JP2006073217A - Planar heating element and manufacturing method of planar heating element - Google Patents

Planar heating element and manufacturing method of planar heating element Download PDF

Info

Publication number
JP2006073217A
JP2006073217A JP2004251668A JP2004251668A JP2006073217A JP 2006073217 A JP2006073217 A JP 2006073217A JP 2004251668 A JP2004251668 A JP 2004251668A JP 2004251668 A JP2004251668 A JP 2004251668A JP 2006073217 A JP2006073217 A JP 2006073217A
Authority
JP
Japan
Prior art keywords
heating element
graphite
synthetic resin
dispersion medium
resin dispersion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004251668A
Other languages
Japanese (ja)
Inventor
Yoshihide Goto
芳英 後藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Goto Denshi Co Ltd
Original Assignee
Goto Denshi Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Goto Denshi Co Ltd filed Critical Goto Denshi Co Ltd
Priority to JP2004251668A priority Critical patent/JP2006073217A/en
Publication of JP2006073217A publication Critical patent/JP2006073217A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a planar heating element which is used optimally, for example for a heating mat, floor heating, melting of snow on the road or roof, or prevention of freezing, and has a good conversion efficiency of electric energy with a short start-up time, and in which uniform heating temperature distribution is obtained, without constraint of the shape, and which is safe without excess current flowing accompanying deterioration of resistance, and has a low runing cost with a simple manufacturing process, with few forming material, and with low manufacturing cost and material cost, and its manufacturing method. <P>SOLUTION: The planar heating element has a conductive material consisting of graphite and carbon black mixed and dispersed in a synthetic resin dispersion medium made of fluorine based resin as the main component. The graphite with a prescribed micro particle size and carbon black are mixed and dispersed in a prescribed ratio in the synthetic resin dispersion medium. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は面状発熱体および面状発熱体の製造方法に関し、例えば暖房畳、床暖房、道路や屋根の融雪を行ったり、凍結を防止する等に最適に使用され、短い立ち上がり時間にて電気エネルギーの変換効率が良く、均一な発熱温度分布が得られ、しかも形状に制約されずに確実な発熱が行え、また所定温度を超えた場合に抵抗が減少されず、過剰に電流が流れることなく、安全性を高くする。   The present invention relates to a planar heating element and a method of manufacturing the planar heating element, and is optimally used for, for example, heating tatami mats, floor heating, melting snow on roads and roofs, and preventing freezing. Energy conversion efficiency is good, uniform heat generation temperature distribution is obtained, and reliable heat generation can be performed without being restricted by the shape, resistance is not reduced when the temperature exceeds the specified temperature, and excessive current does not flow , Increase safety.

従来、暖房用、また道路や屋根の融雪を行ったり、凍結を防止するのに用いる発熱体として、温度制御回路が不要な正温度係数特性を有する面状発熱体が脚光を浴びてきている。そして、正温度係数(「Positive Temperature Coeffient」、以下、単に「PTC」という。)とは、発熱体の温度が設計時に定められた所定温度まで上昇すると、発熱体の電気特性が増加する特性である。そして、発熱体は、通電されると、発熱で所定温度まで上昇するが、PTC特性により電気抵抗が増加し、流れる電流が規制されることで発熱温度が所定温度で維持される、いわゆる自己温度制御機能を有するものであった。このPTC特性を発揮する面状発熱体を用いた暖房畳があった(例えば特許文献1参照)。   2. Description of the Related Art Conventionally, as a heating element for heating, melting snow on roads and roofs, and preventing freezing, a planar heating element having a positive temperature coefficient characteristic that does not require a temperature control circuit has attracted attention. The positive temperature coefficient (“Positive Temperature Coefficient”, hereinafter simply referred to as “PTC”) is a characteristic in which the electrical characteristics of the heating element increase when the temperature of the heating element rises to a predetermined temperature determined at the time of design. is there. When the heating element is energized, it rises to a predetermined temperature due to heat generation, but the electrical resistance increases due to the PTC characteristics, and the flowing current is regulated so that the heating temperature is maintained at the predetermined temperature. It had a control function. There has been a heating tatami using a planar heating element that exhibits this PTC characteristic (see, for example, Patent Document 1).

また、いわゆる自己温度制御機能を有する従来の面状発熱体は、発熱体を布や不織布などの基材に含浸させることにより柔軟性を発揮させるものがあった(例えば、特許文献2参照)。   Further, some conventional planar heating elements having a so-called self-temperature control function exhibit flexibility by impregnating a heating element into a base material such as cloth or nonwoven fabric (for example, see Patent Document 2).

また、裸ニクロム線を絶縁材料からなる粘着層上に配設し、この粘着層と裸ニクロム線とは、周辺部分をヒートシールされている多層の複合フィルムの内部に配設したものがあった(例えば特許文献3参照)。   Further, a bare nichrome wire was disposed on an adhesive layer made of an insulating material, and the adhesive layer and the bare nichrome wire were disposed in a multilayer composite film in which the peripheral portion was heat sealed. (For example, refer to Patent Document 3).

また、シート状基体上にPTC特性を有する発熱層を有し、該発熱層の片面または両面に、熱膨張性球状体または熱分解性化合物を含有する熱膨張性層を設けたものがあった(特許文献4参照)。
特開2003−59626号公報 特開2003−264052号公報 特開2003−257597号公報 特開2002−313541号公報
There is also a sheet-like substrate having a heat-generating layer having PTC characteristics, and a heat-expandable layer containing a heat-expandable sphere or a heat-decomposable compound is provided on one or both sides of the heat-generating layer. (See Patent Document 4).
JP 2003-59626 A JP 2003-264052 A JP 2003-257597 A Japanese Patent Laid-Open No. 2002-313541

しかしながら、特許文献1に記載の上記従来のPTC特性を発揮する面状発熱体は、発熱温度を設計時に定めた所定温度まで上昇すると、発熱体の電気抵抗が増加し、流れる電流が規制され、発熱温度が所定の温度に保たれるが、温度が変化する環境において実用に供する時に単に1種のPTC発熱体を使用するのではなく、特性の異なる複数の発熱体を組み合わせることにより実用に供されされていた。従って、立ち上がり時間が長くなり、電気エネルギーの変換効率は概して約70〜80%程度であり、ランニングコストは高くなる。また、製造工程が複雑で多岐になり、しかも成形材料の種類も多いので、製作費および資材費は高価なものであった。   However, the planar heating element that exhibits the conventional PTC characteristics described in Patent Document 1 increases the electrical resistance of the heating element when the heating temperature rises to a predetermined temperature determined at the time of design, and the flowing current is regulated, Although the exothermic temperature is maintained at a predetermined temperature, it is not practically used by combining a plurality of heating elements having different characteristics, instead of using only one type of PTC heating element when practically used in an environment where the temperature changes. Had been. Accordingly, the rise time becomes long, the conversion efficiency of electric energy is generally about 70 to 80%, and the running cost becomes high. In addition, since the manufacturing process is complicated and diverse, and there are many types of molding materials, production costs and material costs are expensive.

また、発熱体を布や不織布などの基材に含浸させる特許文献2に記載の上記従来の面状発熱体は、柔軟性が完璧であるものとは言えなかった。しかも、発熱体を布や不織布等の基材に含浸させた場合に、通電に伴う発熱による結晶高分子の体積膨張が妨げられ、抵抗値が低下したり、または、発熱体の膜厚が均一に形成されずにバラツキを生ずるので、均一な温度分布が得られなかった。   Further, the conventional planar heating element described in Patent Document 2 in which a heating element is impregnated into a base material such as cloth or nonwoven fabric cannot be said to have perfect flexibility. In addition, when the heating element is impregnated into a substrate such as cloth or nonwoven fabric, the volume expansion of the crystalline polymer due to the heat generated by energization is hindered, resulting in a decrease in resistance value or a uniform heating element thickness. As a result, the uniform temperature distribution could not be obtained.

