JP2004234947A - Direct methanol type fuel cell and manufacturing method therefor - Google Patents

Direct methanol type fuel cell and manufacturing method therefor Download PDF

Info

Publication number
JP2004234947A
JP2004234947A JP2003020194A JP2003020194A JP2004234947A JP 2004234947 A JP2004234947 A JP 2004234947A JP 2003020194 A JP2003020194 A JP 2003020194A JP 2003020194 A JP2003020194 A JP 2003020194A JP 2004234947 A JP2004234947 A JP 2004234947A
Authority
JP
Japan
Prior art keywords
catalyst layer
ion exchange
fuel cell
solvent
direct methanol
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003020194A
Other languages
Japanese (ja)
Inventor
Yasuhiro Kunisa
康弘 国狭
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
AGC Inc
Original Assignee
Asahi Glass Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Glass Co Ltd filed Critical Asahi Glass Co Ltd
Priority to JP2003020194A priority Critical patent/JP2004234947A/en
Publication of JP2004234947A publication Critical patent/JP2004234947A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

<P>PROBLEM TO BE SOLVED: To provide a direct methanol type fuel cell which is superior in water repellency at a catalyst layer and in durability. <P>SOLUTION: The direct methanol type fuel cell comprises a film/electrode junction, in which an anode, an ion exchange film, and a cathode are laminated and jointed, and methanol is supplied as fuel. At least one of the anode and cathode comprises a gas diffusion electrode, which is provided with a gas diffusion layer and a catalyst layer that is disposed between the gas diffusion layer and an ion exchange film and comprises a catalyst and an ion exchange resin of a fluorine-containing polymer containing sulfonic acid group. The catalyst layer contains a solvent soluble fluorine-containing polymer that substantially contains does not have ion exchange groups. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、直接メタノール型燃料電池及びその製造方法に関する。
【0002】
【従来の技術】
直接メタノール型燃料電池(以下、DMFCという。)は、車両用動力源、携帯電話用電源やモバイル機器用電源として注目され実用化がおおいに期待されている。
【0003】
DMFCは、通常、固体高分子型燃料電池と同様にイオン交換膜が触媒層と接合され、この部分が電池の反応部となっている。そして、触媒層の外側には触媒層に充分に燃料を供給されるようにガス拡散層が接合又は押し当てる形で配置されている(例えば、非特許文献1参照)。
【0004】
DMFCでは両電極で下記の式の反応が起こる。
アノード:CHOH+HO→CO+6H+6e ・・式14、
カソード:6H+6e+3/2O→3HO ・・式15。
【0005】
このようにカソードにおいては生成水が生じる。そのため、電極の撥水性を失いやすく、濡れやすい。特に触媒層が親水化し濡れてしまった場合、細孔が水により閉塞され空気や酸素ガスの供給が遮断され燃料不足の状態となり濃度過電圧が増え、セル電圧が大きく低下する。したがって、カソードの撥水性を持続させることがDMFCを長時間安定して運転するために必要であった。
【0006】
【非特許文献1】
トヨタ中央研究所R&Dレビュー、37−1(2001)、59(59頁14〜20行)
【0007】
【発明が解決しようとする課題】
そこで本発明者は、DMFCの性能を確保しつつガス拡散電極の撥水性の低下を防ぐことによって、DMFCを安定に運転する方法について鋭意検討し、本発明に至った。
【0008】
本発明は、長期的に作動させてもガス拡散電極の撥水性が維持されていて良好なガス拡散性を長期間安定して保持でき、性能が安定したDMFCを提供することを目的とする。
【0009】
【課題を解決するための手段】
本発明は、アノード、イオン交換膜、カソードの順に積層されている膜・電極接合体を備え、燃料としてメタノールが供給される直接メタノール型燃料電池において、前記アノード及び前記カソードの少なくとも一方は、ガス拡散層と、前記ガス拡散層と前記イオン交換膜との間に配置されスルホン酸基を有する含フッ素重合体からなるイオン交換樹脂と触媒とを含む触媒層と、を含むガス拡散電極からなり、前記触媒層は実質上イオン交換基を有さない溶媒可溶性含フッ素重合体を含むことを特徴とする直接メタノール型燃料電池を提供する。
【0010】
また、本発明は、上述の直接メタノール型燃料電池の製造方法であって、触媒とスルホン酸基を有する含フッ素重合体からなるイオン交換樹脂とを含む液を基材シート上に塗工し、乾燥させ溶媒を除去して層を形成し、該層を溶媒可溶性含フッ素重合体の溶液に含浸させた後、110〜200℃で焼成してこれをカソードの触媒層とし、前記触媒層と別途作製したアノードの触媒層とを、間にイオン交換膜を挟んで対向させホットプレスすることを特徴とする直接メタノール型燃料電池の製造方法を提供する。
【0011】
【発明の実施の形態】
本発明のDMFCの膜・電極接合体は、例えば本発明の1実施態様を示す断面図によりその構成が説明できる。すなわち、本発明における膜電極接合体8は、イオン交換膜4の片面にカソード6が、もう一方の面にアノード7が配置されている。カソード6には空気等の酸素を含むガスが供給され、アノード7にはメタノール又はメタノールを水等で希釈した液が供給され、アノード7では上述の式14の反応が、カソード6では上述の式15の反応が起こり、カソード6で水が生成される。
【0012】
カソード6及びアノード7は、触媒層3、3’とガス拡散層5、5’とから構成される。ガス拡散層5、5’は集電体の機能と、通常ガス拡散層の外側に配置されるセパレータから供給される燃料を触媒層3、3’に効率よく供給するためのガス拡散の機能を有するものである。具体的には、カーボンクロス、カーボンペーパー、カーボンフェルト等が使用でき、また、これらをガス拡散層基材1、1’として、その上に例えばカーボンブラックとフッ素樹脂(例えばポリテトラフルオロエチレン(以下、PTFEという)等)の混合粉末の層からなるカーボン層2、2’が形成されたものも使用できる。カーボン層2、2’を有するとガス拡散層5、5’の撥水性が高まり、またガス拡散層5、5’の表面が平坦化されるため集電機能が高まり、ガス拡散層基材1、1’が直接触媒層3、3’に接触することによって触媒層3、3’表面を傷つけたり粗面化することも避けられる。
【0013】
ここでカーボン層2、2’は、その成分がガス拡散層基材1、1’の空孔部にある程度侵入していると、アンカー効果によりカーボン層がガス拡散層基材1、1’上に固定されるため、密着性を高められ好ましい。
【0014】
本発明における触媒層3、3’に含まれる触媒としては、アノード7には白金ルテニウム合金(Pt−Ru)がカーボンに担持された担持触媒が好ましく、カソード6には白金がカーボンに担持された担持触媒が好ましいが、特には限定されない。これらの触媒は、触媒中の貴金属がアノード7では0.1〜4mg/cmとなるように含まれることが好ましく、カソード6では0.1〜3mg/cmとなるように含まれることが好ましい。
【0015】
本発明における触媒層3、3’には、スルホン酸基を有する含フッ素重合体が含まれ、特にスルホン酸基を有するパーフルオロカーボン重合体(ただしエーテル結合性の酸素原子等は含んでいてよい)が耐久性等の点から好ましい。具体的には、ナフィオン(商品名、デュポン社製)、フレミオン(商品名、旭硝子社製)等が好ましく使用できるが特には限定されない。
【0016】
本発明におけるイオン交換膜4としては、触媒層に含まれるスルホン酸基を有する含フッ素重合体と同様のイオン交換樹脂からなる膜が使用できるが、特に限定されない。スルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜(例えばナフィオン(商品名、デュポン社製)、フレミオン(商品名、旭硝子社製)等)、部分フッ素化された炭化水素系のスルホン酸型イオン交換膜(例えば、ETFEのグラフト重合膜でスルホン酸基を有するもの)、炭化水素系のスルホン酸型イオン交換膜(例えばポリエーテルエーテルケトンからなりスルホン酸基を有する膜)等が使用できる。さらに、メタノールの透過の抑制を目的とし、シリカとイオン交換樹脂を混合したような無機有機ハイブリッド膜も使用できる。
【0017】
本発明における溶媒可溶性含フッ素重合体(以下、本撥水剤という)は、電池反応に関与したり生成される水やアルコール等の溶媒に対して不溶であることが好ましい。これらの溶媒に可溶であると電池の作動中に溶解し、触媒層の構成が電池の作動とともに変化し、撥水性が低下する。本撥水剤は、特殊な溶媒に対してのみ溶解できることが好ましく、DMFCの使用温度である常温から150℃までの範囲で固体であることが好ましい。また、本撥水剤は実質的にイオン交換基を有しないものである。
【0018】
本撥水剤としては、水素原子が部分的にフッ素化された重合体と全部フッ素化された重合体のいずれもが使用できるが、撥水性については以下の傾向がある。すなわち、撥水剤の撥水性の強さを比較するための尺度として、表面張力が挙げられるが、官能基における臨界表面張力を比較すると、−CF(6)<−CFH(15)<−CF−(18.5)<−CH(24)<−CH−(31)である(括弧内の数値は、臨界表面張力(dyn/cm)を示す)。この数値から、よりフッ素置換されている官能基のほうが臨界表面張力が低い、すなわち撥水性が高いと考えられる。したがって、水素原子が部分的にフッ素置換された含フッ素重合体よりも、全部フッ素置換された含フッ素重合体の方が撥水性が高く本撥水剤として好ましい。
【0019】
本撥水剤としては、以下の式1〜4のいずれかで表される重合単位を含む重合体が好ましく挙げられる。なかでも、特に式5〜13のいずれかで表される重合単位を含む重合体、特に式5〜13のいずれかで表される重合単位からなる重合体が好ましい。ただし、式1において、Rはフッ素原子又はトリフルオロメチル基であり、pは0〜5の整数、qは0〜4の整数、rは0又は1、p+q+rは1〜6であり、式2において、s、t、uはそれぞれ独立に0〜5の整数、s+t+uは1〜6であり、式3において、R、Rはそれぞれ独立にフッ素原子又はトリフルオロメチル基であり、式4においてnは1又は2である。
【0020】
【化3】

