JP2006054449A - Method of manufacturing capacitor element - Google Patents

Method of manufacturing capacitor element Download PDF

Info

Publication number
JP2006054449A
JP2006054449A JP2005206293A JP2005206293A JP2006054449A JP 2006054449 A JP2006054449 A JP 2006054449A JP 2005206293 A JP2005206293 A JP 2005206293A JP 2005206293 A JP2005206293 A JP 2005206293A JP 2006054449 A JP2006054449 A JP 2006054449A
Authority
JP
Japan
Prior art keywords
capacitor element
dopant
capacitor
semiconductor layer
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005206293A
Other languages
Japanese (ja)
Other versions
JP4689381B2 (en
Inventor
Kazumi Naito
一美 内藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Resonac Holdings Corp
Original Assignee
Showa Denko KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Showa Denko KK filed Critical Showa Denko KK
Priority to JP2005206293A priority Critical patent/JP4689381B2/en
Publication of JP2006054449A publication Critical patent/JP2006054449A/en
Application granted granted Critical
Publication of JP4689381B2 publication Critical patent/JP4689381B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Fixed Capacitors And Capacitor Manufacturing Machines (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a capacitor wherein ESR increase after mounting is reduced. <P>SOLUTION: A method of manufacturing a capacitor element comprises a step of forming a semiconductor layer that includes a conductive polymer containing a first dopant on a dielectric layer formed on a surface of a conductor, and a step of forming an electrode layer on the semiconductor layer. After forming the semiconductor layer, electrolytic polymerization is conducted in an electrolytic solution which has no monomer that can become a conductive polymer before formation of the electrode layer and contains a second dopant. A capacitor which is produced by sealing the capacitor element obtained by the method, and an electronic circuit and an electronic appliance using the capacitor, are provided. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐熱特性に優れたコンデンサ素子の製造方法、そのコンデンサ素子を用いたコンデンサ、そのコンデンサを使用した電子回路及び電子機器に関する。   The present invention relates to a method of manufacturing a capacitor element having excellent heat resistance characteristics, a capacitor using the capacitor element, an electronic circuit and an electronic device using the capacitor.

各種電子機器に使用される高容量かつ低ESR(等価直列抵抗)なコンデンサとして、アルミニウム固体電解コンデンサや、タンタル固体電解コンデンサが知られている。
固体電解コンデンサは、表面層に微細な細孔を有するアルミニウム箔や、内部に微小な細孔を有するタンタル粉の焼結体を一方の電極(導電体)として、その電極の表層に形成した誘電体層とその誘電体層上に設けられた他方の電極(通常は、半導体層)及び他方の電極上に積層した電極層とから構成されたコンデンサ素子を封口して作製されている。
As a high-capacity and low ESR (equivalent series resistance) capacitor used in various electronic devices, an aluminum solid electrolytic capacitor and a tantalum solid electrolytic capacitor are known.
Solid electrolytic capacitors consist of an aluminum foil with fine pores in the surface layer and a sintered body of tantalum powder with fine pores inside as one electrode (conductor) formed on the surface of the electrode. The capacitor element is formed by sealing a body layer and another electrode (usually a semiconductor layer) provided on the dielectric layer and an electrode layer laminated on the other electrode.

半導体層としては、有機化合物や無機化合物が使用されるが、コンデンサの耐熱性や低ESR特性を考慮して導電性高分子が好んで使用される。この導電性重合体とは、10-2〜103S・cm-1という高導電性を有する高分子であり、平面状の共役二重結合を有する高分子(通常絶縁体またはきわめて低い導電性を有する高分子)にドーパントと呼称される化合物を添加することによって高導電性が発現する。導電性高分子の半導体層を形成する具体的方法としては、導電体の前記細孔中で導電性重合体になり得る単分子(モノマー)にドーパントの存在下、適当な酸化剤もしくは電子を供給して重合し、単分子が重合するときにドーパントが取り込まれて導電性高分子が得られる方法が挙げられる。 As the semiconductor layer, an organic compound or an inorganic compound is used, but a conductive polymer is preferably used in consideration of the heat resistance and low ESR characteristics of the capacitor. This conductive polymer is a polymer having a high conductivity of 10 −2 to 10 3 S · cm −1 and a polymer having a planar conjugated double bond (usually an insulator or a very low conductivity). High conductivity is exhibited by adding a compound called a dopant to a polymer having a high molecular weight. A specific method for forming a conductive polymer semiconductor layer is to supply an appropriate oxidant or electron in the presence of a dopant to a single molecule (monomer) that can become a conductive polymer in the pores of the conductor. And a method of obtaining a conductive polymer by incorporating a dopant when a single molecule is polymerized.

前記に例示した構成のコンデンサは、基板に半田実装された後に電子機器の各種回路に搭載して使用されるが、実装時の半田熱に耐え、初期性能を維持する必要がある。   The capacitor having the configuration exemplified above is used by being mounted on various circuits of an electronic device after being solder-mounted on a substrate. However, it is necessary to withstand the soldering heat at the time of mounting and maintain the initial performance.

一方、特開昭63−314824号公報(特許文献1)には、気相重合によって形成された導電性高分子層にドーパント作用付与剤を含有する電解液中で電解処理することを特徴とする固体電解コンデンサの製造方法が記載され、この方法によれば、複数種のドーパントを供給したりドーパント効果を強調したりすることによってライフ特性が良好な固体電解コンデンサが得られるとされている。
また、特開昭64−74712号公報(特許文献2)には、化学重合後、電解重合した導電性高分子膜を脱ドープしさらに再ドープする固体電解コンデンサの製造方法が記載され、この方法によれば、初期のESRが良好な固体電解コンデンサが得られるとされている。
しかしながら、上記の特許文献1、2は、共にドーパントの供給やドーパントの変更があるために、電解重合がおこらず、半導体層中にあるオリゴマーを減らし、半田実装時のESR上昇を緩和させることができなかった。
On the other hand, Japanese Patent Application Laid-Open No. 63-314824 (Patent Document 1) is characterized in that a conductive polymer layer formed by gas phase polymerization is subjected to electrolytic treatment in an electrolytic solution containing a dopant activator. A method for manufacturing a solid electrolytic capacitor is described. According to this method, a solid electrolytic capacitor having good life characteristics can be obtained by supplying a plurality of types of dopants or by enhancing the dopant effect.
Japanese Patent Application Laid-Open No. 64-74712 (Patent Document 2) describes a method for producing a solid electrolytic capacitor in which a conductive polymer film subjected to electrolytic polymerization after chemical polymerization is dedoped and then redoped. According to the above, it is said that a solid electrolytic capacitor having a good initial ESR can be obtained.
However, in Patent Documents 1 and 2 described above, both the supply of the dopant and the change of the dopant do not cause electrolytic polymerization, reduce the oligomers in the semiconductor layer, and alleviate the increase in ESR during solder mounting. could not.

特開昭63−314824号公報JP-A 63-314824 特開昭64−74712号公報JP-A 64-74712

従来のコンデンサは、多数個半田実装を行うとESR値が上昇するものが存在するという問題があった。とりわけ、昨今の環境問題を考慮した鉛フリー半田で高温実装した場合に顕著に問題が発生した。   Conventional capacitors have a problem that some ESR values increase when a large number of solders are mounted. In particular, a significant problem occurred when high-temperature mounting was carried out with lead-free solder considering the recent environmental problems.

本発明者等は、前記課題を解決するために鋭意検討した結果、半導体層形成後に導電性重合体になり得るモノマーが存在しないでドーパントが含有された電解液中で電解重合する操作を行って、半導体層中に存在するオリゴマーを重合体とすることにより、実装時にESR上昇をおこすコンデンサ数を減少させることができることを見出し、本発明を完成させるに至った。   As a result of diligent studies to solve the above problems, the present inventors conducted an operation of performing electropolymerization in an electrolytic solution containing a dopant without the presence of a monomer that can become a conductive polymer after forming a semiconductor layer. The inventors have found that by using an oligomer present in the semiconductor layer as a polymer, the number of capacitors that cause an increase in ESR during mounting can be reduced, and the present invention has been completed.

すなわち、本発明は以下のコンデンサ素子の製造方法及びその製造方法を使用して作製したコンデンサ素子、コンデンサ、そのコンデンサを使用した電子回路及び電子機器を提供するものである。
1.導電体の表面に形成した誘電体層上に、第1のドーパントを含有する導電性重合体を含む半導体層を形成し、その上に電極層を形成するコンデンサ素子の製造方法であり、半導体層形成前に導電性重合体になり得るモノマーが存在せず第二のドーパントを含む電解液中で電解重合することを特徴とするコンデンサ素子の製造方法。
2.導電体の表面に形成した誘電体層上に、モノマーと第一のドーパントとを含む電解液中で電解重合して導電性重合体を含む半導体層を形成し、その上に電極層を形成するコンデンサ素子の製造方法であって、半導体層形成後であって、電極層形成前に導電性重合体になり得るモノマーが存在せず第二のドーパントを含む電解液中で電解重合することを特徴とするコンデンサ素子の製造方法。
3.第二のドーパントが、半導体層中に既に含有されている第一のドーパントと同一である前記1または2に記載のコンデンサ素子の製造方法。
4.ドーパントが、スルホン酸基を有する化合物である前記1乃至3のいずれかに記載のコンデンサ素子の製造方法。
5.導電体が、金属、無機半導体、有機半導体、これらの少なくとも1種の混合物、及びそれらの表層に導電体を積層した積層体から選択される前記1乃至4のいずれかに記載のコンデンサ素子の製造方法。
6.導電体が、タンタル、ニオブ、チタン及びアルミニウムから選ばれる少なくとも1種を主成分とする金属あるいは合金である前記1乃至4のいずれかに記載のコンデンサ素子の製造方法。
7.導電体が、酸化ニオブである前記1乃至4のいずれかに記載のコンデンサ素子の製造方法。
8.導電体が、タンタル、ニオブ、チタン及びアルミニウムから選ばれる少なくとも1種を主成分とする金属、合金及び酸化ニオブから選ばれる少なくとも2種以上の混合物である前記6または7に記載のコンデンサ素子の製造方法。
9.誘電体層が、Ta25、Al23、TiO2及びNb25からなる群から選ばれる少なくとも1つを主成分とするものである前記1または2に記載の固体電解コンデンサの製造方法。
10.半導体層が、下記一般式(1)または(2)

