JP2006073467A - Membrane/electrode junction for solid polymer fuel cell - Google Patents

Membrane/electrode junction for solid polymer fuel cell Download PDF

Info

Publication number
JP2006073467A
JP2006073467A JP2004258506A JP2004258506A JP2006073467A JP 2006073467 A JP2006073467 A JP 2006073467A JP 2004258506 A JP2004258506 A JP 2004258506A JP 2004258506 A JP2004258506 A JP 2004258506A JP 2006073467 A JP2006073467 A JP 2006073467A
Authority
JP
Japan
Prior art keywords
solvent
membrane
fuel cell
carbon black
catalyst layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004258506A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kokukiyo
康弘 國狭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2004258506A priority Critical patent/JP2006073467A/en
Publication of JP2006073467A publication Critical patent/JP2006073467A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a membrane/electrode junction for a solid polymer fuel cell capable of preventing the degradation of a water repelling property of a catalyst layer, while securing the initial performance of the solid polymer fuel cell. <P>SOLUTION: In the membrane/electrode junction for the solid polymer fuel cell equipped with an anode and a cathode as well as an ion-exchange membrane arranged between the anode and the cathode, the cathode is provided with a catalyst layer including a catalyst, ion-exchange resin having a sulfonic group, and carbon black partly covered with a fluorine-containing polymer soluble into a solvent not virtually having an ion-exchange group. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、固体高分子型燃料電池用膜・電極接合体に関する。   The present invention relates to a membrane / electrode assembly for a polymer electrolyte fuel cell.

水素・酸素燃料電池は、その反応生成物が原理的に水のみであり、地球環境への悪影響のほとんどない発電システムとして注目されている。近年検討されている固体高分子型燃料電池は、作動温度が常温から150℃程度までの低い温度であるが、きわめて高い出力が期待されている。   The hydrogen / oxygen fuel cell is attracting attention as a power generation system that has a reaction product of only water in principle and has almost no adverse effect on the global environment. The polymer electrolyte fuel cells that have been studied in recent years have a low operating temperature from room temperature to about 150 ° C., but are expected to have extremely high output.

一方、固体高分子型燃料電池は作動温度が低いため、その排熱を補機動力等に利用することは困難であり、せいぜい温水としての活用が見込まれる程度である。この点を補う意味でも固体高分子型燃料電池は、特に高い出力密度を確保することが必要である。また実用化に向けての課題として、燃料利用率及び空気利用率の高い運転条件下でも高エネルギー効率、高出力密度の性能が要求されている。   On the other hand, since the solid polymer fuel cell has a low operating temperature, it is difficult to use the exhaust heat for auxiliary power or the like, and at most it is expected to be used as hot water. In order to supplement this point, the polymer electrolyte fuel cell needs to secure a particularly high output density. Moreover, as a problem for practical application, high energy efficiency and high power density performance are required even under operating conditions with high fuel utilization and air utilization.

固体高分子型燃料電池における電解質としては、化学的安定性及び導電性の点から、主として超強酸であるパーフルオロカーボンスルホン酸型陽イオン交換膜が用いられている。このような酸性電解質を使用すると、カソードにおいて下式の反応が起こり、水が生成する。
1/2O+2H+2e → H
したがって、低作動温度、高電流密度及び高ガス利用率の条件下で固体高分子型燃料電池を作動させると、水が生成するカソードにおいて水蒸気の凝縮により電極の閉塞現象(フラッディング)が起こりやすい。また、アノード及びカソードに供給されるガスは、通常固体高分子電解質であるイオン交換膜の導電性を保つため、イオン交換膜が乾燥しないように湿潤して供給されている。したがって、この湿潤ガスによっても電極のフラッディングが起こる場合もある。
As an electrolyte in a polymer electrolyte fuel cell, a perfluorocarbon sulfonic acid type cation exchange membrane, which is a super strong acid, is mainly used from the viewpoint of chemical stability and conductivity. When such an acidic electrolyte is used, the following reaction occurs at the cathode, and water is generated.
1 / 2O 2 + 2H + + 2e → H 2 O
Therefore, when the polymer electrolyte fuel cell is operated under conditions of low operating temperature, high current density, and high gas utilization rate, electrode clogging (flooding) is likely to occur due to condensation of water vapor at the cathode where water is generated. Further, the gas supplied to the anode and the cathode is supplied wet so that the ion exchange membrane is not dried in order to maintain the conductivity of the ion exchange membrane which is usually a solid polymer electrolyte. Accordingly, the wet gas may cause flooding of the electrode.

そのため、長期間燃料電池を安定して作動させるには、フラッディングが起こらないように、触媒層及び触媒層にガスを供給するためのガス拡散層に撥水性を付与することが必要である。現在、ガス拡散層は撥水処理されているものが市販されているが、触媒層の撥水処理については充分に検討がなされていないのが現状である。従って、低温における高出力密度が期待される固体高分子型燃料電池では、触媒層に撥水性を付与し、触媒層の水はけを良好にし、充分なガス供給を確保することが重要である。特に電池反応で水が生成するカソードにおいて撥水性を有することが重要である。   Therefore, in order to stably operate the fuel cell for a long period of time, it is necessary to impart water repellency to the catalyst layer and the gas diffusion layer for supplying gas to the catalyst layer so as not to cause flooding. At present, a gas diffusion layer having a water repellent treatment is commercially available, but the water repellent treatment of the catalyst layer has not been sufficiently studied. Therefore, in a polymer electrolyte fuel cell that is expected to have a high power density at a low temperature, it is important to impart water repellency to the catalyst layer, improve drainage of the catalyst layer, and ensure sufficient gas supply. In particular, it is important to have water repellency at the cathode where water is generated by the battery reaction.

触媒層の撥水性付与については、触媒層の厚みがせいぜい8〜25μm程度と薄いため、撥水材を添加しなくとも、ガスの吹き付けにより充分に水を排出できると考えられてきた。確かに初期時の短期間では電池性能は低下することはないが、数千時間以上の長期間の運転になった場合、触媒層は徐々に濡れてきてフラッディングを起こし、電池性能は大きく低下する。   With regard to imparting water repellency to the catalyst layer, it has been considered that water can be sufficiently discharged by blowing gas without adding a water repellent material because the thickness of the catalyst layer is as thin as about 8 to 25 μm at most. Certainly, the battery performance does not deteriorate in the initial short period, but when it is operated for a long time of several thousand hours or more, the catalyst layer gradually gets wet and flooding occurs, and the battery performance is greatly deteriorated. .