また、裸ニクロム線を絶縁材料からなる粘着層上に配設し、この粘着層と裸ニクロム線との周辺部分をヒートシールする多層の複合フィルムの内部に配設した特許文献3に記載の上記従来の面状発熱体は、裸ニクロム線の周辺部分がヒートシールされるものなので、電極部配線の構造として発熱体の形状が、平面四角形、平面長方形等の角形に制約されて形成されるものであった。   Further, the above-mentioned Patent Document 3 in which a bare nichrome wire is disposed on an adhesive layer made of an insulating material, and is disposed inside a multilayer composite film that heat seals the peripheral portion of this adhesive layer and the bare nichrome wire. The conventional planar heating element is one in which the peripheral part of the bare nichrome wire is heat-sealed, so that the shape of the heating element is constrained to a square shape such as a planar quadrangle or a planar rectangle as the electrode wiring structure. Met.

従って、平面楕円形や平面円形の鏡等の加熱対象物に面状発熱体を形成した場合には、その形状に沿って面状発熱体を隈無く加熱することはできなかった。このため、鏡の全面に「曇り防止」をするニーズに対応することができなかった。   Therefore, when a sheet heating element is formed on a heating object such as a plane ellipse or a plane circular mirror, the sheet heating element cannot be heated along the shape. For this reason, it was not possible to meet the need for “anti-fogging” on the entire surface of the mirror.

また、シート状基体上にPTC特性を有する発熱層を有し、該発熱層の片面または両面に、熱膨張性球状体または熱分解性化合物を含有する熱膨張性層を設けた特許文献4に記載の上記面状発熱体は、面状発熱体に通電が行われることにより発熱が所定の温度を超えて高温域に達すると、PTC特性がNTC特性に変わり、電気抵抗が低くなることにより過剰の電流が流れて発熱・発火に到る危険があった。   Patent Document 4 has a heat-generating layer having PTC characteristics on a sheet-like substrate, and a heat-expandable layer containing a heat-expandable sphere or a heat-decomposable compound is provided on one or both sides of the heat-generating layer. When the sheet heating element is energized, the PTC characteristic changes to the NTC characteristic when the heating exceeds a predetermined temperature and reaches a high temperature range. There was a risk of overheating and ignition due to current flow.

本発明は上記従来の欠点を解決し、短い立ち上がり時間にて電気エネルギーの発熱への変換効率が良く、また均一な膜厚にて形成されて安定した発熱温度分布が得られ、また柔軟性に優れ、しかも形状に制約されずに発熱が充分に行え、また所定温度を超えた場合の発熱・発火がなく安全性が高く、ランニングコストが低く、さらには製造工程が簡単にして成形材料も少なく製作費および資材費が安価な面状発熱体および面状発熱体の製造方法を提供することを目的とする。   The present invention solves the above-mentioned conventional drawbacks, has a high conversion efficiency of electric energy to heat generation with a short rise time, and is formed with a uniform film thickness to obtain a stable heat generation temperature distribution, and also to be flexible. It is excellent and can generate heat sufficiently without being constrained by its shape. Also, it does not generate heat or ignite when the temperature exceeds a certain level, so it is highly safe, the running cost is low, and the manufacturing process is simplified to reduce the number of molding materials. An object of the present invention is to provide a sheet heating element and a method for manufacturing the sheet heating element that are inexpensive in production cost and material cost.

本発明は上記課題に鑑みなされたものであり、請求項1に記載の発明は、フッソ系樹脂を主成分とする合成樹脂分散媒に、黒鉛とカーボンブラックとよりなる導電性材料を混入、分散させた面状発熱体において、前記合成樹脂分散媒に、所定の微小粒径の前記黒鉛と、前記カーボンブラックとが所望割合に混合・分散されることを特徴とする。   The present invention has been made in view of the above problems, and the invention according to claim 1 includes mixing and dispersing a conductive material composed of graphite and carbon black in a synthetic resin dispersion medium mainly composed of a fluorine-based resin. In the planar heating element, the synthetic resin dispersion medium is mixed and dispersed in a desired ratio with the graphite having a predetermined fine particle diameter and the carbon black.

また、本発明の請求項2に記載の発明は、請求項1において、前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとの組成比が、5〜9:2〜6:1〜4(重量%)、好適には8:2:1(重量%)の割合に混合・分散されることを特徴とする。   Moreover, the invention according to claim 2 of the present invention is that, in claim 1, the composition ratio of the synthetic resin dispersion medium, the graphite, and the carbon black is 5-9: 2-6: 1-4. (Weight%), preferably mixed and dispersed at a ratio of 8: 2: 1 (weight%).

また、本発明の請求項3に記載の発明は、請求項1または請求項2において、前記黒鉛と前記カーボンブラックとの粒子径は、定方向フェレー径にて5〜1μmクラスが約15重量%、1〜0.3μmクラスが約70重量%、0.3〜0.05μmクラスが約15%ほど均一に合成樹脂分散媒中に分散されることを特徴とする。   The invention according to claim 3 of the present invention is the invention according to claim 1 or 2, wherein the particle diameter of the graphite and the carbon black is about 15% by weight in a unidirectional ferret diameter of 5 to 1 μm class. The 1 to 0.3 μm class is approximately 70% by weight, and the 0.3 to 0.05 μm class is approximately 15% uniformly dispersed in the synthetic resin dispersion medium.

また、本発明の請求項4に記載の発明は、請求項1、請求項2、請求項3において、前記組成割合の前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとに対して添加物としてLi,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pb、またはこれらの群から選ばれる酸化物もしくは炭化物を約5重量%ほど添加して混合・分散させることを特徴とした。   In addition, the invention according to claim 4 of the present invention is added to the synthetic resin dispersion medium having the composition ratio, the graphite, and the carbon black according to claim 1, claim 2, and claim 3. About 5% by weight of Li, Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo, Pb, or an oxide or carbide selected from these groups is added and mixed and dispersed. It was characterized by that.

また、本発明の請求項5に記載の発明は、フッソ樹脂系の合成樹脂分散媒に、所定の微小粒径の黒鉛と、カーボンブラックと、添加物とを所望割合、混入して所望時間混練する工程と、
該合成樹脂分散媒と、黒鉛と、カーボンブラックと、添加物との混練物に水を混入して軟固形物を形成する工程と、
該軟固形物を押出成形することにより面状発熱体を成形する、
ことを特徴としたという手段を採用した。
In the invention according to claim 5 of the present invention, graphite of a predetermined fine particle size, carbon black, and additives are mixed in a desired ratio in a fluororesin-based synthetic resin dispersion medium for a desired time. And a process of
A step of mixing water into a kneaded product of the synthetic resin dispersion medium, graphite, carbon black, and additives to form a soft solid,
A sheet heating element is formed by extruding the soft solid.
Adopted the means characterized by that.

また、本発明の請求項6に記載の発明は、フッソ系樹脂の合成樹脂分散媒に、所定の微小粒径の黒鉛と、カーボンブラックと、添加物との混合物に水を所望量混入して混練する工程と、
その後に前記混合物を乾燥する工程と、
該混合物に揮発性溶剤を所望量混入し、乾燥して軟固形物を形成する工程と、
該軟固形物を押出成形することにより面状発熱体を成形する、
ことを特徴とした。
According to a sixth aspect of the present invention, a desired amount of water is mixed in a synthetic resin dispersion medium of a fluorine-based resin in a mixture of graphite having a predetermined fine particle diameter, carbon black, and an additive. A kneading step;
Then drying the mixture;
Adding a desired amount of a volatile solvent to the mixture and drying to form a soft solid;
A sheet heating element is formed by extruding the soft solid.
It was characterized by that.

また、請求項7に記載の発明は、請求項5,6において、前記黒鉛と前記カーボンとの粒子径は、定方向フェレー径にて5〜1μmクラスが約15重量%、1〜0.3μmクラスが約70重量%、0.3〜0.05μmクラスが約15重量%ほど均一に合成樹脂分散媒中に分散されることを特徴とする。   The invention according to claim 7 is the invention according to claims 5 and 6, wherein the particle diameter of the graphite and the carbon is about 15% by weight in a unidirectional ferret diameter of about 5 wt. The class is characterized by being uniformly dispersed in the synthetic resin dispersion medium by about 70% by weight and the class of 0.3 to 0.05 μm by about 15% by weight.

また、本発明の請求項8に記載の発明は、請求項5,6,7において前記添加物が、Li,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pb、またはこれらの群から選ばれる酸化物もしくは炭化物であることを特徴とした。   The invention according to claim 8 of the present invention is the additive according to claim 5, 6, 7, wherein the additive is Li, Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo, Pb. Or an oxide or carbide selected from these groups.