Figure 2004234947
【0021】
【化4】
Figure 2004234947
【0022】
これらの重合体は、撥水性の点で好ましく、かつ分子内に脂肪族環構造を有するため分子のねじれにより結晶化しにくく、特殊なフッ素系溶媒に可溶である。当該フッ素系溶媒としては、フルオロアルカン類、フルオロトリアルキルアミン類及びフルオロアルキルテトラヒドロフラン類からなる群から選ばれる1種以上が挙げられる。これらの重合体はモノマーに分解しにくいためラジカル伝搬しにくく、耐酸性、耐アルカリ性に優れている。
【0023】
本撥水剤を構成する重合体の分子量は1万〜20万程度が好ましい。分子量が大きいものほど同じ濃度では粘度が高くなる傾向があるが、本発明の製造方法では分子量5万〜10万のものを溶媒に溶解して0.01〜1%の濃度(質量比)で用い、この溶液に触媒層を含浸させることが好ましい。
【0024】
この濃度であれば触媒層への溶液浸透性を確保でき、触媒層細孔表面への本撥水剤の付着力も充分であり、触媒層の撥水性を保持できるので好ましい。この場合、溶液濃度が0.01%未満であると1回の含浸工程で付着する本撥水剤の量が少なく、含浸工程を何度も繰り返す必要が生じ、生産効率が悪い。また、1%超の場合、溶液の粘度が高くなるため溶液が触媒層の細孔に侵入しにくく、本撥水剤の分布が不均一になりやすい。また触媒層の細孔が閉塞されやすいため、ガスの拡散性が低下するおそれがある。
【0025】
本撥水剤は、触媒層中に、触媒層全質量の0.01〜30%含まれることが好ましく、特に1〜20%含まれることが好ましい。本撥水剤の量が少なすぎると、触媒層の撥水性を高める効果が不充分となる。また多すぎると、触媒層の抵抗上昇や触媒層細孔の閉塞を招くおそれがある。
【0026】
本発明において本撥水剤は、アノード、カソードの触媒層の少なくとも一方に含まれるが、燃料電池の反応により水が生成されるカソードに使用することが特に好ましい。この場合アノード触媒層は本撥水剤を含んでも含まなくてもよい。
【0027】
次に本発明の膜・電極接合体の製造方法について具体的に説明する。本発明において本撥水剤を含有する電極の触媒層は、以下のように作製することが好ましい。まず、触媒層を構成するイオン交換樹脂と触媒とを分散媒に分散させて触媒層形成用の塗工液を作製する。この塗工液を別途用意した基材シート上に塗工し、室温から80℃程度までの範囲の温度で乾燥させた後、形成された層を基材シートごと、溶媒で希釈した溶媒可溶性含フッ素重合体の溶液に含浸させる。このとき含浸させる時間は通常数十秒程度である。含浸後、取り出し、これを110〜200℃、より好ましくは120〜180℃程度で焼成する。
【0028】
これらの工程を経ることにより、本撥水剤を含む触媒層が基材シート上に形成される。ここで焼成雰囲気としては、窒素、アルゴン等の不活性ガス中又は真空中が好ましい。この110〜200℃の焼成を行わないと、溶媒可溶性含フッ素重合体の被膜が触媒層に充分に付着できず、燃料電池の運転中に被膜が容易に剥離し、撥水性を保持できなくなるおそれがある。一方、焼成温度が高すぎると触媒層に含まれるイオン交換樹脂が劣化するおそれがあるので、上記温度範囲で加熱することが好ましい。
【0029】
また、触媒層を形成するための基材シートとしては、ポリプロピレン、PTFE、エチレンテトラフルオロエチレン(以下、ETFEという)、ポリエチレンテレフタレートなどのプラスティックフィルムが好ましいが特に限定されない。ただし、基材シート状に形成された触媒層は、後の工程でイオン交換膜と重ねてホットプレスして層をイオン交換膜に転写するので、膜に転写させるときの耐熱性や上記塗工液の塗工性を考慮する必要があり、これらの点でポリプロピレンやPTFEのシートが特に好ましい。
【0030】
本発明ではアノード、カソードともに上記の方法で触媒層を作製できるが、アノードとカソードの一方のみを上記方法で作製し、もう一方は別の方法で作製してもよい。また、一方の触媒層のみ本撥水剤の溶液を含浸させる工程のみを行わず、他は同様の工程で作製することもできる。
【0031】
カソード、アノードともに別途用意した基材シート上に触媒層を形成した場合は、触媒層を内側に向けてカソード触媒層とアノード触媒層を対向させ、間にイオン交換膜を挟んでホットプレスすることにより触媒層をイオン交換膜に転写させ、次いで両面の基材シートを剥離することにより、膜と触媒層の接合体が作製される。この両外側から好ましくはカーボン層が形成された2枚のガス拡散層で挟み込むことにより膜・電極接合体が作製される。ここでガス拡散層で挟んだ後にプレスすることもできる。
【0032】
従来は、撥水剤としては主にPTFE粒子が使用されてきた。PTFE粒子をガス拡散電極に含有させる方法では、PTFE粒子は溶媒に溶解できないため分散剤を加えて分散媒中に分散させたものでなければ使用できないから、PTFEの分散液を用いて電極に含有させていた。この場合、電池反応への影響から分散剤を除去する必要があり、そのためには300℃以上の温度での加熱が必要である。この温度は、スルホン酸基を有する含フッ素重合体からなるイオン交換樹脂の耐熱温度よりはるかに高い。そのため、このようなイオン交換樹脂を含む触媒層に、電池反応への影響を与えないようにして撥水性を付与することは困難であった。
【0033】
一方本発明では、溶媒可溶性含フッ素重合体の溶液を使用するため、PTFE等の溶媒不溶性含フッ素樹脂を用いる場合に比べて触媒層の細部まで本撥水剤が浸透し、触媒層細孔表面を本撥水剤で均一に被覆でき、効率的に少量で触媒層に撥水性を付与できる。また、溶媒可溶性含フッ素重合体の溶液は造膜性を有するため、焼成することにより得られる撥水性の撥水剤被膜は耐久性を確保しやすい。
【0034】
上記では本撥水剤以外の構成材料で先に層を形成した後、本撥水剤を含浸させることによる製造方法を説明したが、層を形成するための触媒層形成用塗工液に本撥水剤又は本撥水剤の溶液を混合し、本撥水剤を含有させた塗工液により触媒層を形成することもできる。
【0035】
【実施例】
以下、本発明を実施例(例1)及び比較例(例2、例3)により説明するが、本発明はこれらに限定されない。
【0036】
[例1(実施例)]
以下の手順でDMFC用膜・電極接合体を作製した。
ガス拡散層としては、アノード、カソードともに市販のガス拡散層(商品名:CARBEL−CFP400、ジャパンゴアテックス社製)を用いた。このガス拡散層は厚さ400μmで、PTFEで表面処理されたカーボンペーパーの表面に、カーボンブラックと撥水性フッ素樹脂とからなる多孔性のカーボン層が形成されている。
【0037】
イオン交換容量1.1ミリ当量/g乾燥樹脂のスルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換樹脂(テトラフルオロエチレンに基づく重合単位とCF=CFOCF(CF)O(CFSOHに基づく重合単位とからなる共重合体)と、白金担持カーボン(白金を全質量の50%担持)とを71.4:28.6の質量比で含み、エタノールと1H,1H−ペンタフルオロプロパノールとの混合溶媒(質量比で1:1)に分散させた液をカソード側の触媒層形成用塗工液とした。この塗工液を白金付着量が1.0mg/cmとなるように、別途用意したPTFEシート上に塗布し乾燥させて層を形成した。
【0038】
次にこれを、分子量約5〜6万の溶媒可溶性含フッ素重合体である、CF=CFO(CFCF=CFに基づく重合単位からなる環化重合体(式11で表わされる重合単位からなる重合体)を、パーフルオロ(2−ブチルテトラヒドロフラン)に質量比で0.1%の濃度で溶解した溶液に数回浸漬させた。次いで窒素中120℃、30分焼成し、CF=CFO(CFCF=CFに基づく重合単位からなる重合体を層全体の10%含むカソード側の触媒層を作製した。
【0039】
またアノードの触媒層用の触媒層形成塗工液は、カソードに用いたものと同じイオン交換樹脂と、Pt−Ru合金担持カーボン(Pt−Ruを全質量の54%担持したもの、Pt:Ru=4:6(モル比))とを64.4:35.6の質量比で含み、エタノールと1H,1H−ペンタフルオロプロパノールとの混合溶媒(質量比で1:1)に分散させた液を用いた。この液をPt−Ru付着量が2.0mg/cmとなるようにカソード側と同様にして、別途用意したPTFEシート上に塗布し乾燥させて触媒層を作製した。
【0040】
カソード側の触媒層及びアノード側の触媒層を向かい合わせ、間にスルホン酸基を有するパーフルオロカーボン重合体からなるイオン交換膜(商品名:ナフィオン117、デュポン社製、膜厚175μm、イオン交換容量0.91ミリ当量/g乾燥樹脂)を挟んで150℃、3MPaでホットプレスし、触媒層を膜に転写し触媒層と膜の接合体を得た。その後、触媒層からPTFEシートのみを剥離した。この時、有効電極面積は25cmとした。その後、上記接合体の両外側に、カーボンとフッ素樹脂とからなる撥水性カーボン層2がカーボンペーパー上に形成されてなる上述のガス拡散層をカーボン層側を内側にして配置し、150℃でホットプレス接合させ、DMFC用膜・電極接合体を作製した。
【0041】
上記膜・電極接合体をDMFC用セルに組み込み、アノード側に燃料として5%(質量比)のメタノール水溶液を15cc/分、0.3MPaで供給し、カソード側には1L/分、0.3MPaでセル温度と同じ温度で加湿した空気を供給し、セル温度90℃にて運転した。0.1A/cmの定電流駆動で連続発電を行い、端子間電圧の経時変化を測定した。結果を図2に示す。
【0042】
[例2(比較例)]
カソード用の触媒層に、溶媒可溶性含フッ素重合体(CF=CFO(CFCF=CFに基づく重合単位からなる重合体)を添加しなかった以外は、例1と同様にして膜・電極接合体を得た。これをDMFC用セルに組み込み、例1と同様に連続発電を行った。結果を図2に示す。
【0043】
[例3(比較例)]
カソード用の触媒層に、例1の溶媒可溶性含フッ素重合体のかわりにPTFEを添加した以外は、例1と同様にして膜・電極接合体を得た。これをDMFC用セルに組み込み、例1と同様に連続発電を行った。結果を図2に示す。
【0044】
例2は200時間経過後よりセル電圧が急激に低下しはじめ、500時間後には0.36Vから0.22Vにまで低下した。また例3は初期特性も例1よりも低く、かつ試験開始直後からもセル電圧は低下し続け、初期時の0.30Vから500時間後には0.09Vまで低下した。これに対して、例1は撥水剤が添加してあるため初期時のセル電圧こそ例2より低いものの連続運転特性は比較的安定であり、1000時間後においても初期値の0.33Vに対し0.28Vまでしか低下しなかった。
【0045】
【発明の効果】
本発明によれば、触媒層の細部まで効率的に溶媒可溶性含フッ素重合体からなる撥水剤の被膜を形成できるので、少量の撥水剤で触媒層全体に長期間保持できる撥水性を付与でき、耐久性に優れた膜・電極接合体を有するDMFCを提供できる。また、溶媒可溶性含フッ素重合体は溶媒に溶解して液状で扱えるため、電極設計の自由度が高い。
【図面の簡単な説明】
【図1】本発明におけるDMFC用膜・電極接合体の1実施態様を示す断面図。
【図2】例1、例2及び例3のDMFC端子間電圧の経時劣化を示す図。
【符号の説明】
1、1’:ガス拡散層基材
2、2’:カーボン層
3、3’:触媒層
4:イオン交換膜
5、5’:ガス拡散層
6:カソード
7:アノード
8:膜・電極接合体[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a direct methanol fuel cell and a manufacturing method thereof.
[0002]
[Prior art]
Direct methanol fuel cells (hereinafter referred to as DMFC) are attracting attention as a power source for vehicles, a power source for mobile phones and a power source for mobile devices, and are expected to be put to practical use.
[0003]
In DMFC, an ion exchange membrane is usually joined to a catalyst layer in the same manner as in a polymer electrolyte fuel cell, and this portion serves as a reaction portion of the cell. Then, a gas diffusion layer is arranged on the outside of the catalyst layer so as to be sufficiently bonded to or pressed against the catalyst layer (see, for example, Non-Patent Document 1).
[0004]
In DMFC, the reaction of the following formula occurs at both electrodes.
Anode: CH 3 OH + H 2 O → CO 2 + 6H + + 6e Formula 14
Cathode: 6H + + 6e + 3 / 2O 2 → 3H 2 O.
[0005]
