JP2006052357A - Filler and method for producing the same - Google Patents

Filler and method for producing the same Download PDF

Info

Publication number
JP2006052357A
JP2006052357A JP2004236421A JP2004236421A JP2006052357A JP 2006052357 A JP2006052357 A JP 2006052357A JP 2004236421 A JP2004236421 A JP 2004236421A JP 2004236421 A JP2004236421 A JP 2004236421A JP 2006052357 A JP2006052357 A JP 2006052357A
Authority
JP
Japan
Prior art keywords
coupling agent
silane coupling
filler
silica powder
resin
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004236421A
Other languages
Japanese (ja)
Other versions
JP4010420B2 (en
Inventor
Shosaku Yashiro
尚作 八代
Sakatoshi Naito
栄俊 内藤
Mitsuyoshi Iwasa
光芳 岩佐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Denka Co Ltd
Original Assignee
Denki Kagaku Kogyo KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Denki Kagaku Kogyo KK filed Critical Denki Kagaku Kogyo KK
Priority to JP2004236421A priority Critical patent/JP4010420B2/en
Publication of JP2006052357A publication Critical patent/JP2006052357A/en
Application granted granted Critical
Publication of JP4010420B2 publication Critical patent/JP4010420B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a filler for a resin and/or a rubber, especially the filler for an interlayer insulating material of a multilayer wiring board, capable of providing a cured product having improved flexural strength; and to provide a method for producing the filler. <P>SOLUTION: The filler for the resin and/or the rubber comprises a silica powder surface-treated with a binding functional group-containing silane coupling agent, and exhibits ≥100 N/mm<SP>2</SP>flexural strength measured by the following method: the method comprises mixing 31.5 g bisphenol A-type liquid epoxy resin with 9 g 4,4-diaminodiphenylmethane and 13.5 g sample by using a planetary mixer at 600 rpm rotation and 2,000 rpm revolution for 5 min, pouring the obtained mixture in a stainless steel mold, defoaming the mixture at 0.1 Pa degree of vacuum for 5 min, curing the defoamed product by holding the product at 200°C for 2 hr, cutting out a test piece (having 80 mm length, 10 mm width and 4 mm thickness) from the obtained cured product, and measuring a three-point bending strength at room temperature. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、樹脂及び/又はゴムの充填材及びその製造方法関する。   The present invention relates to a resin and / or rubber filler and a method for producing the same.

シリカ粉末は、樹脂及び/又はゴム(以下、「樹脂等」ともいう。)などの充填材として使用されている。たとえば、多層配線板の層間絶縁材においては、その線熱膨張係数低減させるために、エポキシ樹脂等のマトリックス樹脂にシリカ粉末を充填したものが使用されている。線熱膨張係数を低減させるには、樹脂中にシリカ粉末をより均一に分散させ、樹脂との密着性を高めることが重要なことであり、従来よりシリカ粉末をシランカップリング剤で表面処理するなどの様々な工夫が行われている(例えば特許文献1)。しかし、まだ十分とはいえない。すなわち、従来のシランカップリング剤による処理方法では、凝集粒子が多く発生するので、樹脂等に充填したときに分散不良を起こし、樹脂との密着強度を十分に高めることができなかった。この解決ポイントは、表面処理を施すときに、シランカップリング剤の液滴ないしは自己縮合性による凝集要因をいかにして軽減するかである。
特開2001−261327号公報
Silica powder is used as a filler for resins and / or rubbers (hereinafter also referred to as “resins”). For example, in an interlayer insulating material for a multilayer wiring board, a matrix resin such as an epoxy resin filled with silica powder is used to reduce the coefficient of linear thermal expansion. In order to reduce the coefficient of linear thermal expansion, it is important to disperse the silica powder more uniformly in the resin and improve the adhesion to the resin. Conventionally, the silica powder is surface-treated with a silane coupling agent. Various ideas have been made (for example, Patent Document 1). But still not enough. That is, in the conventional treatment method using a silane coupling agent, a large number of aggregated particles are generated, so that dispersion failure occurs when the resin or the like is filled, and the adhesion strength with the resin cannot be sufficiently increased. The solution point is how to reduce aggregation factors due to silane coupling agent droplets or self-condensation during surface treatment.
JP 2001-261327 A

本発明の目的は、曲げ強さの増大効果の大きい樹脂等の充填材、特に多層配線板の層間絶縁材用の充填材と、その製造方法を提供することである。   An object of the present invention is to provide a filler such as a resin having a great effect of increasing bending strength, particularly a filler for an interlayer insulating material of a multilayer wiring board, and a method for manufacturing the same.