触媒層に撥水性を付与する手段として、溶媒可溶性含フッ素重合体を触媒層に含有させる方法がある(特許文献1)。この方法により、触媒層に撥水性を付与することはできるが、触媒自身が電気絶縁性の溶媒可溶性含フッ素重合体に覆われることがあるため、触媒と電解質として触媒層に含まれるイオン交換樹脂との接触が妨げられることになり、反応サイトの数が減少し、初期時のセル電圧が低下するという欠点があった。   As a means for imparting water repellency to the catalyst layer, there is a method in which a solvent-soluble fluoropolymer is contained in the catalyst layer (Patent Document 1). Although this method can impart water repellency to the catalyst layer, the catalyst itself may be covered with an electrically insulating solvent-soluble fluoropolymer, so that the ion exchange resin contained in the catalyst layer as a catalyst and an electrolyte Contact is prevented, the number of reaction sites is reduced, and the initial cell voltage is lowered.

特開平9−320611号公報(特許請求の範囲)JP-A-9-320611 (Claims)

本発明は、固体高分子型燃料電池の初期性能を確保しつつ、触媒層の撥水性の低下を防ぐことができる固体高分子型燃料電池用膜・電極接合体を提供することを目的とする。   An object of the present invention is to provide a membrane / electrode assembly for a polymer electrolyte fuel cell that can prevent deterioration in water repellency of a catalyst layer while ensuring the initial performance of the polymer electrolyte fuel cell. .

(1)アノード及びカソードと、前記アノードと前記カソードとの間に配置されるイオン交換膜とを備える固体高分子型燃料電池用膜・電極接合体において、前記カソードは、触媒と、スルホン酸基を有するイオン交換樹脂と、イオン交換基を実質的に有しない溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックとを含む触媒層を有していることを特徴とする固体高分子型燃料電池用膜・電極接合体。   (1) In a membrane / electrode assembly for a polymer electrolyte fuel cell comprising an anode and a cathode, and an ion exchange membrane disposed between the anode and the cathode, the cathode comprises a catalyst, a sulfonic acid group A solid polymer type comprising a catalyst layer comprising an ion exchange resin having a carbon black and a carbon black partially covered with a solvent-soluble fluoropolymer substantially free of ion exchange groups Membrane / electrode assembly for fuel cells.

(2)前記溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラック中の溶媒可溶性含フッ素重合体の含有率が5〜70質量%である(1)に記載の固体高分子型燃料電池用膜・電極接合体。   (2) The polymer electrolyte fuel cell according to (1), wherein the content of the solvent-soluble fluoropolymer in the carbon black partially covered with the solvent-soluble fluoropolymer is 5 to 70% by mass. Membrane / electrode assembly.

(3)前記触媒層全固形分における前記溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックの割合が5〜50質量%である(1)又は(2)に記載の固体高分子型燃料電池用膜・電極接合体。   (3) The solid polymer type according to (1) or (2), wherein the ratio of the carbon black partially covered with the solvent-soluble fluoropolymer in the total solid content of the catalyst layer is 5 to 50% by mass. Membrane / electrode assembly for fuel cells.

(4)前記溶媒可溶性含フッ素重合体は、主鎖に脂肪族環構造を有する含フッ素重合体である(1)〜(3)のいずれかに記載の固体高分子型燃料電池用膜・電極接合体。   (4) The membrane / electrode for solid polymer fuel cell according to any one of (1) to (3), wherein the solvent-soluble fluoropolymer is a fluoropolymer having an aliphatic ring structure in the main chain. Joined body.

(5)前記溶媒可溶性含フッ素重合体が、下記式1〜4のいずれかで表される重合単位を含む(4)に記載の固体高分子型燃料電池用電極用膜・電極接合体。
ただし、式1において、Rはフッ素原子又はトリフルオロメチル基であり、pは0〜5の整数であり、qは0〜4の整数であり、rは0又は1であり、p+q+rは1〜6であり、式2において、s、t、uはそれぞれ独立に0〜5の整数であり、s+t+uは1〜6であり、式3において、R、Rはそれぞれ独立にフッ素原子又はトリフルオロメチル基であり、式4においてvは1又は2である。
(5) The membrane / electrode assembly for a polymer electrolyte fuel cell electrode according to (4), wherein the solvent-soluble fluoropolymer includes a polymer unit represented by any one of the following formulas 1 to 4.
In Expression 1, R 1 is fluorine atom or trifluoromethyl group, p is an integer of 0 to 5, q is an integer of 0 to 4, r is 0 or 1, p + q + r is 1 In Formula 2, s, t and u are each independently an integer of 0 to 5, s + t + u is 1 to 6, and in Formula 3, R 2 and R 3 are each independently a fluorine atom or A trifluoromethyl group, and in formula 4, v is 1 or 2;

Figure 2006073467
Figure 2006073467

(6)前記溶媒可溶性含フッ素重合体が、下記式5〜13のいずれかで表される重合単位を含む(5)に記載の固体高分子型燃料電池。   (6) The polymer electrolyte fuel cell according to (5), wherein the solvent-soluble fluorine-containing polymer includes a polymer unit represented by any one of the following formulas 5 to 13.

Figure 2006073467
Figure 2006073467

Figure 2006073467
Figure 2006073467

(7)(1)〜(6)に記載の固体高分子型燃料電池用膜・電極接合体の製造方法であって、溶媒可溶性含フッ素重合体の溶液にカーボンブラックを含浸し、溶媒を除去することによって溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックを得、触媒及びスルホン酸基を有するイオン交換樹脂と混合し、触媒層を形成することを特徴とする固体高分子型燃料電池用膜・電極接合体の製造方法。   (7) A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to (1) to (6), wherein a solvent-soluble fluoropolymer solution is impregnated with carbon black and the solvent is removed. To obtain a carbon black partially covered with a solvent-soluble fluoropolymer, mixed with a catalyst and an ion exchange resin having a sulfonic acid group to form a catalyst layer, Manufacturing method of battery membrane / electrode assembly.

本発明によれば、触媒層に溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックが含まれることにより、触媒層の撥水性が長期的に維持され、燃料電池の耐久性を向上させることができる。また、カーボンブラックによる導電性も付与されるため含フッ素重合体の存在による抵抗増大を防ぎ、燃料電池の初期性能の低下をも防ぐことができる。   According to the present invention, the catalyst layer contains carbon black partially covered with a solvent-soluble fluoropolymer, whereby the water repellency of the catalyst layer is maintained for a long period of time, and the durability of the fuel cell is improved. be able to. In addition, since conductivity due to carbon black is imparted, an increase in resistance due to the presence of the fluoropolymer can be prevented, and a decrease in the initial performance of the fuel cell can also be prevented.

