JP2006073221A - Separator for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Separator for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP2006073221A
JP2006073221A JP2004251922A JP2004251922A JP2006073221A JP 2006073221 A JP2006073221 A JP 2006073221A JP 2004251922 A JP2004251922 A JP 2004251922A JP 2004251922 A JP2004251922 A JP 2004251922A JP 2006073221 A JP2006073221 A JP 2006073221A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium ion
ion secondary
separator
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251922A
Other languages
Japanese (ja)
Inventor
Hiroki Sano
弘樹 佐野
Takahiro Omichi
高弘 大道
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Teijin Ltd
Original Assignee
Teijin Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Teijin Ltd filed Critical Teijin Ltd
Priority to JP2004251922A priority Critical patent/JP2006073221A/en
Publication of JP2006073221A publication Critical patent/JP2006073221A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a static-resistant separator of a polyvinylidene fluoride-based polymer to improve the handleability in fabricating a lithium ion secondary battery by solving the problem that a separator for a lithium ion secondary battery made of a polyvinylidene fluoride-based polymer that exhibits the property of having strong static due to friction or exfoliation is likely to attract foreign matter such as dust during fabrication of the lithium ion secondary battery and thus has a great problem in handleability, which becomes a factor responsible for a delay in commercialization. <P>SOLUTION: In a composite porous membrane in which at least one of the surfaces has a layer of a polyvinylidene fluoride-based polymer, a surface-active agent is applied onto the polyvinylidene fluoride-based polymer layer of the composite porous membrane. The composite porous membrane thereby serves as a separator for a lithium ion secondary battery with static buildup suppressed. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池用セパレータ及びこれを用いたリチウムイオン二次電池に関する。   The present invention relates to a separator for a lithium ion secondary battery and a lithium ion secondary battery using the same.

正極にコバルト酸リチウムに代表されるリチウム含有遷移金属酸化物、負極にリチウムをドープ・脱ドープ可能な炭素材料を用いた4V級リチウムイオン二次電池は、高エネルギー密度を有するという特徴から携帯電話に代表される携帯電子機器の電源として非常に重要なものであり、これら携帯電子機器の急速な普及に伴いその需要は高まる一方である。   A 4V class lithium ion secondary battery using a lithium-containing transition metal oxide typified by lithium cobaltate as a positive electrode and a carbon material capable of doping and undoping lithium as a negative electrode has a high energy density. Is very important as a power source for portable electronic devices represented by the above, and the demand for these portable electronic devices is increasing with the rapid spread of these portable electronic devices.

リチウムイオン二次電池に用いられるセパレータに要求される特性としては、正極と負極の接触による内部短絡を防止し、起電反応を生ずるために必要にして十分な量の電解液を保持するとともに、イオンの伝導を妨げずに内部抵抗を小さくでき、かつ、電池内部に組み込まれた場合の占有容積が小さく、両極活物質の量を増やすことができるともに、電池の組み立てが容易となるように機械的強度を有することである。   As a characteristic required for a separator used in a lithium ion secondary battery, while preventing an internal short circuit due to contact between the positive electrode and the negative electrode, and holding a sufficient amount of electrolyte necessary for generating an electromotive reaction, A machine that can reduce internal resistance without interfering with ion conduction, and can occupy a small volume when incorporated inside the battery, increase the amount of bipolar active material, and facilitate battery assembly. It has a certain strength.

これらの条件を満たし、現在のリチウムイオン二次電池に多く使用されているのがポリプロピレン、ポリエチレン等のポリオレフィン系微多孔膜である。また、これら微多孔膜は熱による高分子膜の融解により孔を塞ぎ、正極と負極を絶縁するシャットダウン効果を利用して、セパレータに安全性を持たせているものもある。   Polyolefin microporous membranes such as polypropylene and polyethylene that satisfy these conditions and are widely used in current lithium ion secondary batteries are used. Some of these microporous membranes use a shutdown effect that closes the pores by melting the polymer membrane by heat and insulates the positive electrode from the negative electrode, thereby providing safety to the separator.

しかし、ポリオレフィン系高分子は電解液への親和性が低く、電解液保持性が良くない。そのため、ポリオレフィン系微多孔膜の代わりにポリフッ化ビニリデン(PVdF)系高分子など電解液保持性の高いポリマーを、リチウムイオン二次電池用セパレータに使用するという試みが行なわれている。だが、ポリフッ化ビニリデン系高分子からなる多孔体は強度が低く、単独で使用するのには適していない。   However, the polyolefin polymer has low affinity for the electrolytic solution, and the electrolytic solution retention is not good. For this reason, an attempt has been made to use a polymer having a high electrolyte solution holding property, such as a polyvinylidene fluoride (PVdF) polymer, for a lithium ion secondary battery separator instead of the polyolefin microporous membrane. However, a porous body made of a polyvinylidene fluoride polymer has low strength and is not suitable for use alone.

そこで、特許文献1、特許文献2、特許文献3、特許文献4によると、電解液保持性が高く十分なイオン伝導性を持たせ、かつリチウムイオン二次電池用途として十分な薄さを実現するために、ポリフッ化ビニリデン系高分子なる多孔体と、強い機械的強度を保つ有機高分子体からなる多孔質フィルムや不織布を組み合わせて複合多孔膜とし、機械的強度とイオン伝導性の両方を持つリチウムイオンセパレータを作製することが提案されている。   Therefore, according to Patent Document 1, Patent Document 2, Patent Document 3, and Patent Document 4, the electrolyte retainability is high and sufficient ion conductivity is provided, and a sufficient thinness is realized for lithium ion secondary battery applications. For this purpose, a composite porous membrane is formed by combining a porous body made of polyvinylidene fluoride polymer with a porous film or nonwoven fabric made of an organic polymer body that maintains strong mechanical strength, and has both mechanical strength and ionic conductivity. It has been proposed to make a lithium ion separator.

特許第2992598号公報明細書1頁Patent No. 2992598, specification, page 1 特開平11−026025号公報明細書1頁Japanese Patent Application Laid-Open No. 11-026025, page 1 特開2001−118558号公報明細書1頁Japanese Patent Application Laid-Open No. 2001-118558, page 1 国際公開第01/67356号明細書1頁International Publication No. 01/67356, page 1

しかし、ポリフッ化ビニリデン系高分子を初めとするフッ素系ポリマーは、ポリマーの中でも最も負に帯電しやすい性質を有しており、摩擦や剥離などにより非常に強い静電気を有するといった特性を示す。   However, fluorine-based polymers such as polyvinylidene fluoride-based polymers have the property of being most negatively charged among the polymers, and have characteristics such as extremely strong static electricity due to friction and peeling.

このようなリチウムイオン二次電池用セパレータは、リチウムイオン二次電池作製中にほこりなどの異物を吸着しやすいなど、ハンドリング性に非常に大きな欠点があり、実用化を遅らせている一因となっている。   Such a separator for a lithium ion secondary battery has a very large drawback in handling properties, such as being liable to adsorb foreign matter such as dust during the production of the lithium ion secondary battery, and is one of the factors delaying its practical application. ing.

