JP2006057140A - Surface treatment method for sintered compact - Google Patents

Surface treatment method for sintered compact Download PDF

Info

Publication number
JP2006057140A
JP2006057140A JP2004240231A JP2004240231A JP2006057140A JP 2006057140 A JP2006057140 A JP 2006057140A JP 2004240231 A JP2004240231 A JP 2004240231A JP 2004240231 A JP2004240231 A JP 2004240231A JP 2006057140 A JP2006057140 A JP 2006057140A
Authority
JP
Japan
Prior art keywords
surface treatment
treatment method
binder
sintered
alumina
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004240231A
Other languages
Japanese (ja)
Inventor
Kunihiko Suzuki
邦彦 鈴木
Toshio Morimoto
敏夫 森本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Metal Mining Co Ltd
Original Assignee
Sumitomo Metal Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Metal Mining Co Ltd filed Critical Sumitomo Metal Mining Co Ltd
Priority to JP2004240231A priority Critical patent/JP2006057140A/en
Publication of JP2006057140A publication Critical patent/JP2006057140A/en
Pending legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a surface treatment method which prevents the corrosion of a selected portion in a sintered compact made in an injection-molding powder metallurgy process, and changes colors between a corrosion-prevented portion and a non-corrosion-prevented portion, by forcibly oxidizing the sintered compact. <P>SOLUTION: The surface treatment method for the sintered compact is a method performed when manufacturing the injection-molded powder metallurgical product by kneading a metal or an alloy powder including, by a weight ratio, 0-10% Ni, 0-10% Cr, 0-1.5% C and the balance Fe with unavoidable impurities, together with a binder, injection-molding the kneaded substance, removing the binder from the obtained compact, and subsequently vacuum sintering it. A compact from which the binder has been removed is vacuum sintered in a state of being mounted on two or more trays made from alumina placed on a tray made from graphite, so as to straddle on them. The plate made from alumina includes 5 to 30% of 3Al<SB>2</SB>O<SB>3</SB>2SiO<SB>2</SB>by a weight ratio. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、焼結体の表面処理方法に関し、特に、射出成形粉末冶金法における焼結体の選択的防食処理、および当該焼結体の強制酸化処理による防食処理部(以下、選択部という)と非防食処理部との色覚的識別を目的とした表面処理方法に関する。   The present invention relates to a surface treatment method for a sintered body, and in particular, a selective corrosion prevention treatment of a sintered body in an injection molding powder metallurgy method, and a corrosion prevention treatment portion (hereinafter referred to as a selection portion) by forced oxidation treatment of the sintered body. The present invention relates to a surface treatment method for the purpose of color vision discrimination between a non-corrosion-proof treatment part and a non-corrosion-proof treatment part.

射出成形粉末冶金法は金属、合金、セラミックス粉末の中から選ばれた1種類以上の原料粉末と、数種のバインダーとの混練物を射出成形し、得られた成形体を脱バインダー処理した後に焼結処理を行うことにより焼結製品を製造する方法であり、複雑形状品の製造に好適であるとして広く利用されている。   In the injection molding powder metallurgy method, after kneading a mixture of one or more raw material powders selected from metals, alloys and ceramic powders with several binders, the resulting molded body is debindered. This is a method for producing a sintered product by carrying out a sintering process, and is widely used as being suitable for producing a complex shape product.

この射出成形粉末冶金法における焼結では、脱バインダー後の成形体(以下、脱バインダー体という)をアルミナやジルコニアなどの酸化物製板材の上に載せ、これを更にグラファイト製トレイの上に載せて焼結炉へと装入して焼結する。ここで上記酸化物製板材は脱バインダー体がグラファイト製トレイと反応することなく焼結する為の敷き板として使用され、またグラファイト製トレイは、上記脱バインダー体と板材を保持する為に、高温強度が高いという理由で使用されるものである(例えば、特開平5−25507号公報)
図2は、上記工法を説明するための断面図である。図2において、脱バインダー1をアルミナやジルコニアなどの酸化物製板材2の上に載せ、これを更にグラファイト製トレイ5の上に載せて焼結炉へと装入して焼結する。脱バインダー1の下面は露呈されておらず、このため、表面処理は行われない。
In the sintering in this injection molding powder metallurgy method, a molded body after debinding (hereinafter referred to as debinding body) is placed on an oxide plate such as alumina or zirconia, and this is further placed on a graphite tray. Then, it is charged into a sintering furnace and sintered. Here, the oxide plate material is used as a laying plate for sintering the binder remover without reacting with the graphite tray, and the graphite tray is used to hold the binder and plate material at a high temperature. It is used because of its high strength (for example, JP-A-5-25507)
FIG. 2 is a cross-sectional view for explaining the above construction method. In FIG. 2, the debinding 1 is placed on an oxide plate 2 such as alumina or zirconia, and this is further placed on a graphite tray 5 and charged into a sintering furnace for sintering. The lower surface of the binder removal 1 is not exposed, and therefore no surface treatment is performed.