溶媒可溶性含フッ素重合体は、溶液状で用いられることにより少量で効率的にカーボンブラックの表面を覆うことができ、撥水処理を施すことができる。溶媒可溶性含フッ素重合体はカーボンブラックに被膜状態で接触しているため、触媒層の撥水性は耐久性が確保される。   The solvent-soluble fluorine-containing polymer can efficiently cover the surface of carbon black in a small amount by being used in the form of a solution, and can be subjected to water repellent treatment. Since the solvent-soluble fluoropolymer is in contact with the carbon black in a film state, the durability of the water repellency of the catalyst layer is ensured.

本発明の触媒層にはイオン交換基を実質的に有しない溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックが含まれる。本明細書において「溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラック」とは、カーボンブラックを構成する全粒子の全表面の一部に溶媒可溶性含フッ素重合体が存在することを意味し、具体的には例えば以下の(1)、(2)は含まれるが、(3)は含まれない。(1)溶媒可溶性含フッ素重合体で表面の一部を覆われている粒子から構成されるカーボンブラック。(2)溶媒可溶性含フッ素重合体で表面の一部又は表面の全部を覆われている粒子と溶媒可溶性含フッ素重合体で表面が全く覆われていない粒子が混在しているカーボンブラック。(3)溶媒可溶性含フッ素重合体で表面の全部が覆われている粒子のみから構成されるカーボンブラック。上記(3)の状態では、カーボンブラックによる導電性を触媒層に付与することができない。   The catalyst layer of the present invention includes carbon black partially covered with a solvent-soluble fluoropolymer substantially free of ion exchange groups. In the present specification, “carbon black partially covered with a solvent-soluble fluoropolymer” means that the solvent-soluble fluoropolymer exists on a part of the entire surface of all particles constituting the carbon black. Specifically, for example, the following (1) and (2) are included, but (3) is not included. (1) Carbon black composed of particles whose surfaces are covered with a solvent-soluble fluoropolymer. (2) Carbon black in which particles whose surface is partially or entirely covered with a solvent-soluble fluoropolymer and particles whose surface is not covered at all with a solvent-soluble fluoropolymer are mixed. (3) Carbon black composed only of particles whose entire surface is covered with a solvent-soluble fluoropolymer. In the state of (3) above, the conductivity due to carbon black cannot be imparted to the catalyst layer.

本明細書における溶媒可溶性含フッ素重合体とは、当該含フッ素重合体を溶解できる溶媒が存在する含フッ素重合体をいい、その溶媒は特に限定されない。しかし、燃料電池の電極反応における反応物や生成物となりうるアルコールや水等の溶媒にはほとんど溶解しない含フッ素重合体であることが好ましい。これらの溶媒に可溶であると電池の作動中に溶解し、触媒層の構成が電池の作動とともに変化し、撥水性が低下するおそれがある。溶媒可溶性含フッ素重合体は、固体高分子型燃料電池の使用温度範囲では固体状態であることが好ましく、具体的には常温から150℃までの範囲で固体状態であることが好ましい。   The solvent-soluble fluoropolymer in the present specification refers to a fluoropolymer in which a solvent capable of dissolving the fluoropolymer is present, and the solvent is not particularly limited. However, it is preferably a fluorine-containing polymer that hardly dissolves in a solvent such as alcohol or water that can be a reaction product or product in an electrode reaction of a fuel cell. If it is soluble in these solvents, it dissolves during the operation of the battery, the structure of the catalyst layer changes with the operation of the battery, and the water repellency may be lowered. The solvent-soluble fluorine-containing polymer is preferably in a solid state in the use temperature range of the solid polymer fuel cell, and specifically in a solid state in a range from room temperature to 150 ° C.

また、本発明における溶媒可溶性含フッ素重合体は実質的にイオン交換基を有しないが、上記イオン交換基としては具体的にはスルホン酸基、カルボン酸基等が挙げられる。本明細書で、実質的にイオン交換基を有しないとは、溶媒可溶性含フッ素重合体に含まれるイオン交換基が0.1ミリ当量/g乾燥樹脂以下であることをいい、特には0.05ミリ当量/g乾燥樹脂以下であることが好ましい。   The solvent-soluble fluoropolymer in the present invention has substantially no ion exchange group, and specific examples of the ion exchange group include a sulfonic acid group and a carboxylic acid group. In this specification, having substantially no ion exchange group means that the ion exchange group contained in the solvent-soluble fluoropolymer is 0.1 meq / g dry resin or less. It is preferable that the amount is not more than 05 meq / g dry resin.

上記溶媒可溶性含フッ素重合体としては、水素原子が部分的にフッ素置換された重合体と全部フッ素置換された重合体のいずれもが使用できるが、撥水性については以下の傾向がある。官能基における臨界表面張力を比較すると、−CF(6)<−CFH(15)<−CF−(18)<−CH(22〜24)<−CH−(31〜36)である。括弧内の数値は、臨界表面張力(mN/m)を示す。上記数値から、よりフッ素置換されている官能基のほうが臨界表面張力が低い、すなわち撥水性が高いと考えられる。したがって、水素原子が全部フッ素置換された含フッ素重合体が撥水性が高くより好ましい。 As the solvent-soluble fluorine-containing polymer, either a polymer in which hydrogen atoms are partially fluorine-substituted or a polymer in which all of the hydrogen atoms are fluorine-substituted can be used, but the water repellency has the following tendencies. Comparing the critical surface tension of the functional group, -CF 3 (6) <- CF 2 H (15) <- CF 2 - (18) <- CH 3 (22~24) <- CH 2 - (31~36 ). Numerical values in parentheses indicate critical surface tension (mN / m). From the above numerical values, it is considered that the functional group substituted with fluorine has lower critical surface tension, that is, higher water repellency. Therefore, a fluorine-containing polymer in which all hydrogen atoms are substituted with fluorine is more preferable because of high water repellency.