Figure 2006054449
(式中、R1〜R4は各々独立して、水素原子、炭素数1〜6のアルキル基または炭素数1〜6のアルコキシ基を表わし、Xは酸素、イオウまたは窒素原子を表わし、R5はXが窒素原子のときのみ存在して水素原子または炭素数1〜6のアルキル基を表わし、R1とR2およびR3とR4は、互いに結合して環状になっていてもよい。)
で示される繰り返し単位を含む重合体にドーパントをドープした導電性重合体を主成分とした半導体から選択される少なくとも1種の層である前記1乃至9のいずれかに記載のコンデンサ素子の製造方法。
11.一般式(1)で示される繰り返し単位を含む重合体が、下記一般式(3)
Figure 2006054449
(式中、R6及びR7は各々独立して、水素原子、炭素数1〜6の直鎖状もしくは分岐状の飽和もしくは不飽和のアルキル基、または該アルキル基が互いに任意の位置で結合して、2つの酸素原子を含む少なくとも1つ以上の5〜7員環の飽和炭化水素の環状構造を形成する置換基を表わす。また、前記環状構造には置換されていてもよいビニレン結合を有するもの、置換されていてもよいフェニレン構造のものも含まれる。)
で示される構造単位を繰り返し単位として含む重合体である前記10に記載のコンデンサ素子の製造方法。
12.重合体が、ポリアニリン、ポリオキシフェニレン、ポリフェニレンサルファイド、ポリチオフェン、ポリフラン、ポリピロール、ポリメチルピロール、及びこれらの置換誘導体及び共重合体から選択される前記10に記載のコンデンサ素子の製造方法。
13.重合体が、ポリ(3,4−エチレンジオキシチオフェン)である前記10に記載のコンデンサ素子の製造方法。
14.半導体の電導度が、10-2〜103S/cmの範囲である前記10に記載のコンデンサ素子の製造方法。
15.前記1乃至14のいずれかに記載の方法で得られたコンデンサ素子を封口してなるコンデンサ。
16.前記15に記載のコンデンサを使用した電子回路。
17.前記15に記載のコンデンサを使用した電子機器。 That is, the present invention provides a capacitor element manufacturing method, a capacitor element manufactured by using the manufacturing method, a capacitor, an electronic circuit and an electronic device using the capacitor.
1. A method for manufacturing a capacitor element, comprising: forming a semiconductor layer containing a conductive polymer containing a first dopant on a dielectric layer formed on a surface of a conductor; and forming an electrode layer thereon. A method for producing a capacitor element, characterized in that, before formation, there is no monomer that can be a conductive polymer, and electrolytic polymerization is carried out in an electrolytic solution containing a second dopant.
2. On the dielectric layer formed on the surface of the conductor, a semiconductor layer containing a conductive polymer is formed by electrolytic polymerization in an electrolytic solution containing a monomer and a first dopant, and an electrode layer is formed thereon. A method for producing a capacitor element, characterized in that after polymerization of a semiconductor layer and before formation of an electrode layer, there is no monomer that can be a conductive polymer, and electropolymerization is performed in an electrolytic solution containing a second dopant. A method for manufacturing a capacitor element.
3. 3. The method for producing a capacitor element according to 1 or 2, wherein the second dopant is the same as the first dopant already contained in the semiconductor layer.
4). 4. The method for producing a capacitor element according to any one of 1 to 3, wherein the dopant is a compound having a sulfonic acid group.
5. 5. The production of a capacitor element according to any one of 1 to 4, wherein the conductor is selected from a metal, an inorganic semiconductor, an organic semiconductor, a mixture of at least one of these, and a laminate in which a conductor is laminated on a surface layer thereof. Method.
6). 5. The method of manufacturing a capacitor element according to any one of 1 to 4, wherein the conductor is a metal or alloy containing at least one selected from tantalum, niobium, titanium, and aluminum as a main component.
7). 5. The method for manufacturing a capacitor element according to any one of 1 to 4, wherein the conductor is niobium oxide.
8). 8. The production of a capacitor element as described in 6 or 7 above, wherein the conductor is a mixture of at least two kinds selected from metals, alloys and niobium oxides mainly composed of at least one selected from tantalum, niobium, titanium and aluminum. Method.
9. 3. The solid electrolytic capacitor according to 1 or 2 above, wherein the dielectric layer is mainly composed of at least one selected from the group consisting of Ta 2 O 5 , Al 2 O 3 , TiO 2 and Nb 2 O 5 . Production method.
10. The semiconductor layer has the following general formula (1) or (2)
Figure 2006054449
(Wherein R 1 to R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, X represents an oxygen, sulfur or nitrogen atom; 5 is present only when X is a nitrogen atom and represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 1 and R 2 and R 3 and R 4 may be bonded to each other to form a ring. .)
10. The method for producing a capacitor element according to any one of 1 to 9, which is at least one layer selected from a semiconductor mainly comprising a conductive polymer doped with a dopant in a polymer containing a repeating unit represented by .
11. The polymer containing the repeating unit represented by the general formula (1) is represented by the following general formula (3).
Figure 2006054449
(Wherein R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or the alkyl group is bonded to each other at an arbitrary position. And a substituent that forms a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen atoms, and the cyclic structure has an optionally substituted vinylene bond. And those having a phenylene structure which may be substituted.
11. The method for producing a capacitor element as described in 10 above, which is a polymer containing a structural unit represented by formula (1) as a repeating unit.
12 11. The method for producing a capacitor element according to 10 above, wherein the polymer is selected from polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylpyrrole, and substituted derivatives and copolymers thereof.
13. 11. The method for producing a capacitor element as described in 10 above, wherein the polymer is poly (3,4-ethylenedioxythiophene).
14 11. The method for producing a capacitor element as described in 10 above, wherein the electrical conductivity of the semiconductor is in the range of 10 −2 to 10 3 S / cm.
15. 15. A capacitor formed by sealing the capacitor element obtained by the method according to any one of 1 to 14 above.
16. 16. An electronic circuit using the capacitor as described in 15 above.
17. 16. An electronic device using the capacitor as described in 15 above.

本発明は、半導体層形成後に導電性高分子になりうるモノマーが存在しないでドーパントが含有された電解液中で電解重合する操作を行って作製したコンデンサ素子、そのコンデンサ素子を封口したコンデンサを提供するものである。本発明の方法によれば、実装後も初期のESR値を有するコンデンサが作製できる。   The present invention provides a capacitor element produced by performing an operation of electrolytic polymerization in an electrolyte containing a dopant without a monomer that can become a conductive polymer after forming a semiconductor layer, and a capacitor that seals the capacitor element To do. According to the method of the present invention, a capacitor having an initial ESR value can be manufactured even after mounting.

本発明のコンデンサ素子の製造方法及びそのコンデンサ素子の基本材料及び各層の材料について説明する。   The manufacturing method of the capacitor element of the present invention, the basic material of the capacitor element, and the material of each layer will be described.

本発明のコンデンサ素子に使用される導電体としては、金属、合金、無機半導体、有機半導体、カーボン、これらの少なくとも1種の混合物、表層にそれらの導電体を積層した積層体が挙げられる。   Examples of the conductor used in the capacitor element of the present invention include metals, alloys, inorganic semiconductors, organic semiconductors, carbon, a mixture of at least one of these, and a laminate in which these conductors are laminated on the surface layer.

無機半導体として、二酸化鉛、二酸化モリブデン、二酸化タングステン、一酸化ニオブ、二酸化ニオブ、二酸化スズ、一酸化ジルコニウム等の金属酸化物が挙げられ、有機半導体として例えばポリピロール、ポリチオフェン、ポリアニリン及びこれら重合体骨格を有する置換体、共重合体等の導電性重合体、テトラシアノキノジメタン(TCNQ)とテトラチオテトラセンとの錯体、TCNQ塩等の低分子錯体が挙げられる。また、表層に導電体を積層した積層体としては、例えば紙、絶縁性重合体、ガラス等に前記導電体を積層した積層体が挙げられる。   Examples of inorganic semiconductors include metal oxides such as lead dioxide, molybdenum dioxide, tungsten dioxide, niobium monoxide, niobium dioxide, tin dioxide, and zirconium monoxide. Examples of organic semiconductors include polypyrrole, polythiophene, polyaniline, and their polymer skeletons. Examples thereof include conductive polymers such as substituted products and copolymers, complexes of tetracyanoquinodimethane (TCNQ) and tetrathiotetracene, and low molecular complexes such as TCNQ salts. Moreover, as a laminated body which laminated | stacked the conductor on the surface layer, the laminated body which laminated | stacked the said conductor on paper, an insulating polymer, glass etc. is mentioned, for example.

本発明に使用される金属としては、タンタル、アルミニウム、ニオブ、チタン、これら弁作用金属を主成分とする合金または酸化ニオブ、または前記弁作用金属、合金及び導電性酸化物から選択された2種以上の混合物が挙げられる。混合物の具体例としては、Ta合金+Ta、Nb合金+Nb、Nb合金+NbO、Nb+NbO、Nb合金+Nb+NbO、Ta+TaO、Ta合金+TaO、Ta合金+Ta+TaO、Nb+NbO2、Nb合金+NbO2、NbO+NbO2、Nb+NbO+NbO2、Nb合金+NbO+NbO2、Nb+Nb合金+NbO+NbO2が挙げられる。また、導電性酸化物の具体例としては、NbO、NbO2、NbO1.1、TaOが挙げられる。金属または前記合金または導電性化合物等の一部を、炭化、燐化、ホウ素化、窒化、硫化から選ばれた少なくとも1種の処理を行ってから使用しても良い。 As the metal used in the present invention, tantalum, aluminum, niobium, titanium, an alloy or niobium oxide based on these valve action metals, or two kinds selected from the valve action metals, alloys and conductive oxides. The above mixture is mentioned. Specific examples of the mixture include Ta alloy + Ta, Nb alloy + Nb, Nb alloy + NbO, Nb + NbO, Nb alloy + Nb + NbO, Ta + TaO, Ta alloy + TaO, Ta alloy + Ta + TaO, Nb + NbO 2 , Nb alloy + NbO 2 , NbO + NbO 2 , NbO 2 , NbN Alloy + NbO + NbO 2 , Nb + Nb alloy + NbO + NbO 2 may be mentioned. Specific examples of the conductive oxide include NbO, NbO 2 , NbO 1.1 , and TaO. A part of the metal, the alloy, the conductive compound, or the like may be used after at least one treatment selected from carbonization, phosphation, boronation, nitridation, and sulfurization is performed.

導電体の形状は特に限定されず、箔状、板状、棒状、導電体自身を粉状にして成形または成形後焼結した形状等として用いられる。箔状または板状の金属の一部に粉状の導電体を付着させて焼結した形状としてもよい。導電体表面をエッチング等で処理して、微細な細孔を有するようにしてもよい。導電体を粉状にして成形体形状または成形後焼結した形状とする場合には、成形時の圧力を適当に選択することにより、成形または焼結後の内部に微小な細孔を設けることができる。また、導電体を粉状にして成形体形状または成形後焼結した形状とする場合は、成形時に別途用意した引き出しリード線(またはリード箔)の一部を導電体と共に成形し、引き出しリード線(またはリード箔)の成形外部の箇所を、コンデンサ素子の一方の電極の引き出しリードとすることもできる。導電体に引き出しリードを直接接続することも勿論可能である。また導電体の一部に半導体層を形成しない領域を残しておいて陽極部とすることもできる。陽極部と半導体層形成部の境界に半導体層の這い上がりを防ぐために絶縁性樹脂を鉢巻状に付着硬化させておいてもよい。   The shape of the conductor is not particularly limited, and may be used as a foil shape, a plate shape, a rod shape, a shape obtained by forming the conductor itself into a powder shape, or sintering after forming. It is good also as a shape which adhered and sintered the powdery conductor to a part of foil-shaped or plate-shaped metal. The conductor surface may be processed by etching or the like to have fine pores. When the conductor is powdered to form a molded body or a sintered shape after molding, fine pores should be provided in the interior after molding or sintering by appropriately selecting the pressure during molding. Can do. If the conductor is powdered to form a molded body or a sintered shape after molding, a part of the lead wire (or lead foil) prepared separately at the time of molding is molded together with the conductor, and the lead wire A portion outside the molding of the (or lead foil) can be used as a lead for one electrode of the capacitor element. Of course, it is possible to directly connect the lead to the conductor. Alternatively, the anode portion may be formed by leaving a region where a semiconductor layer is not formed in a part of the conductor. In order to prevent the semiconductor layer from creeping up at the boundary between the anode portion and the semiconductor layer forming portion, an insulating resin may be adhered and cured in a headband shape.