Thus, product water is generated at the cathode. Therefore, it is easy to lose the water repellency of the electrode and to easily get wet. In particular, when the catalyst layer becomes hydrophilic and gets wet, the pores are blocked by water, the supply of air and oxygen gas is cut off, the fuel becomes insufficient, the concentration overvoltage increases, and the cell voltage decreases greatly. Therefore, it is necessary to maintain the water repellency of the cathode in order to operate the DMFC stably for a long time.
[0006]
[Non-Patent Document 1]
Toyota Central R & D Review, 37-1 (2001), 59 (p. 59, lines 14-20)
[0007]
[Problems to be solved by the invention]
Therefore, the present inventor diligently studied a method for stably operating the DMFC by ensuring the performance of the DMFC while preventing the water repellency of the gas diffusion electrode from being lowered, and reached the present invention.
[0008]
An object of the present invention is to provide a DMFC that maintains stable water repellency of a gas diffusion electrode even when operated for a long period of time, can stably maintain good gas diffusibility for a long period of time, and has stable performance.
[0009]
[Means for Solving the Problems]
The present invention includes a membrane / electrode assembly in which an anode, an ion exchange membrane, and a cathode are laminated in this order, and in a direct methanol fuel cell to which methanol is supplied as a fuel, at least one of the anode and the cathode is a gas A gas diffusion electrode comprising a diffusion layer, and a catalyst layer including a catalyst and an ion exchange resin comprising a fluorine-containing polymer having a sulfonic acid group and disposed between the gas diffusion layer and the ion exchange membrane, The catalyst layer includes a solvent-soluble fluoropolymer having substantially no ion exchange group, and provides a direct methanol fuel cell.
[0010]
Further, the present invention is a method for producing the above direct methanol fuel cell, wherein a liquid containing a catalyst and an ion exchange resin composed of a fluorinated polymer having a sulfonic acid group is applied on a base sheet, The solvent is removed by drying to form a layer, and the layer is impregnated with a solvent-soluble fluoropolymer solution, and then fired at 110 to 200 ° C. to form a cathode catalyst layer, separately from the catalyst layer. Provided is a method for manufacturing a direct methanol fuel cell, characterized in that hot stamping is performed by facing the prepared anode catalyst layer with an ion exchange membrane interposed therebetween.
[0011]
DETAILED DESCRIPTION OF THE INVENTION
The structure of the DMFC membrane-electrode assembly of the present invention can be explained by, for example, a cross-sectional view showing one embodiment of the present invention. That is, in the membrane electrode assembly 8 according to the present invention, the cathode 6 is arranged on one side of the ion exchange membrane 4 and the anode 7 is arranged on the other side. A gas containing oxygen such as air is supplied to the cathode 6, and methanol or a solution obtained by diluting methanol with water or the like is supplied to the anode 7. The reaction of the above equation 14 is performed at the anode 7, and the above equation at the cathode 6. Fifteen reactions occur and water is generated at the cathode 6.
[0012]
The cathode 6 and the anode 7 are composed of catalyst layers 3, 3 ′ and gas diffusion layers 5, 5 ′. The gas diffusion layers 5 and 5 ′ have the function of a current collector and the function of gas diffusion for efficiently supplying fuel supplied from a separator that is usually disposed outside the gas diffusion layer to the catalyst layers 3 and 3 ′. It is what you have. Specifically, carbon cloth, carbon paper, carbon felt or the like can be used, and these are used as gas diffusion layer base materials 1 and 1 ′, on which, for example, carbon black and fluorine resin (for example, polytetrafluoroethylene (hereinafter referred to as polytetrafluoroethylene (hereinafter referred to as polytetrafluoroethylene)). , PTFE, etc.)) and the like, on which carbon layers 2 and 2 'formed of a mixed powder layer can be used. When the carbon layers 2 and 2 ′ are provided, the water repellency of the gas diffusion layers 5 and 5 ′ increases, and the surface of the gas diffusion layers 5 and 5 ′ is flattened, so that the current collecting function is increased. It is also possible to avoid scratching or roughening the surface of the catalyst layers 3, 3 ′ by directly contacting 1 ′ with the catalyst layers 3, 3 ′.
[0013]
Here, when the carbon layer 2 or 2 ′ has some degree of penetration into the pores of the gas diffusion layer base material 1 or 1 ′, the carbon layer is formed on the gas diffusion layer base material 1 or 1 ′ due to an anchor effect. Therefore, it is preferable to improve the adhesion.
[0014]
As the catalyst contained in the catalyst layers 3 and 3 ′ in the present invention, a supported catalyst in which a platinum ruthenium alloy (Pt—Ru) is supported on carbon is preferable for the anode 7, and platinum is supported on carbon on the cathode 6. A supported catalyst is preferred, but not particularly limited. These catalysts are the noble metal in the catalyst is included to preferably contained so as to be 0.1~4mg / cm 2 at the anode 7, a 0.1 to 3 mg / cm 2 in the cathode 6 preferable.
[0015]
The catalyst layers 3, 3 ′ in the present invention include a fluorinated polymer having a sulfonic acid group, and in particular, a perfluorocarbon polymer having a sulfonic acid group (however, an ether-bonded oxygen atom or the like may be included). Is preferable from the viewpoint of durability and the like. Specifically, Nafion (trade name, manufactured by DuPont), Flemion (trade name, manufactured by Asahi Glass) and the like can be preferably used, but are not particularly limited.
[0016]