本発明の面状発熱体および面状発熱体の製造方法は、短い立ち上がり時間にて電気エネルギーの熱変換効率が良く、また均一な膜厚にて形成されて安定した発熱温度分布が得られ、また柔軟性に優れ、しかも形状に制約されずに形状に沿う発熱が確実に行え、また所定温度を超えた場合に発熱・発火がなく安全であり、ランニングコストが低く、製造工程が簡単にして成形材料も少なく製作費および資材費は安価になる。   The sheet heating element and the method for manufacturing the sheet heating element of the present invention have good heat conversion efficiency of electric energy with a short rise time, and are formed with a uniform film thickness to obtain a stable heating temperature distribution, In addition, it is excellent in flexibility, can reliably generate heat along the shape without being constrained by the shape, is safe without heat and ignition when the temperature exceeds the specified temperature, has a low running cost, and simplifies the manufacturing process. There are few molding materials, and production costs and material costs are low.

以下図面に従い、本発明を実施するための最良の形態につき詳細を説明する。   Hereinafter, the best mode for carrying out the present invention will be described in detail with reference to the drawings.

図1は本発明の面状発熱体の実施形態1を示す顕微鏡写真、図2は同じく本実施形態1の面状発熱体の時間の経過に伴う表面温度変化を測定した特性のグラフである。   FIG. 1 is a photomicrograph showing Embodiment 1 of the planar heating element of the present invention, and FIG. 2 is a graph of characteristics obtained by measuring the surface temperature change of the planar heating element according to Embodiment 1 with time.

本実施形態1では、フッソ系樹脂を主成分とする合成樹脂分散媒に、黒鉛とカーボンブラックとよりなる導電性材料を混入、分散させた面状発熱体において、前記合成樹脂分散媒に、所定の微少粒径の前記黒鉛と、前記カーボンブラックとが所望割合に混合・分散されることを特徴とする。   In the first embodiment, in a sheet heating element in which a conductive material composed of graphite and carbon black is mixed and dispersed in a synthetic resin dispersion medium mainly composed of a fluorine-based resin, the synthetic resin dispersion medium has a predetermined value. The above-mentioned graphite having a small particle diameter and the carbon black are mixed and dispersed in a desired ratio.

前記黒鉛とカーボンブラックとの粒子径は、定方向フェレー径にて5〜1μmクラスの大粒径のもの、また1〜0.3μmクラスの中粒径のもの、0.3〜0.05μmクラスの小粒径のものとそれぞれ粒子径が大小異なるものを混合して使用される。   The particle size of the graphite and carbon black is a large particle size of 5 to 1 μm class, a medium particle size of 1 to 0.3 μm class, and a 0.3 to 0.05 μm class in a directional ferret diameter. These are used in a mixture of those having a small particle size and those having a particle size different from each other.

また、前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとは5〜9:2〜6:1〜4(重量%)の割合、好適には、その組成比が、8:2:1(重量%)の割合に混合される。   The synthetic resin dispersion medium, the graphite, and the carbon black have a ratio of 5 to 9: 2 to 6: 1 to 4 (wt%), preferably a composition ratio of 8: 2: 1. (% By weight) is mixed.

このように、本実施形態1での面状発熱体において、黒鉛とカーボンブラックとの粒子径が、定方向フェレー径にて5〜1μmクラス、1〜0.3μmクラス、0.3〜0.05μmクラスとそれぞれ粒子径が大小異なるものを所定割合、混合するようにしたのは、フッソ系の合成樹脂を主成分とする合成樹脂分散媒中に、1〜0.3μmクラスの中粒の黒鉛とカーボンが黒鉛とカーボンブラックの全混入量の全体の約70重量%の大部分を占め、そして、この中粒の黒鉛とカーボンブラック中に、5〜1μmクラスの大粒径の黒鉛とカーボンとが約15重量%存在し、さらに0.3〜0.05μmクラスの小粒径の黒鉛とカーボンとが15重量%ほど、前記中粒クラスと前記大粒クラスの黒鉛とカーボンとの間に隈無く、均一に合成樹脂分散媒中に全体的に分散・混合させ、通電材料を合成樹脂分散媒中に高密度に分散させるようにするためである。   Thus, in the planar heating element of the first embodiment, the particle diameters of graphite and carbon black are 5 to 1 μm class, 1 to 0.3 μm class, 0.3 to 0. A mixture of particles having a particle size different from that of the 05 μm class in a predetermined ratio is mixed in a 1 to 0.3 μm class medium-sized graphite in a synthetic resin dispersion medium mainly composed of a fluorine-based synthetic resin. And carbon account for the majority of about 70% by weight of the total mixing amount of graphite and carbon black, and in this medium-sized graphite and carbon black, graphite and carbon having a large particle size of 5 to 1 μm About 15% by weight of graphite and carbon having a small particle size of 0.3 to 0.05 μm, and 15% by weight between the medium and large classes of graphite and carbon. Uniformly synthetic resin dispersion medium Overall dispersed and mixed in, in order to allow high density dispersed energization material in a synthetic resin dispersion medium.

そして、本実施形態1で得られる面状発熱体を使用する場合に、通電が行われ、電気エネルギーの熱エネルギーへの変換効率が高く、少ない消費電力にて効率良く熱エネルギーを発生することができる。   When the planar heating element obtained in the first embodiment is used, energization is performed, the conversion efficiency of electric energy into heat energy is high, and heat energy can be generated efficiently with low power consumption. it can.

また、前記合成樹脂分散媒としてフッソ系樹脂を主成分とするものが使用されるが、このフッソ系樹脂を使用するのは、例えば電気絶縁性のほか、耐寒性、耐熱性、耐薬品性、耐摩耗性、耐衝撃性等の機械的特性に優れているためである。   In addition, as the synthetic resin dispersion medium, a material mainly composed of a fluorine-based resin is used. For example, in addition to electrical insulation, this fluorine-based resin is used for cold resistance, heat resistance, chemical resistance, This is because of excellent mechanical properties such as wear resistance and impact resistance.

また、前述のように、フッソ系樹脂を主成分とする前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとの組成比が、5〜9:2〜6:1〜4(重量%)の割合、また、好適には、それらの組成比が、8:2:1(重量%)の所定割合に混合するのは、合成樹脂分散媒としてのフッソ系樹脂の電気絶縁性のほか、耐寒性、耐熱性、不燃性、耐薬品性、耐摩耗性、耐衝撃性、柔軟性等の機械的特性を充分に発揮するためと、合成樹脂分散媒に黒鉛およびカーボンブラックよりなる通電材料を前記組成割合に全体的に均一に分散させることにより良好な通電性を発揮するとともに電気エネルギーを熱エネルギーに効率良く変換する等の優れた電気特性を発揮するのと、前記合成樹脂分散媒と前記通電材料等との結合性を強固にするためである。   Further, as described above, the composition ratio of the synthetic resin dispersion medium mainly composed of a fluorine-based resin, the graphite, and the carbon black is 5 to 9: 2 to 6: 1 to 4 (% by weight). In addition to the electrical insulation of the fluorine-based resin as a synthetic resin dispersion medium, it is preferable that the composition ratio is mixed at a predetermined ratio of 8: 2: 1 (wt%). In order to fully exhibit mechanical properties such as heat resistance, heat resistance, non-flammability, chemical resistance, wear resistance, impact resistance, flexibility, and the like, an electrically conductive material made of graphite and carbon black is used as a synthetic resin dispersion medium. It exhibits excellent electrical properties by uniformly dispersing the composition ratio as a whole and exhibits excellent electrical properties such as efficient conversion of electrical energy to thermal energy, and the synthetic resin dispersion medium and the electrical current To strengthen the bondability with materials, etc. That.

例えば、合成樹脂分散媒の組成比が、前記5〜9(重量%)よりも低く、黒鉛およびカーボンブラックの組成比が上記2〜6:1〜4(重量%)の割合よりも高くなる場合には、製造される面状発熱体は、亀裂やかけを生じ易く、柔軟性に欠けて引張、圧縮等の機械的強度の低下が著しく機械的寿命が短命になり、また、面状発熱体の製造時の成形性が悪く、さらには合成樹脂分散媒中に黒鉛およびカーボンブラックよりなる通電材料の混合・分散が不均一になって偏在し、通電性等が悪いものとなるためである。   For example, when the composition ratio of the synthetic resin dispersion medium is lower than the above 5-9 (% by weight) and the composition ratio of graphite and carbon black is higher than the above ratio of 2-6: 1-4 (% by weight) The sheet heating element to be manufactured is prone to cracking and cracking, lacks flexibility, significantly reduces mechanical strength such as tension and compression, and has a short mechanical life. This is because the moldability at the time of production is poor, and furthermore, the mixing / dispersion of the conductive material made of graphite and carbon black becomes uneven in the synthetic resin dispersion medium and is unevenly distributed, resulting in poor conductivity.