本発明の導電体の好ましい例として、表面がエッチング処理されたアルミニウム箔、タンタル粉、ニオブ粉、タンタルを主成分とする合金粉、ニオブを主成分とする合金粉、一酸化ニオブ粉等の粉を成形後焼結した内部に微細な空孔が多数存在する焼結体を挙げることができる。   Preferred examples of the conductor of the present invention include aluminum foil whose surface has been subjected to etching treatment, tantalum powder, niobium powder, alloy powder containing tantalum as a main component, alloy powder containing niobium as a main component, and niobium monoxide powder. A sintered body in which a large number of fine pores are present in the sintered body after being molded.

本発明の導電体表面に形成される誘電体層としては、Ta25、Al23、TiO2、Nb25等の金属酸化物から選ばれる少なくとも1つを主成分とする誘電体層、セラミックコンデンサやフィルムコンデンサの分野で従来公知の誘電体層が挙げられる。前者の金属酸化物から選ばれる少なくとも1つを主成分とする誘電体層の場合、金属酸化物の金属元素を有する前記導電体を鉱酸や有機酸を含有する電解液中で化成することによって誘電体層を形成すると得られるコンデンサ素子は、極性を持つ電解コンデンサとなる。セラミックコンデンサやフィルムコンデンサで従来公知の誘電体層の例としては、本出願人による特開昭63―29919号公報、特開昭63−34917号公報に記載した誘電体層を挙げることができる。また、金属酸化物から選ばれる少なくとも1つを主成分とする誘電体層やセラミックコンデンサやフィルムコンデンサで従来公知の誘電体層を複数積層して使用してもよい。また、金属酸化物から選ばれる少なくとも1つを主成分とする誘電体やセラミックコンデンサやフィルムコンデンサで従来公知の誘電体を混合した誘電体層でもよい。 The dielectric layer formed on the surface of the conductor according to the present invention is a dielectric mainly composed of at least one selected from metal oxides such as Ta 2 O 5 , Al 2 O 3 , TiO 2 , and Nb 2 O 5. Conventionally known dielectric layers in the field of body layers, ceramic capacitors and film capacitors can be mentioned. In the case of a dielectric layer mainly composed of at least one selected from the former metal oxides, the conductor having the metal element of the metal oxide is formed in an electrolytic solution containing a mineral acid or an organic acid. The capacitor element obtained by forming the dielectric layer becomes an electrolytic capacitor having polarity. Examples of conventionally known dielectric layers for ceramic capacitors and film capacitors include the dielectric layers described in Japanese Patent Application Laid-Open Nos. 63-29919 and 63-34917 by the present applicant. Also, a plurality of conventionally known dielectric layers may be laminated and used with a dielectric layer mainly composed of at least one selected from metal oxides, ceramic capacitors, and film capacitors. Also, a dielectric layer in which a conventionally known dielectric material is mixed with a dielectric material composed mainly of at least one selected from metal oxides, a ceramic capacitor, or a film capacitor may be used.

一方、本発明のコンデンサ素子の前記誘電体層上に形成される他方の電極(陰極)としては、後記する導電性重合体から選ばれる少なくとも1種の有機半導体が挙げられる。これは必ず導電性重合体を含み、それ以外の有機半導体及び無機半導体から選ばれる少なくとも1種の化合物をさらに含んでいてもよい。   On the other hand, the other electrode (cathode) formed on the dielectric layer of the capacitor element of the present invention includes at least one organic semiconductor selected from conductive polymers described later. This necessarily contains a conductive polymer, and may further contain at least one compound selected from organic semiconductors and inorganic semiconductors.

有機半導体の具体例としては、ベンゾピロリン4量体とクロラニルからなる有機半導体、テトラチオテトラセンを主成分とする有機半導体、テトラシアノキノジメタンを主成分とする有機半導体、下記一般式(1)または(2)で示される繰り返し単位を含む重合体にドーパントをドープした導電性重合体を主成分とした有機半導体が挙げられる。   Specific examples of the organic semiconductor include an organic semiconductor composed of benzopyrroline tetramer and chloranil, an organic semiconductor mainly composed of tetrathiotetracene, an organic semiconductor mainly composed of tetracyanoquinodimethane, and the following general formula (1) Or the organic semiconductor which has as a main component the conductive polymer which doped the dopant to the polymer containing the repeating unit shown by (2) is mentioned.

Figure 2006054449
Figure 2006054449

式(1)及び(2)において、R1〜R4は各々独立して、水素原子、炭素数1〜6のアルキル基または炭素数1〜6のアルコキシ基を表し、Xは酸素、イオウまたは窒素原子を表し、R5はXが窒素原子のときのみ存在して水素原子または炭素数1〜6のアルキル基を表し、R1とR2およびR3とR4は、互いに結合して環状になっていてもよい。 In the formulas (1) and (2), R 1 to R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, and X represents oxygen, sulfur or Represents a nitrogen atom, R 5 is present only when X is a nitrogen atom and represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 1 and R 2 and R 3 and R 4 are bonded to each other to form a ring It may be.

さらに、本発明においては、前記一般式(1)で示される繰り返し単位を含む導電性高分子の好ましい例として、下記一般式(3)で示される構造単位を繰り返し単位として含む導電性高分子が挙げられる。   Furthermore, in the present invention, as a preferred example of the conductive polymer containing the repeating unit represented by the general formula (1), a conductive polymer containing a structural unit represented by the following general formula (3) as a repeating unit is used. Can be mentioned.

Figure 2006054449
Figure 2006054449

式中、R6及びR7は、各々独立して水素原子、炭素数1〜6の直鎖状もしくは分岐状の飽和もしくは不飽和のアルキル基、または該アルキル基が互いに任意の位置で結合して、2つの酸素原子を含む少なくとも1つ以上の5〜7員環の飽和炭化水素の環状構造を形成する置換基を表わす。また、前記環状構造には置換されていてもよいビニレン結合を有するもの、置換されていてもよいフェニレン構造のものも含まれる。 In the formula, R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or the alkyl group is bonded to each other at an arbitrary position. And a substituent that forms a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen atoms. The cyclic structure includes those having a vinylene bond which may be substituted and those having a phenylene structure which may be substituted.

このような化学構造を含む導電性重合体は、荷電されており、ドーパントがドープされる。ドーパントは特に限定されず公知のドーパントを使用できる。   A conductive polymer containing such a chemical structure is charged and doped with a dopant. A dopant is not specifically limited, A well-known dopant can be used.

ドーパントの好ましい例として、スルホン酸基を有する化合物やホウ素原子にカルボン酸が配位したホウ素化合物が挙げられ、さらに好ましい化合物としてスルホン酸基を有する化合物が挙げられる。具体的化合物として、ベンゼンスルホン酸、トルエンスルホン酸、ナフタレンスルホン酸、アントラセンスルホン酸、ベンゾキノンスルホン酸、ナフトキノンスルホン酸及びアントラキノンスルホン酸等のアリール基を有するスルホン酸、ブチルスルホン酸、ヘキシルスルホン酸及びシクロヘキシルスルホン酸等のアルキル基を有するスルホン酸、ポリビニルスルホン酸等の各種高分子(重合度2〜200)スルホン酸、これらスルホン酸の塩(アンモニウム塩、アルカリ金属塩、アルカリ土類金属塩等)、これらのスルホン酸とそのスルホン酸塩の混合物が代表例として挙げられる。これら化合物は各種置換基を有していてもよいし、スルホン酸基は複数個存在してもよい。例えば、2,6−ナフタレンジスルホン酸、1,2−エタンジスルホン酸等が挙げられる。また、ホウ素化合物としてボロジサリチル酸アンモニウム、ボロ−1,2−カルボキシベンゼンアンモニウム等が挙げられる。また、複数のドーパントを併用してもよい。   Preferable examples of the dopant include a compound having a sulfonic acid group and a boron compound in which a carboxylic acid is coordinated to a boron atom, and a more preferable compound is a compound having a sulfonic acid group. Specific compounds include sulfonic acid having an aryl group such as benzenesulfonic acid, toluenesulfonic acid, naphthalenesulfonic acid, anthracenesulfonic acid, benzoquinonesulfonic acid, naphthoquinonesulfonic acid and anthraquinonesulfonic acid, butylsulfonic acid, hexylsulfonic acid and cyclohexyl. Various polymers such as sulfonic acid having an alkyl group such as sulfonic acid, polyvinyl sulfonic acid (degree of polymerization: 2 to 200) sulfonic acid, salts of these sulfonic acids (ammonium salt, alkali metal salt, alkaline earth metal salt, etc.), A typical example is a mixture of these sulfonic acids and their sulfonates. These compounds may have various substituents, and a plurality of sulfonic acid groups may exist. For example, 2,6-naphthalenedisulfonic acid, 1,2-ethanedisulfonic acid and the like can be mentioned. Examples of the boron compound include ammonium borodisalicylate and boro-1,2-carboxybenzene ammonium. A plurality of dopants may be used in combination.

式(1)〜(3)で示される繰り返し単位を含む重合体としては、例えば、ポリアニリン、ポリオキシフェニレン、ポリフェニレンサルファイド、ポリチオフェン、ポリフラン、ポリピロール、ポリメチルピロール、及びこれらの置換誘導体や共重合体などが挙げられる。中でもポリピロール、ポリチオフェン及びこれらの置換誘導体(例えばポリ(3,4−エチレンジオキシチオフェン)等)が好ましい。   Examples of the polymer containing the repeating unit represented by the formulas (1) to (3) include polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polypyrrole, and substituted derivatives and copolymers thereof. Etc. Of these, polypyrrole, polythiophene, and substituted derivatives thereof (for example, poly (3,4-ethylenedioxythiophene)) are preferable.