As the ion exchange membrane 4 in the present invention, a membrane made of an ion exchange resin similar to the fluorinated polymer having a sulfonic acid group contained in the catalyst layer can be used, but is not particularly limited. Ion exchange membranes composed of perfluorocarbon polymers having sulfonic acid groups (for example, Nafion (trade name, manufactured by DuPont), Flemion (trade name, manufactured by Asahi Glass), etc.), partially fluorinated hydrocarbon sulfonic acid type An ion exchange membrane (for example, a graft polymerized membrane of ETFE having a sulfonic acid group), a hydrocarbon-based sulfonic acid type ion exchange membrane (for example, a membrane made of polyether ether ketone and having a sulfonic acid group) and the like can be used. Furthermore, for the purpose of suppressing methanol permeation, an inorganic-organic hybrid membrane in which silica and an ion exchange resin are mixed can also be used.
[0017]
The solvent-soluble fluorine-containing polymer (hereinafter referred to as the present water repellent) in the present invention is preferably insoluble in a solvent such as water or alcohol involved in the battery reaction or produced. If it is soluble in these solvents, it dissolves during the operation of the battery, the structure of the catalyst layer changes with the operation of the battery, and the water repellency decreases. The water repellent is preferably soluble only in a special solvent, and is preferably a solid in a range from room temperature to 150 ° C., which is the use temperature of DMFC. The water repellent is substantially free of ion exchange groups.
[0018]
As the water repellent, either a polymer in which hydrogen atoms are partially fluorinated or a polymer in which all hydrogen atoms are fluorinated can be used, but the water repellency has the following tendencies. That is, as a measure for comparing the water repellency of the water repellent, the surface tension can be mentioned. When the critical surface tension in the functional group is compared, -CF 3 (6) <-CF 2 H (15) <—CF 2 — (18.5) <— CH 3 (24) <— CH 2 — (31) (numbers in parentheses indicate critical surface tension (dyn / cm)). From this value, it is considered that the functional group substituted with fluorine has a lower critical surface tension, that is, higher water repellency. Therefore, a fluorine-containing polymer in which all of the hydrogen atoms are fluorine-substituted is more preferable as the water-repellent than the fluorine-containing polymer in which hydrogen atoms are partially fluorine-substituted.
[0019]
As this water repellent, the polymer containing the polymerization unit represented by either of the following formulas 1-4 is mentioned preferably. Among these, a polymer containing a polymer unit represented by any one of formulas 5 to 13, particularly a polymer comprising a polymer unit represented by any one of formulas 5 to 13 is preferable. In Expression 1, R 1 is fluorine atom or trifluoromethyl group, p is an integer of 0 to 5, q is an integer of 0 to 4, r is 0 or 1, p + q + r is 1-6, formula 2, s, t and u are each independently an integer of 0 to 5, s + t + u is 1 to 6, and in Formula 3, R 2 and R 3 are each independently a fluorine atom or a trifluoromethyl group, In n, n is 1 or 2.
[0020]
[Chemical Formula 3]
Figure 2004234947
[0021]
[Formula 4]
Figure 2004234947
[0022]
These polymers are preferable in terms of water repellency, and since they have an aliphatic ring structure in the molecule, they are difficult to crystallize due to molecular twisting and are soluble in special fluorine-based solvents. Examples of the fluorine-based solvent include one or more selected from the group consisting of fluoroalkanes, fluorotrialkylamines, and fluoroalkyltetrahydrofurans. Since these polymers are not easily decomposed into monomers, radical propagation is difficult, and acid resistance and alkali resistance are excellent.
[0023]
The molecular weight of the polymer constituting the water repellent is preferably about 10,000 to 200,000. As the molecular weight increases, the viscosity tends to increase at the same concentration. However, in the production method of the present invention, the one having a molecular weight of 50,000 to 100,000 is dissolved in a solvent at a concentration (mass ratio) of 0.01 to 1%. Preferably, this solution is impregnated with a catalyst layer.
[0024]
This concentration is preferable because the solution permeability to the catalyst layer can be secured, the adhesion of the water repellent to the pores of the catalyst layer is sufficient, and the water repellency of the catalyst layer can be maintained. In this case, if the solution concentration is less than 0.01%, the amount of the present water repellent that adheres in one impregnation step is small, and the impregnation step needs to be repeated many times, resulting in poor production efficiency. On the other hand, if it exceeds 1%, the viscosity of the solution becomes high, so that the solution hardly enters the pores of the catalyst layer, and the distribution of the present water repellent tends to be uneven. Moreover, since the pores of the catalyst layer are easily clogged, the gas diffusibility may be reduced.
[0025]
The present water repellent is preferably contained in the catalyst layer in an amount of 0.01 to 30%, particularly preferably 1 to 20% of the total mass of the catalyst layer. If the amount of the water repellent is too small, the effect of increasing the water repellency of the catalyst layer will be insufficient. Moreover, when too large, there exists a possibility of causing the raise of the resistance of a catalyst layer, and the obstruction | occlusion of a catalyst layer pore.
[0026]
In the present invention, the water repellent is contained in at least one of the catalyst layer of the anode and the cathode, but is particularly preferably used for a cathode in which water is generated by the reaction of the fuel cell. In this case, the anode catalyst layer may or may not contain the present water repellent.