上記溶媒可溶性含フッ素重合体としては、分子内に含フッ素脂肪族環構造を有する重合体が好ましい。分子内に含フッ素脂肪族環構造を有する重合体は、その分子構造に起因する分子のねじれにより結晶化しにくく、フッ素系溶剤に可溶である。分子内に含フッ素脂肪族環構造を有する重合体の例としては、上記式1〜4のいずれかで表される重合単位を含む重合体が挙げられる。また具体的には、上記式5〜13のいずれかで表される重合単位を含む含フッ素重合体が好ましい。   The solvent-soluble fluorine-containing polymer is preferably a polymer having a fluorine-containing aliphatic ring structure in the molecule. A polymer having a fluorine-containing aliphatic ring structure in the molecule is difficult to crystallize due to the twist of the molecule due to the molecular structure, and is soluble in a fluorine-based solvent. Examples of the polymer having a fluorine-containing aliphatic ring structure in the molecule include a polymer containing a polymer unit represented by any one of the above formulas 1 to 4. Specifically, a fluoropolymer containing a polymer unit represented by any one of the above formulas 5 to 13 is preferred.

これらの重合体は、特殊なフッ素系溶媒に可溶である。例えば、フルオロアルカン類、フルオロトリアルキルアミン類及びフルオロアルキルテトラヒドロフラン類などに溶解され、濃度が0.01〜50質量%の溶液が得られる。   These polymers are soluble in special fluorinated solvents. For example, it is dissolved in fluoroalkanes, fluorotrialkylamines, fluoroalkyltetrahydrofurans and the like to obtain a solution having a concentration of 0.01 to 50% by mass.

上記のような本発明で使用される溶媒可溶性含フッ素重合体はモノマーに分解しにくいためラジカル伝搬しにくく、耐酸性、耐アルカリ性に優れている。また、溶媒可溶性含フッ素重合体の分子量は1万〜20万程度、特には5万〜10万程度であることが好ましい。分子量が小さすぎると、ポリマーとして化学的に充分に安定ではないおそれがある。また、分子量が大きすぎると、ポリマーを溶液状態にした際に溶液粘度が高くなりすぎ取り扱いが困難となるおそれがある。   The solvent-soluble fluorine-containing polymer used in the present invention as described above is not easily decomposed into monomers and thus is difficult to propagate radicals, and is excellent in acid resistance and alkali resistance. The molecular weight of the solvent-soluble fluoropolymer is preferably about 10,000 to 200,000, and particularly preferably about 50,000 to 100,000. If the molecular weight is too small, it may not be chemically stable as a polymer. On the other hand, if the molecular weight is too large, the solution viscosity becomes too high when the polymer is put into a solution state, which may make handling difficult.

溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックの調整方法としては、以下の例が挙げられる。溶媒可溶性含フッ素重合体を溶媒に溶解した0.01〜5質量%の溶液を用意し、この溶液にカーボンブラックを含浸させる。含浸後、濾過によりカーボンブラックを集め、残存溶媒を除去してもよいし、含浸後、室温放置又は加熱により溶液の溶媒を除去してもよい。ここで溶媒を除去するのみでもよいが、カーボンブラックと溶媒可溶性含フッ素重合体との密着性をより向上させるために、溶媒除去後、110〜200℃、特には120〜180℃で焼成することが好ましい。上記焼成は溶媒可溶性含フッ素重合体で覆われたカーボンブラック単独で行ってもよく、触媒層を形成した後に行ってもよい。   Examples of methods for preparing carbon black partially covered with a solvent-soluble fluoropolymer include the following examples. A 0.01 to 5% by mass solution prepared by dissolving a solvent-soluble fluoropolymer in a solvent is prepared, and this solution is impregnated with carbon black. After impregnation, carbon black may be collected by filtration to remove residual solvent, or after impregnation, the solvent of the solution may be removed by standing at room temperature or heating. Here, the solvent may only be removed, but in order to further improve the adhesion between the carbon black and the solvent-soluble fluoropolymer, after the solvent is removed, firing is performed at 110 to 200 ° C., particularly 120 to 180 ° C. Is preferred. The calcination may be carried out with carbon black alone covered with a solvent-soluble fluoropolymer, or after the catalyst layer is formed.

前記溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラック中の溶媒可溶性含フッ素重合体の含有率は5〜70質量%であることが好ましく、10〜40質量%であることがより好ましい。上記含有率が5質量%未満の場合、カーボンブラックの撥水処理が充分でなく、触媒層の撥水性が不足するおそれがある。一方、上記含有率が70質量%超の場合、カーボンブラックの溶媒可溶性含フッ素重合体で覆われた部分が多すぎて導電性が低くなり、触媒層の抵抗が増大するおそれがある。上記含有率は、カーボンブラックを含浸させる溶媒可溶性含フッ素重合体の溶液の濃度により容易に調整することができる。   The content of the solvent-soluble fluoropolymer in the carbon black partially covered with the solvent-soluble fluoropolymer is preferably 5 to 70 mass%, more preferably 10 to 40 mass%. . When the content is less than 5% by mass, the water repellent treatment of the carbon black is not sufficient, and the water repellency of the catalyst layer may be insufficient. On the other hand, when the content is more than 70% by mass, there are too many portions covered with the solvent-soluble fluoropolymer of carbon black, the conductivity is lowered, and the resistance of the catalyst layer may be increased. The content can be easily adjusted by the concentration of the solvent-soluble fluoropolymer impregnated with carbon black.

また、触媒層固形分全体に対する溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックの割合は、好ましくは5〜50質量%であり、より好ましくは10〜30質量%である。上記割合が5質量%未満の場合、触媒層の撥水性が充分でなく、電池運転を行った場合に短期間で電池性能が低下するおそれがある。一方、上記割合が50質量%超の場合、触媒層の抵抗が大きくなりすぎ、また触媒とスルホン酸基を有するイオン交換樹脂との接触を阻害して反応サイトの数が大幅に減少するおそれがある。   Moreover, the ratio of the carbon black partially covered with the solvent-soluble fluoropolymer relative to the entire solid content of the catalyst layer is preferably 5 to 50% by mass, more preferably 10 to 30% by mass. When the ratio is less than 5% by mass, the catalyst layer has insufficient water repellency, and battery performance may be deteriorated in a short period of time when battery operation is performed. On the other hand, when the ratio is more than 50% by mass, the resistance of the catalyst layer becomes too large, and the contact between the catalyst and the ion exchange resin having a sulfonic acid group may be hindered to significantly reduce the number of reaction sites. is there.

本発明におけるカーボンブラックとしては、ケッチェンEC(ライオン社製)、バルカンXC−72R(キャボット社製)、アセチレンブラック等が使用でき、特には限定されない。   As carbon black in the present invention, Ketjen EC (manufactured by Lion), Vulcan XC-72R (manufactured by Cabot), acetylene black, and the like can be used, and are not particularly limited.

溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックは、電池反応により水の生成するカソード用触媒層に含まれることが好ましい。一方、フル加湿運転など高加湿運転では、アノード用触媒層、カソード用触媒層のいずれにも含まれることが好ましい。両電極ともに撥水性を付与することが望ましいためである。   The carbon black partially covered with the solvent-soluble fluoropolymer is preferably contained in the cathode catalyst layer that generates water by the battery reaction. On the other hand, in a high humidification operation such as a full humidification operation, it is preferably contained in both the anode catalyst layer and the cathode catalyst layer. This is because it is desirable to impart water repellency to both electrodes.

本発明におけるアノード用触媒層に含まれる触媒としては、白金単独、白金ルテニウム合金がカーボンブラックに担持された担持触媒が好ましい。カソード用触媒層に含まれる触媒としては、白金がカーボンブラックに担持された担持触媒が好ましいが、白金クロム又は白金鉄等の合金触媒を用いてもよく特には限定されない。   The catalyst contained in the anode catalyst layer in the present invention is preferably a supported catalyst in which platinum alone or a platinum ruthenium alloy is supported on carbon black. As the catalyst contained in the cathode catalyst layer, a supported catalyst in which platinum is supported on carbon black is preferable, but an alloy catalyst such as platinum chromium or platinum iron may be used and is not particularly limited.

本発明における触媒層にはスルホン酸基を有するイオン交換樹脂が含まれる。耐久性等の点から特にスルホン酸基を有するパーフルオロカーボン重合体(ただしエーテル結合性の酸素原子等は含んでいてよい。)が好ましく、具体的には、フレミオン(商品名、旭硝子社製)、ナフィオン(商品名、デュポン社製)等が好ましく使用できる。用途によっては炭化水素系のイオン交換樹脂を用いてもよく特には限定されない。   The catalyst layer in the present invention contains an ion exchange resin having a sulfonic acid group. A perfluorocarbon polymer having a sulfonic acid group (however, an etheric oxygen atom or the like may be included) is preferable from the viewpoint of durability and the like, specifically, Flemion (trade name, manufactured by Asahi Glass Co., Ltd.) Nafion (trade name, manufactured by DuPont) and the like can be preferably used. Depending on the application, a hydrocarbon ion exchange resin may be used and is not particularly limited.

触媒層は、上述の調整方法で得られた溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックを、触媒及びスルホン酸基を有するイオン交換樹脂と混合することにより形成することができる。具体的には、溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックと、触媒と、スルホン酸基を有するイオン交換樹脂とを分散媒に分散させた分散液を用いて(必要に応じて造孔剤、増粘剤、希釈溶媒等を加え)、イオン交換膜、ガス拡散層、又は平板上に噴霧、塗布、濾過等により形成させる公知の方法が採用できる。触媒層をイオン交換膜上に直接形成しない場合は、触媒層とイオン交換膜とは、ホットプレス法、接着法(特開平7−220741参照)等により接合することが好ましい。   The catalyst layer can be formed by mixing carbon black partially covered with the solvent-soluble fluoropolymer obtained by the above-described adjustment method, with a catalyst and an ion exchange resin having a sulfonic acid group. Specifically, using a dispersion in which carbon black partially covered with a solvent-soluble fluoropolymer, a catalyst, and an ion exchange resin having a sulfonic acid group are dispersed in a dispersion medium (if necessary) For example, a well-known method may be employed in which a pore-forming agent, a thickener, a diluting solvent, etc. are added), an ion exchange membrane, a gas diffusion layer, or a flat plate by spraying, coating, filtration, or the like. When the catalyst layer is not directly formed on the ion exchange membrane, the catalyst layer and the ion exchange membrane are preferably joined by a hot press method, an adhesion method (see JP-A-7-220741) or the like.

本発明におけるアノードとカソードとの間に配置されるイオン交換膜も、スルホン酸基を有するパーフルオロカーボン重合体(ただしエーテル結合性の酸素原子等は含んでいてよい。)からなることが好ましい。   The ion exchange membrane disposed between the anode and the cathode in the present invention is also preferably made of a perfluorocarbon polymer having a sulfonic acid group (however, it may contain an etheric oxygen atom or the like).

本発明の膜・電極接合体を製造する方法としては、イオン交換膜の上に触媒層を直接形成し必要に応じガス拡散層で挟み込む方法、カーボンペーパー等のガス拡散層となる基材上に触媒層を形成しこれをイオン交換膜と接合する方法、及び平板上に触媒層を形成しこれをイオン交換膜に転写した後平板を剥離し、さらに必要に応じガス拡散層で挟み込む方法等の各種の方法が採用できる。   As a method for producing the membrane-electrode assembly of the present invention, a method in which a catalyst layer is directly formed on an ion exchange membrane and sandwiched between gas diffusion layers as necessary, on a base material to be a gas diffusion layer such as carbon paper A method of forming a catalyst layer and bonding it to an ion exchange membrane, a method of forming a catalyst layer on a flat plate and transferring it to the ion exchange membrane, then peeling the flat plate and further sandwiching it with a gas diffusion layer if necessary Various methods can be employed.

以下、本発明を実施例(例5)及び比較例(例6〜9)により説明するが、本発明はこれらに限定されない。   EXAMPLES Hereinafter, although an Example (Example 5) and a comparative example (Examples 6-9) demonstrate this invention, this invention is not limited to these.

[例1]
<触媒分散液Aの調整>
カーボンブラック粉末に白金を46.4質量%担持させた触媒と、イオン交換容量が1.1ミリ当量/gであるCF=CFとCF=CF−OCFCF(CF)−OCFCFSOHとの共重合体からなるイオン交換樹脂の水とエタノールを溶媒とする溶液(濃度13質量%)とを、質量比1:1の水とエタノールの混合液に分散させ、超音波処理し、固形分濃度8.5質量%の触媒分散液Aを得た。なお、触媒分散液A中の触媒とイオン交換樹脂との含有比率は質量比で7:3であった。
[Example 1]
<Preparation of catalyst dispersion A>
A catalyst obtained by 46.4 wt% platinum supported on carbon black powder, CF 2 = CF 2 and CF 2 = CF-OC 2 FCF (CF 3) ion exchange capacity of 1.1 meq / g -OCF 2 CF 2 SO 3 H and the solution of water and ethanol solvent of the ion-exchange resin comprising a copolymer of a (concentration 13 mass%) in a mass ratio of 1: was dispersed in a mixture of 1 of water and ethanol, Ultrasonic treatment was performed to obtain catalyst dispersion A having a solid content concentration of 8.5% by mass. The content ratio of the catalyst and the ion exchange resin in the catalyst dispersion A was 7: 3 by mass ratio.