射出成形粉末冶金法に使用される材質としては、Fe−Ni−C系、またはFe−Cr−C系などのFe系の低合金鋼や、SUS304やSUS316などのステンレス鋼が主として使用されているが、前者のFe系低合金鋼は後者のステンレス鋼よりも安価であり、Cコントロールと熱処理による焼結体の硬さの調節が可能な反面、耐食性が低い為、耐食性向上のための黒染めやリン酸塩被膜処理などの強制酸化処理による不動体被膜の形成や、電解Niメッキや溶融Znメッキなどによるコーティングが行われている。
特開平5−25507号公報
As a material used for the injection molding powder metallurgy method, Fe-based alloy steel such as Fe-Ni-C or Fe-Cr-C, or stainless steel such as SUS304 or SUS316 is mainly used. However, the former Fe-based low alloy steel is cheaper than the latter stainless steel, and the hardness of the sintered body can be adjusted by C control and heat treatment, but the corrosion resistance is low, so it is black dyed to improve the corrosion resistance. A non-moving body film is formed by forced oxidation treatment such as phosphating and phosphate film treatment, and coating by electrolytic Ni plating or hot-dip Zn plating is performed.
Japanese Patent Laid-Open No. 5-25507

しかし、これらの従来公知の表面処理方法は焼結後に別途処理を行う必要があり、また焼結体の局部的な処理には向かないという問題がある。   However, these conventionally known surface treatment methods have a problem in that they need to be treated separately after sintering and are not suitable for local treatment of the sintered body.

したがって、本発明は、焼結体の防錆処理位置を選択的に、且つその処理を焼結時に行い、また当該焼結体の強制酸化処理による選択部と非選択部との色覚的識別効果を得ることを目的とする。   Therefore, the present invention selectively performs the rust prevention treatment position of the sintered body and performs the treatment at the time of sintering, and the color discrimination effect between the selected portion and the non-selected portion by the forced oxidation treatment of the sintered body. The purpose is to obtain.

本発明は、金属または合金粉末とバインダーとの混練物を射出成形し、得られた成形体を脱バインダーし、次いで真空焼結を行うことにより射出成形粉末冶金製品を製造する際の焼結体の表面処理方法において、脱バインダー後の成形体に選択的に防食処理を行うために前記成形体を選択的に露呈するように、グラファイト製トレイに載置したアルミナ製板材上に前記成形体を載置して真空焼結を行うことを特徴とする。   The present invention relates to a sintered body when an injection molded powder metallurgy product is manufactured by injection molding a kneaded product of metal or alloy powder and a binder, debinding the resulting molded body, and then performing vacuum sintering. In the surface treatment method, the molded body is placed on an alumina plate placed on a graphite tray so as to selectively expose the molded body for selective anticorrosion treatment on the molded body after debinding. It is characterized in that it is mounted and vacuum sintered.