[0027]
Next, the method for producing the membrane / electrode assembly of the present invention will be specifically described. In the present invention, the catalyst layer of the electrode containing the water repellent is preferably produced as follows. First, an ion exchange resin and a catalyst constituting the catalyst layer are dispersed in a dispersion medium to prepare a coating liquid for forming the catalyst layer. This coating solution is applied onto a separately prepared substrate sheet and dried at a temperature ranging from room temperature to about 80 ° C., and then the formed layer is dissolved in a solvent-soluble solution diluted with a solvent together with the substrate sheet. Impregnation into a fluoropolymer solution. At this time, the impregnation time is usually about several tens of seconds. After impregnation, it is taken out and fired at 110 to 200 ° C, more preferably at about 120 to 180 ° C.
[0028]
By passing through these steps, a catalyst layer containing the present water repellent is formed on the substrate sheet. Here, the firing atmosphere is preferably in an inert gas such as nitrogen or argon or in a vacuum. If the firing at 110 to 200 ° C. is not performed, the solvent-soluble fluoropolymer film may not be sufficiently adhered to the catalyst layer, and the film may be easily peeled off during the operation of the fuel cell, so that the water repellency cannot be maintained. There is. On the other hand, if the calcination temperature is too high, the ion exchange resin contained in the catalyst layer may be deteriorated. Therefore, heating in the above temperature range is preferable.
[0029]
The base material sheet for forming the catalyst layer is preferably a plastic film such as polypropylene, PTFE, ethylene tetrafluoroethylene (hereinafter referred to as ETFE) or polyethylene terephthalate, but is not particularly limited. However, the catalyst layer formed in the form of a base sheet is hot-pressed with an ion exchange membrane in a later step to transfer the layer to the ion exchange membrane. It is necessary to consider the coating properties of the liquid, and polypropylene and PTFE sheets are particularly preferable in these respects.
[0030]
In the present invention, the catalyst layer can be produced by the above method for both the anode and the cathode, but only one of the anode and the cathode may be produced by the above method, and the other may be produced by another method. Further, only the step of impregnating the water repellent solution with only one catalyst layer is not performed, and the other layers can be produced by the same steps.
[0031]
When a catalyst layer is formed on a base sheet prepared separately for both the cathode and anode, the cathode catalyst layer and the anode catalyst layer face each other with the catalyst layer facing inward, and hot pressing is performed with an ion exchange membrane in between. Then, the catalyst layer is transferred to the ion exchange membrane, and then the double-sided base material sheet is peeled off to produce a joined body of the membrane and the catalyst layer. A membrane / electrode assembly is produced by sandwiching between two gas diffusion layers preferably formed with carbon layers from both outer sides. Here, it can also be pressed after being sandwiched between the gas diffusion layers.
[0032]
Conventionally, PTFE particles have been mainly used as the water repellent. In the method of containing PTFE particles in the gas diffusion electrode, PTFE particles cannot be used unless they are dispersed in a dispersion medium by adding a dispersant because they cannot be dissolved in a solvent. Therefore, PTFE particles are contained in the electrode using a PTFE dispersion. I was letting. In this case, it is necessary to remove the dispersant from the influence on the battery reaction, and for this purpose, heating at a temperature of 300 ° C. or higher is necessary. This temperature is much higher than the heat-resistant temperature of the ion exchange resin made of a fluoropolymer having a sulfonic acid group. Therefore, it has been difficult to impart water repellency to the catalyst layer containing such an ion exchange resin without affecting the battery reaction.
[0033]
On the other hand, in the present invention, since the solvent-soluble fluoropolymer solution is used, the water-repellent agent penetrates to the details of the catalyst layer compared to the case of using a solvent-insoluble fluorine-containing resin such as PTFE. Can be uniformly coated with the present water repellent, and the catalyst layer can be efficiently imparted with water repellency in a small amount. In addition, since the solvent-soluble fluoropolymer solution has a film-forming property, the water-repellent water-repellent coating obtained by firing can easily ensure durability.
[0034]
In the above description, the production method by first impregnating the water repellent after forming the layer with a constituent material other than the water repellent has been described. The catalyst layer can also be formed by mixing a water repellent or a solution of the present water repellent, and a coating solution containing the present water repellent.
[0035]
【Example】
EXAMPLES Hereinafter, although an Example (Example 1) and a comparative example (Example 2, Example 3) demonstrate this invention, this invention is not limited to these.
[0036]
[Example 1 (Example)]
A membrane / electrode assembly for DMFC was prepared by the following procedure.
As the gas diffusion layer, a commercially available gas diffusion layer (trade name: CARBEL-CFP400, manufactured by Japan Gore-Tex) was used for both the anode and the cathode. This gas diffusion layer has a thickness of 400 μm, and a porous carbon layer made of carbon black and a water-repellent fluororesin is formed on the surface of carbon paper surface-treated with PTFE.
