位置検出光学系と、
    を有することを特徴とする位置検出装置。
  11. 前記位置検出光学系による前記物体の前記所定箇所の位置の検出は、当該物体が載置される前記ステージが静定した状態で行なうことを特徴とする請求項10に記載の位置検出装置。
  12. 前記物体としての基板に形成された所望のパターンの位置を検出する位置検出装置であって、
    前記基板に形成された前記パターンが前記位置検出光学系の検出視野内に入るように前記ステージを移動するステージ移動手段と、
    前記基板が移動された直後に、前記位置検出光学系の検出視野内に配置された前記基板上のパターン領域が、前記位置検出光学系の合焦面と一致するように、前記ステージの前記焦点方向の位置を調整する請求項9に記載のフォーカス調整装置と、
    前記焦点方向の位置が調整された前記ステージに載置された前記基板に形成された前記パターンの前記焦点方向と直交する2次元平面内での位置を検出する前記位置検出光学系と、
    を有することを特徴とする位置検出装置。
  13. 前記ずれ量検出手段による前記基板の前記パターン領域の前記位置検出光学系の合焦面に対する前記焦点方向のずれ量の検出、及び、前記ステージ位置検出手段による前記ステージの前記焦点方向の位置情報の検出は、前記ステージ移動手段による前記ステージの移動の直後に、当該移動に伴う前記ステージの振動が収束していない状態において行なうことを特徴とする請求項12に記載の位置検出装置。
  14. ステージ上に載置された基板に形成された位置計測対象のパターンの位置を検出して当該基板の位置合わせを行なう請求項12又は13に記載の位置検出装置と、
    前記位置合わせされた基板上に、所定のパターンを転写露光する露光手段と
    を有することを特徴とする露光装置。
JP2004258266A 2004-09-06 2004-09-06 フォーカス状態検出方法とその装置、フォーカス調整方法とその装置、位置検出方法とその装置及び露光方法とその装置 Pending JP2006073932A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258266A JP2006073932A (ja) 2004-09-06 2004-09-06 フォーカス状態検出方法とその装置、フォーカス調整方法とその装置、位置検出方法とその装置及び露光方法とその装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258266A JP2006073932A (ja) 2004-09-06 2004-09-06 フォーカス状態検出方法とその装置、フォーカス調整方法とその装置、位置検出方法とその装置及び露光方法とその装置

Publications (1)

Publication Number Publication Date
JP2006073932A true JP2006073932A (ja) 2006-03-16

Family

ID=36154191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258266A Pending JP2006073932A (ja) 2004-09-06 2004-09-06 フォーカス状態検出方法とその装置、フォーカス調整方法とその装置、位置検出方法とその装置及び露光方法とその装置

Country Status (1)

Country Link
JP (1) JP2006073932A (ja)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136689A1 (ja) * 2015-02-23 2016-09-01 株式会社ニコン 計測装置、リソグラフィシステム及び露光装置、並びにデバイス製造方法
KR20170120141A (ko) * 2015-02-23 2017-10-30 가부시키가이샤 니콘 계측 장치, 리소그래피 시스템 및 노광 장치, 그리고 관리 방법, 중첩 계측 방법 및 디바이스 제조 방법
CN111326394A (zh) * 2018-12-14 2020-06-23 东京毅力科创株式会社 搬送方法及搬送***
CN113132621A (zh) * 2020-01-10 2021-07-16 长鑫存储技术有限公司 拍摄装置位置校正***及方法
JP7418112B2 (ja) 2019-11-21 2024-01-19 キヤノン株式会社 パターン形成装置、及び物品の製造方法

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2016136689A1 (ja) * 2015-02-23 2016-09-01 株式会社ニコン 計測装置、リソグラフィシステム及び露光装置、並びにデバイス製造方法
KR20170120141A (ko) * 2015-02-23 2017-10-30 가부시키가이샤 니콘 계측 장치, 리소그래피 시스템 및 노광 장치, 그리고 관리 방법, 중첩 계측 방법 및 디바이스 제조 방법
JPWO2016136689A1 (ja) * 2015-02-23 2017-12-14 株式会社ニコン 計測装置、リソグラフィシステム及び露光装置、並びにデバイス製造方法
EP3264179A4 (en) * 2015-02-23 2018-12-05 Nikon Corporation Measurement device, lithography system and exposure device, and management method, superposition measurement method and device manufacturing method
KR102574558B1 (ko) 2015-02-23 2023-09-04 가부시키가이샤 니콘 계측 장치, 리소그래피 시스템 및 노광 장치, 그리고 관리 방법, 중첩 계측 방법 및 디바이스 제조 방법
CN111326394A (zh) * 2018-12-14 2020-06-23 东京毅力科创株式会社 搬送方法及搬送***
JP7418112B2 (ja) 2019-11-21 2024-01-19 キヤノン株式会社 パターン形成装置、及び物品の製造方法
CN113132621A (zh) * 2020-01-10 2021-07-16 长鑫存储技术有限公司 拍摄装置位置校正***及方法
CN113132621B (zh) * 2020-01-10 2022-04-26 长鑫存储技术有限公司 拍摄装置位置校正***及方法

Similar Documents

Publication Publication Date Title
JP3181050B2 (ja) 投影露光方法およびその装置
KR100471524B1 (ko) 노광방법
JP4323608B2 (ja) 露光装置およびデバイス製造方法
JP3308063B2 (ja) 投影露光方法及び装置
JP2897330B2 (ja) マーク検出装置及び露光装置
WO2007079639A1 (en) Ttl alignment system for projection exposure apparatus and alignment method
JP2012195380A (ja) マーク検出方法及び装置、並びに露光方法及び装置
JPH11143087A (ja) 位置合わせ装置及びそれを用いた投影露光装置
JP2006073932A (ja) フォーカス状態検出方法とその装置、フォーカス調整方法とその装置、位置検出方法とその装置及び露光方法とその装置
JP2019008029A (ja) 露光装置及び物品の製造方法
JP2006078262A (ja) 位置検出装置、露光装置、計測システム及び位置検出方法
JP2886957B2 (ja) 自動焦点合せ装置
JP2000012455A (ja) 荷電粒子線転写露光装置及び荷電粒子線転写露光装置におけるマスクと感応基板の位置合わせ方法
JP2009300798A (ja) 露光装置およびデバイス製造方法
JPH11288867A (ja) 位置合わせ方法、アライメントマークの形成方法、露光装置及び露光方法
JP2006030021A (ja) 位置検出装置及び位置検出方法
JPH1064808A (ja) マスクの位置合わせ方法及び投影露光方法
JP2006234769A (ja) 位置測定方法および位置測定装置
JP2006073817A (ja) 位置決め装置及び位置決め方法
JP2006234647A (ja) 位置計測方法、位置計測装置、露光方法及び露光装置
JP2006024674A (ja) ステージ制御装置及び方法、露光装置及び方法、並びにデバイス製造方法
JPH09260269A (ja) 投影露光方法及びそれを用いたデバイスの製造方法
KR20190043417A (ko) 노광 장치의 제어 방법 및 노광 장치의 제어 장치
JPH06224101A (ja) 二重焦点レンズ及び位置合せ装置
CN108508705B (zh) 投影物镜的焦面测量装置和方法以及曝光***