さらに、詳細には、本発明は、重量比にてNi:0〜10%、Cr:0〜10%、C:0〜1.5%を含み、残部がFeおよび不可回避的不純物である金属または合金粉末とバインダーとの混練物を射出成形し、得られた成形体を脱バインダーし、次いで真空焼結を行うことにより射出成形粉末冶金製品を製造する際の焼結体の表面処理方法において、前記真空焼結がグラファイト製トレイの上に並べられた2枚以上のアルミナ製板材に跨るように脱バインダー体を載置した状態で行われ、当該アルミナ製板材には重量比にて5〜30%の3Al・2SiOが含まれていることを特徴とする。 More specifically, the present invention relates to a metal containing Ni: 0 to 10%, Cr: 0 to 10%, C: 0 to 1.5% by weight ratio, the balance being Fe and unavoidable impurities Alternatively, in the surface treatment method of a sintered body when an injection molded powder metallurgy product is manufactured by injection molding a kneaded product of an alloy powder and a binder, debinding the obtained molded body, and then performing vacuum sintering The vacuum sintering is performed in a state where a binder removal body is placed so as to straddle two or more alumina plate materials arranged on a graphite tray, and the alumina plate material has a weight ratio of 5 to 5. 30% 3Al 2 O 3 .2SiO 2 is contained.

本発明の焼結体の表面処理方法により、選択部のみの防食処理を焼結時に行うことができ、強制酸化処理後の表面状態が選択部と非選択部との色覚的識別性に優れる製品を製造することができる。   By the surface treatment method of the sintered body of the present invention, the anticorrosion treatment of only the selected portion can be performed at the time of sintering, and the surface state after the forced oxidation treatment is excellent in color vision distinction between the selected portion and the non-selected portion Can be manufactured.

本発明は、上記課題を解決すべく鋭意研究を重ねた結果、焼結を行うべき脱バインダー体の防食処理を望む部分(選択部)に、3Al・2SiOのグラファイト(C)による還元反応により発生したAl−Si系合金の蒸気を選択部に蒸着させ、該選択部の表層にFe−Al−Si系合金層を形成させることにより、選択的な防食処理を施すことができることを見出した。 The present invention is a result of intensive studies to solve the above problems, in part (selector) overlooking the anticorrosion treatment of debinder body to perform sintering, by graphite (C) of 3Al 2 O 3 · 2SiO 2 It is possible to perform selective anticorrosion treatment by vapor-depositing Al-Si-based alloy vapor generated by the reduction reaction on a selected portion and forming a Fe-Al-Si-based alloy layer on the surface of the selected portion. I found it.

また、本発明により得られたFe系低合金焼結体は選択部のみに防錆処理が施されている為、黒染めなどの強制酸化処理を行うことにより、非選択部のみが不動体被膜の形成により着色される。従って選択部と非選択部とには色調の差異が生じ、色覚的識別が可能となる。   In addition, since the Fe-based low alloy sintered body obtained by the present invention is subjected to rust prevention treatment only on the selected portion, by performing forced oxidation treatment such as black dyeing, only the non-selected portion is coated on the non-moving object coating. It is colored by forming. Therefore, there is a difference in color tone between the selection unit and the non-selection unit, and color vision discrimination becomes possible.

図1は、本発明の方法における焼結時の脱バインダー体の載置状態を示す。図1において、脱バインダー体1はアルミナ製板材2および3に跨るように載置されており、選択部4がアルミナ製板材2とアルミナ製板材3との間の隙間を介してグラファイト製トレイ5の一部と対面する状態にある。即ち、本発明方法によれば、アルミナ製板材2とグラファイト製トレイ5との間、およびアルミナ製板材3とグラファイト製トレイ5との間における3Al・2SiOの還元反応によって発生したAl−Si系合金蒸気が選択部4のみに蒸着することとなる。 FIG. 1 shows the mounting state of the binder removal during sintering in the method of the present invention. In FIG. 1, the binder removal body 1 is placed so as to straddle the alumina plate members 2 and 3, and the selection unit 4 passes through the gap between the alumina plate member 2 and the alumina plate member 3 to make the graphite tray 5. It is in a state facing a part of. That is, according to the method of the present invention, produced by the reduction reaction of 3Al 2 O 3 · 2SiO 2 between between, and the alumina plate 3 and the graphite tray 5 with alumina plate 2 and the graphite tray 5 Al The Si-based alloy vapor is deposited only on the selection unit 4.