また、前記組成割合の前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとに対して添加物としてLi,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pbまたはこれらの群から選ばれる酸化物もしくは炭化物を約5重量%ほどの少量添加することにより混合・分散させる。このLi,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pb、またはこれらの群から選ばれる酸化物もしくは炭化物としては、例えば前記群から選ばれる物質が数種含まれる鉱物を細かく粉砕したものを用いてもよい。   Further, Li, Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo, and Pb are added as additives to the synthetic resin dispersion medium having the above composition ratio, the graphite, and the carbon black. Alternatively, an oxide or carbide selected from these groups is mixed and dispersed by adding a small amount of about 5% by weight. The Li, Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo, Pb, or oxides or carbides selected from these groups include, for example, several substances selected from the above groups. Finely pulverized minerals may be used.

このように、前記組成割合の前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとに対して添加物としてLi,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pb、またはこれらの群から選ばれる酸化物もしくは炭化物を混合して添加するのは、面状発熱体に通電し、発熱させることにより、10〜40mmの波長の電磁波、例えばマイクロ波、遠赤外線等を発生させるためである。   Thus, Li, Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo as additives to the synthetic resin dispersion medium of the composition ratio, the graphite, and the carbon black. , Pb, or oxides or carbides selected from these groups are added in a mixed manner by applying current to the planar heating element to generate heat, thereby generating electromagnetic waves having a wavelength of 10 to 40 mm, such as microwaves and far infrared rays. It is for generating etc.

このような波長の電磁波を面状発熱体が発生するように、融雪や、凍結を防止するための面状発熱体に適用する場合には、遠赤外線による電磁波の伝搬により面状発熱体から発生する熱エネルギーを損なうことなく雪や氷の分子と共鳴振動して活性化したり、または励起状態から基底状態に戻る際に水の分子等から放出される熱エネルギーにより融雪と凍結の防止とを効率的に行える。   When applied to a planar heating element to prevent melting or freezing so that an electromagnetic wave with such a wavelength is generated by the planar heating element, it is generated from the planar heating element by the propagation of electromagnetic waves by far infrared rays. Efficient to prevent snow melting and freezing by thermal energy released from the water molecules when returning from the excited state to the ground state by resonance vibration and activation with the snow and ice molecules without damaging the heat energy Can be done.

そして、本実施形態1の面状発熱体を成形するには、混合用の撹拌容器内に、前記合成樹脂分散媒と、所定の微少粒径の前記黒鉛と、前記カーボンブラックと、前記添加物とを前記組成割合づつ投入し、所望時間、所望速度にて撹拌する。   And in order to shape | mold the planar heating element of this Embodiment 1, in the stirring container for mixing, the said synthetic resin dispersion medium, the said graphite of the predetermined micro particle diameter, the said carbon black, and the said additive Are added at the above-mentioned composition ratios, and stirred at a desired speed for a desired time.

この時、前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとの組成比は、例えば5〜9:2〜6:1〜4(重量%)の所定割合、さらに好適には前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとの組成比が、8:2:1(重量%)の割合に混合され、しかも、前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとに対してLi,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pb、またはこれらの群から選ばれる酸化物もしくは炭化物よりなる添加物は、例えば約5重量%程度の少量の組成割合に混入させる。   At this time, the composition ratio of the synthetic resin dispersion medium, the graphite, and the carbon black is, for example, a predetermined ratio of 5-9: 2-6: 1-4 (% by weight), more preferably the synthetic resin. The composition ratio of the dispersion medium, the graphite, and the carbon black is mixed at a ratio of 8: 2: 1 (wt%), and the synthetic resin dispersion medium, the graphite, and the carbon black are mixed. On the other hand, an additive made of Li, Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo, Pb, or an oxide or carbide selected from these groups is, for example, about 5% by weight. Mix in a small amount of composition.

次いで、これらの前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックと、前記添加物との混合物に水を適量加えて所望時間混練することにより合成樹脂分散媒中に前記黒鉛と、前記カーボンブラックとをゲル状に均一に分散させる。その後、前記混合物に混入した水を除去し、乾燥させることにより前記混合物の半生固形物を造る。   Next, an appropriate amount of water is added to a mixture of the synthetic resin dispersion medium, the graphite, the carbon black, and the additive and kneaded for a desired time, whereby the graphite and the carbon are mixed in the synthetic resin dispersion medium. Disperse black and gel uniformly. Thereafter, water mixed in the mixture is removed and dried to produce a semi-solid solid of the mixture.

このように、合成樹脂分散媒と、黒鉛と、カーボンブラックとの混合物とに適量の水を加えて混練するのは、通電性材料としての黒鉛と、カーボンブラックとを合成樹脂分散媒に対してゲル状になして偏在することなく均一に分散するのと、黒鉛と、カーボンブラックとの水分含有量を増すことにより混練時の摩擦係数を減らして合成樹脂分散媒に対する黒鉛とカーボンブラックとの混入作業を円滑かつ迅速に行うのと、半生固形物となすようにして加工性と取扱いとをを良くするためである。この時、混入する水の量を、合成樹脂分散媒と、黒鉛と、カーボンブラックとの混合量に応じて増減することにより、黒鉛と、カーボンブラックとの水分含有量や合成樹脂分散媒に対する黒鉛とカーボンブラックと摩擦係数を調整して加工性を良くする。   As described above, adding an appropriate amount of water to the mixture of the synthetic resin dispersion medium, graphite, and carbon black and kneading the mixture causes the graphite and carbon black as the conductive material to be mixed with the synthetic resin dispersion medium. Mixing graphite and carbon black into a synthetic resin dispersion medium by reducing the coefficient of friction during kneading by increasing the water content of graphite and carbon black by dispersing in a gel-like manner and without being unevenly distributed This is because the work is carried out smoothly and rapidly and the workability and handling are improved by making it a semi-solid solid. At this time, by increasing or decreasing the amount of mixed water according to the mixing amount of the synthetic resin dispersion medium, graphite, and carbon black, the moisture content of graphite and carbon black and the graphite with respect to the synthetic resin dispersion medium. And adjust the coefficient of friction with carbon black to improve workability.

そして、前記混合物から面状発熱体を成形し易くするために、揮発性の溶剤を所望量ほど処理容器内の合成樹脂分散媒と、黒鉛と、カーボンブラック等との前記混合物に混入し、該処理容器を密閉し、乾燥する。   Then, in order to facilitate the formation of the planar heating element from the mixture, a desired amount of volatile solvent is mixed into the mixture of the synthetic resin dispersion medium, graphite, carbon black and the like in the processing container, Seal the processing vessel and dry.

その後、揮発性の溶剤を蒸発させ、軟固形物を製造する。この乾燥は、自然乾燥を行うようにしても良いし、ヒータを用いて加熱するようにしてもよい。   Thereafter, the volatile solvent is evaporated to produce a soft solid. This drying may be natural drying or may be heated using a heater.

このように、合成樹脂分散媒と、黒鉛と、カーボンブラック等との前記混合物に揮発性の溶剤を混入し、その後に乾燥するようにしたのは、合成樹脂分散媒の濃度を調整し、この合成樹脂分散媒内に混入・分散される前記黒鉛と、前記カーボンブラック等に対する馴染みと付着強度を強固になるように調整を行うためと、前記混合物を軟固形物に形成することにより面状発熱体の加工性を良くし、取扱い易くするためである。   Thus, the volatile solvent was mixed in the mixture of the synthetic resin dispersion medium, graphite, carbon black, and the like, and then dried to adjust the concentration of the synthetic resin dispersion medium. In order to adjust the familiarity and adhesion strength of the graphite mixed and dispersed in the synthetic resin dispersion medium and the carbon black, etc., and by forming the mixture into a soft solid material, sheet heat is generated. This is to improve the workability of the body and facilitate handling.