[例2]
<触媒分散液Bの調整>
イオン交換基を実質的に有しない溶媒可溶性含フッ素重合体として、CF=CFO(CFCF=CFの重合体(上記式11に相当、分子量約5〜6万)を、パーフルオロ(2−ブチルテトラヒドロフラン)に溶解した濃度1質量%の溶液を準備した。上記溶液にカーボンブラック(商品名:バルカンXC−72R、キャボット社製)を浸漬し、この懸濁液を吸引濾過し、濾紙上に溶媒可溶性含フッ素重合体で覆われたカーボンブラックを集めた。上記作業を合計3回行った後、窒素雰囲気下、150℃で1時間の焼成処理を行い、上記溶媒可溶性含フッ素重合体の含有率が約20質量%である溶媒可溶性含フッ素重合体で覆われたカーボンブラックを得た。
[Example 2]
<Preparation of catalyst dispersion B>
As a solvent-soluble fluorine-containing polymer having substantially no ion exchange group, a polymer of CF 2 ═CFO (CF 2 ) 2 CF═CF 2 (corresponding to the above formula 11, molecular weight of about 50 to 60,000) A solution having a concentration of 1% by mass dissolved in fluoro (2-butyltetrahydrofuran) was prepared. Carbon black (trade name: Vulcan XC-72R, manufactured by Cabot Corporation) was immersed in the above solution, and the suspension was subjected to suction filtration to collect carbon black covered with a solvent-soluble fluoropolymer on a filter paper. After performing the above operations three times in total, a baking treatment was performed at 150 ° C. for 1 hour in a nitrogen atmosphere, and the solvent-soluble fluoropolymer was covered with a solvent-soluble fluoropolymer having a content of about 20% by mass. Obtained carbon black.

上記溶媒可溶性含フッ素重合体で覆われたカーボンブラックを上記触媒分散液Aに、全固形分に対する溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックの割合が20質量%となるように混合し、ホモジナイザーにより分散し、触媒分散液Bを得た。   Carbon black covered with the solvent-soluble fluorine-containing polymer is added to the catalyst dispersion A so that the ratio of carbon black partially covered with the solvent-soluble fluorine-containing polymer to the total solid content is 20% by mass. The mixture was mixed and dispersed with a homogenizer to obtain catalyst dispersion B.

[例3]
<触媒分散液Cの調整>
触媒分散液Aの調整で用いたカーボンブラックに白金を担持させた触媒を、触媒分散液Bの調整で用いた溶媒可溶性含フッ素重合体の溶液に混合し、乾燥し溶媒を除去した。得られた溶媒可溶性含フッ素重合体と触媒の混合物を触媒分散液Aの調整で用いたイオン交換樹脂の溶液に、触媒、イオン交換樹脂及び溶媒可溶性含フッ素重合体の質量比が0.56:0.24:0.2となるように混合し、触媒分散液Cを得た。
[Example 3]
<Preparation of catalyst dispersion C>
The catalyst in which platinum was supported on carbon black used in the preparation of the catalyst dispersion A was mixed with the solvent-soluble fluoropolymer solution used in the preparation of the catalyst dispersion B, and dried to remove the solvent. The mass ratio of the catalyst, the ion exchange resin, and the solvent-soluble fluoropolymer was 0.56 in the solution of the ion-exchange resin obtained by using the mixture of the obtained solvent-soluble fluoropolymer and the catalyst in the preparation of the catalyst dispersion A. Mixing was performed so that the ratio was 0.24: 0.2 to obtain catalyst dispersion C.

[例4]
<触媒分散液Dの調整>
カーボンブラック(バルカンXC−72R)を触媒分散液Aに、カーボンブラックの割合が20質量%となるように混合し、ホモジナイザーにより分散し、触媒分散液Dを得た。
[Example 4]
<Adjustment of catalyst dispersion D>
Carbon black (Vulcan XC-72R) was mixed with catalyst dispersion A so that the ratio of carbon black was 20% by mass and dispersed with a homogenizer to obtain catalyst dispersion D.

[例5]
触媒分散液AをETFE(エチレンテトラフルオロエチレン)フィルム上に白金塗工量が0.5mg/cmとなるようにダイコーターで塗工し、80℃で10分間乾燥し、アノード触媒層を得た。
[Example 5]
The catalyst dispersion A was applied onto an ETFE (ethylene tetrafluoroethylene) film with a die coater so that the platinum coating amount was 0.5 mg / cm 2 and dried at 80 ° C. for 10 minutes to obtain an anode catalyst layer. It was.

触媒分散液BをETFEフィルム上に白金塗工量が0.5mg/cmとなるようにダイコーターで塗工し、80℃で10分間乾燥し、カソード触媒層を得た。 The catalyst dispersion B was coated on the ETFE film with a die coater so that the platinum coating amount was 0.5 mg / cm 2 and dried at 80 ° C. for 10 minutes to obtain a cathode catalyst layer.

得られたアノード触媒層、カソード触媒層から有効電極面積が25cmとなるようにダンベル状試験片を打ち抜いた。固体高分子電解質なるイオン交換膜としてスルホン酸基を有するパーフルオロカーボン重合体(商品名:フレミオンHR、旭硝子社製、イオン交換容量1.1ミリ当量/g、膜厚:50μm)を使用した。この膜に対し、空気極側には上記カソード触媒層を、水素極側には上記アノード触媒層をそれぞれ配置して140℃、30kg/cmで2分間ホットプレスを行い、ETFEフィルムを剥がして触媒層・膜接合体を得た。この触媒層・膜接合体の両側にガス拡散層(商品名:CARBEL−CL、ジャパンゴアテックス社製)を挟み込み、膜・電極接合体を得た。 A dumbbell-shaped test piece was punched out from the obtained anode catalyst layer and cathode catalyst layer so that the effective electrode area was 25 cm 2 . A perfluorocarbon polymer having a sulfonic acid group (trade name: Flemion HR, manufactured by Asahi Glass Co., Ltd., ion exchange capacity 1.1 meq / g, film thickness: 50 μm) was used as an ion exchange membrane that is a solid polymer electrolyte. The cathode catalyst layer was placed on the air electrode side and the anode catalyst layer was placed on the hydrogen electrode side of the membrane, and hot-pressed at 140 ° C. and 30 kg / cm 2 for 2 minutes to peel off the ETFE film. A catalyst layer / membrane assembly was obtained. A gas diffusion layer (trade name: CARBEL-CL, manufactured by Japan Gore-Tex) was sandwiched between both sides of the catalyst layer / membrane assembly to obtain a membrane / electrode assembly.