[0037]
Ion exchange capacity 1.1 meq / g Ion exchange resin composed of perfluorocarbon polymer having sulfonic acid group of dry resin (polymerized unit based on tetrafluoroethylene and CF 2 = CFOCF (CF 3 ) O (CF 2 ) 2 A copolymer comprising polymerized units based on SO 3 H) and platinum-supported carbon (platinum is supported at 50% of the total mass) in a mass ratio of 71.4: 28.6, and ethanol and 1H, 1H— A liquid dispersed in a mixed solvent with pentafluoropropanol (mass ratio of 1: 1) was used as a cathode-side catalyst layer forming coating liquid. This coating solution was applied onto a separately prepared PTFE sheet so that the platinum adhesion amount was 1.0 mg / cm 2 and dried to form a layer.
[0038]
Next, this is a cyclized polymer composed of polymerized units based on CF 2 ═CFO (CF 2 ) 2 CF═CF 2 , which is a solvent-soluble fluoropolymer having a molecular weight of about 50,000 to 60,000 (expressed by Formula 11). The polymer consisting of polymerized units) was immersed several times in a solution of 0.1% by mass concentration in perfluoro (2-butyltetrahydrofuran). Then 120 ° C. in nitrogen and baked for 30 minutes to prepare a CF 2 = CFO (CF 2) 2 CF = cathode-side catalyst layer of a polymer consisting of CF 2 in based polymerized units containing 10% of the entire layer.
[0039]
The catalyst layer-forming coating solution for the anode catalyst layer includes the same ion exchange resin used for the cathode, Pt—Ru alloy-supported carbon (supporting Pt—Ru of 54% of the total mass, Pt: Ru = 4: 6 (molar ratio)) in a mass ratio of 64.4: 35.6 and dispersed in a mixed solvent of ethanol and 1H, 1H-pentafluoropropanol (1: 1 by mass). Was used. This solution was applied onto a separately prepared PTFE sheet and dried to prepare a catalyst layer in the same manner as on the cathode side so that the Pt—Ru adhesion amount was 2.0 mg / cm 2 .
[0040]
An ion exchange membrane (trade name: Nafion 117, manufactured by DuPont, film thickness of 175 μm, ion exchange capacity of 0, made of a perfluorocarbon polymer having a sulfonic acid group between the catalyst layer on the cathode side and the catalyst layer on the anode side. .91 meq / g dry resin) was hot pressed at 150 ° C. and 3 MPa to transfer the catalyst layer to the membrane to obtain a joined body of the catalyst layer and the membrane. Thereafter, only the PTFE sheet was peeled from the catalyst layer. At this time, the effective electrode area was 25 cm 2 . Thereafter, the above gas diffusion layer in which the water-repellent carbon layer 2 made of carbon and fluororesin is formed on the carbon paper is disposed on both sides of the joined body with the carbon layer side facing inward, at 150 ° C. DMFC membrane / electrode assembly was prepared by hot press bonding.
[0041]
The membrane / electrode assembly is assembled in a DMFC cell, and a 5% (mass ratio) aqueous methanol solution is supplied to the anode side at 15 cc / min and 0.3 MPa, and the cathode side is 1 L / min and 0.3 MPa. Then, air humidified at the same temperature as the cell temperature was supplied and operated at a cell temperature of 90 ° C. Continuous power generation was performed at a constant current drive of 0.1 A / cm 2 , and changes with time in the voltage between terminals were measured. The results are shown in FIG.
[0042]
[Example 2 (comparative example)]
Except that the solvent-soluble fluorine-containing polymer (polymer composed of polymerized units based on CF 2 = CFO (CF 2 ) 2 CF = CF 2 ) was not added to the catalyst layer for the cathode, the same as in Example 1 A membrane / electrode assembly was obtained. This was incorporated into a DMFC cell, and continuous power generation was performed in the same manner as in Example 1. The results are shown in FIG.
[0043]
[Example 3 (comparative example)]
A membrane / electrode assembly was obtained in the same manner as in Example 1 except that PTFE was added to the cathode catalyst layer instead of the solvent-soluble fluoropolymer of Example 1. This was incorporated into a DMFC cell, and continuous power generation was performed in the same manner as in Example 1. The results are shown in FIG.
[0044]
In Example 2, the cell voltage began to decrease rapidly after 200 hours, and decreased from 0.36 V to 0.22 V after 500 hours. In Example 3, the initial characteristics were also lower than in Example 1, and the cell voltage continued to decrease immediately after the start of the test, and decreased from 0.30 V at the initial stage to 0.09 V after 500 hours. On the other hand, in Example 1, since the water repellent was added, the initial cell voltage was lower than in Example 2, but the continuous operation characteristics were relatively stable, and the initial value was 0.33 V even after 1000 hours. On the other hand, it decreased only to 0.28V.
[0045]
【The invention's effect】
According to the present invention, a water-repellent film composed of a solvent-soluble fluoropolymer can be efficiently formed up to the details of the catalyst layer, so that a small amount of water-repellent gives the entire catalyst layer water repellency that can be maintained for a long time. It is possible to provide a DMFC having a membrane / electrode assembly excellent in durability. Further, since the solvent-soluble fluoropolymer can be handled in a liquid state after being dissolved in the solvent, the degree of freedom in electrode design is high.
[Brief description of the drawings]
FIG. 1 is a cross-sectional view showing one embodiment of a DMFC membrane-electrode assembly according to the present invention.
FIG. 2 is a graph showing deterioration with time of voltage between DMFC terminals in Examples 1, 2 and 3. FIG.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1, 1 ': Gas diffusion layer base material 2, 2': Carbon layer 3, 3 ': Catalyst layer 4: Ion exchange membrane 5, 5': Gas diffusion layer 6: Cathode 7: Anode 8: Membrane electrode assembly