それから、合成樹脂分散媒と、黒鉛と、カーボンブラック等とが混合された軟固形物を処理容器から取り出し、押出成形機を用いて加熱しながら面状に押出成形する。   Then, a soft solid material in which a synthetic resin dispersion medium, graphite, carbon black, and the like are mixed is taken out from the processing container and extruded into a planar shape while being heated using an extruder.

さらに、加圧ローラにより軟固形物を延圧することにより面状発熱体を成形する。そして、この面状発熱体は、例えば厚さが0.12mm、幅が31mmの素子形態として均一の厚さにて形成される。   Furthermore, a planar heating element is formed by rolling a soft solid with a pressure roller. The planar heating element is formed with a uniform thickness as an element form having a thickness of 0.12 mm and a width of 31 mm, for example.

この際、フッソ系樹脂を主成分とする合成樹脂分散媒と、黒鉛と、カーボンブラックと、前記少量の添加物とよりなる混合物は、予め合成樹脂分散媒中に黒鉛、カーボンブラック、添加物とを均一に混合・分散された軟固形物を用いて押出成形するので、短時間の成形時間にて迅速かつ作業効率良く、合成樹脂分散媒内に黒鉛と、カーボンブラックと、少量の添加物とが均一に分散された面状発熱体を成形することができ、成形は容易かつ確実である。   At this time, a mixture composed of a synthetic resin dispersion medium mainly composed of a fluorine-based resin, graphite, carbon black, and the small amount of the additive is preliminarily mixed with the graphite, carbon black, and additive in the synthetic resin dispersion medium. Is extruded using soft solids that are uniformly mixed and dispersed, so that it can be quickly and efficiently worked in a short molding time, with graphite, carbon black, and a small amount of additives in the synthetic resin dispersion medium. It is possible to form a planar heating element in which the is uniformly dispersed, and the molding is easy and reliable.

先ず、混合用の撹拌容器内にフッソ系樹脂よりなる合成樹脂分散媒と、粒子径が定方向フェレー径にて5〜1μmクラス、1〜0.3μmクラス、0.3〜0.05μmクラスとそれぞれ大小異なる粒子径の黒鉛と、カーボンブラックとを所望の組成割合、例えば8:2:1(重量%)の組成割合に、しかも合成樹脂分散媒と、黒鉛と、カーボンブラックとに対してLi,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pbまたはこれらの群から選ばれる酸化物もしくは炭化物の何れか1種,または複数種を添加物として約5重量%の少量の組成割合に投入し、混入する。   First, a synthetic resin dispersion medium made of a fluorine-based resin in a mixing vessel for mixing, and a particle size of 5 to 1 μm class, 1 to 0.3 μm class, and 0.3 to 0.05 μm class in a directional ferret diameter Each of graphite and carbon black having particle sizes different from each other in a desired composition ratio, for example, a composition ratio of 8: 2: 1 (% by weight), and Li with respect to the synthetic resin dispersion medium, graphite, and carbon black. , Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo, Pb, or any one or a plurality of oxides or carbides selected from these groups, or about 5% by weight as an additive Add to a small amount of the composition and mix.

この際、本実施例1において用いる黒鉛とカーボンブラックとは、例えば定方向フェレー径にて5〜1μmクラスの大粒径のものが約重量15重量%、1〜0.3μmクラスの中粒径が約70重量%、さらに、0.3〜0.05μmクラスの中粒径が約15重量%ほどの配合比にて使用される。   At this time, the graphite and carbon black used in Example 1 are, for example, those having a large particle size of 5 to 1 μm class with a unidirectional ferret diameter of about 15% by weight and medium particle sizes of 1 to 0.3 μm class. Is used at a compounding ratio of about 70% by weight, and a medium particle size of 0.3 to 0.05 μm class is about 15% by weight.

次いで、撹拌容器内において、この混合物に水を加えて混練することにより合成樹脂分散媒としてのフッソ系樹脂内に、黒鉛と、カーボンブラックと、前記添加物とをゲル状に均一に分散させる。その後、水を除去し、乾燥させることによりフッソ系樹脂と、黒鉛と、カーボンブラックと、添加物との混合物よりなる半生固形物を造る。そして、この半生固形物を処理容器内に移し、揮発性の溶剤を混入し、密閉して乾燥する。それから、揮発性の溶剤を蒸発させ、軟固形物になすことにより面状発熱体を成形し易くする。   Next, in a stirring vessel, water is added to the mixture and kneaded to uniformly disperse the graphite, carbon black, and the additive in a gel-like form in a fluorine-based resin as a synthetic resin dispersion medium. Thereafter, water is removed and dried to produce a semi-solid solid made of a mixture of a fluorine-based resin, graphite, carbon black, and additives. Then, this semi-solid solid is transferred into a processing container, mixed with a volatile solvent, sealed and dried. Then, the planar heating element is easily formed by evaporating the volatile solvent to form a soft solid.

そして、この軟固形物を加熱しながら面状に押出成形し、さらに加圧ローラにより延圧することにより厚さが0.12mm、幅が31mmの素子形態の面状発熱体を成形した。   The soft solid material was extruded into a sheet shape while being heated, and further stretched by a pressure roller to form a planar heating element in the form of an element having a thickness of 0.12 mm and a width of 31 mm.

このようにして本実施例1の面状発熱体は成形される。   Thus, the planar heating element of Example 1 is molded.

そして、この面状発熱体を倍率が3000倍の顕微鏡にて観察し、撮影した図1に示す顕微鏡写真によると、フッソ系樹脂よりなる合成樹脂分散媒中には黒鉛とカーボンブラックとがむらなく均一に混合・分散されている。この黒鉛とカーボンブラックとの粒子径は、定方向フェレー径にて5〜1μmクラスの大粒径のものが約15重量%、1〜0.3μmクラスの中粒径が約70重量%、0.3〜0.05μmクラスの細粒径のものが約15重量%ほど均一にフッソ系樹脂よりなる合成樹脂分散媒中に分散されている。このうち合成樹脂分散媒中には、黒鉛とカーボンブラックと全混入量の全体の約70重量%の大部分を占める1〜0.3μmクラスの中粒径の黒鉛とカーボン中に、大粒径の5〜1μmクラスの黒鉛とカーボンとが約15重量%存在し、さらに約15重量%を占める0.3〜0.05μmクラスの小粒径の黒鉛とカーボンとが前記中粒径クラスと前記大粒径クラスの黒鉛とカーボンとの間に隈無く、均一に合成樹脂分散媒中に全体的に分散・混合されている。この時、使用された顕微鏡は、株式会社キーエンス社製の電子顕微鏡 型式VI−7800を使用した。   Then, this planar heating element was observed with a microscope having a magnification of 3000 times, and according to the photographed micrograph shown in FIG. 1, graphite and carbon black were not uniformly distributed in the synthetic resin dispersion medium made of a fluoro resin. Uniformly mixed and dispersed. The particle size of the graphite and carbon black is about 15% by weight with a unidirectional ferret diameter of 5 to 1 μm class and about 70% by weight with a medium particle size of 1 to 0.3 μm. A fine particle size of about 3 to 0.05 μm is uniformly dispersed by about 15% by weight in a synthetic resin dispersion medium made of a fluorine-based resin. Of these, the synthetic resin dispersion medium has a large particle size in the 1 to 0.3 μm class medium particle size graphite and carbon, which occupies most of the total amount of graphite, carbon black and about 70% by weight. 5 to 1 μm class graphite and carbon are present in an amount of about 15% by weight, and further about 15% by weight of 0.3 to 0.05 μm class small particle size graphite and carbon are said medium particle size class and the above-mentioned There is no gap between the large particle size class graphite and carbon, and it is uniformly dispersed and mixed in the synthetic resin dispersion medium. At this time, the microscope used was an electron microscope model VI-7800 manufactured by Keyence Corporation.

このうち、合成樹脂分散媒中に約70重量%もの多量を占めるように、混合・分散している中粒径に属する0.3〜0.5μmクラスの粒子の黒鉛とカーボンブラックとは、炭素原子の一列数が約3000〜5000個の粒子が存在しているものと考えられる。これは、単純に(27〜125)×109個の原子数で構成されている粒子と考えられる。 Among these, graphite and carbon black of 0.3 to 0.5 μm class particles belonging to the medium particle size mixed and dispersed so as to occupy as much as about 70% by weight in the synthetic resin dispersion medium are carbon. It is considered that there are particles having about 3000 to 5000 atoms in a row. This is considered to be particles composed simply of (27 to 125) × 10 9 atoms.