本発明の目的は上記の問題点を解決するために鋭意検討した結果、少なくとも表面の一方にポリフッ化ビニリデン系高分子からなる層を有する複合多孔膜において、ポリフッ化ビニリデン系高分子層に界面活性剤を塗工することにより、電解液保持性が高く静電気が抑制されたリチウムイオン二次電池用セパレータを開発できることを見出し、本発明を完成させるに至った。   The object of the present invention is to study the above problems in order to solve the above problems. As a result, in a composite porous membrane having a layer made of a polyvinylidene fluoride polymer on at least one of the surfaces, the polyvinylidene fluoride polymer layer has a surface activity. By applying an agent, it was found that a separator for a lithium ion secondary battery having high electrolyte solution retention and static electricity suppressed can be developed, and the present invention has been completed.

すなわち、1.少なくとも表面の一方にポリフッ化ビニリデン系高分子からなる層を有する複合多孔膜において、ポリフッ化ビニリデン系高分子層に界面活性剤が塗工されていることを特徴とするリチウムイオン二次電池用セパレータ。   That is: A separator for a lithium ion secondary battery, wherein a surfactant is applied to the polyvinylidene fluoride polymer layer in a composite porous membrane having a layer made of polyvinylidene fluoride polymer on at least one surface .

また、本発明には下記各発明も含まれる。
2.界面活性剤の付量が、0.005〜0.750g/mであるリチウムイオン二次電池用セパレータ。
3.界面活性剤処理後の摩擦帯電圧の半減期が、30秒以下であるリチウムイオン二次電池用セパレータ。
4.界面活性剤が陽イオン系界面活性剤、陰イオン系界面活性剤、両性イオン系界面活性剤からなる群から選ばれる少なくとも1種を含むリチウムイオン二次電池用セパレータ。
The present invention includes the following inventions.
2. A separator for a lithium ion secondary battery, wherein the amount of the surfactant is 0.005 to 0.750 g / m 2 .
3. A separator for a lithium ion secondary battery, wherein the half-life of the frictional voltage after the surfactant treatment is 30 seconds or less.
4). A separator for a lithium ion secondary battery, wherein the surfactant includes at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, and an amphoteric surfactant.

更にまた本発明は、下記発明も含まれる。
5.負極がリチウムをドープ・脱ドープ可能な炭素材料から主としてなり、正極がリチウム含有遷移金属酸化物から主としてなり、セパレータ、非水系電解液を用いるリチウムイオン二次電池において、セパレータが上記発明1〜4の少なくとも1項に記載のリチウムイオン二次電池用セパレータを用いるリチウムイオン二次電池。
6.上記非水系電解液にビニレンカーボネート、ビニルアセテートを含むリチウムイオン二次電池。
Furthermore, the present invention includes the following inventions.
5. In the lithium ion secondary battery in which the negative electrode is mainly made of a carbon material capable of doping and undoping lithium, the positive electrode is mainly made of a lithium-containing transition metal oxide, and the separator and the non-aqueous electrolyte solution are used, the separator is the above inventions 1-4. A lithium ion secondary battery using the lithium ion secondary battery separator according to at least one of the above.
6). A lithium ion secondary battery containing vinylene carbonate and vinyl acetate in the non-aqueous electrolyte.

本発明によれば、静電気が抑制されたポリフッ化ビニリデン系高分子を用いた複合多孔膜からなるリチウムイオン二次電池用セパレータが提供される。更にこのセパレータを用いることでハンドリング性良くリチウムイオン二次電池を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the separator for lithium ion secondary batteries which consists of a composite porous film using the polyvinylidene fluoride polymer | macromolecule which suppressed static electricity is provided. Furthermore, by using this separator, a lithium ion secondary battery can be provided with good handling properties.

以下、本発明について詳細に説明する。
<リチウムイオン二次電池用セパレータ>
ポリフッ化ビニリデン系高分子は、電解液に膨潤する性質を有しており、電気化学的に安定なため、リチウムイオン二次電池用セパレータに用いるのに好適である。ポリフッ化ビニリデン系高分子として、ヘキサフルオロプロピレン(HFP)、パーフルオロビニルエーテル(PFMV)、テトラフルオロエチレン、クロロトリフルオロエチレン等をフッ化ビニリデンに共重合したものが挙げられる。このとき、共重合体にフッ化ビニリデンを85重量部以上含むことが好適である。このポリフッ化ビニリデン系高分子の重量平均分子量として、10,000〜1,000,000であることが好適である。
Hereinafter, the present invention will be described in detail.
<Separator for lithium ion secondary battery>
Polyvinylidene fluoride polymers are suitable for use in lithium ion secondary battery separators because they have a property of swelling in an electrolyte solution and are electrochemically stable. Examples of the polyvinylidene fluoride polymer include those obtained by copolymerizing hexafluoropropylene (HFP), perfluorovinyl ether (PFMV), tetrafluoroethylene, chlorotrifluoroethylene and the like with vinylidene fluoride. At this time, it is preferable that the copolymer contains 85 parts by weight or more of vinylidene fluoride. The weight average molecular weight of the polyvinylidene fluoride polymer is preferably 10,000 to 1,000,000.

本発明のセパレータは電解液を保持し、リチウムイオン二次電池として十分なイオン伝導度を持つことが望ましい。イオン伝導度は、セパレータを電解液に含浸し、2枚のSUS板の間に挟んで、交流インピーダンス法で測定する。電解液としてプロピレンカーボネートとエチレンカーボネートを重量比で1対1に混合した混合溶媒に1Mの濃度でLiBFを溶解したものを用いる。この時の測定温度は25℃である。本発明のセパレータのイオン伝導度は5×10−2S/m以上が好適であり、1×10−1S/m以上がさらに好適である。 The separator of the present invention desirably retains an electrolytic solution and has sufficient ionic conductivity as a lithium ion secondary battery. The ionic conductivity is measured by an AC impedance method by impregnating a separator with an electrolytic solution and sandwiching the separator between two SUS plates. As an electrolytic solution, a solution obtained by dissolving LiBF 4 at a concentration of 1 M in a mixed solvent in which propylene carbonate and ethylene carbonate are mixed at a weight ratio of 1: 1 is used. The measurement temperature at this time is 25 ° C. The ionic conductivity of the separator of the present invention is preferably 5 × 10 −2 S / m or more, and more preferably 1 × 10 −1 S / m or more.

イオン伝導度は、電解液を多く保持するほど高くなるという観点から、ポリフッ化ビニリデン系高分子を多孔質にすることが好適である。しかし、そのままでは機械的強度が低いため、多孔シートと複合化し複合多孔膜とすることで機械的強度が高くなり、セパレータとして使用するのに好適になる。   From the viewpoint of increasing the ionic conductivity as the electrolyte is retained, it is preferable to make the polyvinylidene fluoride polymer porous. However, since the mechanical strength is low as it is, the mechanical strength is increased by combining with a porous sheet to form a composite porous membrane, which is suitable for use as a separator.