前述した半導体層は、通電操作を行わない純粋な化学反応(溶液反応、気相反応、固液反応及びそれらの組み合わせ)、通電手法の1例である電解重合手法、あるいはこれらの方法を組み合わせることにより形成される。これらの中でも、電解重合手法を少なくとも1回は用いて作製した半導体層は、導電性重合体鎖の分岐が無いため、あるいは導電体外表層上の半導体層厚みが均一になるため、作製したコンデンサの初期ESR値が低く良好であるために好ましい。
無機半導体の具体例として、二酸化モリブデン、二酸化タングステン、二酸化鉛、二酸化マンガン等から選ばれる少なくとも1種の化合物が挙げられる。
The semiconductor layer described above may be a pure chemical reaction (solution reaction, gas phase reaction, solid-liquid reaction and combinations thereof) without conducting an energization operation, an electropolymerization technique which is an example of an energization technique, or a combination of these methods. It is formed by. Among these, the semiconductor layer produced using the electrolytic polymerization method at least once has no branch of the conductive polymer chain, or the semiconductor layer thickness on the outer surface of the conductor becomes uniform, so that This is preferable because the initial ESR value is low and good.
Specific examples of the inorganic semiconductor include at least one compound selected from molybdenum dioxide, tungsten dioxide, lead dioxide, manganese dioxide and the like.

上記有機半導体及び無機半導体として、電導度10-2〜103S/cmの範囲のものを使用すると、作製したコンデンサのESR値が小さくなり好ましい。 When the organic semiconductor and the inorganic semiconductor have a conductivity in the range of 10 −2 to 10 3 S / cm, the ESR value of the manufactured capacitor is preferably reduced.

本発明では、導電性重合体からなる半導体層を形成した後または半導体層を形成して後記する再化成を行った後に導電性高分子になりうるモノマーが存在しないでドーパントが含有された電解液中で電解重合する操作を行うことが肝要である。ドーパントとして従来公知のドーパントが採用されるが、中でもスルホン酸基を有する有機化合物が誘電体層の微少な劣化をおこす可能性が低いために好ましい。スルホン酸基を有する有機化合物の具体例として、先に導電性高分子のドーパントの例として記載した化合物を挙げることができる。   In the present invention, an electrolytic solution containing a dopant without the presence of a monomer that can become a conductive polymer after forming a semiconductor layer made of a conductive polymer or after forming a semiconductor layer and performing re-chemical conversion described later. It is important to perform an operation for electrolytic polymerization in the inside. A conventionally well-known dopant is employ | adopted as a dopant, However, Since the organic compound which has a sulfonic acid group has a low possibility of causing the slight deterioration of a dielectric material layer, it is preferable. Specific examples of the organic compound having a sulfonic acid group include the compounds described above as examples of the conductive polymer dopant.

また、ドーパントとしては、半導体層中に既に含有されるドーパントと同一のものを使用すると、電解重合操作後に導電性高分子間に存在するドーパントの寸法が同じになり、導電性重合体間隙が均一となるため導電性が上昇し、その結果、作製コンデンサの初期ESR値が低く良好なものとなり好ましい。   Moreover, if the same dopant as the dopant already contained in the semiconductor layer is used as the dopant, the size of the dopant existing between the conductive polymers after the electrolytic polymerization operation becomes the same, and the conductive polymer gap is uniform. Therefore, the conductivity is increased, and as a result, the initial ESR value of the manufactured capacitor is preferably low and favorable.

ドーパントを含有する電解液とは、前記ドーパントとドーパントを溶解する水または各種アルコール、各種エステル、各種グリコール等の公知の有機溶媒から選ばれる少なくとも1種の溶媒からなる溶液のことである。電解液中には、燐酸、硫酸等の鉱酸や酢酸、アジピン酸、安息香酸等の有機酸または鉱酸や有機酸の各種塩が存在してもよい。   The electrolytic solution containing a dopant is a solution composed of at least one solvent selected from known organic solvents such as water or various alcohols, various esters, various glycols and the like in which the dopant and the dopant are dissolved. In the electrolytic solution, mineral acids such as phosphoric acid and sulfuric acid, organic acids such as acetic acid, adipic acid and benzoic acid, or various salts of mineral acids and organic acids may be present.

前記電解重合操作とは、半導体層が形成された導電体の一部、好ましくは、導電体のうち半導体層が形成された部分と存在する場合はリード線(リード箔)の一部や導電体の半導体層が形成されていない部分の一部を、ドーパントを含有する電解液中に入れ、導電体またはリード線(リード箔)を一方の電極とし、電解液中に別途用意された電極との間に電圧を印加し電流を供給して半導体層中に残留するオリゴマーを重合させて重合体化し、導電性高分子にする操作である。導電体に接するかまたは導電体の近傍に置いた別の電極と電解液中に別途用意された電極との間に電圧を印加してもよいし、導電体側から電圧を印加する方法を併用してもよい。   The electropolymerization operation is a part of a conductor on which a semiconductor layer is formed, preferably a part of a lead wire (lead foil) or a conductor if a conductor is present with a part on which a semiconductor layer is formed. A part of the portion where the semiconductor layer is not formed is put in an electrolyte containing a dopant, and a conductor or a lead wire (lead foil) is used as one electrode, and an electrode separately prepared in the electrolyte This is an operation in which a voltage is applied between them to supply a current to polymerize oligomers remaining in the semiconductor layer to form a conductive polymer. A voltage may be applied between another electrode in contact with the conductor or in the vicinity of the conductor and an electrode separately prepared in the electrolyte, or a method of applying a voltage from the conductor side is used in combination. May be.

電解液中のドーパント濃度、通電電圧、通電電流、通電時間、電解液の温度などは、使用する導電体の種類、導電体の形状、導電体の質量、誘電体層の種類、導電性高分子の種類、導電性重合体の質量、導電性高分子中のドーパント種等によって変化するために予備実験によって最適値が決定される。導電体上の誘電体層が化成によって作製されている場合、通電電圧を化成電圧より高く設定しておくと残留オリゴマーの電解重合が容易に行われ、既に形成されている半導体層の導電性高分子への単なるドーピングという操作に終わらないために好都合である。また、前記した半導体層の導電性重合体を充分過剰なドーパント存在下に電解重合法で形成しておくと、通電電圧を化成電圧より低くしておいても導電性重合体へのさらなる単なるドーピングが起こらず、通電電流効率よく、オリゴマーのみが電解重合によって高分子になるため好ましい。   The concentration of dopant in the electrolyte, energizing voltage, energizing current, energizing time, temperature of the electrolyte, etc. are the type of conductor used, the shape of the conductor, the mass of the conductor, the type of the dielectric layer, the conductive polymer Therefore, the optimum value is determined by a preliminary experiment because it varies depending on the kind of the conductive polymer, the mass of the conductive polymer, the dopant species in the conductive polymer, and the like. When the dielectric layer on the conductor is formed by chemical conversion, if the energization voltage is set higher than the chemical conversion voltage, the residual oligomer is easily electropolymerized, and the conductivity of the already formed semiconductor layer is increased. This is convenient because it does not end with the operation of simple doping of molecules. In addition, if the conductive polymer of the semiconductor layer is formed by electrolytic polymerization in the presence of a sufficient excess of dopant, further simple doping into the conductive polymer even if the energization voltage is lower than the formation voltage. This is preferable because only the oligomer becomes a polymer by electrolytic polymerization.

前記した半導体層を複数回にわけて形成する場合、モノマーが存在せずドーパントを含有した電解液中で電解重合する本発明の操作を、複数の半導体層形成後に続けて行ってもよいし、半導体層形成後の任意の時に任意の回数行ってもよい。   When the semiconductor layer described above is formed in a plurality of times, the operation of the present invention in which the monomer is not present and the electrolytic polymerization is performed in the electrolyte containing the dopant may be performed after the formation of the plurality of semiconductor layers, It may be performed any number of times after the semiconductor layer is formed.

半導体層の重合体の重合度は、通常2から100ほどであるが、重合度2〜5程度のオリゴマーと呼称される低重合度の重合体は、半導体層形成後の未反応モノマーや未使用ドーパントの洗浄時に除去されずに最終的なコンデンサ素子中に残存する。オリゴマーは絶縁体に近い化合物であって、作製したコンデンサの初期ESR値は、このようなオリゴマーを含んだ数値を示すが、オリゴマーは半田実装時の高熱で熱重合し、本来の高重合度を有する導電性重合体部に結合して一連の共役二重結合の平面性を乱し導電性を低下させたり、ドーパントが存在しない状態での結合のために導電性重合体を低導電性の重合体に変える働きをし、その結果、半田実装後のESR値が上昇すると考えられる。   The polymerization degree of the polymer of the semiconductor layer is usually about 2 to 100, but the low polymerization degree polymer called an oligomer having a polymerization degree of about 2 to 5 is an unreacted monomer or unused after the formation of the semiconductor layer. It remains in the final capacitor element without being removed during the cleaning of the dopant. The oligomer is a compound close to an insulator, and the initial ESR value of the capacitor produced shows a value that includes such an oligomer. The oligomer is thermally polymerized by high heat during solder mounting, and the original high degree of polymerization is obtained. The conductive polymer part is bonded to the conductive polymer part to disturb the planarity of a series of conjugated double bonds to lower the conductivity, or the conductive polymer is bonded to a low conductive weight for bonding in the absence of a dopant. It is considered that the ESR value after solder mounting increases as a result of the function of changing to coalescence.

一方、半導体層形成後に半導体層中に残存するオリゴマーを、モノマーが無くドーパントを含有した電解液中で電解重合すると、オリゴマー部分が電解重合し、しかもドーパントが存在するために、重合した部分にもドーパントが行き渡ることになる。その結果作製したコンデンサ素子中のオリゴマーの存在量が減少し、実装後のESR上昇が緩和されるものと考えられる。電解重合時にモノマーを存在させないので、さらにオリゴマーが形成されることはない。   On the other hand, when the oligomer remaining in the semiconductor layer after the formation of the semiconductor layer is electrolytically polymerized in an electrolyte containing no dopant and containing a dopant, the oligomer part is electrolytically polymerized, and the dopant is present. The dopant will spread. As a result, it is considered that the amount of oligomer present in the produced capacitor element is reduced, and the increase in ESR after mounting is mitigated. Since no monomer is present during the electropolymerization, no further oligomer is formed.

本発明においては、半導体層を形成することによって生じる誘電体層の微小な欠陥を修復するために、再化成(誘電体層を化成で形成しない場合は、1回目の化成)を行ってもよい。再化成は、半導体層を形成し、ドーパントを含有する電解液中で電解重合操作を行う前後のいずれか、または前後共に行うことができる。   In the present invention, in order to repair minute defects in the dielectric layer caused by forming the semiconductor layer, re-formation (the first formation is performed when the dielectric layer is not formed) may be performed. . The re-formation can be performed either before or after the formation of the semiconductor layer and before or after the electrolytic polymerization operation in the electrolyte containing the dopant.

再化成は、前述した化成による誘電体層の形成方法と同様の方法で行うことができる。再化成は、通常化成電圧以下の電圧で行われる。
半導体層の形成を複数回に分けて行う場合、再化成を半導体層形成の任意の時に任意の回数行ってもよい。また、本発明のドーパントを含有する電解液中での電解重合の操作と任意に組み合わせて行うことも可能である。
The re-chemical conversion can be performed by the same method as that for forming the dielectric layer by chemical conversion described above. Re-formation is usually performed at a voltage lower than the formation voltage.
When the formation of the semiconductor layer is performed in a plurality of times, the re-formation may be performed any number of times at any time during the formation of the semiconductor layer. Moreover, it is also possible to carry out arbitrarily combining with the operation of the electropolymerization in the electrolyte solution containing the dopant of this invention.