このことから、面状発熱体内の粒子の個々は、内部の炭素原子数より表面の原子数が遙かに多いことがわかり、それらの粒子は活性化され易く、面状発熱体内部での素子表面への熱伝導が効率良く行われ、発熱体として、電気エネルギーが熱エネルギーへ変換される効率が高くなる。   From this, it can be seen that each of the particles in the planar heating element has much more surface atoms than the number of carbon atoms inside, and these particles are easily activated, and the element inside the planar heating element The heat conduction to the surface is efficiently performed, and the efficiency of converting electric energy into heat energy as a heating element is increased.

そして、本実施形態1の面状発熱体は、フッソ系樹脂よりなる合成樹脂分散媒内に黒鉛とカーボンブラックとよりなる通電材料がむらなく均一に混合・分散されるので、面状発熱体を使用する場合に通電が行われると、面状発熱体は活性化され易くなり、電気エネルギーの熱エネルギーへの変換効率が90%以上と極めて高い。従って、少ない消費電力にて効率良く熱エネルギーを発生することができる。   In the planar heating element of the first embodiment, since the conductive material composed of graphite and carbon black is uniformly mixed and dispersed in the synthetic resin dispersion medium composed of the fluorine-based resin, the planar heating element is When energization is performed in use, the planar heating element is easily activated, and the conversion efficiency of electric energy to heat energy is as extremely high as 90% or more. Therefore, heat energy can be generated efficiently with low power consumption.

また、本実施形態1の面状発熱体は、黒鉛とカーボンブラックとの全混合量中で約15重量%を占める小粒径に属する0.01μmクラスの黒鉛とカーボンブラックとの粒子は、発熱体の表面を占める原子数が極めて多いので、面状発熱体に通電が行われると、活性化され易く、極めて良好な通電性も発揮される。   In addition, the planar heating element of Embodiment 1 has a heat generation of particles of 0.01 μm class graphite and carbon black belonging to a small particle size that occupies about 15% by weight in the total mixing amount of graphite and carbon black. Since the number of atoms occupying the surface of the body is extremely large, when a sheet heating element is energized, it is easily activated and exhibits very good energization.

こうして成形された本実施形態1の面状発熱体について時間の経過に伴う表面温度変化を測定した結果、図2に示す特性のグラフを得た。   As a result of measuring the surface temperature change with the passage of time for the planar heating element of Embodiment 1 thus formed, the characteristic graph shown in FIG. 2 was obtained.

この温度測定は、測定室内温度Cが+20℃の下に部屋に設置するESPEC社製のSH−241小型環境試験器を用い、この小型環境試験器内において厚さが0.12mm、幅が31mmの素子形態のサンプルAの面状発熱体と、同形態のサンプルBの面状発熱体とを被験対象とし、このサンプルAと、サンプルBとにつき、+100℃に1時間15分加熱させるのと、−40℃に1時間15分冷却させることとを交互に4回繰り返して熱衝撃を与えた後に、サンプルAとサンプルBとについて20サイクルの電気を通電し、時間の経過に伴う表面温度変化をそれぞれ測定した。この時、面状発熱体のサンプルA,Bの表面温度の測定には、測定記録計は日置電気株式会社製 8421型を用い、温度センサには株式会社チノー製 VT−3型を用いて測定を行った。   This temperature measurement uses an ESPEC SH-241 small environmental tester installed in the room under a measurement room temperature C of + 20 ° C. The thickness is 0.12 mm and the width is 31 mm in this small environmental tester. The planar heating element of sample A having the element form and the planar heating element of sample B having the same form are to be tested, and this sample A and sample B are heated to + 100 ° C. for 1 hour and 15 minutes. The sample was cooled to −40 ° C. for 1 hour and 15 minutes alternately and repeatedly applied four times, and then 20 cycles of electricity were applied to Sample A and Sample B, and the surface temperature change over time Was measured respectively. At this time, for measurement of the surface temperature of the samples A and B of the sheet heating element, the measurement recorder was measured using a model 8421 manufactured by Hioki Electric Co., Ltd., and the temperature sensor was measured using a model VT-3 manufactured by Chino Co., Ltd. Went.

そして、この表面温度の測定結果から分かったことは、図2に示すグラフに示すように、サンプルAの面状発熱体では、約10時間経過すると、その後の表面温度は約45℃に上昇して以後略一定に安定化されることがわかった。またサンプルBの面状発熱体では、約10時間経過すると、その後の表面温度は約40℃に上昇して以後略一定に安定化することがわかった。   As can be seen from the measurement result of the surface temperature, as shown in the graph shown in FIG. 2, in the planar heating element of Sample A, the surface temperature thereafter increased to about 45 ° C. after about 10 hours. After that, it was found that it was stabilized substantially constant. Further, in the planar heating element of Sample B, it was found that after about 10 hours, the surface temperature thereafter increased to about 40 ° C. and thereafter stabilized substantially constant.

こうして、サンプルA,Bともに通電性は良好になり、10時間経過後には表面温度は略一定になり、安定化することがわかった。   Thus, it was found that both the samples A and B had good electrical conductivity, and the surface temperature became substantially constant and stabilized after 10 hours.

しかも、サンプルA,Bともに通電を継続し続ければ、その表面温度は何時までも変化せずに低下しないことがわかった。
そして、サンプルAの電気抵抗を調べた結果、64Ωであり、また、サンプルBの電気抵抗を調べると、74Ωであることを確認した。
Moreover, it was found that if the energization was continued for both Samples A and B, the surface temperature did not change and would not decrease.
And as a result of examining the electrical resistance of the sample A, it was 64Ω, and when the electrical resistance of the sample B was examined, it was confirmed to be 74Ω.

従って、シート状基体上にPTC特性を有する発熱層を有し、該発熱層の片面または両面に、熱膨張性球状体または熱分解性化合物を含有する熱膨張性層を設けた特許文献4に記載の前記面状発熱体が、所定の温度を超えて高温域に達すると、PTC特性がNTC特性に変わり、電気抵抗が低くなることにより過剰の電流が流れて発熱・発火に到る危険があったのとは異なり、本実施形態1の面状発熱体では、発熱温度が略一定になった後での電気抵抗の低下がなく、電流が過剰に流れて発熱・発火する危険がなく、安全に発熱される。   Accordingly, Patent Document 4 has a heat-generating layer having PTC characteristics on a sheet-like substrate, and a heat-expandable layer containing a heat-expandable sphere or a heat-decomposable compound is provided on one or both sides of the heat-generating layer. If the above described planar heating element exceeds a predetermined temperature and reaches a high temperature range, the PTC characteristic changes to the NTC characteristic, and the electrical resistance is lowered, so that there is a risk that excessive current flows and leads to heat generation / ignition. Unlike the sheet heating element of Embodiment 1, there is no decrease in electrical resistance after the heating temperature becomes substantially constant, and there is no risk of heat generation and ignition due to excessive current flow. It generates heat safely.

なお、本測定試験では、面状発熱体に通電される電流として、交流を使用するようにしているが、これに限ることなく、直流であっても特性に変化はない。   In this measurement test, an alternating current is used as a current to be supplied to the planar heating element. However, the present invention is not limited to this, and there is no change in characteristics even with a direct current.

また、本実施形態1の面状発熱体は、前述のようにフッソ系樹脂よりなる合成樹脂分散媒内に、通電性材料よりなる黒鉛と、カーボンブラック等を均一に混入・分散しているので、発熱体を布や不織布などの基材に含浸させた特許文献2に記載の上記従来の面状発熱体が、柔軟性が完璧ではなく、しかも発熱体を布や不織布等の基材に含浸させた場合に、結晶高分子の体積膨張が妨げられ、抵抗値の増加が低下し、発熱体の膜厚が均一に形成されずに発熱温度分布が不均一であったのとは異なり、本実施形態1の面状発熱体は、柔軟性は充分に発揮され、しかも発熱体の膜厚が均一な厚さに成形されて均一な発熱温度分布になる。   In addition, as described above, the planar heating element of the first embodiment uniformly mixes and disperses graphite made of a conductive material, carbon black, and the like in a synthetic resin dispersion medium made of a fluorinated resin. The above-mentioned conventional planar heating element described in Patent Document 2 in which a heating element is impregnated in a base material such as cloth or non-woven fabric is not completely flexible, and the heating element is impregnated in a base material such as cloth or non-woven cloth. In this case, the volume expansion of the crystalline polymer is hindered, the increase in the resistance value is reduced, and the heating temperature distribution is not uniform because the thickness of the heating element is not uniformly formed. The planar heating element of Embodiment 1 is sufficiently flexible, and the heating element is formed to have a uniform film thickness, resulting in a uniform heating temperature distribution.