Claims (7)

アノード、イオン交換膜、カソードの順に積層されている膜・電極接合体を備え、燃料としてメタノールが供給される直接メタノール型燃料電池において、前記アノード及び前記カソードの少なくとも一方は、ガス拡散層と、前記ガス拡散層と前記イオン交換膜との間に配置されスルホン酸基を有する含フッ素重合体からなるイオン交換樹脂と触媒とを含む触媒層と、を含むガス拡散電極からなり、前記触媒層は実質上イオン交換基を有さない溶媒可溶性含フッ素重合体を含むことを特徴とする直接メタノール型燃料電池。In a direct methanol fuel cell that includes a membrane / electrode assembly that is laminated in the order of an anode, an ion exchange membrane, and a cathode, and methanol is supplied as a fuel, at least one of the anode and the cathode includes a gas diffusion layer, A catalyst layer comprising a catalyst layer and an ion exchange resin comprising a fluorine-containing polymer having a sulfonic acid group disposed between the gas diffusion layer and the ion exchange membrane, the catalyst layer comprising: A direct methanol fuel cell comprising a solvent-soluble fluoropolymer substantially free of ion exchange groups. 前記溶媒可溶性含フッ素重合体は、前記触媒層中に質量比で0.01〜30%含まれる請求項1に記載の直接メタノール型燃料電池。The direct methanol fuel cell according to claim 1, wherein the solvent-soluble fluoropolymer is contained in the catalyst layer in an amount of 0.01 to 30% by mass. 前記溶媒可溶性含フッ素重合体が、主鎖に脂肪族環構造を有するパーフルオロカーボン重合体である請求項1又は2に記載の直接メタノール型燃料電池。The direct methanol fuel cell according to claim 1 or 2, wherein the solvent-soluble fluoropolymer is a perfluorocarbon polymer having an aliphatic ring structure in the main chain. 前記溶媒可溶性含フッ素重合体が、下記式1〜4のいずれかで表される重合単位(ただし、式1において、Rはフッ素原子又はトリフルオロメチル基であり、pは0〜5の整数、qは0〜4の整数、rは0又は1、p+q+rは1〜6であり、式2において、s、t、uはそれぞれ独立に0〜5の整数、s+t+uは1〜6であり、式3において、R、Rはそれぞれ独立にフッ素原子又はトリフルオロメチル基であり、式4においてnは1又は2である。)を含む請求項3に記載の直接メタノール型燃料電池。
Figure 2004234947
The solvent-soluble fluorine-containing polymer is a polymer unit represented by any of the following formulas 1 to 4 (wherein, in formula 1, R 1 is a fluorine atom or a trifluoromethyl group, and p is an integer of 0 to 5) , Q is an integer of 0-4, r is 0 or 1, p + q + r is 1-6, and in Formula 2, s, t, u are each independently an integer of 0-5, and s + t + u is 1-6, 4. The direct methanol fuel cell according to claim 3, wherein R 2 and R 3 are each independently a fluorine atom or a trifluoromethyl group, and n is 1 or 2 in Formula 4.
Figure 2004234947
前記溶媒可溶性含フッ素重合体が、下記式5〜式13のいずれかで表される重合単位を含む請求項3に記載の直接メタノール型燃料電池。
Figure 2004234947
The direct methanol fuel cell according to claim 3, wherein the solvent-soluble fluorine-containing polymer includes a polymer unit represented by any one of the following formulas 5 to 13.
Figure 2004234947
前記溶媒可溶性含フッ素重合体が、上記式11で表される重合単位からなる重合体である請求項5に記載の直接メタノール型燃料電池。6. The direct methanol fuel cell according to claim 5, wherein the solvent-soluble fluorine-containing polymer is a polymer comprising a polymer unit represented by the formula 11. 請求項1〜6のいずれかに記載の直接メタノール型燃料電池用の製造方法であって、触媒とスルホン酸基を有する含フッ素重合体からなるイオン交換樹脂とを含む液を基材シート上に塗工し、乾燥させ溶媒を除去して層を形成し、該層を溶媒可溶性含フッ素重合体の溶液に含浸させた後、110〜200℃で焼成してこれをカソードの触媒層とし、前記触媒層と別途作製したアノードの触媒層とを、間にイオン交換膜を挟んで対向させホットプレスすることを特徴とする直接メタノール型燃料電池の製造方法。It is a manufacturing method for direct methanol fuel cells in any one of Claims 1-6, Comprising: The liquid containing the catalyst and the ion exchange resin which consists of a fluoropolymer which has a sulfonic acid group on a base material sheet | seat Coating and drying to remove the solvent to form a layer, impregnating the layer with a solvent-soluble fluoropolymer solution, firing at 110 to 200 ° C. to make the catalyst layer of the cathode, A method for producing a direct methanol fuel cell, characterized in that a catalyst layer and a separately prepared anode catalyst layer are hot-pressed with an ion exchange membrane interposed therebetween.
JP2003020194A 2003-01-29 2003-01-29 Direct methanol type fuel cell and manufacturing method therefor Pending JP2004234947A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003020194A JP2004234947A (en) 2003-01-29 2003-01-29 Direct methanol type fuel cell and manufacturing method therefor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2003020194A JP2004234947A (en) 2003-01-29 2003-01-29 Direct methanol type fuel cell and manufacturing method therefor