この膜・電極接合体を単セルに組み込み、発電試験を行い耐久性を調べた。耐久性試験の条件は、両電極ともに加圧し(入口0.15MPa)、セル温度は70℃、供給ガスの加湿温度は70℃、供給ガスは水素と空気でそれぞれのガス利用率は70%、40%とした。運転は定電流駆動による連続運転とし、通電する電流密度は0.4A/cmとした。運転を開始して10時間後、1000時間後及び2000時間後の端子間電圧を測定した。また、1kHzにおけるセルの内部抵抗(オーム損失)を交流比抵抗測定器(商品名:MODEL3566、鶴賀社製)により測定した。その結果を表1に示す。 This membrane / electrode assembly was assembled in a single cell, and a power generation test was conducted to examine its durability. The conditions of the durability test were that both electrodes were pressurized (inlet 0.15 MPa), the cell temperature was 70 ° C., the humidification temperature of the supply gas was 70 ° C., the supply gas was hydrogen and air, and the respective gas utilization rates were 70%, 40%. The operation was continuous operation by constant current driving, and the current density to be energized was 0.4 A / cm 2 . The voltage between terminals was measured after 10 hours, 1000 hours, and 2000 hours after starting operation. Further, the internal resistance (ohm loss) of the cell at 1 kHz was measured with an AC specific resistance measuring instrument (trade name: MODEL 3566, manufactured by Tsuruga Corporation). The results are shown in Table 1.

[例6]
カソード触媒層を、触媒分散液Aから調整した以外は例1と同様にして膜・電極接合体を得た。例1と同様に試験を行い、その結果を表1に示す。
[Example 6]
A membrane / electrode assembly was obtained in the same manner as in Example 1 except that the cathode catalyst layer was prepared from the catalyst dispersion A. The test was conducted in the same manner as in Example 1, and the results are shown in Table 1.

[例7]
カソード触媒層を、触媒分散液Cから調整した以外は例1と同様にして膜・電極接合体を得た。例1と同様に試験を行い、その結果を表1に示す。
[Example 7]
A membrane / electrode assembly was obtained in the same manner as in Example 1 except that the cathode catalyst layer was prepared from the catalyst dispersion C. The test was conducted in the same manner as in Example 1, and the results are shown in Table 1.

[例8]
カソード触媒層を、触媒分散液Dから調整した以外は例1と同様にして膜・電極接合体を得た。例1と同様に試験を行い、その結果を表1に示す。
[Example 8]
A membrane / electrode assembly was obtained in the same manner as in Example 1 except that the cathode catalyst layer was prepared from the catalyst dispersion D. The test was conducted in the same manner as in Example 1, and the results are shown in Table 1.

Figure 2006073467
Figure 2006073467

本発明の固体高分子型燃料電池用膜・電極接合体は燃料電池の初期性能を低下させることなく、触媒層の撥水性を長期的に維持し、燃料電池の耐久性を向上させることができる。したがって、低作動温度、高電流密度及び高ガス利用率の条件下でも高エネルギー効率、高出力密度の性能を発揮する固体高分子型燃料電池が提供できる。
The membrane / electrode assembly for a polymer electrolyte fuel cell of the present invention can maintain the water repellency of the catalyst layer for a long time without deteriorating the initial performance of the fuel cell, and can improve the durability of the fuel cell. . Accordingly, it is possible to provide a polymer electrolyte fuel cell that exhibits high energy efficiency and high power density even under conditions of low operating temperature, high current density, and high gas utilization rate.

Claims (7)

アノード及びカソードと、前記アノードと前記カソードとの間に配置されるイオン交換膜とを備える固体高分子型燃料電池用膜・電極接合体において、前記カソードは、触媒と、スルホン酸基を有するイオン交換樹脂と、イオン交換基を実質的に有しない溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックとを含む触媒層を有していることを特徴とする固体高分子型燃料電池用膜・電極接合体。   In a membrane / electrode assembly for a polymer electrolyte fuel cell comprising an anode and a cathode, and an ion exchange membrane disposed between the anode and the cathode, the cathode comprises a catalyst and an ion having a sulfonic acid group A solid polymer type fuel cell comprising a catalyst layer comprising an exchange resin and carbon black partially covered with a solvent-soluble fluoropolymer substantially free of ion exchange groups Membrane / electrode assembly. 前記溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラック中の溶媒可溶性含フッ素重合体の含有率が5〜70質量%である請求項1に記載の固体高分子型燃料電池用膜・電極接合体。   The membrane for a polymer electrolyte fuel cell according to claim 1, wherein the content of the solvent-soluble fluoropolymer in the carbon black partially covered with the solvent-soluble fluoropolymer is 5 to 70 mass%. Electrode assembly. 前記触媒層全固形分における前記溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックの割合が5〜50質量%である請求項1又は2に記載の固体高分子型燃料電池用膜・電極接合体。   3. The membrane for a polymer electrolyte fuel cell according to claim 1, wherein a ratio of the carbon black partially covered with the solvent-soluble fluoropolymer in the total solid content of the catalyst layer is 5 to 50 mass%. Electrode assembly. 前記溶媒可溶性含フッ素重合体は、主鎖に脂肪族環構造を有する含フッ素重合体である請求項1〜3のいずれかに記載の固体高分子型燃料電池用膜・電極接合体。   The membrane / electrode assembly for a polymer electrolyte fuel cell according to any one of claims 1 to 3, wherein the solvent-soluble fluoropolymer is a fluoropolymer having an aliphatic ring structure in the main chain. 前記溶媒可溶性含フッ素重合体が、下記式1〜4のいずれかで表される重合単位を含む請求項4に記載の固体高分子型燃料電池用電極用膜・電極接合体。
ただし、式1において、Rはフッ素原子又はトリフルオロメチル基であり、pは0〜5の整数であり、qは0〜4の整数であり、rは0又は1であり、p+q+rは1〜6であり、式2において、s、t、uはそれぞれ独立に0〜5の整数であり、s+t+uは1〜6であり、式3において、R、Rはそれぞれ独立にフッ素原子又はトリフルオロメチル基であり、式4においてvは1又は2である。
Figure 2006073467
The membrane / electrode assembly for a polymer electrolyte fuel cell electrode according to claim 4, wherein the solvent-soluble fluoropolymer contains a polymer unit represented by any one of the following formulas 1 to 4.
In Expression 1, R 1 is fluorine atom or trifluoromethyl group, p is an integer of 0 to 5, q is an integer of 0 to 4, r is 0 or 1, p + q + r is 1 In Formula 2, s, t and u are each independently an integer of 0 to 5, s + t + u is 1 to 6, and in Formula 3, R 2 and R 3 are each independently a fluorine atom or A trifluoromethyl group, and in formula 4, v is 1 or 2;
Figure 2006073467
前記溶媒可溶性含フッ素重合体が、下記式5〜13のいずれかで表される重合単位を含む請求項5に記載の固体高分子型燃料電池。
Figure 2006073467
Figure 2006073467
The polymer electrolyte fuel cell according to claim 5, wherein the solvent-soluble fluorine-containing polymer includes a polymer unit represented by any one of the following formulas 5 to 13.
Figure 2006073467
Figure 2006073467
請求項1〜6に記載の固体高分子型燃料電池用膜・電極接合体の製造方法であって、溶媒可溶性含フッ素重合体の溶液にカーボンブラックを含浸し、溶媒を除去することによって溶媒可溶性含フッ素重合体で一部を覆われたカーボンブラックを得、触媒及びスルホン酸基を有するイオン交換樹脂と混合し、触媒層を形成することを特徴とする固体高分子型燃料電池用膜・電極接合体の製造方法。
A method for producing a membrane / electrode assembly for a polymer electrolyte fuel cell according to claim 1, wherein the solvent-soluble fluoropolymer solution is impregnated with carbon black, and the solvent is removed by removing the solvent. Membrane / electrode for polymer electrolyte fuel cell, characterized in that carbon black partially covered with a fluoropolymer is obtained and mixed with a catalyst and an ion exchange resin having a sulfonic acid group to form a catalyst layer Manufacturing method of joined body.
JP2004258506A 2004-09-06 2004-09-06 Membrane/electrode junction for solid polymer fuel cell Withdrawn JP2006073467A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004258506A JP2006073467A (en) 2004-09-06 2004-09-06 Membrane/electrode junction for solid polymer fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004258506A JP2006073467A (en) 2004-09-06 2004-09-06 Membrane/electrode junction for solid polymer fuel cell