また、本実施形態1の面状発熱体は、フッソ系樹脂よりなる合成樹脂分散媒に、前記組成割合にて通電性材料よりなる黒鉛と、カーボンブラックとに対して添加物としてLi,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pbまたはこれらの群から選ばれる酸化物もしくは炭化物が、約5重量%程度の少量混合されているので、面状発熱体に通電し、発熱がされると、10〜40mmの波長の電磁波、例えばマイクロ波、遠赤外線等が発生される。そして、この遠赤外線による電磁波の伝搬により面状発熱体から発生する熱エネルギーは損なわれることはなく、面状発熱体として最適である。   In addition, the planar heating element of the first embodiment includes a synthetic resin dispersion medium made of a fluorinated resin, Li, Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo, Pb or oxides or carbides selected from these groups are mixed in a small amount of about 5% by weight. When energized to generate heat, electromagnetic waves having a wavelength of 10 to 40 mm, such as microwaves and far infrared rays, are generated. And the thermal energy which generate | occur | produces from a planar heating element by the propagation of the electromagnetic wave by this far infrared rays is not impaired, and is optimal as a planar heating element.

このため、面状発熱体を屋根や道路の融雪装置や凍結防止装置に適用した場合に、合成樹脂分散媒中に前記添加物を所定割合混合・分散したことにより発生される遠赤外線による電磁波の伝搬により面状発熱体から発生する熱エネルギーを損なうことなく雪や氷の分子と共鳴振動して活性化したり、励起状態から基底状態に戻る際に水の分子等から放出される熱エネルギーにより融雪と凍結の防止とを効率的に行うことができる。   For this reason, when a planar heating element is applied to a snow melting device or anti-freezing device on a roof or road, electromagnetic waves generated by far infrared rays generated by mixing and dispersing the additive in a predetermined ratio in a synthetic resin dispersion medium. Snow melting by thermal energy released from the water molecules, etc. when resonating and oscillating with snow and ice molecules without damaging the heat energy generated from the planar heating element by propagation or returning from the excited state to the ground state And prevention of freezing can be performed efficiently.

しかも、本実施形態1の面状発熱体は、合成樹脂分散媒としてフッソ系樹脂を主成分として使用しているので、例えば電気絶縁性のほか、耐寒性、耐熱性、不燃性、耐薬品性、耐摩耗性、耐衝撃性等の機械的特性に優れるため、例えばコンクリートにより構築される道路や駐車場での融雪装置や凍結防止装置に最適に使用することができる。   In addition, since the sheet heating element of Embodiment 1 uses a fluorine-based resin as a main component as a synthetic resin dispersion medium, for example, in addition to electrical insulation, cold resistance, heat resistance, nonflammability, chemical resistance Since it has excellent mechanical properties such as wear resistance and impact resistance, it can be optimally used for snow melting devices and anti-freezing devices on roads and parking lots constructed of concrete, for example.

また、本実施形態の面状発熱体は、厚さが0.12mm、幅が31mmの素子形態の薄いテープ状に形成されるので、例えば裸ニクロム線を絶縁材料からなる粘着層上に配設し、この粘着層と裸ニクロム線との周辺部分をヒートシールした多層の複合フィルムの内部に配設するような特許文献3に記載の面状発熱体では、裸ニクロム線の周辺部分をヒートシールしたことにより電極部配線の構造として発熱体の平面形状が、四角形、長方形等の角形に制約され、平面楕円や平面円形の鏡等の加熱対象物に面状発熱体を形成した場合に、その形状に沿って面状発熱体を発熱できず、例えば鏡に対して全面に「曇り防止」をするニーズに対応できなかったのとは異なり、本実施形態の面状発熱体では平面形状が四角形、長方形等の角形に限らず、平面楕円や円形状の鏡等の加熱対象物に面状発熱体を形成した場合に、その形状に沿って面状発熱体を確実かつむらなく均一に発熱させることができるという自由度がある。   In addition, the planar heating element of the present embodiment is formed in a thin tape shape of an element form having a thickness of 0.12 mm and a width of 31 mm. For example, a bare nichrome wire is disposed on an adhesive layer made of an insulating material. In the planar heating element described in Patent Document 3 in which the peripheral portion between the adhesive layer and the bare nichrome wire is disposed inside the heat-sealed multilayer composite film, the peripheral portion of the bare nichrome wire is heat sealed. As a result, the planar shape of the heating element as a structure of the electrode wiring is restricted to a square shape such as a quadrangle and a rectangle, and when a planar heating element is formed on a heating object such as a planar ellipse or a planar circular mirror, Unlike the case where the planar heating element could not generate heat along the shape, for example, the need to “anti-fog” the entire surface of the mirror could not be met, the planar heating element of the present embodiment has a square shape. , Not only rectangular shapes such as rectangles, In the case of forming a planar heating element on the surface elliptical or circular heating object such as a mirror, there is a degree of freedom that can be uniformly heating rather Tsumura reliably whether the sheet-like heating element along its shape.

なお上記説明では、面状発熱体は、厚さが0.12mm、幅が31mmの素子形態の薄いテープ状に形成されたものにつき、代表的に説明したが、これは例示であり、面状発熱体の厚さ、幅の増減変更は自由であり、また形状、大きさの変更は適宜変更し得る。   In the above description, the planar heating element is representatively described as being formed in a thin tape shape of an element form having a thickness of 0.12 mm and a width of 31 mm. The thickness and width of the heating element can be increased or decreased, and the shape and size can be changed as appropriate.

本発明の面状発熱体および面状発熱体の製造方法は、短い立ち上がり時間にて電気エネルギーの変換効率が良く、また均一な膜厚にて形成されて均一で安定した発熱温度分布が得られ、また柔軟性に優れ、しかも形状に制約されずに形状に沿った発熱が行え、また所定温度を超えた場合に発熱・発火がなく安全であり、ランニングコストが低く、製造工程が簡単にして成形材料も少なく製作費および資材費を安価になす分野・用途に適する。   The sheet heating element and the method for manufacturing the sheet heating element of the present invention have good conversion efficiency of electric energy with a short rise time, and a uniform and stable heating temperature distribution can be obtained with a uniform film thickness. In addition, it has excellent flexibility and can generate heat according to the shape without being restricted by the shape, and it is safe with no heat or ignition when the temperature exceeds the specified temperature, running costs are low, and the manufacturing process is simplified. It is suitable for fields and applications where there are few molding materials and production costs and material costs are low.

図1は本発明の面状発熱体の実施形態1を示す顕微鏡写真である。FIG. 1 is a photomicrograph showing Embodiment 1 of the planar heating element of the present invention. 図2は同じく本実施形態1の時間の経過に伴う表面温度変化を測定した特性のグラフである。FIG. 2 is a graph of characteristics obtained by measuring a change in surface temperature with the passage of time according to the first embodiment.