複合多孔膜を得る製膜方法として特に制限はないが、ポリフッ化ビニリデン系高分子、可塑剤及びシリカ粒子、アルミナ等の無機粒子を有機溶剤に溶解、混合し、これを多孔シート上にキャスト法により製膜し、最後に可塑剤と親和性があり、ポリフッ化ビニリデン系高分子を溶解しない有機溶媒で可塑剤を抽出することで、複合多孔膜を形成する方法を好適に用いることができる。   Although there is no restriction | limiting in particular as a film forming method which obtains a composite porous membrane, Inorganic particles, such as a polyvinylidene fluoride polymer, a plasticizer, silica particles, and alumina, are dissolved and mixed in an organic solvent, and this is cast on a porous sheet. A method of forming a composite porous membrane can be suitably used by extracting the plasticizer with an organic solvent that has an affinity for the plasticizer and does not dissolve the polyvinylidene fluoride polymer.

またポリフッ化ビニリデン系高分子を有機溶媒に溶解させドープを作製し、ドープを含浸させた多孔シートを、先に示す有機溶媒と親和性を示し、かつポリフッ化ビニリデン系高分子を溶解しない溶媒に、接触させることでポリフッ化ビニリデン系高分子を多孔性に凝固させる有機溶媒湿式法により複合多孔膜を得ることもできる。
この多孔シートにはポリオレフィン系多孔膜や不織布を使用することができる。
In addition, a dope is prepared by dissolving a polyvinylidene fluoride polymer in an organic solvent, and the porous sheet impregnated with the dope has an affinity with the organic solvent shown above, and does not dissolve the polyvinylidene fluoride polymer. The composite porous membrane can also be obtained by an organic solvent wet method in which the polyvinylidene fluoride polymer is solidified to be porous by bringing it into contact.
A polyolefin-based porous film or a nonwoven fabric can be used for this porous sheet.

複合多孔膜は、孔が少ないと、十分に電解液を保持できずリチウムイオン二次電池として十分な性能を発揮できない。逆に孔が多いとセパレータの機械的強度が低下し、破損しやすくなる。そのため、多孔度は20〜80%であることが好適である。多孔度はセパレータの質量から間接的に求められる。   If the composite porous membrane has few pores, the electrolyte solution cannot be sufficiently retained and sufficient performance as a lithium ion secondary battery cannot be exhibited. On the contrary, if there are many holes, the mechanical strength of the separator is lowered and it is easily damaged. Therefore, the porosity is preferably 20 to 80%. The porosity is obtained indirectly from the mass of the separator.

複合多孔膜はリチウムイオン二次電池用セパレータに用いるので、膜厚が薄すぎるとセパレータが十分な強度を得られず、破損し易くなる。逆に膜厚が厚すぎると、エネルギー密度が低下する。そのため、膜厚が10〜50μmであることが好適である。
この複合多孔膜に塗工する界面活性剤は特に限定されないが、例えば陽イオン系、陰イオン系、両性イオン系、非イオン系の界面活性剤を使用することができる。
Since the composite porous membrane is used for a separator for a lithium ion secondary battery, if the film thickness is too thin, the separator cannot obtain sufficient strength and is easily damaged. Conversely, when the film thickness is too thick, the energy density is lowered. Therefore, the film thickness is preferably 10 to 50 μm.
The surfactant applied to the composite porous membrane is not particularly limited. For example, a cationic, anionic, zwitterionic or nonionic surfactant can be used.

陽イオン系界面活性剤としては、高級アミンハロゲン酸塩、ハロゲン化アルキルピリジニウム、第四級アンモニウム塩等が挙げられる。
陰イオン系界面活性剤としては、高級脂肪酸アルカリ塩、ポリオキシエチレンアルキルエーテルスルホン酸エステル塩、ポリオキシエチレンアルキルエーテルホスホン酸塩、アルキル硫酸塩、アルキルスルホン酸塩、アルキルアリールスルホン酸塩、スルホコハク酸エステル塩等が挙げられる。
Examples of the cationic surfactant include higher amine halogenates, alkylpyridinium halides, quaternary ammonium salts and the like.
Anionic surfactants include higher fatty acid alkali salts, polyoxyethylene alkyl ether sulfonate esters, polyoxyethylene alkyl ether phosphonates, alkyl sulfates, alkyl sulfonates, alkyl aryl sulfonates, sulfosuccinic acid. Examples include ester salts.

両性イオン系界面活性剤としては、アルキルベタイン系化合物、イミダゾリン系化合物、アルキルアミンオキサイド、ビスオキシボレート系化合物等が挙げられる。
非イオン系界面活性剤としては、ポリオキシエチレンアルキルエーテル類、ポリオキシエチレンアルキルフェニルエーテル類、ポリオキシエチレンアルキルアリルエーテル類、グリセリン脂肪酸エステル、ポリオキシエチレンソルビタン脂肪酸エステル、ソルビタン脂肪酸エステル等が挙げられる。
特に、陽イオン系界面活性剤、陰イオン系界面活性剤、両性イオン系界面活性剤は帯電防止効果が強いため、使用量を低く抑えることができるため、使用が望ましい。
Examples of zwitterionic surfactants include alkylbetaine compounds, imidazoline compounds, alkylamine oxides, and bisoxyborate compounds.
Nonionic surfactants include polyoxyethylene alkyl ethers, polyoxyethylene alkyl phenyl ethers, polyoxyethylene alkyl allyl ethers, glycerin fatty acid esters, polyoxyethylene sorbitan fatty acid esters, sorbitan fatty acid esters, and the like. .
In particular, cationic surfactants, anionic surfactants, and amphoteric surfactants are preferable because they have a strong antistatic effect and can be used in a low amount.

界面活性剤を塗工する方法としては特に限定されないが、界面活性剤を溶媒に溶かし、多孔膜にスプレーして乾燥させる方法や、多孔膜を浸漬させ乾燥させる方法などがある。
界面活性剤の付量は0.005〜0.750/mであることが望ましい。0.005g/mより少ないと充分な帯電防止効果が得られず、0.750g/mより多いとリチウムイオン二次電池の性能に悪影響が出てきてしまうからである。界面活性剤の付量は、界面活性剤塗工後90℃で10時間真空乾燥したリチウムイオン二次電池用セパレータと、界面活性剤可溶溶媒に浸漬させた後90℃で10時間真空乾燥したリチウムイオン二次電池用セパレータの質量差や、界面活性剤可溶溶媒で抽出した溶液を乾固させた抽出成分をH−NMRやガスクロマトグラフィーなどにより分析し質量を測定することなどから求めることができる。
The method for applying the surfactant is not particularly limited, and there are a method in which the surfactant is dissolved in a solvent and sprayed onto the porous film and dried, and a method in which the porous film is immersed and dried.
The amount of the surfactant is preferably 0.005 to 0.750 / m 2 . 0.005 g / m less than 2 and a sufficient antistatic effect can not be obtained, because would have adversely affected the performance of the lithium ion secondary battery is more than 0.750 g / m 2. The amount of the surfactant was applied to the separator for lithium ion secondary battery vacuum-dried at 90 ° C. for 10 hours after coating the surfactant, and then vacuum-dried at 90 ° C. for 10 hours after being immersed in the surfactant-soluble solvent. Obtain from mass difference between separators for lithium ion secondary batteries or by measuring the mass by analyzing the extracted components obtained by drying the solution extracted with surfactant-soluble solvent by H-NMR or gas chromatography. Can do.