本発明のコンデンサ素子では、前述した方法等で形成された半導体層の上に電極層が設けられる。電極層は、例えば、導電ペーストの固化、メッキ、金属蒸着、耐熱性の導電樹脂フィルムの付着等により形成することができる。導電ペーストとしては、銀ペースト、銅ペースト、アルミニウムペースト、カーボンペースト、ニッケルペースト等が好ましい。これらは1種を用いても2種以上を用いてもよい。2種以上を用いる場合は、混合してもよいし、または別々の層として重ねてもよい。導電ペーストを適用した後は、空気中に放置するか、または加熱して固化せしめる。   In the capacitor element of the present invention, an electrode layer is provided on the semiconductor layer formed by the above-described method or the like. The electrode layer can be formed, for example, by solidification of a conductive paste, plating, metal deposition, adhesion of a heat-resistant conductive resin film, or the like. As the conductive paste, silver paste, copper paste, aluminum paste, carbon paste, nickel paste and the like are preferable. These may be used alone or in combination of two or more. When using 2 or more types, they may be mixed or may be stacked as separate layers. After applying the conductive paste, it is left in the air or heated to solidify.

導電ペーストの主成分は樹脂と金属等であり、場合によっては、樹脂を溶解するための溶媒や樹脂の硬化剤等も加えられるが、溶媒は固化時に飛散する。樹脂としては、アルキッド樹脂、アクリル樹脂、エポキシ樹脂、フェノール樹脂、イミド樹脂、フッ素樹脂、エステル樹脂、イミドアミド樹脂、アミド樹脂、スチレン樹脂等の公知の各種樹脂が使用される。導電粉としては、銀、銅、アルミニウム、金、カ−ボン、ニッケル及びこれら金属を主成分とする合金の粉やこれらの混合物粉が使用される。導電粉の含有量は、通常40〜97質量%である。40質量%以下であると導電ペーストの導電性が小さく、また97質量%を超えると、導電ペーストの接着性が不良になるため好ましくない。導電ペーストには前述した半導体層を形成する導電性重合体や金属酸化物の粉を混合して使用してもよい。   The main components of the conductive paste are resin, metal, and the like. In some cases, a solvent for dissolving the resin, a curing agent for the resin, and the like are added, but the solvent is scattered when solidified. As the resin, various known resins such as alkyd resin, acrylic resin, epoxy resin, phenol resin, imide resin, fluororesin, ester resin, imidoamide resin, amide resin, styrene resin are used. As the conductive powder, powder of silver, copper, aluminum, gold, carbon, nickel, an alloy mainly containing these metals, or a mixture of these powders is used. The content of the conductive powder is usually 40 to 97% by mass. If it is 40% by mass or less, the conductivity of the conductive paste is small, and if it exceeds 97% by mass, the adhesive property of the conductive paste becomes poor. The conductive paste may be used by mixing the conductive polymer or metal oxide powder forming the semiconductor layer described above.

メッキとしては、ニッケルメッキ、銅メッキ、銀メッキ、アルミニウムメッキ等が挙げられる。また蒸着金属としては、アルミニウム、ニッケル、銅、銀等が挙げられる。   Examples of the plating include nickel plating, copper plating, silver plating, and aluminum plating. Examples of the deposited metal include aluminum, nickel, copper, and silver.

具体的には、例えば半導体層を形成した上にカーボンペースト及び銀ペーストを順次積層して電極層を形成する。このようにして導電体に電極層まで積層したコンデンサ素子が作製される。   Specifically, for example, a carbon layer and a silver paste are sequentially stacked on a semiconductor layer to form an electrode layer. In this way, a capacitor element in which the conductor is laminated up to the electrode layer is manufactured.

以上の構成の本発明のコンデンサ素子は、例えば、樹脂モールド、樹脂ケース、金属製の外装ケース、樹脂のディッピング、ラミネートフィルムなどで外装して各種用途のコンデンサ製品とすることができる。これらの中でも、小型化と低コスト化が簡単に行える点から樹脂モールド外装を行ったチップ状コンデンサが好ましい。   The capacitor element of the present invention having the above configuration can be made into a capacitor product for various uses by being packaged with, for example, a resin mold, a resin case, a metal outer case, resin dipping, a laminate film, or the like. Among these, a chip-like capacitor with a resin mold is preferable because it can be easily reduced in size and cost.

具体的に樹脂モールド外装して本発明のコンデンサを作製する場合について説明する。
前記コンデンサ素子の電極層の一部を、別途用意した一対の対向して配置された先端部を有するリードフレームの一方の先端部に載置し、さらに導電体の一部(導電体が陽極リードを有する構造の場合は、寸法を合わすために陽極リードの先端を切断した陽極リード)を前記リードフレームの他方の先端部に載置し、例えば前者は導電ペーストの固化で、後者は溶接で各々電気的・機械的に接合した後、前記リードフレームの先端部の一部を残して樹脂封口し樹脂封口外の所定部でリードフレームを切断折り曲げ加工して作製するか、あるいはリードフレームが樹脂封口の下面にあってリードフレームの下面または下面と側面のみを残して封口されている場合は切断加工して作製する。
The case where the capacitor | condenser of this invention is produced by carrying out resin mold exterior concretely is demonstrated.
A part of the electrode layer of the capacitor element is placed on one end part of a lead frame having a pair of oppositely arranged tip parts prepared separately, and a part of the conductor (the conductor is an anode lead). In the case of a structure having an anode lead, the anode lead with the tip of the anode lead cut to fit the dimensions is placed on the other tip of the lead frame. For example, the former is solidification of the conductive paste and the latter is welded. After electrically and mechanically joining, the lead frame is partly sealed with resin, and the lead frame is cut and bent at a predetermined portion outside the resin seal, or the lead frame is sealed with resin. In the case where the lead frame is sealed except for the lower surface or the lower surface and side surfaces of the lead frame, it is cut and manufactured.

リードフレームは、前述したように切断加工されて最終的にはコンデンサの外部端子となるが、その形状は箔または平板状であり、材質としては、鉄、銅、アルミニウムまたはこれら金属を主成分とする合金が使用される。リードフレームの一部または全部に半田、錫、チタン、金、銀、ニッケル、パラジウム、銅等のメッキを少なくとも1層施してもよい。   The lead frame is cut as described above and finally becomes an external terminal of the capacitor. The shape of the lead frame is a foil or a flat plate, and the material is iron, copper, aluminum, or these metals as a main component. Alloy is used. At least one layer of solder, tin, titanium, gold, silver, nickel, palladium, copper, or the like may be applied to part or all of the lead frame.

リードフレーム、切断折り曲げ加工後または加工前に前記した各種メッキを施すこともできる。また、固体電解コンデンサ素子を載置接続する前にメッキを施しておいて、さらに封口後の任意の時に再メッキを施すこともできる。   The above-described various platings can be applied after the lead frame, cutting / bending processing or before processing. In addition, plating may be performed before the solid electrolytic capacitor element is placed and connected, and replating may be performed at any time after sealing.

リードフレームには、一対の対向して配置された先端部が存在し、この先端部間に隙間があることにより各コンデンサ素子の導電体部と電極層部とが絶縁される。   The lead frame has a pair of opposed tip portions, and a gap between the tip portions insulates the conductor portion and the electrode layer portion of each capacitor element.

樹脂モールド外装に使用される樹脂としては、エポキシ樹脂、フェノール樹脂、アルキッド樹脂、エステル樹脂、アリルエステル樹脂等コンデンサの封止に使用される公知の樹脂が使用できる。各樹脂とも一般に市販されている低応力樹脂が、封止時におきるコンデンサ素子への封止応力の発生を緩和することができるため好ましい。また、樹脂封口するための製造機としてトランスファーマシンが好んで使用される。   As the resin used for the resin mold exterior, known resins used for sealing capacitors such as epoxy resins, phenol resins, alkyd resins, ester resins, and allyl ester resins can be used. A low-stress resin that is generally commercially available for each resin is preferable because generation of sealing stress on the capacitor element that occurs during sealing can be reduced. A transfer machine is preferably used as a manufacturing machine for sealing the resin.

このように作製されたコンデンサは、電極層形成時や外装時の熱的及び/または物理的な誘電体層の劣化を修復するために、エージング処理を行ってもよい。エージングは、コンデンサに所定の電圧(通常、定格電圧の2倍以内)を印加することによって行われる。エージング時間や温度は、コンデンサの種類、容量、定格電圧によって最適値が異なるので予め実験によって決定される。通常は、時間は数分から数日、温度は電圧印加冶具の・熱劣化を考慮して300℃以下で行われる。   The capacitor thus fabricated may be subjected to an aging treatment in order to repair the deterioration of the thermal and / or physical dielectric layer at the time of electrode layer formation or exterior. Aging is performed by applying a predetermined voltage (usually within twice the rated voltage) to the capacitor. The aging time and temperature are determined in advance by experiment because optimum values differ depending on the type, capacity, and rated voltage of the capacitor. Usually, the time is several minutes to several days, and the temperature is 300 ° C. or less in consideration of thermal degradation of the voltage application jig.

エージングの雰囲気は、空気中でもよいし、アルゴン、窒素、ヘリウム等のガス中でもよい。減圧、常圧、加圧下のいずれの条件で行ってもよいが、水蒸気を供給しながら、または水蒸気を供給した後にエージングを行うと誘電体層の安定化が進む場合がある。水蒸気を供給した後に150〜250℃の高温に数分〜数時間放置し余分な水分を除去しエージングを行うことも可能である。水蒸気の供給方法の1例として、エージングの炉中に置いた水溜めから熱により水蒸気を供給する方法が挙げられる。   The aging atmosphere may be air or a gas such as argon, nitrogen, or helium. The process may be performed under reduced pressure, normal pressure, or increased pressure. However, if the aging is performed while supplying water vapor or after supplying water vapor, stabilization of the dielectric layer may proceed. It is also possible to perform aging by removing excess moisture by leaving the steam at a high temperature of 150 to 250 ° C. for several minutes to several hours after supplying the water vapor. One example of a method for supplying water vapor is a method for supplying water vapor by heat from a water reservoir placed in an aging furnace.

電圧印加方法として、直流、任意の波形を有する交流、直流に重畳した交流やパルス電流等の任意の電流を流すように設計することができる。エージングの途中に一旦電圧印加を止め、再度電圧印加を行うことも可能である。   As a voltage application method, it can be designed to flow an arbitrary current such as a direct current, an alternating current having an arbitrary waveform, an alternating current superimposed on the direct current, or a pulse current. It is also possible to stop the voltage application once during the aging and apply the voltage again.