符号の説明Explanation of symbols

A サンプル
B サンプル
A Sample B Sample

Claims (8)

フッソ系樹脂を主成分とする合成樹脂分散媒に、黒鉛とカーボンブラックとよりなる導電性材料を混入、分散させた面状発熱体において、前記合成樹脂分散媒に、所定の微小粒径の前記黒鉛と、前記カーボンブラックとが所望割合に混合・分散されることを特徴とする面状発熱体。   In a sheet heating element in which a conductive material composed of graphite and carbon black is mixed and dispersed in a synthetic resin dispersion medium mainly composed of a fluorine-based resin, the synthetic resin dispersion medium has a predetermined fine particle diameter. A planar heating element, wherein graphite and the carbon black are mixed and dispersed in a desired ratio. 前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとの組成比が、5〜9:2〜6:1〜4(重量%)、好適には8:2:1(重量%)の割合に混合・分散されることを特徴とする請求項1に記載の面状発熱体。   The composition ratio of the synthetic resin dispersion medium, the graphite, and the carbon black is 5 to 9: 2 to 6: 1 to 4 (wt%), preferably 8: 2: 1 (wt%). The sheet heating element according to claim 1, wherein the sheet heating element is mixed and dispersed. 前記黒鉛と前記カーボンとの粒子径は、定方向フェレー径にて5〜1μmクラスが約15重量%、1〜0.3μmクラスが約70重量%、0.3〜0.05μmクラスが約15重量%ほど均一に合成樹脂分散媒中に分散されることを特徴とする請求項1または2に記載の面状発熱体。   The particle size of the graphite and carbon is about 15% by weight in the unidirectional ferret diameter of about 5 to 1 μm class, about 70% by weight in the 1 to 0.3 μm class, and about 15 in the 0.3 to 0.05 μm class. The sheet heating element according to claim 1 or 2, wherein the sheet heating element is uniformly dispersed in the synthetic resin dispersion medium by weight percent. 前記組成割合の前記合成樹脂分散媒と、前記黒鉛と、前記カーボンブラックとに対して添加物としてLi,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pb、またはこれらの群から選ばれる酸化物もしくは炭化物を約5重量%ほど添加して混合・分散させることを特徴とした請求項1,2,3に記載の面状発熱体。   Li, Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo, Pb as additives to the synthetic resin dispersion medium having the composition ratio, the graphite, and the carbon black, or 4. The planar heating element according to claim 1, wherein about 5% by weight of an oxide or carbide selected from these groups is added and mixed and dispersed. フッソ樹脂系の合成樹脂分散媒に、所定の微小粒径の黒鉛と、カーボンブラックと、添加物とを所望割合、混入して所望時間混練する工程と、
該合成樹脂分散媒と、黒鉛と、カーボンブラックと、添加物との混練物に水を混入して軟固形物を形成する工程と、
該軟固形物を押出成形することにより面状発熱体を成形する、
ことを特徴とした面状発熱体の製造方法。
A step of mixing a desired fine particle size graphite, carbon black, and additives into a fluororesin-based synthetic resin dispersion medium in a desired ratio and kneading for a desired time;
A step of mixing water into a kneaded product of the synthetic resin dispersion medium, graphite, carbon black, and additives to form a soft solid,
A sheet heating element is formed by extruding the soft solid.
A method for manufacturing a planar heating element, characterized in that
フッソ樹脂系の合成樹脂分散媒に、所定の微小粒径の黒鉛と、カーボンブラックと、添加物との混合物に水を所望量混入して混練する工程と、
その後に前記混合物を乾燥する工程と、
該混合物に揮発性溶剤を所望量混入し、乾燥して軟固形物を形成する工程と、
該軟固形物を押出成形することにより面状発熱体を成形する、
ことを特徴とした面状発熱体の製造方法。
A step of mixing a desired amount of water into a mixture of graphite having a predetermined fine particle diameter, carbon black, and an additive in a synthetic resin dispersion medium of a fluororesin system, and kneading;
Then drying the mixture;
Adding a desired amount of a volatile solvent to the mixture and drying to form a soft solid;
A sheet heating element is formed by extruding the soft solid.
A method for manufacturing a planar heating element, characterized in that
前記黒鉛と前記カーボンとの粒子径は、定方向フェレー径にて5〜1μmクラスが約15重量%、1〜0.3μmクラスが約70重量%、0.3〜0.05μmクラスが約15重量%ほど均一に合成樹脂分散媒中に分散されることを特徴とする請求項5,6に記載の面状発熱体の製造方法。   The particle size of the graphite and carbon is about 15% by weight in the unidirectional ferret diameter of about 5 to 1 μm class, about 70% by weight in the 1 to 0.3 μm class, and about 15 in the 0.3 to 0.05 μm class. The method for producing a sheet heating element according to claim 5 or 6, wherein the sheet heating element is uniformly dispersed in a synthetic resin dispersion medium by weight percent. 前記添加物が、Li,Be,Na,Mg, Al,Si,K,Ca, Ti ,Fe,Mo,Pb、またはこれらの群から選ばれる酸化物もしくは炭化物であることを特徴とした請求項5,6,7に記載の面状発熱体の製造方法。   The additive is Li, Be, Na, Mg, Al, Si, K, Ca, Ti, Fe, Mo, Pb, or an oxide or carbide selected from these groups. , 6,7 The manufacturing method of the planar heating element.
JP2004251668A 2004-08-31 2004-08-31 Planar heating element and manufacturing method of planar heating element Pending JP2006073217A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004251668A JP2006073217A (en) 2004-08-31 2004-08-31 Planar heating element and manufacturing method of planar heating element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004251668A JP2006073217A (en) 2004-08-31 2004-08-31 Planar heating element and manufacturing method of planar heating element

Publications (1)

Publication Number Publication Date
JP2006073217A true JP2006073217A (en) 2006-03-16

Family

ID=36153633

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004251668A Pending JP2006073217A (en) 2004-08-31 2004-08-31 Planar heating element and manufacturing method of planar heating element

Country Status (1)

Country Link
JP (1) JP2006073217A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094074A (en) * 2007-10-10 2009-04-30 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Exothermic light source and its manufacturing method
CN102561651A (en) * 2011-08-22 2012-07-11 吴丽明 Heat-transfer and formaldehyde-absorbing wood floor and production method thereof

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009094074A (en) * 2007-10-10 2009-04-30 Kofukin Seimitsu Kogyo (Shenzhen) Yugenkoshi Exothermic light source and its manufacturing method
CN102561651A (en) * 2011-08-22 2012-07-11 吴丽明 Heat-transfer and formaldehyde-absorbing wood floor and production method thereof

Similar Documents

Publication Publication Date Title
RU2344574C2 (en) Carbon flexible heating structure
Cho et al. Insulating polymer nanocomposites with high-thermal-conduction routes via linear densely packed boron nitride nanosheets
JP6034876B2 (en) Highly filled high thermal conductivity material, method for producing the same, composition, coating liquid, and molded article
Zhang et al. A novel form-stable phase change composite with excellent thermal and electrical conductivities
Liu et al. Thermal conductivity improvement of silicone elastomer with carbon nanotube loading
KR101144888B1 (en) Flexible thermoelectric material, method for preparing the same and thermoelectric device comprising the same
FI80820B (en) Self-regulating electrical heating device
US8253300B2 (en) Electrostrictive composite and method for making the same
EP2682994A1 (en) Thermoelectric conversion material, and flexible thermoelectric conversion device using same
US20130026410A1 (en) Electrostrictive composite and method for making the same
TW200800793A (en) Flexible nano electrothermal material and heating apparatus having the same
CN104252935B (en) thermistor and preparation method thereof
JP7333914B2 (en) Thermally conductive resin molding and its manufacturing method
EP0123540A2 (en) Conductive polymers and devices containing them
KR20180004624A (en) Carbon nanotubes and conductive polymer composite material produced is mixed utilization and efficient composition
JP2007531217A (en) Conductive composition for producing flexible carbon heating structure, flexible carbon heating structure using the same, and method for producing the same
KR100642622B1 (en) Resin-basd Caron Nanotube Hybrid Materials with High Thermal Conductivity
KR101681291B1 (en) Hybrid heat radiating sheet based on carbon nanotube and fabrication method thereof
JP2006073217A (en) Planar heating element and manufacturing method of planar heating element
US20100079234A1 (en) Thermistor and electrical device employed with same
Wang et al. Utility of whiskerized carbon fabric surfaces in resistive heating of composites
JPH0612643B2 (en) Thermally conductive insulation sheet
CN105794312A (en) Compound having exponential temperature dependent electrical resistivity, use of such compound in a self-regulating heating element, self-regulating heating element comprising such compound, and method of forming such compound
JP7411204B2 (en) Graphite integrated film, method for producing graphite integrated film, thermoelectric conversion layer and heat dissipation material with thermocouple function or thermoelectric generation function using the graphite integrated film
JPH0439814A (en) Manufacture of conductive sheet

Legal Events

Date Code Title Description
A621 Written request for application examination

Effective date: 20060127

Free format text: JAPANESE INTERMEDIATE CODE: A621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071113

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080318