Publications (1)

Publication Number Publication Date
JP2004234947A true JP2004234947A (en) 2004-08-19

Family

ID=32949894

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003020194A Pending JP2004234947A (en) 2003-01-29 2003-01-29 Direct methanol type fuel cell and manufacturing method therefor

Country Status (1)

Country Link
JP (1) JP2004234947A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073467A (en) * 2004-09-06 2006-03-16 Asahi Glass Co Ltd Membrane/electrode junction for solid polymer fuel cell
JP2006164575A (en) * 2004-12-02 2006-06-22 Dainippon Printing Co Ltd Water-repellent electrode catalyst layer for solid polymer fuel cell, catalyst layer transfer sheet, and catalyst layer/electrolyte assembly
US7572541B2 (en) 2004-12-27 2009-08-11 Kabushiki Kaisha Toshiba Fuel cell
JP2010272309A (en) * 2009-05-20 2010-12-02 Toshiba Corp Direct methanol fuel cell
US7892701B2 (en) * 2008-09-03 2011-02-22 Kabushiki Kaisha Toshiba Fuel cell

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006073467A (en) * 2004-09-06 2006-03-16 Asahi Glass Co Ltd Membrane/electrode junction for solid polymer fuel cell
JP2006164575A (en) * 2004-12-02 2006-06-22 Dainippon Printing Co Ltd Water-repellent electrode catalyst layer for solid polymer fuel cell, catalyst layer transfer sheet, and catalyst layer/electrolyte assembly
US7572541B2 (en) 2004-12-27 2009-08-11 Kabushiki Kaisha Toshiba Fuel cell
US7892701B2 (en) * 2008-09-03 2011-02-22 Kabushiki Kaisha Toshiba Fuel cell
JP2010272309A (en) * 2009-05-20 2010-12-02 Toshiba Corp Direct methanol fuel cell
JP4693915B2 (en) * 2009-05-20 2011-06-01 株式会社東芝 Direct methanol fuel cell
US8043769B2 (en) 2009-05-20 2011-10-25 Kabushiki Kaisha Toshiba Direct methanol fuel cell

Similar Documents

Publication Publication Date Title
JP5107050B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP5010823B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
JP5830386B2 (en) POLYMER ELECTROLYTE MEMBRANE FOR DIRECT OXIDATION FUEL CELL, ITS MANUFACTURING METHOD, AND DIRECT OXIDATION FUEL CELL SYSTEM INCLUDING THE SAME
US8722220B2 (en) Hydrophobic catalyst layer for polymer electrolyte fuel cell and method of producing the same, and polymer electrolyte fuel cell and method of producing the same
JP2004259661A (en) Membrane/electrode jointed body and its manufacturing method
US8399152B2 (en) Method of producing fuel cell catalyst layer
JP5066998B2 (en) Membrane electrode assembly for polymer electrolyte fuel cells
JPH11288727A (en) Solid high polymer fuel cell film/electrode junction body
US8535847B2 (en) Membrane/electrode assembly for polymer electrolyte fuel cell
JP2006147560A (en) Membrane/electrode assembly for fuel cell, and fuel cell having the same
WO2011045933A1 (en) Membrane electrode assembly for fuel cell, and fuel cell utilizing same
JP5195286B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
JP4887580B2 (en) Gas diffusion electrode and polymer electrolyte fuel cell having the same
JP5693208B2 (en) Membrane-electrode assembly for fuel cell, manufacturing method of membrane-electrode assembly for fuel cell, fuel cell system, and stack for fuel cell
JP5194624B2 (en) Manufacturing method of membrane electrode assembly for polymer electrolyte fuel cell
TW200403881A (en) Polymer electrolyte fuel cell which is improved its performance and reliability and manufacturing method of the same
JP4392222B2 (en) Method for manufacturing membrane-electrode structure
JP2004234947A (en) Direct methanol type fuel cell and manufacturing method therefor
KR100745740B1 (en) Cathode electrode for fuel cell and fuel cell using the same
JP2002260686A (en) Method of manufacturing membrane/electrode jointing body for solid high polymer fuel cell
JP4421264B2 (en) Method for manufacturing membrane-electrode structure
JP2006236927A (en) Membrane electrode junction for solid polymer fuel cell
JP2001351637A (en) Solid polymer fuel cell and its manufacturing method
JP2003045440A (en) Manufacturing method of gas diffusion electrode for solid polymer fuel cell and manufacturing method of solid polymer fuel cell
JP2005019298A (en) Film/electrode junction for solid polymer type fuel cell