静電気を評価する手法としては、JIS L 1084の摩擦帯電圧測定法を用いる。摩擦帯電圧測定法によって静電気の半減期が30秒以下であることが好適である。半減期が30秒以上であると、静電気の減衰が遅いため、帯電防止効果が充分とは言えない。   As a method for evaluating static electricity, the friction band voltage measurement method of JIS L 1084 is used. It is preferable that the half-life of static electricity is 30 seconds or less by the frictional voltage measurement method. If the half-life is 30 seconds or longer, the static electricity decay is slow, so that the antistatic effect is not sufficient.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は上記で説明してきたようなリチウムイオン二次電池用セパレータを用いることが特徴であり、電解液及び電極は、従来のリチウムイオン二次電池で用いてきたものを使用できる。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention is characterized by the use of a lithium ion secondary battery separator as described above, and the electrolyte and electrode used in the conventional lithium ion secondary battery are the same. Can be used.

本発明のリチウム二次電池に用いる電極は、リチウムイオンをドープ・脱ドープする活物質、この活物質を結着させ電解液に膨潤するバインダーポリマー、電子伝導性向上のための導電助剤、集電体で構成される。電極はゲル化し電解液を保持できる構造になっていてもかまわない。   The electrode used in the lithium secondary battery of the present invention includes an active material that is doped / undoped with lithium ions, a binder polymer that binds the active material and swells in the electrolyte, a conductive aid for improving electronic conductivity, a collector Consists of electrical objects. The electrode may be gelled and have a structure capable of holding the electrolytic solution.

正極活物質としては、種々のリチウム含有遷移金属酸化物を挙げることができるが、特にこれに限定されるものではなく、いわゆる4V級リチウムイオン二次電池に用いる活物質であれば構わない。リチウム含有遷移金属酸化物の例として、LiCoOなどのリチウム含有コバルト酸化物、LiNiOなどのリチウム含有ニッケル酸化物、LiMnなどのリチウム含有マンガン酸化物などを挙げることができる。 Examples of the positive electrode active material include various lithium-containing transition metal oxides, but are not particularly limited thereto, and any active material may be used as long as it is used for a so-called 4V class lithium ion secondary battery. Examples of lithium-containing transition metal oxides include lithium-containing cobalt oxides such as LiCoO 2 , lithium-containing nickel oxides such as LiNiO 2, and lithium-containing manganese oxides such as LiMn 2 O 4 .

負極活物質にはリチウムイオンを吸蔵放出する炭素材料が用いられる。炭素材料として、ポリアクリロニトリル、フェノール樹脂、フェノールノボラック樹脂、セルロースなどの有機高分子化合物を焼結したもの、人造黒鉛や天然黒鉛を挙げることが出来る。   A carbon material that absorbs and releases lithium ions is used as the negative electrode active material. Examples of the carbon material include polyacrylonitrile, phenol resin, phenol novolac resin, a sintered organic polymer compound such as cellulose, artificial graphite, and natural graphite.

活物質を結着させ電解液に膨潤するバインダーポリマーとしてはPVdF、PVdFとHFPやPFMV及びテトラフルオロエチレンとの共重合体などのPVdF共重合体樹脂;ポリテトラフルオロエチレン、フッ素ゴムなどのフッ素系樹脂;スチレン―ブタジエン共重合体、スチレン―アクリロニトリル共重合体などの炭化水素ポリマー;カルボキシメチルセルロース、ポリイミド樹脂などを用いることができるが、これに限定されるものではない。また、これらは単独でも2種類以上を混合して用いても構わない。   PVdF copolymer resins such as PVdF, PVdF and HFP, PFMV, and copolymers of tetrafluoroethylene; binders that swell the active material and swell in the electrolyte; Fluorine-based polymers such as polytetrafluoroethylene and fluororubber Resin; Hydrocarbon polymer such as styrene-butadiene copolymer, styrene-acrylonitrile copolymer; carboxymethyl cellulose, polyimide resin, etc. can be used, but is not limited thereto. These may be used alone or in combination of two or more.

集電体としては、正極に用いるものは酸化安定性の優れた材料、負極に用いるものは還元安定性に優れた材料で作られた箔またはメッシュが好適に用いられる。具体的には正極にはアルミニウム、ステンレススチール、ニッケル、炭素などを、負極には金属銅、ステンレススチール、ニッケル、炭素などを挙げることができる。特に、正極にはアルミニウム箔またはメッシュ、負極には銅箔またはメッシュが好適に用いられる。   As the current collector, a foil or mesh made of a material having excellent oxidation stability is suitably used for the positive electrode, and a foil or mesh made of a material having excellent reduction stability is suitably used for the negative electrode. Specifically, examples of the positive electrode include aluminum, stainless steel, nickel, and carbon, and examples of the negative electrode include metallic copper, stainless steel, nickel, and carbon. In particular, an aluminum foil or mesh is suitably used for the positive electrode, and a copper foil or mesh is suitably used for the negative electrode.

導電助剤としては人造黒鉛、カーボンブラック(アセチレンブラック)、ニッケル粉末が好適に用いられる。負極においては、この導電助剤を含まなくても構わない。   As the conductive assistant, artificial graphite, carbon black (acetylene black), and nickel powder are preferably used. The negative electrode may not contain this conductive additive.

本発明のリチウム二次電池には極性有機溶媒に電解質としてリチウム塩を溶解した電解液が好適に用いられる。使用する溶媒はリチウム二次電池に一般に用いられている炭素数10以下の極性有機溶媒であれば特に限定はしない。例えば、プロピレンカーボネート(PC)、エチレンカーボネート(EC)、ブチレンカーボネート(BC)、ジメチルカーボネート(DMC)、ジエチルカーボネート(DEC)、メチルエチルカーボネート(MEC)、1,2−ジメトキシエタン(DME)、1,2−ジエトキシエタン(DEE)、γ―ブチロラクトン(γ―BL)、スルフォラン、アセトニトリル等を挙げることができる。これらの極性有意溶媒は単独で用いても、2種類以上混合して用いてもよい。特に、PC、EC、γ−BL、DMC、DEC、MEC及びDMEから選ばれる少なくとも1種類以上の有機溶媒が好適に用いられる。   In the lithium secondary battery of the present invention, an electrolytic solution in which a lithium salt is dissolved as an electrolyte in a polar organic solvent is preferably used. The solvent to be used is not particularly limited as long as it is a polar organic solvent having 10 or less carbon atoms that is generally used for lithium secondary batteries. For example, propylene carbonate (PC), ethylene carbonate (EC), butylene carbonate (BC), dimethyl carbonate (DMC), diethyl carbonate (DEC), methyl ethyl carbonate (MEC), 1,2-dimethoxyethane (DME), 1 , 2-diethoxyethane (DEE), γ-butyrolactone (γ-BL), sulfolane, acetonitrile and the like. These polar significant solvents may be used alone or in combination of two or more. In particular, at least one organic solvent selected from PC, EC, γ-BL, DMC, DEC, MEC, and DME is preferably used.