本発明で製造されるコンデンサは、例えば、中央演算回路や電源回路等の高容量のコンデンサを用いる回路に好ましく用いることができる。これらの回路は、パソコン、サーバー、カメラ、ゲーム機、DVD、AV機器、携帯電話等の各種デジタル機器や、各種電源等の電子機器に利用できる。本発明で製造されるコンデンサは、実装時のESR上昇数が小さいことから、初期のESR値が維持され、実装使用時の発熱が小さく信頼性の大きな電子回路及び電子機器を得ることができる。   The capacitor manufactured by the present invention can be preferably used for a circuit using a high-capacitance capacitor such as a central processing circuit or a power supply circuit. These circuits can be used for various digital devices such as personal computers, servers, cameras, game machines, DVDs, AV devices, and mobile phones, and electronic devices such as various power sources. Since the capacitor manufactured according to the present invention has a small ESR increase number at the time of mounting, an initial ESR value is maintained, and heat generation at the time of mounting use is small, and a highly reliable electronic circuit and electronic device can be obtained.

以下、本発明の具体例についてさらに詳細に説明するが、以下の例により本発明は限定されるものではない。   Hereinafter, specific examples of the present invention will be described in more detail, but the present invention is not limited to the following examples.

実施例1:
ニオブインゴットの水素脆性を利用して粉砕したニオブ一次粉(平均粒径0.33μm)を造粒し平均粒径110μmのニオブ粉(微粉であるために自然酸化されていて酸素100000ppm存在する)を得た。つぎに450℃の窒素雰囲気中に放置しさらに700℃のAr中に放置することにより、窒化量8000ppmの一部窒化したニオブ粉(CV265000μF・V/g)とした。このニオブ粉を0.48mmφのニオブ線と共に成形した後1280℃で焼結することにより、大きさ4.0×3.5×1.7mm(質量0.08g。ニオブ線がリード線となり焼結体内部に3.7mm、外部に8mm存在する。)の焼結体(導電体)を複数個作製した。
Example 1:
Niobium primary powder (average particle size 0.33μm) pulverized using hydrogen embrittlement of niobium ingot is granulated to obtain niobium powder with average particle size 110μm (naturally oxidized because it is fine powder, and there is 100,000ppm of oxygen) It was. Next, it was left in a nitrogen atmosphere at 450 ° C. and then in Ar at 700 ° C. to obtain a partially nitrided niobium powder (CV265000 μF · V / g) having a nitriding amount of 8000 ppm. After forming this niobium powder with 0.48mmφ niobium wire and sintering at 1280 ° C, the size is 4.0 × 3.5 × 1.7mm (mass 0.08g. The niobium wire becomes the lead wire, 3.7mm inside the sintered body, external A plurality of sintered bodies (conductors) having a thickness of 8 mm were prepared.

続いて、0.1質量%燐酸水溶液中で80℃、20Vで7時間化成することにより、焼結体内部・表面とリード線の一部に五酸化二ニオブを主成分とする誘電体層を形成した。引き続き、焼結体を2質量%ナフタレン−2−スルホン酸鉄水溶液に浸漬した後乾燥して水分を除去し、さらに0.1質量%酢酸水溶液中で80℃、15Vで5分間再化成する操作を交互に8回繰り返した。さらに別途用意した飽和量以上の3,4−エチレンジオキシチオフェンモノマーと4質量%アントラキノン−2−スルホン酸が溶解した20質量%エチレングリコール水溶液中で電解重合を導電体あたり200μAで20分行い、水溶液から引き上げ水洗浄・アルコール洗浄・乾燥を行った後、1質量%燐酸水溶液中で80℃、13Vで15分間再化成を行い、さらに水溶液から引き上げ水洗浄・アルコール洗浄・乾燥を行った。この電解重合と再化成を6回繰り返して誘電体層上にアントラキノンスルホン酸イオンを主ドーパントとするポリチオフェン誘導体からなる半導体層を形成した。   Subsequently, a dielectric layer containing niobium pentoxide as a main component was formed inside and on the surface of the sintered body and a part of the lead wire by chemical conversion in a 0.1% by mass phosphoric acid aqueous solution at 80 ° C. and 20 V for 7 hours. . Subsequently, the sintered body was dipped in a 2% by mass naphthalene-2-sulfonic acid aqueous solution, dried to remove moisture, and further retransformed in a 0.1% acetic acid aqueous solution at 80 ° C. and 15 V for 5 minutes by turns. Repeated 8 times. Furthermore, electropolymerization was carried out at 200 μA per conductor for 20 minutes in a 20% by weight ethylene glycol aqueous solution in which 3,4-ethylenedioxythiophene monomer and 4% by weight anthraquinone-2-sulfonic acid with a saturation amount or more prepared separately were dissolved, After pulling up from the aqueous solution, washing with water, washing with alcohol, and drying, re-formation was performed in a 1% by weight phosphoric acid aqueous solution at 80 ° C. and 13 V for 15 minutes, and further, washing with water, washing with alcohol, and drying were performed. This electrolytic polymerization and re-chemical conversion were repeated 6 times to form a semiconductor layer made of a polythiophene derivative containing anthraquinone sulfonate ion as a main dopant on the dielectric layer.

続いて半導体層が形成された導電体とリード線の一部を4質量%アントラキノン−2−スルホン酸水溶液(ドーパントを含有する電解液)につけ、リード線を陽極として水溶液中に別途配置されたタンタル板との間に24Vの電圧を2時間印加する通電操作を行った。水溶液から引き上げ水洗浄・アルコール洗浄・乾燥を行った後、0.1質量%燐酸水溶液中で80℃、13Vで15分間再化成を行った。さらに水溶液から引き上げ水洗浄・アルコール洗浄・乾燥を行った。次いで、半導体層上にカーボンペーストを積層して乾燥し、続いて銀粉90質量%、アクリル樹脂10質量%を主成分とする銀ペーストを積層した後乾燥して電極層を形成しコンデンサ素子を複数個作製した。別途用意した外部電極である両面に10μmの半光沢ニッケルメッキが施されているリードフレーム(日立電線製銅合金2ZROFC)の一対の両先端に、焼結体側のリード線と電極層側の銀ペースト側が載るように置き、前者はスポット溶接で、後者は電極層に使用したものと同一の銀ペーストで電気的・機械的に接続した。その後、リードフレームの一部を除いてエポキシ樹脂でトランスファーモールドし、モールド外のリードフレームの所定部を切断後外装に沿って折り曲げ加工して外部端子とした大きさ7.3×4.3×2.8mmのチップ状コンデンサを作製した。   Subsequently, a conductor on which the semiconductor layer is formed and a part of the lead wire are attached to a 4% by mass anthraquinone-2-sulfonic acid aqueous solution (electrolyte containing a dopant), and the tantalum separately disposed in the aqueous solution using the lead wire as an anode. An energizing operation was performed in which a voltage of 24 V was applied to the plate for 2 hours. After pulling up from the aqueous solution, washing with water, washing with alcohol, and drying, re-formation was performed in a 0.1% by mass phosphoric acid aqueous solution at 80 ° C. and 13 V for 15 minutes. Further, it was lifted from the aqueous solution, washed with water, washed with alcohol, and dried. Next, a carbon paste is laminated on the semiconductor layer and dried, and then a silver paste containing 90% by mass of silver powder and 10% by mass of acrylic resin as a main component is laminated and then dried to form an electrode layer to form a plurality of capacitor elements. Individually produced. A lead wire on the sintered body side and a silver paste on the electrode layer side are attached to both ends of a lead frame (copper alloy 2ZROFC made by Hitachi Cable), which is a separately prepared external electrode with 10 μm semi-bright nickel plating on both sides. The former was spot-welded, and the latter was electrically and mechanically connected with the same silver paste used for the electrode layer. After that, a part of the lead frame is removed, transfer molded with epoxy resin, a predetermined part of the lead frame outside the mold is cut, bent along the exterior, and processed as an external terminal 7.3 × 4.3 × 2.8mm chip A capacitor was produced.

続いて、125℃、7Vで3時間エージングし、さらにピ−ク温度270℃で230℃の領域が35秒のトンネル炉を1回通過させて最終的なチップ状コンデンサとした。   Subsequently, the film was aged at 125 ° C. and 7 V for 3 hours, and further passed once through a tunnel furnace at a peak temperature of 270 ° C. and a temperature of 230 ° C. for 35 seconds to obtain a final chip capacitor.

実施例2:
実施例1でドーパントを含有する電解液として、1質量%ナフタレン−2−スルホン酸の3%エタノール入り水溶液とした以外は実施例1と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Example 2:
A capacitor element and a chip-shaped capacitor were produced in the same manner as in Example 1 except that the electrolyte containing the dopant in Example 1 was an aqueous solution containing 1% by mass naphthalene-2-sulfonic acid in 3% ethanol.

実施例3:
実施例1で半導体層形成時のドーパントとして1質量%ナフタレン−2−スルホン酸を使用した以外、実施例1と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Example 3:
A capacitor element and a chip-shaped capacitor were produced in the same manner as in Example 1 except that 1% by mass of naphthalene-2-sulfonic acid was used as the dopant for forming the semiconductor layer in Example 1.

実施例4:
実施例3でドーパントを含有する電解液として、1質量%ナフタレン−2−スルホン酸の3%エタノール入り水溶液とした以外は実施例3と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Example 4:
A capacitor element and a chip capacitor were produced in the same manner as in Example 3 except that the electrolyte containing the dopant in Example 3 was an aqueous solution containing 1% by mass of naphthalene-2-sulfonic acid in 3% ethanol.

実施例5:
実施例1で半導体層形成時のドーパントとして1質量%ボロジサリチル酸アンモニウム1.5水和物(富山化学(株)製,(OC64CO)2BNH4・1.5H2O)を使用した以外、実施例1と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Example 5:
In Example 1, except that 1% by mass ammonium borodisalicylate 1.5 hydrate (manufactured by Toyama Chemical Co., Ltd., (OC 6 H 4 CO) 2 BNH 4 .1.5H 2 O) was used as a dopant when forming the semiconductor layer. In the same manner as in Example 1, a capacitor element and a chip capacitor were produced.

実施例6:
実施例5でドーパントを含有する電解液として、1質量%ボロジサリチル酸アンモニウム1.5水和物の5%エタノール入り水溶液とした以外は実施例5と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Example 6:
A capacitor element and a chip capacitor were produced in the same manner as in Example 5 except that the electrolyte containing the dopant in Example 5 was an aqueous solution containing 1% by mass of ammonium borodisalicylate 1.5 hydrate containing 5% ethanol.

比較例1:
実施例1で半導体層形成後ドーパントを含有する電解液中での通電操作を行わなかった以外は、実施例1と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Comparative Example 1:
A capacitor element and a chip-shaped capacitor were produced in the same manner as in Example 1 except that the energization operation in the electrolyte containing the dopant was not performed after the semiconductor layer was formed in Example 1.

比較例2:
実施例3で半導体層形成後ドーパントを含有する電解液中での通電操作を行わなかった以外は、実施例3と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Comparative Example 2:
A capacitor element and a chip-shaped capacitor were produced in the same manner as in Example 3 except that in Example 3, the energization operation was not performed in the electrolytic solution containing the dopant after forming the semiconductor layer.