焼結初期の焼結体は、原料粉末粒子間に脱バインダーによって生じた無数の隙間のあるポーラスな状態であり、焼結が進行していくに従って隙間のない状態へと緻密化されていく。本発明方法ではこの緻密化の過程において、原料粉末粒子間の隙間にAl−Si系合金の蒸気が入り込むことにより焼結体表面にFe−Al−Si系合金層が形成される。   The sintered body at the initial stage of sintering is in a porous state having innumerable gaps generated by debinding between the raw material powder particles, and is densified into a state having no gaps as the sintering proceeds. In the method of the present invention, during the densification process, the vapor of the Al—Si alloy enters the gaps between the raw material powder particles, thereby forming the Fe—Al—Si alloy layer on the surface of the sintered body.

焼結体の選択部表面に形成されたFe−Al−Si系合金層は、Fe系材料の硬さ調節の為に行われる焼き入れや窒化などの種々の熱処理によっても耐食性の低下がほとんど生じない為、熱処理によって強制酸化処理による色覚的識別効果が損なわれることはない。   The Fe-Al-Si alloy layer formed on the surface of the selected part of the sintered body is almost deteriorated in corrosion resistance even by various heat treatments such as quenching and nitriding for adjusting the hardness of the Fe material. Therefore, the color vision discrimination effect by the forced oxidation treatment is not impaired by the heat treatment.

一方、従来公知の焼結時の脱バインダー体の載置状態を示す図2においては、脱バインダー体1とグラファイト製トレイ5とはアルミナ製板材2により完全に遮られた状態であり、本発明方法が示す位置選択的な防錆処理効果は得られない。   On the other hand, in FIG. 2 which shows the mounting state of the conventionally known binder removal body during sintering, the binder removal body 1 and the graphite tray 5 are completely shielded by the alumina plate material 2, and the present invention. The position selective rust prevention treatment effect indicated by the method cannot be obtained.

また本発明方法においては焼結炉内を真空雰囲気とすることにより、Fe−Al−Si系合金層の形成が促進される。これは減圧によるAl−Si系合金の蒸気圧降下により、選択部への蒸着を促進させる為である。   In the method of the present invention, the formation of the Fe—Al—Si alloy layer is promoted by making the inside of the sintering furnace a vacuum atmosphere. This is to promote vapor deposition on the selected portion due to a drop in the vapor pressure of the Al—Si alloy due to the reduced pressure.

3Al・2SiOは、アルミナ製板材の成形時にアルミナ粉末の結合材として混合された結晶水中のシリカ(SiO)が、焼成時にアルミナと反応して形成されたものであり、本発明方法における被膜形成の元となる必須の化合物であるが、そのアルミナ製板材中の含有量が5重量%以下であると、発生するAl−Si系合金蒸気の量が少なく、所望の防食効果を得るに至らず、対して30重量%を越えると、脱バインダー体中のCによって、非選択部である脱バインダー体−アルミナ製板材間においてもFe−Al−Si系被膜が形成され、位置選択的な被膜処理がなされない為、3Al・2SiOの含有量は5〜30重量%の範囲にあることが特に好ましい。 3Al 2 O 3 · 2SiO 2 is for silica mixed crystal water as a binder for alumina powder in the molding of alumina plate (SiO 2) is formed by the reaction with the alumina during firing, the present invention Although it is an indispensable compound that becomes the basis of film formation in the method, if the content in the alumina plate material is 5% by weight or less, the amount of generated Al-Si alloy vapor is small and the desired anticorrosive effect is obtained. However, if it exceeds 30% by weight, an Fe-Al-Si-based film is formed between the de-bindered body and the alumina plate material, which is a non-selected part, due to C in the de-bindered body. for specific coating process is not performed, the content of 3Al 2 O 3 · 2SiO 2 is particularly preferably in the range of 5 to 30 wt%.

また選択部となるアルミナ製板材間の隙間は2枚以上のアルミナ製板材の整列方法によるものに限らず、アルミナ製板材に所望の形状の貫通する溝を加工し、その溝を覆うように脱バインダー体を載置することによっても同様の効果が得られる。   In addition, the gap between the alumina plate materials as the selection part is not limited to the alignment method of two or more alumina plate materials, but a groove having a desired shape is processed in the alumina plate material, and the groove is removed so as to cover the groove. The same effect can be obtained by placing the binder body.