また、電解液に電池特性などを向上させる目的で添加物を加えてもよい。特に、ビニレンカーボネート(VC)、ビニルアセテート(VA)は電池性能に対する界面活性剤の影響を大幅に抑制するため、使用するのが好適である。   In addition, an additive may be added to the electrolytic solution for the purpose of improving battery characteristics and the like. In particular, vinylene carbonate (VC) and vinyl acetate (VA) are preferably used because they greatly suppress the influence of the surfactant on the battery performance.

前記の有機溶媒に溶解するリチウム塩としては、例えば過塩素酸リチウム(LiClO)、六フッ化りん酸リチウム(LiPF)、ホウ四フッ化リチウム(LiBF)、六フッ化砒素リチウム(LiAsF)、トリフロロスルホン酸リチウム(LiCFSO)、リチウムパーフロロメチルスルホニルイミド[LiN(CFSO]、リチウムパーフロロエチルスルホニルイミド[LiN(CSO]等が挙げられる。また、これらは混合して用いても構わない。溶解するリチウム塩の濃度としては0.2〜2Mの範囲が好適に用いられる。 Examples of the lithium salt dissolved in the organic solvent include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borotetrafluoride (LiBF 4 ), and lithium arsenic hexafluoride (LiAsF). 6 ), lithium trifluorosulfonate (LiCF 3 SO 3 ), lithium perfluoromethylsulfonylimide [LiN (CF 3 SO 2 ) 2 ], lithium perfluoroethylsulfonylimide [LiN (C 2 F 5 SO 2 ) 2 ] Etc. These may be used in combination. The concentration of the dissolved lithium salt is preferably in the range of 0.2 to 2M.

本発明のリチウムイオン二次電池は、基本的には角型・円筒型・フィルム外装型といったどのような形状においても実施可能である。また、いわゆるゲル電解質膜を用いたポリマー電池のような電極とセパレータを一体化させたリチウムイオン二次電池においても実施可能である。このときは正負極間にあるゲル電解質膜層をセパレータとする。また、基本的にはどのような電池容量においても実施可能である。   The lithium ion secondary battery of the present invention can be basically implemented in any shape such as a square shape, a cylindrical shape, and a film exterior type. Further, the present invention can also be implemented in a lithium ion secondary battery in which an electrode and a separator are integrated, such as a polymer battery using a so-called gel electrolyte membrane. At this time, the gel electrolyte membrane layer between the positive and negative electrodes is used as a separator. Moreover, it can be implemented basically with any battery capacity.

以下、本発明を実施例により詳細に説明する。ただし、以下の実施例は本発明を限定するものではない。
<セパレータの作成法>
ポリフッ化ビニリデン系ポリマーとして、フッ化ビニリデン:ヘキサフルオロプロピレン:クロロトリフルオロエチレン=97.0:1.0:2.0のモル比で共重合したポリマー(重量平均分子量400000)を用いた。
Hereinafter, the present invention will be described in detail with reference to examples. However, the following examples do not limit the present invention.
<How to make a separator>
As the polyvinylidene fluoride polymer, a polymer (weight average molecular weight 400000) copolymerized at a molar ratio of vinylidene fluoride: hexafluoropropylene: chlorotrifluoroethylene = 97.0: 1.0: 2.0 was used.

上記ポリフッ化ビニリデン系ポリマーを溶解したドープは、溶媒としてジメチルアセトアミド(DMAc)、相分離剤としてトリプロピレングリコール(TPG)を用い、ポリフッ化ビニリデン系ポリマーの濃度が12重量部、相分離剤濃度が40重量部となるように調整した。   The dope in which the polyvinylidene fluoride polymer is dissolved uses dimethylacetamide (DMAc) as a solvent, tripropylene glycol (TPG) as a phase separation agent, the concentration of the polyvinylidene fluoride polymer is 12 parts by weight, and the concentration of the phase separation agent is It adjusted so that it might become 40 weight part.

PET短繊維とオレフィンの短繊維からなる不織布にドープを十分含浸させ、両面が凝固浴と接するように浸漬し凝固浴中で凝固させた。凝固浴の組成は重量比で水:ジメチルアセトアミド:トリプロピレングリコール=57:30:13とした。ついで、水洗・乾燥を行い、リチウムイオン二次電池用セパレータを得た。得られたセパレータの膜厚は25μmであった。   A non-woven fabric composed of PET short fibers and olefin short fibers was sufficiently impregnated with the dope, immersed so that both surfaces were in contact with the coagulation bath, and coagulated in the coagulation bath. The composition of the coagulation bath was water: dimethylacetamide: tripropylene glycol = 57: 30: 13 by weight. Subsequently, washing with water and drying were performed to obtain a separator for a lithium ion secondary battery. The resulting separator had a film thickness of 25 μm.

[イオン伝導度測定法]
イオン伝導度は、セパレータをプロピレンカーボネートとエチレンカーボネートを重量比で1対1に混合した混合溶媒に1Mの濃度でLiBFを溶解した電解液に含浸し、2枚のSUS板の間に挟んで、交流インピーダンス法で測定した。この時の測定温度は25℃であった。
この方法により測定した上述のリチウムイオン二次電池用セパレータのイオン伝導度は8.7×10−2S/mであった。
[Ion conductivity measurement method]
The ionic conductivity is determined by impregnating the separator with an electrolyte solution in which LiBF 4 is dissolved at a concentration of 1 M in a mixed solvent in which propylene carbonate and ethylene carbonate are mixed at a weight ratio of 1: 1, and sandwiched between two SUS plates. Measured by impedance method. The measurement temperature at this time was 25 ° C.
The ion conductivity of the lithium ion secondary battery separator measured by this method was 8.7 × 10 −2 S / m.

エマルゲン120(花王製、非イオン系界面活性剤、ポリオキシエチレンアルキルエーテル)をメタノールに溶解し、1wt%溶液を作成し、ここに上述のリチウムイオン二次電池用セパレータを浸漬させることで界面活性剤処理をおこなった。エマルゲン120の塗工量は0.15g/mであった。これを実施例1とする。 Emulgen 120 (manufactured by Kao, nonionic surfactant, polyoxyethylene alkyl ether) is dissolved in methanol to prepare a 1 wt% solution, and the above-mentioned lithium ion secondary battery separator is immersed in the surface activity. Agent treatment was performed. The coating amount of Emulgen 120 was 0.15 g / m 2 . This is Example 1.