比較例3:
実施例5で半導体層形成後ドーパントを含有する電解液中での通電操作を行わなかった以外は、実施例5と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Comparative Example 3:
A capacitor element and a chip-shaped capacitor were produced in the same manner as in Example 5 except that in Example 5, the energization operation was not performed in the electrolytic solution containing the dopant after forming the semiconductor layer.

実施例7:
CV(容量と化成電圧の積)14万μF・V/gのタンタル粉を使用して、大きさ4.5×3.1×1.0mmの焼結体を作製した(焼結温度1300℃、焼結時間20分、焼結体密度6.0g/cm3、Taリード線 0.40mmφ、焼結体の4.5mm寸法の長手方向と平行にTaリード線の一部が埋設されていて焼結体から突き出たリード線部が陽極部となる)。
陽極となる焼結体を0.1質量%燐酸水溶液中にリード線の一部を除いて浸漬し、陰極のTa板電極との間に10Vを印加し、80℃で5時間化成してTa25からなる誘電体酸化皮膜層を形成した。この焼結体のリード線を除いて、20質量%モリブデン酸ナトリウム水溶液が入った槽に浸漬後乾燥することと10質量%水素化ホウ素ナトリウム水溶液が入った槽に浸漬して乾燥することを交互に行い、さらに0.1質量%酢酸水溶液中80℃、8Vで10分再化成する操作を複数回繰り返すことにより誘電体層に電気的な微小欠陥部分を作製した。引き続き焼結体を3質量%ベンズキノンスルホン酸とピロールが不溶な部分も存在するほど充分投入されている20質量%エチレングリコールと水の混合溶液が入った槽(槽自身にタンタル箔が貼られ外部電極を構成する。)に浸漬し、焼結体のリード線を陽極に、外部電極を陰極にして14.5Vで30分通電し誘電体層上に半導体層を形成した。焼結体を引き上げ水洗・アルコール洗浄・乾燥し、さらに0.1質量%燐酸水溶液中80℃、7Vで1時間再化成を行い、続いて焼結体を引き上げ水洗・アルコール洗浄・乾燥した。このような半導体層形成と再化成の工程を7回行ってベンズキノンスルホン酸イオンを主ドーパントとするポリピロールからなる半導体層を形成した。
Example 7:
Using a tantalum powder of CV (product of capacity and conversion voltage) of 140,000 μF · V / g, a sintered body having a size of 4.5 × 3.1 × 1.0 mm was prepared (sintering temperature 1300 ° C., sintering time 20 , Sintered body density 6.0 g / cm 3 , Ta lead wire 0.40 mmφ, lead wire protruding from the sintered body with a part of Ta lead wire embedded in parallel to the longitudinal direction of 4.5 mm dimension of the sintered body Part becomes the anode part).
The sintered body to be the anode is immersed in a 0.1% by mass phosphoric acid aqueous solution with a part of the lead wire removed, 10 V is applied between the cathode Ta plate electrode, and chemical conversion is performed at 80 ° C. for 5 hours to form Ta 2 O. A dielectric oxide film layer consisting of 5 was formed. Except for the lead wire of this sintered body, it is alternately immersed in a bath containing 20% by mass sodium molybdate aqueous solution and dried and immersed in a bath containing 10% by mass sodium borohydride aqueous solution and dried. In addition, an electrical minute defect portion was produced in the dielectric layer by repeating the re-formation in a 0.1% by mass acetic acid aqueous solution at 80 ° C. and 8 V for 10 minutes. Subsequently, the sintered body was filled with a 20 mass% ethylene glycol and water mixed solution that was sufficiently charged so that a part insoluble in 3 mass% benzquinonesulfonic acid and pyrrole was also present (a tantalum foil was applied to the tank itself). An external electrode was constructed), and a semiconductor layer was formed on the dielectric layer by applying current at 14.5 V for 30 minutes with the lead wire of the sintered body as the anode and the external electrode as the cathode. The sintered body was pulled up, washed with water, washed with alcohol and dried, and further re-formed in a 0.1% by mass phosphoric acid aqueous solution at 80 ° C. and 7 V for 1 hour, and then the sintered body was pulled up and washed with water, washed with alcohol and dried. The semiconductor layer formation and re-chemical conversion steps were performed seven times to form a semiconductor layer made of polypyrrole having benzquinonesulfonate ions as the main dopant.

引き続き半導体層が形成された導電体を1質量%ベンズキノンスルホン酸水溶液(ドーパントを含有する電解液)につけ、リード線を陽極として水溶液中に別途配置されたタンタル板との間に14.5Vの電圧を2時間印加する通電操作を行った。水溶液から引き上げ水洗浄・アルコール洗浄・乾燥を行った後、0.1質量%酢酸水溶液中で80℃、6Vで15分間再化成を行った。さらに水溶液から引き上げ水洗浄・アルコール洗浄・乾燥を行った。次いで、半導体層上にカーボンペースト(日本黒鉛(株)製バニーハイトT−602D)を積層して乾燥しカーボン層を設けた後、銀粉93質量%、エポキシ樹脂7質量%を主成分とする銀ペーストを積層した後乾燥して電極層を形成しコンデンサ素子を複数個作製した。別途用意した外部電極であるリードフレーム(日立電線株製銅合金C151、両面に0.7μmのニッケル下地メッキ及び7μmの無光沢錫メッキが施されている)の一対の両先端に、焼結体側のリード線と電極層側の銀ペースト側が載るように置き、前者はスポット溶接で、後者は電極層に使用したものと同一の銀ペーストで電気的・機械的に接続した。その後、リードフレームの一部を除いてエポキシ樹脂でトランスファーモールドし、モールド外のリードフレームの所定部を切断後外装に沿って折り曲げ加工して外部端子とした大きさ7.3×4.3×1.8mmのチップ状コンデンサを作製した。   Subsequently, the conductor on which the semiconductor layer is formed is attached to a 1% by mass benzquinonesulfonic acid aqueous solution (electrolyte containing dopant), and a voltage of 14.5 V is provided between the lead wire as an anode and a tantalum plate separately disposed in the aqueous solution. Was applied for 2 hours. After pulling up from the aqueous solution, washing with water, washing with alcohol, and drying, re-formation was performed in a 0.1% by mass acetic acid aqueous solution at 80 ° C. and 6 V for 15 minutes. Further, it was lifted from the aqueous solution, washed with water, washed with alcohol, and dried. Next, a carbon paste (Bunny Height T-602D manufactured by Nippon Graphite Co., Ltd.) is laminated on the semiconductor layer and dried to provide a carbon layer, and then a silver paste containing 93% by mass of silver powder and 7% by mass of an epoxy resin as main components. After laminating, the electrode layer was formed by drying to produce a plurality of capacitor elements. At the two ends of a lead frame (copper alloy C151 made by Hitachi Cable Ltd., 0.7 μm nickel underplating and 7 μm matte tin plating on both sides) prepared separately, The lead wire and the silver paste side on the electrode layer side were placed so that the former was spot welded and the latter was electrically and mechanically connected with the same silver paste used for the electrode layer. After that, a part of the lead frame is removed and transfer molded with epoxy resin, and a predetermined part of the lead frame outside the mold is cut and bent along the exterior to make an external terminal 7.3 x 4.3 x 1.8 mm chip A capacitor was produced.

続いて、60℃、90%RHの恒湿槽に24時間放置した後、135℃、3Vで3時間エージングし、さらに185℃の炉に15分放置して外装樹脂の硬化を行い最終的なチップ状コンデンサとした。   Subsequently, after being left in a constant humidity bath at 60 ° C. and 90% RH for 24 hours, it is aged at 135 ° C. and 3 V for 3 hours, and further left in an oven at 185 ° C. for 15 minutes to cure the exterior resin and finally. A chip capacitor was used.

実施例8:
実施例7でドーパントを含有する電解液として、4質量%アントラキノンスルホン酸水溶液とした以外は実施例7と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Example 8:
A capacitor element and a chip-shaped capacitor were produced in the same manner as in Example 7 except that the electrolyte solution containing the dopant in Example 7 was a 4% by mass anthraquinonesulfonic acid aqueous solution.

比較例4:
実施例7で半導体層形成後ドーパントを含有する電解液中での通電操作を行わなかった以外は、実施例7と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Comparative Example 4:
A capacitor element and a chip-shaped capacitor were produced in the same manner as in Example 7 except that in Example 7, the energization operation was not performed in the electrolytic solution containing the dopant after forming the semiconductor layer.

比較例5:
実施例7でドーパントを含有する電解液の代わりに0.1質量%燐酸水溶液中で通電操作を行った以外は、実施例7と同様にしてコンデンサ素子及びチップ状コンデンサを作製した。
Comparative Example 5:
A capacitor element and a chip-shaped capacitor were produced in the same manner as in Example 7, except that the energization operation was performed in a 0.1% by mass phosphoric acid aqueous solution instead of the electrolyte containing the dopant in Example 7.

実施例1〜8及び比較例1〜4で作製したコンデンサ(各例とも640個)について、初期値及びピ−ク温度270℃が5秒で230℃の領域が42秒あるリフロー炉を3回通過させて基板に半田実装した後のESRの上昇率を下の方法で測定し、平均値を表1にまとめて示した。
容量:ヒューレットパッカード社製LCR測定器を用い室温120Hzで測定した。
ESR:コンデンサの等価直列抵抗を100kHzで測定した。
For the capacitors produced in Examples 1 to 8 and Comparative Examples 1 to 4 (640 in each example), the initial value and the peak temperature of 270 ° C. were 5 seconds and the region of 230 ° C. in the region of 42 seconds was run three times. The rate of increase in ESR after passing and soldering on the substrate was measured by the following method, and the average values are shown in Table 1.
Capacity: Measured at a room temperature of 120 Hz using an Hewlett Packard LCR measuring instrument.
ESR: The equivalent series resistance of the capacitor was measured at 100 kHz.