本発明による選択的な防食処理を行う為の方法は上記した如くであるが、以下に原料粉末として規定した各元素の成分限定理由について説明する。   The method for performing the selective anticorrosion treatment according to the present invention is as described above. The reasons for limiting the components of each element defined as the raw material powder will be described below.

NiはFe−Ni系合金とすることにより、靭性と耐食性の向上に寄与する元素であるが、その含有量が10重量%を越えると強制酸化による選択部との色覚的識別が不可能となる為、その添加量は10重量%以下が望ましい。   Ni is an element that contributes to the improvement of toughness and corrosion resistance by making it an Fe-Ni alloy, but if its content exceeds 10% by weight, it becomes impossible to distinguish the color vision from the selected part by forced oxidation. Therefore, the addition amount is desirably 10% by weight or less.

CrはNiと同様にFe−Cr系合金とすることにより、耐食性が向上に寄与し、またCとの共存により、マトリックス中にクロム炭化物として分散されることにより硬さの向上に寄与する。しかしその含有量が10重量%を越えるとNi同様、耐食性の向上により、強制酸化による選択部との色覚的識別が不可能となる為、その添加量は10重量%以下が望ましい。   Cr, like Ni, contributes to improvement of corrosion resistance by making it an Fe-Cr alloy, and contributes to improvement of hardness by being dispersed as chromium carbide in the matrix by coexistence with C. However, if its content exceeds 10% by weight, it is desirable to add 10% by weight or less because, like Ni, it is impossible to distinguish the color vision from the selected part by forced oxidation due to improved corrosion resistance.

Cは焼結時に原料粉末中の酸素とのC−O反応により緻密化を促進し、Fe、Crと共に炭化物を形成することにより硬さの向上に寄与する。しかしその含有量が1.5重量%を越えると、非選択部である脱バインダー体−アルミナ製板材間においてもFe−Al−Si系被膜が形成され、位置選択的な被膜処理がなされない為、その添加量は1.5重量%以下が望ましい。   C promotes densification by a C—O reaction with oxygen in the raw material powder during sintering, and contributes to improvement in hardness by forming carbide together with Fe and Cr. However, if the content exceeds 1.5% by weight, a Fe-Al-Si-based film is formed even between the de-binder and the alumina plate, which is a non-selected part, and the position-selective film treatment is not performed. The added amount is preferably 1.5% by weight or less.

以下に本発明の実施例を比較例と対比しつつ説明するが、本発明は下記の実施例に限定されるものではない。
(実施例1)
平均粒径5μmのFe−1.0wt%Cとバインダーとを45:55の容積比で混合した後、ペレット状に造粒し、射出成形機を用いて(射出条件、射出圧:500kg/cm2、温度:100℃)、厚さ10mm、幅10mm、長さ20mmの大きさの成形体を作製し、脱バインダーした。グラファイト製トレイの上に10重量%の3Al・2SiOを含む160×160×5mmのアルミナ製板材2枚を5mm間隔で並べ、脱バインダー体をこれら2枚のアルミナ製板材に跨るように載置し、連続式焼結炉にて、真空度5×10−2torr、温度1250℃の条件で1時間焼結した。得られた焼結体のグラファイト製トレイに対面した状態で載置された部分(選択部)、及びアルミナ製板材に接触した状態で載置された部分(非選択部1)とその裏面(非選択部2)をEPMAで分析した結果を下記の表1に示す。
Examples of the present invention will be described below in comparison with comparative examples, but the present invention is not limited to the following examples.
Example 1
Fe-1.0 wt% C having an average particle diameter of 5 μm and a binder were mixed at a volume ratio of 45:55, and then granulated into pellets, using an injection molding machine (injection conditions, injection pressure: 500 kg / cm 2). , Temperature: 100 ° C.), a molded body having a thickness of 10 mm, a width of 10 mm, and a length of 20 mm was prepared and debindered. Two 160 × 160 × 5 mm alumina plates containing 10% by weight of 3Al 2 O 3 .2SiO 2 are arranged on a graphite tray at intervals of 5 mm, and the debinder is placed over the two alumina plates. And sintered in a continuous sintering furnace for 1 hour under conditions of a degree of vacuum of 5 × 10 −2 torr and a temperature of 1250 ° C. A portion (selection portion) placed in a state of facing the graphite tray of the sintered body, a portion (non-selection portion 1) placed in contact with the alumina plate material, and a back surface (non-selection portion) The results of analyzing the selection unit 2) by EPMA are shown in Table 1 below.