また、エマルゲン120の3wt%メタノール溶液を作成し、実施例1と同様にしてリチウムイオン二次電池用セパレータを作成した。エマルゲン120の塗工量は0.50g/mであった。これを実施例2とする。 Further, a 3 wt% methanol solution of Emulgen 120 was prepared, and a separator for a lithium ion secondary battery was prepared in the same manner as in Example 1. The coating amount of Emulgen 120 was 0.50 g / m 2 . This is Example 2.

エマルゲン120の代わりにエマルゲン404(花王製、非イオン系界面活性剤、ポリオキシエチレンアルキルエーテル)を用いて実施例1と同様にしてリチウムイオン二次電池用セパレータを作成した。エマルゲン404の塗工量は0.14g/mであった。これを実施例3とする。 A separator for a lithium ion secondary battery was prepared in the same manner as in Example 1 by using Emulgen 404 (manufactured by Kao, nonionic surfactant, polyoxyethylene alkyl ether) instead of Emulgen 120. The coating amount of Emulgen 404 was 0.14 g / m 2 . This is Example 3.

エマルゲン120の代わりにエレクトロストリッパーAC(花王製、両性イオン系界面活性剤、イミダゾリン系化合物)を用いて実施例1と同様にしてリチウムイオン二次電池用セパレータを作成した。エレクトロストリッパーACの塗工量は0.02g/mであった。これを実施例4とする。 A lithium ion secondary battery separator was prepared in the same manner as in Example 1 using electrostripper AC (made by Kao, amphoteric surfactant, imidazoline compound) instead of Emulgen 120. The coating amount of the electro stripper AC was 0.02 g / m 2 . This is Example 4.

エマルゲン120の代わりにエレクトロストリッパーQN(花王製、陽イオン性界面活性剤、第四級アンモニウム塩)を用いて実施例1と同様にしてリチウムイオン二次電池用セパレータを作成した。エレクトロストリッパーQNの塗工量は0.04g/mであった。これを実施例5とする。 A lithium ion secondary battery separator was prepared in the same manner as in Example 1 using electrostripper QN (manufactured by Kao, cationic surfactant, quaternary ammonium salt) instead of Emulgen 120. The coating amount of the electro stripper QN was 0.04 g / m 2 . This is Example 5.

エマルゲン120の代わりにエレクトロストリッパーF(花王製、陰イオン系界面活性剤、ポリオキシエチレンアルキルエーテルフォスフェート化合物)を用いて実施例1と同様にしてリチウムイオン二次電池用セパレータを作成した。エレクトロストリッパーFの塗工量は0.10g/mであった。これを実施例6とする。 A separator for a lithium ion secondary battery was prepared in the same manner as in Example 1 using electrostripper F (manufactured by Kao, an anionic surfactant, polyoxyethylene alkyl ether phosphate compound) instead of Emulgen 120. The coating amount of the electro stripper F was 0.10 g / m 2 . This is Example 6.

エマルゲン120の代わりにハイボロンKB212(ボロンインターナショナル製、両性イオン系界面活性剤、ビスオキシボレート系)の3wt%メタノール溶液を用いて実施例1と同様にしてリチウムイオン二次電池用セパレータを作成した。ハイボロンKB212の塗工量は0.05g/mであった。これを実施例7とする。 A lithium ion secondary battery separator was prepared in the same manner as in Example 1 by using a 3 wt% methanol solution of Hiboron KB212 (manufactured by Boron International, amphoteric surfactant, bisoxyborate) instead of Emulgen 120. The coating amount of High Boron KB 212 was 0.05 g / m 2 . This is Example 7.

また、上記セパレータの作成方法により得られたセパレータに対し、実施例1〜7のような界面活性剤処理を行なわなかったものを比較例1とする。   Moreover, what did not perform surfactant processing like Examples 1-7 with respect to the separator obtained by the preparation method of the said separator is made into the comparative example 1. FIG.

[摩擦帯電圧測定]
上述のリチウムイオン二次電池用セパレータをJIS L 1094に従って、摩擦帯電圧測定装置EST−7(カネボウエンジニアリング製)を用いて実施例1〜7に示すリチウムイオン二次電池用セパレータと比較例1の静電気の半減期を測定した。評価結果を(表1)に示す。
[Friction band voltage measurement]
According to JIS L 1094, the separator for lithium ion secondary batteries shown in Examples 1 to 7 and Comparative Example 1 were used for the above-described lithium ion secondary battery separator according to JIS L 1094. The half-life of static electricity was measured. The evaluation results are shown in (Table 1).

<リチウムイオン二次電池の評価法>
[フィルム外装電池の作製法]
正極は、コバルト酸リチウム粉末89.5重量部(日本化学工業製、C−8)、カーボンブラック4.5重量部とポリフッ化ビニリデンの乾燥重量が6.0重量部になるように5重量部のPVdFのN−メチル−2−ピロリドン溶液を用い、正極剤ペーストを作成し、得られたペーストを厚さ20μmのアルミ箔上に塗布乾燥後プレスし、作製した。これを3cm×5cmに切り出した。
<Evaluation method of lithium ion secondary battery>
[Method for producing film-clad battery]
The positive electrode is composed of 89.5 parts by weight of lithium cobaltate powder (C-8, manufactured by Nippon Kagaku Kogyo Co., Ltd.), 4.5 parts by weight of carbon black and 5 parts by weight so that the dry weight of polyvinylidene fluoride is 6.0 parts by weight. A positive electrode paste was prepared using an N-methyl-2-pyrrolidone solution of PVdF, and the obtained paste was applied onto an aluminum foil having a thickness of 20 μm, dried and pressed. This was cut into 3 cm × 5 cm.

負極は、炭素質負極剤としてメゾフェーズカーボンマイクロビーズ粉末87重量部(大阪ガス性、MCMB25−28)、カーボンブラック3重量部とポリフッ化ビニリデンの乾燥重量が10重量部になるように5重量部のポリフッ化ビニリデンのN−メチル−2−ピロリドン溶液を用い、負極剤ペーストを作成し、得られたペーストを厚さ18μmの銅箔上に塗布乾燥後プレスし、作製した。これを3cm×5cmに切り出した。   The negative electrode is 5 parts by weight so that the dry weight of 87 parts by weight of mesophase carbon microbead powder (Osaka Gas, MCMB25-28), 3 parts by weight of carbon black and polyvinylidene fluoride is 10 parts by weight as a carbonaceous negative electrode agent. An N-methyl-2-pyrrolidone solution of polyvinylidene fluoride was used to prepare a negative electrode agent paste, and the obtained paste was applied onto a copper foil having a thickness of 18 μm, dried and then pressed. This was cut into 3 cm × 5 cm.