Figure 2006054449
Figure 2006054449

実施例1〜8と比較例1〜5を各々比べることにより、半導体層形成後、ドーパントを含有する電解液中で電解重合操作を行うことにより作製したコンデンサの実装後のESR上昇率が緩和されることがわかる。   By comparing each of Examples 1-8 and Comparative Examples 1-5, the rate of increase in ESR after mounting of the capacitor produced by performing the electropolymerization operation in the electrolyte containing the dopant after the formation of the semiconductor layer is alleviated. I understand that

Claims (15)

導電体の表面に形成した誘電体層上に、第1のドーパントを含有する導電性重合体を含む半導体層を形成し、その上に電極層を形成するコンデンサ素子の製造方法であって、半導体層形成後、電極層形成前に導電性重合体になり得るモノマーが存在せず第2のドーパントを含む電解液中で電解重合することを特徴とするコンデンサ素子の製造方法。   A method for manufacturing a capacitor element, comprising: forming a semiconductor layer containing a conductive polymer containing a first dopant on a dielectric layer formed on a surface of a conductor; and forming an electrode layer thereon. A method for producing a capacitor element, characterized in that, after forming a layer, before the electrode layer is formed, there is no monomer that can be a conductive polymer, and electrolytic polymerization is carried out in an electrolytic solution containing a second dopant. 導電体の表面に形成した誘電体層上に、モノマーと第1のドーパントとを含む電解液中で電解重合して導電性重合体を含む半導体層を形成し、その上に電極層を形成するコンデンサ素子の製造方法であって、半導体層形成後、電極層形成前に導電性重合体になり得るモノマーが存在せず第2のドーパントを含む電解液中で電解重合することを特徴とするコンデンサ素子の製造方法。   On the dielectric layer formed on the surface of the conductor, electrolytic polymerization is performed in an electrolytic solution containing the monomer and the first dopant to form a semiconductor layer containing the conductive polymer, and an electrode layer is formed thereon. A method for producing a capacitor element, wherein a capacitor capable of becoming a conductive polymer does not exist after formation of a semiconductor layer and before formation of an electrode layer, and is electropolymerized in an electrolytic solution containing a second dopant Device manufacturing method. 第2のドーパントが、半導体層中に既に含有されている第1のドーパントと同一である請求項1または2に記載のコンデンサ素子の製造方法。   The method for manufacturing a capacitor element according to claim 1, wherein the second dopant is the same as the first dopant already contained in the semiconductor layer. ドーパントが、スルホン酸基を有する化合物である請求項1乃至3のいずれかに記載のコンデンサ素子の製造方法。   The method for producing a capacitor element according to claim 1, wherein the dopant is a compound having a sulfonic acid group. 導電体が、金属、無機半導体、有機半導体、これらの少なくとも1種の混合物、及びそれらの表層に導電体を積層した積層体から選択される請求項1乃至4のいずれかに記載のコンデンサ素子の製造方法。   5. The capacitor element according to claim 1, wherein the conductor is selected from a metal, an inorganic semiconductor, an organic semiconductor, a mixture of at least one of these, and a laminate in which a conductor is laminated on a surface layer thereof. Production method. 導電体が、タンタル、ニオブ、チタン及びアルミニウムから選ばれる少なくとも1種を主成分とする金属あるいは合金、または酸化ニオブ、またはこれら金属、合金及び酸化ニオブから選ばれる少なくとも2種以上の混合物である請求項1乃至4のいずれかに記載のコンデンサ素子の製造方法。   The conductor is a metal or alloy mainly containing at least one selected from tantalum, niobium, titanium and aluminum, niobium oxide, or a mixture of at least two selected from these metals, alloys and niobium oxide. Item 5. A method for producing a capacitor element according to any one of Items 1 to 4. 誘電体層が、Ta25、Al23、TiO2及びNb25からなる群から選ばれる少なくとも1つを主成分とするものである請求項1または2に記載の固体電解コンデンサの製造方法。 3. The solid electrolytic capacitor according to claim 1, wherein the dielectric layer is mainly composed of at least one selected from the group consisting of Ta 2 O 5 , Al 2 O 3 , TiO 2 and Nb 2 O 5. Manufacturing method. 半導体層が、下記一般式(1)または(2)
Figure 2006054449
(式中、R1〜R4は各々独立して、水素原子、炭素数1〜6のアルキル基または炭素数1〜6のアルコキシ基を表わし、Xは酸素、イオウまたは窒素原子を表わし、R5はXが窒素原子のときのみ存在して水素原子または炭素数1〜6のアルキル基を表わし、R1とR2およびR3とR4は、互いに結合して環状になっていてもよい。)
で示される繰り返し単位を含む重合体にドーパントをドープした導電性重合体を主成分とした半導体から選択される少なくとも1種の層である請求項1乃至7のいずれかに記載のコンデンサ素子の製造方法。
The semiconductor layer has the following general formula (1) or (2)
Figure 2006054449
(Wherein R 1 to R 4 each independently represents a hydrogen atom, an alkyl group having 1 to 6 carbon atoms or an alkoxy group having 1 to 6 carbon atoms, X represents an oxygen, sulfur or nitrogen atom; 5 is present only when X is a nitrogen atom and represents a hydrogen atom or an alkyl group having 1 to 6 carbon atoms, and R 1 and R 2 and R 3 and R 4 may be bonded to each other to form a ring. .)
The production of a capacitor element according to any one of claims 1 to 7, which is at least one layer selected from a semiconductor mainly composed of a conductive polymer obtained by doping a polymer containing a repeating unit represented by formula (1) with a dopant. Method.
一般式(1)で示される繰り返し単位を含む重合体が、下記一般式(3)
Figure 2006054449
(式中、R6及びR7は各々独立して、水素原子、炭素数1〜6の直鎖状もしくは分岐状の飽和もしくは不飽和のアルキル基、または該アルキル基が互いに任意の位置で結合して、2つの酸素原子を含む少なくとも1つ以上の5〜7員環の飽和炭化水素の環状構造を形成する置換基を表わす。また、前記環状構造には置換されていてもよいビニレン結合を有するもの、置換されていてもよいフェニレン構造のものも含まれる。)
で示される構造単位を繰り返し単位として含む重合体である請求項8に記載のコンデンサ素子の製造方法。
The polymer containing the repeating unit represented by the general formula (1) is represented by the following general formula (3).
Figure 2006054449
(Wherein R 6 and R 7 are each independently a hydrogen atom, a linear or branched saturated or unsaturated alkyl group having 1 to 6 carbon atoms, or the alkyl group is bonded to each other at an arbitrary position. And a substituent that forms a cyclic structure of at least one 5- to 7-membered saturated hydrocarbon containing two oxygen atoms, and the cyclic structure has an optionally substituted vinylene bond. And those having a phenylene structure which may be substituted.
The method for producing a capacitor element according to claim 8, wherein the polymer contains a structural unit represented by the formula:
重合体が、ポリアニリン、ポリオキシフェニレン、ポリフェニレンサルファイド、ポリチオフェン、ポリフラン、ポリピロール、ポリメチルピロール、及びこれらの置換誘導体及び共重合体から選択される請求項8に記載のコンデンサ素子の製造方法。   The method for producing a capacitor element according to claim 8, wherein the polymer is selected from polyaniline, polyoxyphenylene, polyphenylene sulfide, polythiophene, polyfuran, polypyrrole, polymethylpyrrole, and substituted derivatives and copolymers thereof. 重合体が、ポリ(3,4−エチレンジオキシチオフェン)である請求項8に記載のコンデンサ素子の製造方法。   The method for producing a capacitor element according to claim 8, wherein the polymer is poly (3,4-ethylenedioxythiophene). 半導体の電導度が、10-2〜103S/cmの範囲である請求項8に記載のコンデンサ素子の製造方法。 The method of manufacturing a capacitor element according to claim 8, wherein the electric conductivity of the semiconductor is in the range of 10 −2 to 10 3 S / cm. 請求項1乃至12のいずれかに記載の方法で得られたコンデンサ素子を封口してなるコンデンサ。   A capacitor formed by sealing the capacitor element obtained by the method according to claim 1. 請求項13に記載のコンデンサを使用した電子回路。   An electronic circuit using the capacitor according to claim 13. 請求項13に記載のコンデンサを使用した電子機器。   An electronic device using the capacitor according to claim 13.
JP2005206293A 2004-07-16 2005-07-15 Capacitor element manufacturing method Active JP4689381B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005206293A JP4689381B2 (en) 2004-07-16 2005-07-15 Capacitor element manufacturing method

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004209467 2004-07-16
JP2004209467 2004-07-16
JP2005206293A JP4689381B2 (en) 2004-07-16 2005-07-15 Capacitor element manufacturing method

Publications (2)

Publication Number Publication Date
JP2006054449A true JP2006054449A (en) 2006-02-23
JP4689381B2 JP4689381B2 (en) 2011-05-25

Family

ID=36031683

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005206293A Active JP4689381B2 (en) 2004-07-16 2005-07-15 Capacitor element manufacturing method

Country Status (1)

Country Link
JP (1) JP4689381B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103304783A (en) * 2013-05-17 2013-09-18 中科院广州化学有限公司 Novel polythiophene disperse system as well as preparation method and application thereof
WO2014003027A1 (en) * 2012-06-26 2014-01-03 日本ケミコン株式会社 Dye-sensitized solar cell

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160524A (en) * 1999-11-30 2001-06-12 Hitachi Aic Inc Solid electrolytic capacitor
JP2003321724A (en) * 2002-04-26 2003-11-14 Showa Denko Kk Niobium powder, sintered compact obtained by using the same and capacitor obtained by using the same

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001160524A (en) * 1999-11-30 2001-06-12 Hitachi Aic Inc Solid electrolytic capacitor
JP2003321724A (en) * 2002-04-26 2003-11-14 Showa Denko Kk Niobium powder, sintered compact obtained by using the same and capacitor obtained by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2014003027A1 (en) * 2012-06-26 2014-01-03 日本ケミコン株式会社 Dye-sensitized solar cell
CN103304783A (en) * 2013-05-17 2013-09-18 中科院广州化学有限公司 Novel polythiophene disperse system as well as preparation method and application thereof

Also Published As

Publication number Publication date
JP4689381B2 (en) 2011-05-25

Similar Documents

Publication Publication Date Title
JP3974645B2 (en) Solid electrolytic capacitor element, manufacturing method thereof, and solid electrolytic capacitor
JP4701940B2 (en) Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method thereof
JP4596543B2 (en) Manufacturing method of solid electrolytic capacitor
JP4793264B2 (en) Capacitor element and carbon paste
JPWO2007004554A1 (en) Solid electrolytic capacitor and manufacturing method thereof
WO2006049317A1 (en) Capacitor manufacturing jig, capacitor manufacturing device, and capacitor manufacturing method
JP4717824B2 (en) Reaction vessel for manufacturing capacitor element, method for manufacturing capacitor element, capacitor element and capacitor
JP4827195B2 (en) Method for manufacturing solid electrolytic capacitor element
JP4689381B2 (en) Capacitor element manufacturing method
JP2005101562A (en) Chip solid electrolytic capacitor and its manufacturing method
JP3992706B2 (en) Capacitor manufacturing method
US7423862B2 (en) Solid electrolytic capacitor element, solid electrolytic capacitor and production method thereof
JP5020465B2 (en) Chip-shaped solid electrolytic capacitor and manufacturing method thereof
JP4451235B2 (en) Manufacturing method of solid electrolytic capacitor
JP4367752B2 (en) Method for manufacturing solid electrolytic capacitor element
TWI469163B (en) Solid electrolytic capacitor element, solid electrolytic capacitor and manufacturing method thereof
JP4750498B2 (en) Manufacturing method of solid electrolytic capacitor
JP5099831B2 (en) Manufacturing method of solid electrolytic capacitor
JP2005101592A (en) Sintered compact and chip solid electrolytic capacitor using the same
JP2005109466A (en) Capacitor and method of manufacturing same

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20070705

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080711

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101001

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101111

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110215

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110216

R150 Certificate of patent or registration of utility model

Ref document number: 4689381

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140225

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350