Publications (1)

Publication Number Publication Date
JP2006073467A true JP2006073467A (en) 2006-03-16

Family

ID=36153842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004258506A Withdrawn JP2006073467A (en) 2004-09-06 2004-09-06 Membrane/electrode junction for solid polymer fuel cell

Country Status (1)

Country Link
JP (1) JP2006073467A (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182671A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of electrode for ton-exchange membrane fuel cell
JPH09320611A (en) * 1996-05-30 1997-12-12 Asahi Glass Co Ltd Solid polymer type fuel cell and electrode therefor
JPH1125992A (en) * 1997-07-01 1999-01-29 Tanaka Kikinzoku Kogyo Kk Electrode for high polymer solid electrolyte fuel cell and manufacture of the same
WO2002073722A1 (en) * 2001-03-08 2002-09-19 Sony Corporation Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device
JP2004234947A (en) * 2003-01-29 2004-08-19 Asahi Glass Co Ltd Direct methanol type fuel cell and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH05182671A (en) * 1992-01-07 1993-07-23 Matsushita Electric Ind Co Ltd Manufacture of electrode for ton-exchange membrane fuel cell
JPH09320611A (en) * 1996-05-30 1997-12-12 Asahi Glass Co Ltd Solid polymer type fuel cell and electrode therefor
JPH1125992A (en) * 1997-07-01 1999-01-29 Tanaka Kikinzoku Kogyo Kk Electrode for high polymer solid electrolyte fuel cell and manufacture of the same
WO2002073722A1 (en) * 2001-03-08 2002-09-19 Sony Corporation Gas diffusive electrode body, method of manufacturing the electrode body, and electrochemical device
JP2004234947A (en) * 2003-01-29 2004-08-19 Asahi Glass Co Ltd Direct methanol type fuel cell and manufacturing method therefor

Similar Documents

Publication Publication Date Title
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP4887580B2 (en) Gas diffusion electrode and polymer electrolyte fuel cell having the same
KR20160120078A (en) Polymer electrolyte membrane for fuel cell and membrane-electrode assembly for fuel cell including the same
KR101275790B1 (en) Membrane-electrode assembly for fuel cell, methode of manufacturing membrane-electrode assembly for fuel cell, and fuel cell system
JP2004259661A (en) Membrane/electrode jointed body and its manufacturing method
JP5233075B2 (en) Catalyst layer-electrolyte membrane laminate and method for producing the same
JP2007194004A (en) Method of manufacturing gas diffusion layer for solid polymer fuel cell, and membrane-electrode assembly
JP2007123253A (en) Paste composition for catalyst layer formation, transfer sheet for manufacturing catalyst layer-electrolyte membrane laminate, and catalyst layer-electrolyte membrane laminate
JP2005108770A (en) Manufacturing method of electrolyte membrane electrode joint body
JP4576813B2 (en) Polymer electrolyte membrane and membrane electrode assembly
JP2005528763A (en) Manufacture of gas diffusion electrodes
JP4608781B2 (en) Method for producing polymer electrolyte fuel cell
JP2004273257A (en) Electrode catalyst layer for fuel cell
KR100745740B1 (en) Cathode electrode for fuel cell and fuel cell using the same
JP3588889B2 (en) Solid polymer electrolyte fuel cell
JPH06349498A (en) Gas diffusion electrode, connecting body, fuel cell, and manufacture thereof
JP2006073467A (en) Membrane/electrode junction for solid polymer fuel cell
JP2002252001A (en) Gas diffusion electrode and solid high polymer type fuel cell equipped with this
JP2004234947A (en) Direct methanol type fuel cell and manufacturing method therefor
JP2006286478A (en) Membrane electrode assembly
JP4779278B2 (en) Membrane / electrode assembly for polymer electrolyte fuel cells
JP2001351637A (en) Solid polymer fuel cell and its manufacturing method
JP2005019298A (en) Film/electrode junction for solid polymer type fuel cell
JP4529276B2 (en) Method for producing polymer electrolyte fuel cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100323

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20100405