実施例2に記載のセパレータを3.1cm×5.1cmに切り出し、これを正負極間に挟み、電解液を含浸させ、これをアルミラミネートパックに封入することでフィルム外装電池リチウムイオン二次電池を作製した。電解液として、エチレンカーボネートとエチルメチルカーボネートを重量比で3:7に混合した混合溶媒に1Mの濃度でLiPFを溶解した電解液を用いた。これを実施例8とする。 The separator described in Example 2 was cut into a size of 3.1 cm × 5.1 cm, sandwiched between positive and negative electrodes, impregnated with an electrolytic solution, and sealed in an aluminum laminate pack, thereby being a film-clad battery lithium ion secondary battery. Was made. As the electrolytic solution, an electrolytic solution in which LiPF 6 was dissolved at a concentration of 1 M in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a weight ratio of 3: 7 was used. This is Example 8.

実施例8で使用した電解液の代わりに、エチレンカーボネートとメチルエチルカーボネートとビニレンカーボネートを重量比で29.7:69.3:1に混合した混合溶媒に1Mの濃度でLiPFを溶解した電解液を用いて、実施例8と同様にリチウムイオン二次電池を作製した。これを実施例9とする。 Instead of the electrolytic solution used in Example 8, an electrolytic solution in which LiPF 6 was dissolved at a concentration of 1 M in a mixed solvent in which ethylene carbonate, methylethyl carbonate, and vinylene carbonate were mixed at a weight ratio of 29.7: 69.3: 1. Using the solution, a lithium ion secondary battery was produced in the same manner as in Example 8. This is Example 9.

[リチウムイオン二次電池の評価]
実施例8,9のリチウムイオン二次電池を0.2Cで4.2Vまで充電した後、2.75Vまで放電し、充放電効率を測定した。評価結果を[表2]に示す。
[Evaluation of lithium ion secondary battery]
The lithium ion secondary batteries of Examples 8 and 9 were charged at 0.2 C to 4.2 V, then discharged to 2.75 V, and the charge / discharge efficiency was measured. The evaluation results are shown in [Table 2].

Figure 2006073221
Figure 2006073221

Figure 2006073221
Figure 2006073221

Claims (6)

少なくとも表面の一方にポリフッ化ビニリデン系高分子からなる層を有する複合多孔膜であって、該複合多孔膜のポリフッ化ビニリデン系高分子層に界面活性剤が塗工されている複合多孔膜を用いたリチウムイオン二次電池用セパレータ。   A composite porous membrane having a layer made of a polyvinylidene fluoride polymer on at least one of the surfaces, wherein the polyvinylidene fluoride polymer layer of the composite porous membrane is coated with a surfactant is used. Separator for lithium ion secondary battery. 界面活性剤の付量が、0.005〜0.750g/mである請求項1に記載のリチウムイオン二次電池用セパレータ。 2. The separator for a lithium ion secondary battery according to claim 1, wherein an amount of the surfactant is 0.005 to 0.750 g / m 2 . 界面活性剤塗工後の摩擦帯電圧の半減期が、30秒以下である請求項1または2に記載のリチウムイオン二次電池用セパレータ。   The separator for a lithium ion secondary battery according to claim 1 or 2, wherein the half-life of the frictional voltage after coating with the surfactant is 30 seconds or less. 界面活性剤が陽イオン系界面活性剤、陰イオン系界面活性剤、両性イオン系界面活性剤からなる群から選ばれる少なくとも1種を含む請求項1〜3のいずれか1項に記載のリチウムイオン二次電池用セパレータ。   The lithium ion according to any one of claims 1 to 3, wherein the surfactant includes at least one selected from the group consisting of a cationic surfactant, an anionic surfactant, and an amphoteric surfactant. Secondary battery separator. 負極がリチウムをドープ・脱ドープ可能な炭素材料から主としてなり、正極がリチウム含有遷移金属酸化物から主としてなり、セパレータおよび非水系電解液を用いるリチウムイオン二次電池において、セパレータが請求項1〜4の少なくとも1項に記載のリチウムイオン二次電池用セパレータであるリチウムイオン二次電池。   In the lithium ion secondary battery in which the negative electrode is mainly composed of a carbon material that can be doped / undoped with lithium, the positive electrode is mainly composed of a lithium-containing transition metal oxide, and the separator and the non-aqueous electrolyte are used, the separator is claimed in claims 1 to 4. A lithium ion secondary battery which is a separator for a lithium ion secondary battery according to at least one of the above. 該非水系電解液にビニレンカーボネート、ビニルアセテートを含む請求項5に記載のリチウムイオン二次電池。   The lithium ion secondary battery according to claim 5, wherein the non-aqueous electrolyte includes vinylene carbonate and vinyl acetate.
JP2004251922A 2004-08-31 2004-08-31 Separator for lithium ion secondary battery, and lithium ion secondary battery Pending JP2006073221A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251922A JP2006073221A (en) 2004-08-31 2004-08-31 Separator for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251922A JP2006073221A (en) 2004-08-31 2004-08-31 Separator for lithium ion secondary battery, and lithium ion secondary battery

Publications (1)

Publication Number Publication Date
JP2006073221A true JP2006073221A (en) 2006-03-16

Family

ID=36153635

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251922A Pending JP2006073221A (en) 2004-08-31 2004-08-31 Separator for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP2006073221A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006260945A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte primary battery
US7715877B2 (en) 2004-11-12 2010-05-11 Sanyo Electric Co., Ltd. Transmitting and receiving method, and radio apparatus utilizing the same
KR101010463B1 (en) 2009-01-15 2011-01-21 도레이첨단소재 주식회사 Lithium Secondary Battery Using Multi-Component Separator Film with Surfactant
JP2012074367A (en) * 2010-08-30 2012-04-12 Sony Corp Nonaqueous electrolyte battery and manufacturing method thereof, insulation material and manufacturing method thereof, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
JP2013203894A (en) * 2012-03-28 2013-10-07 Asahi Kasei E-Materials Corp Polyolefin microporous membrane
JP2014186942A (en) * 2013-03-25 2014-10-02 Mitsubishi Paper Mills Ltd Separator base material for lithium battery
JP2015079752A (en) * 2013-10-18 2015-04-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Coating-separation film, and electrochemical device including the same
WO2015115513A1 (en) * 2014-01-30 2015-08-06 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
WO2015178351A1 (en) * 2014-05-20 2015-11-26 帝人株式会社 Separator for nonaqueous secondary batteries, method for producing same and nonaqueous secondary battery
CN105226225A (en) * 2014-07-16 2016-01-06 中国科学院青岛生物能源与过程研究所 A kind of have lithium ion battery separator of Inorganic whisker unsymmetric structure and preparation method thereof
WO2016002637A1 (en) * 2014-06-30 2016-01-07 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
KR20170130368A (en) 2015-03-24 2017-11-28 데이진 가부시키가이샤 Separator for non-aqueous secondary battery and non-aqueous secondary battery
US10193117B2 (en) 2011-04-08 2019-01-29 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
WO2020021807A1 (en) 2018-07-27 2020-01-30 株式会社クレハ Base material film, looseness prevention tape, and storage device
CN111615760A (en) * 2018-01-22 2020-09-01 赛尔格有限责任公司 Improved coated separator, lithium battery and related methods
CN114144933A (en) * 2019-09-11 2022-03-04 株式会社Lg新能源 Separator for secondary battery having excellent electrolyte impregnation