次いで当該焼結体を10重量%の硝酸溶液中に1時間浸した後、目視にて表面の色調を確認したところ、非選択部は腐食によって黒色へと変色しているのに対し、選択部では腐食前と変わらぬ銀灰色となっていることから、選択部における耐食性の向上と、非選択部との色覚的識別が可能であることを確認した。
(比較例1)
実施例1で作製した脱バインダー体を、アルミナ製板材に跨らないように載置した以外は実施例1と同様にして焼結を行った。得られた焼結体のアルミナ製板材との接触部をEPMAで分析した結果を表1に示す。次いで当該焼結体を実施例1と同様にして腐食させた後、目視にて表面状態を確認したところ、その全面が黒色へと変色していることを確認した。
Next, after immersing the sintered body in a 10% by weight nitric acid solution for 1 hour and visually confirming the color tone of the surface, the non-selected portion was changed to black due to corrosion, while the selected portion was In this case, it was confirmed that it was possible to improve the corrosion resistance in the selected part and to distinguish the color from the non-selected part because the silver gray color was the same as before corrosion.
(Comparative Example 1)
Sintering was performed in the same manner as in Example 1 except that the binder-free body produced in Example 1 was placed so as not to straddle the alumina plate. Table 1 shows the result of EPMA analysis of the contact portion between the obtained sintered body and the alumina plate. Next, after the sintered body was corroded in the same manner as in Example 1, the surface state was visually confirmed, and it was confirmed that the entire surface was changed to black.

以上の結果によれば、本発明方法による焼結体の表面処理方法により得られた焼結体は、従来公知の焼結方法による焼結体には見られない選択部のみの防食処理が施されていることが明らかになった。   According to the above results, the sintered body obtained by the surface treatment method of the sintered body according to the method of the present invention is subjected to anticorrosion treatment only on the selected portion that is not found in the sintered body by the conventionally known sintering method. It has become clear that.

本発明の焼結体の表面処理方法における脱バインダー体の載置方法を示す図。The figure which shows the mounting method of the binder removal body in the surface treatment method of the sintered compact of this invention. 従来の焼結体の表面処理方法における脱バインダー体の載置方法を示す図。The figure which shows the mounting method of the binder removal body in the surface treatment method of the conventional sintered compact.

符号の説明Explanation of symbols

1 脱バインダー体
2、3 アルミナ製板材
4 選択部
5 グラファイト製トレイ
DESCRIPTION OF SYMBOLS 1 Debinding body 2, 3 Alumina board material 4 Selection part 5 Graphite tray

Claims (4)

金属または合金粉末とバインダーとの混練物を射出成形し、得られた成形体を脱バインダーし、次いで真空焼結を行うことにより射出成形粉末冶金製品を製造する際の焼結体の表面処理方法において、
脱バインダー後の成形体に選択的に防食処理を行うために前記成形体を選択的に露呈するように、グラファイト製トレイに載置したアルミナ製板材上に前記成形体を載置して真空焼結を行うことを特徴とする表面処理方法。
Surface treatment method of sintered body in producing injection-molded powder metallurgy product by injection molding of kneaded material of metal or alloy powder and binder, debinding of the obtained molded body, and then vacuum sintering In
The molded body is placed on an alumina plate placed on a graphite tray so as to selectively expose the molded body for selective anticorrosion treatment on the binder after debindering, and vacuum firing is performed. A surface treatment method characterized by performing ligation.
請求項1記載の表面処理方法において、グラファイト製トレイの上に並べられた2枚以上のアルミナ製板材に跨るように脱バインダー後の成形体を載置した状態で前記真空焼結を行うことを特徴とする表面処理方法。   The surface treatment method according to claim 1, wherein the vacuum sintering is performed in a state where the molded body after debinding is placed so as to straddle two or more alumina plate materials arranged on a graphite tray. A characteristic surface treatment method. 請求項1または2記載の表面処理方法において、前記アルミナ製板材には重量比にて5〜30%の3Al・2SiOが含まれていることを特徴とする表面処理方法。 3. The surface treatment method according to claim 1, wherein the alumina plate material contains 5 to 30% of 3Al 2 O 3 .2SiO 2 by weight ratio. 請求項1乃至3のいずれか1つに記載の表面処理方法において、前記金属または合金粉末が、重量比にてNi:0〜10%、Cr:0〜10%、C:0〜1.5%を含み、残部がFeおよび不可回避的不純物であることを特徴とする表面処理方法。   The surface treatment method according to any one of claims 1 to 3, wherein the metal or alloy powder is Ni: 0 to 10%, Cr: 0 to 10%, C: 0 to 1.5 in a weight ratio. %, And the balance is Fe and unavoidable impurities.
JP2004240231A 2004-08-20 2004-08-20 Surface treatment method for sintered compact Pending JP2006057140A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004240231A JP2006057140A (en) 2004-08-20 2004-08-20 Surface treatment method for sintered compact