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7715877B2 (en) 2004-11-12 2010-05-11 Sanyo Electric Co., Ltd. Transmitting and receiving method, and radio apparatus utilizing the same
JP2006260945A (en) * 2005-03-17 2006-09-28 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte primary battery
KR101010463B1 (en) 2009-01-15 2011-01-21 도레이첨단소재 주식회사 Lithium Secondary Battery Using Multi-Component Separator Film with Surfactant
US9350005B2 (en) 2010-08-30 2016-05-24 Sony Corporation Non-aqueous electrolyte battery, separator, battery pack, electronic device, electromotive vehicle, power storage apparatus, and electric power system
JP2012074367A (en) * 2010-08-30 2012-04-12 Sony Corp Nonaqueous electrolyte battery and manufacturing method thereof, insulation material and manufacturing method thereof, and battery pack, electronic apparatus, electric vehicle, power storage device and electric power system
US10637027B2 (en) 2010-08-30 2020-04-28 Murata Manufacturing Co., Ltd. Battery, separator, battery pack, electronic device, electromotive vehicle, power storage apparatus, and electric power system
US10193117B2 (en) 2011-04-08 2019-01-29 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP2013203894A (en) * 2012-03-28 2013-10-07 Asahi Kasei E-Materials Corp Polyolefin microporous membrane
JP2014186942A (en) * 2013-03-25 2014-10-02 Mitsubishi Paper Mills Ltd Separator base material for lithium battery
US20150111087A1 (en) * 2013-10-18 2015-04-23 Samsung Sdi Co., Ltd. Coated separator and electrochemical device including the same
JP2015079752A (en) * 2013-10-18 2015-04-23 三星エスディアイ株式会社Samsung SDI Co.,Ltd. Coating-separation film, and electrochemical device including the same
US9722224B2 (en) * 2013-10-18 2017-08-01 Samsung Sdi Co., Ltd. Coated separator and electrochemical device including the same
JP5873605B2 (en) * 2014-01-30 2016-03-01 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
JPWO2015115513A1 (en) * 2014-01-30 2017-03-23 帝人株式会社 Nonaqueous secondary battery separator and nonaqueous secondary battery
WO2015115513A1 (en) * 2014-01-30 2015-08-06 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
US10199623B2 (en) 2014-01-30 2019-02-05 Teijin Limited Separator for nonaqueous secondary battery, and nonaqueous secondary battery
JP5882549B1 (en) * 2014-05-20 2016-03-09 帝人株式会社 Nonaqueous secondary battery separator, method for producing the same, and nonaqueous secondary battery
WO2015178351A1 (en) * 2014-05-20 2015-11-26 帝人株式会社 Separator for nonaqueous secondary batteries, method for producing same and nonaqueous secondary battery
WO2016002637A1 (en) * 2014-06-30 2016-01-07 帝人株式会社 Separator for nonaqueous secondary batteries, and nonaqueous secondary battery
JP6058159B2 (en) * 2014-06-30 2017-01-11 帝人株式会社 Non-aqueous secondary battery separator and non-aqueous secondary battery
CN105226225A (en) * 2014-07-16 2016-01-06 中国科学院青岛生物能源与过程研究所 A kind of have lithium ion battery separator of Inorganic whisker unsymmetric structure and preparation method thereof
KR20170130368A (en) 2015-03-24 2017-11-28 데이진 가부시키가이샤 Separator for non-aqueous secondary battery and non-aqueous secondary battery
US11183735B2 (en) 2015-03-24 2021-11-23 Teijin Limited Separator for a non-aqueous secondary battery, and non-aqueous secondary battery
CN111615760A (en) * 2018-01-22 2020-09-01 赛尔格有限责任公司 Improved coated separator, lithium battery and related methods
JP2020017470A (en) * 2018-07-27 2020-01-30 株式会社クレハ Base film, loosening prevention tape, and power storage device
WO2020021807A1 (en) 2018-07-27 2020-01-30 株式会社クレハ Base material film, looseness prevention tape, and storage device
CN114144933A (en) * 2019-09-11 2022-03-04 株式会社Lg新能源 Separator for secondary battery having excellent electrolyte impregnation
CN114144933B (en) * 2019-09-11 2024-01-30 株式会社Lg新能源 Separator for secondary battery having excellent electrolyte impregnation property

Similar Documents

Publication Publication Date Title
KR102573627B1 (en) Additives for non-aqueous electrolytes, non-aqueous electrolytes and electrical storage devices
JP4127989B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP6840396B2 (en) Modified ceramic separator complex and its manufacturing method
KR101923787B1 (en) Protective film, separator using same, and secondary battery
JP5426763B2 (en) Nonaqueous electrolyte for secondary battery and nonaqueous electrolyte secondary battery
JP5015474B2 (en) Battery separator, lithium ion secondary battery, electric double layer capacitor
JP4493513B2 (en) Organic electrolyte and lithium battery using the same
CN106784558A (en) Ceramic diaphragm with aeroge as powder and its application in lithium ion battery
JP2006506775A5 (en)
JP2013093333A (en) Electrode covered with thin film obtained from aqueous solution including aqueous binder, and manufacturing method and use thereof
JP2004095556A (en) Organic electrolytic solution and lithium battery adopting it
JP2004221085A (en) Organic electrolytic solution and lithium battery using the same
JP2006073221A (en) Separator for lithium ion secondary battery, and lithium ion secondary battery
JP6184810B2 (en) Non-aqueous secondary battery
JP4606705B2 (en) Non-aqueous secondary battery separator and non-aqueous secondary battery
JP5357518B2 (en) ELECTRODE BODY FOR STORAGE ELEMENT AND NON-AQUEOUS LITHIUM TYPE STORAGE ELEMENT CONTAINING THE SAME
CN108933277B (en) Lithium ion secondary battery
JP2004362872A (en) Electrolyte for storage elements and storage element
JP3587982B2 (en) Polymer solid electrolyte and lithium secondary battery and electric double layer capacitor using the same
JP3540629B2 (en) Method for producing electrode for electrochemical device and electrochemical device
JP4406946B2 (en) Solid electrolyte
JP5017769B2 (en) Nonaqueous electrolyte secondary battery
JP2002158012A (en) Slurry mixture for manufacturing nonaqueous cell electrode
JP4187434B2 (en) Lithium ion secondary battery separator and lithium ion secondary battery
KR102273644B1 (en) Separator for rechargeable lithium battery and rechargeable lithium battery including the same