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004240231A JP2006057140A (en) 2004-08-20 2004-08-20 Surface treatment method for sintered compact

Publications (1)

Publication Number Publication Date
JP2006057140A true JP2006057140A (en) 2006-03-02

Family

ID=36104864

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004240231A Pending JP2006057140A (en) 2004-08-20 2004-08-20 Surface treatment method for sintered compact

Country Status (1)

Country Link
JP (1) JP2006057140A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110682727A (en) * 2019-10-21 2020-01-14 青岛成友金属有限公司 Adhesive balance block for automobile and preparation process thereof
KR102093136B1 (en) * 2019-01-15 2020-03-25 경기대학교 산학협력단 Powder Metallurgy Product having Corrosion-resistant layer

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR102093136B1 (en) * 2019-01-15 2020-03-25 경기대학교 산학협력단 Powder Metallurgy Product having Corrosion-resistant layer
CN110682727A (en) * 2019-10-21 2020-01-14 青岛成友金属有限公司 Adhesive balance block for automobile and preparation process thereof

Similar Documents

Publication Publication Date Title
CA2312607C (en) Metal porous bodies, method for preparation thereof and metallic composite materials using the same
KR100447577B1 (en) Iron Aluminide Useful as Electrical Resistance Heating Element
KR20170047016A (en) Powder forming method of aluminum and its alloys
WO2002100582A1 (en) Porous metal article, metal composite material using the article and method for production thereof
JP2006057140A (en) Surface treatment method for sintered compact
WO2008013581A3 (en) High carbon surface densified sintered steel products and method of production therefor
JP4788878B2 (en) Whisker coating material and manufacturing method thereof
JP2009108338A (en) Cermet and manufacturing method thereof
CN113811631B (en) Nickel-free austenitic stainless steel powder composition and parts produced by sintering said powder
JP2006348386A (en) Method for producing composite material
WO1984004712A1 (en) Tin-containing iron powder and process for its production
JP2001158934A (en) Method for producing wear resistant ferrous sintered alloy
CN114309578A (en) Wear-resistant metal ceramic powder, application thereof and wear-resistant metal ceramic
AU5520896A (en) Method of manufacturing high temperature resistant shaped parts
WO2013035351A1 (en) Alloy composition for aluminum diecasting mold and manufacturing process therefor
CA2497920A1 (en) Alloyed steel powder with improved degree of sintering for metal injection molding and sintered body
JPH07138601A (en) High cr alloy steel powder for wear resistant sintering material and its mixture
JP3265463B2 (en) Method for producing Ti sintered body
JP2547331B2 (en) Surface coating member
Pilone Ferritic stainless steels for high temperature applications in oxidizing environments
JP3857625B2 (en) Discharge surface treatment electrode and discharge surface treatment method
JP2015181874A (en) Fastener component, metal powder for powder metallurgy, and method for manufacturing fastener component
JP2666853B2 (en) Manufacturing method of cemented carbide
JPH10130701A (en) Intermetallic compound composite material and its production
JPH05271713A (en) Method for sintering alloy containing easily oxidizable element