すなわち、本発明は、結合性官能基含有シランカップリング剤で表面処理されたシリカ粉末からなり、以下の方法で測定された曲げ強さが100N/mm以上であることを特徴とする樹脂及び/又はゴムの充填材である。
(曲げ強さ)
ビスフェノールA型液状エポキシ樹脂31.5gと、4,4−ジアミンジフェニルメタン9gと、試料13.5gとを、自公転混合機を用いて自転600rpm、公転2000rpmで5分間混合し、得られた混合物をステンレス製型流し込み、真空度0.1Paで5分間脱泡した後、200℃で2時間保持して硬化させ、得られた硬化体から試験片(長さ80mm、幅10mm、厚さ4mm)を切り出し、室温下で測定された3点曲げ強さ。
That is, the present invention comprises a silica powder surface-treated with a binding functional group-containing silane coupling agent, and has a bending strength measured by the following method of 100 N / mm 2 or more and / Or rubber filler.
(Bending strength)
31.5 g of bisphenol A type liquid epoxy resin, 9 g of 4,4-diaminediphenylmethane, and 13.5 g of a sample were mixed for 5 minutes at a rotation speed of 600 rpm and a rotation speed of 2000 rpm using a revolving mixer, and the resulting mixture was obtained. Cast into a stainless steel mold, defoamed at a vacuum of 0.1 Pa for 5 minutes, held at 200 ° C. for 2 hours to cure, and a test piece (length 80 mm, width 10 mm, thickness 4 mm) was obtained from the resulting cured body. Three-point bending strength cut out and measured at room temperature.

上記充填材において、結合性官能基含有シランカップリング剤が、3−グリシドキシプロピルトリメトキシシランであり、曲げ強さが130N/mm以上であること、及び充填材が、多層配線板の層間絶縁材の充填材であること、から選ばれた実施態様の少なくとも一つであることが好ましい。 In the above filler, the binding functional group-containing silane coupling agent is 3-glycidoxypropyltrimethoxysilane, the bending strength is 130 N / mm 2 or more, and the filler is a multilayer wiring board. It is preferably at least one of the embodiments selected from the fact that it is a filler for an interlayer insulating material.

また、本発明は、100℃以上の温度下、含水率0.5質量%以下のシリカ粉末を浮遊させ、これと、結合性官能基含有シランカップリング剤の濃度が0.05〜2体積%であるガスとを接触させることを特徴とする樹脂及び/又はゴムの充填材の製造方法である。この場合において、以下の1式、2式の条件を有すること、及び結合性官能基含有シランカップリング剤が3−グリシドキシプロピルトリメトキシシランであること、から選ばれた実施態様の少なくとも一つであることが好ましい。   In the present invention, silica powder having a water content of 0.5% by mass or less is suspended at a temperature of 100 ° C. or higher, and the concentration of the binding functional group-containing silane coupling agent is 0.05 to 2% by volume. It is the manufacturing method of the filler of resin and / or rubber | gum characterized by contacting with the gas which is. In this case, at least one of the embodiments selected from the following conditions of Formula 1 and Formula 2 and that the binding functional group-containing silane coupling agent is 3-glycidoxypropyltrimethoxysilane. It is preferable that

0.5≦DAt/DAs≦2.5 ・・・(1)
1.0≦DMt/DMs≦1.5 ・・・(2)
DAt:シランカップリング剤処理後のシリカ粉末の動的光散乱法による体積平均径
DAs:シランカップリング剤処理前のシリカ粉末の動的光散乱法による体積平均径
DMt:シランカップリング剤処理後のシリカ粉末の動的光散乱法による最頻径
DMs:シランカップリング剤処理前のシリカ粉末の動的光散乱法による最頻径
0.5 ≦ DAt / DAs ≦ 2.5 (1)
1.0 ≦ DMt / DMs ≦ 1.5 (2)
DAt: Volume average diameter of silica powder after silane coupling agent treatment by dynamic light scattering method DAs: Volume average diameter of silica powder before silane coupling agent treatment by dynamic light scattering method DMt: After silane coupling agent treatment Mode of silica powder by dynamic light scattering method DMs: Mode diameter of silica powder by dynamic light scattering method before silane coupling agent treatment

本発明によれば、凝集の小さいシリカ粉末からなる樹脂等の充填材、特に多層配線板の層間絶縁材の充填材と、その製造方法が提供される。   ADVANTAGE OF THE INVENTION According to this invention, the filler of resin etc. which consist of silica powder with small aggregation, especially the filler of the interlayer insulation material of a multilayer wiring board, and its manufacturing method are provided.

本発明の樹脂等の充填材は、結合性官能基含有シランカップリング剤によって処理されたシリカ粉末からなり、上記方法で測定された曲げ強さが100N/mm以上、特に130N/mm、更には180N/mm以上を示すものである。シランカップリング剤の処理量は、シリカ粉末100質量部あたり、0.1〜3質量部であることが好ましい。本発明の充填材は、例えば本発明の充填材の製造方法によって製造することができる。 The filler such as a resin of the present invention is made of silica powder treated with a binding functional group-containing silane coupling agent, and has a bending strength measured by the above method of 100 N / mm 2 or more, particularly 130 N / mm 2 , Further, it indicates 180 N / mm 2 or more. It is preferable that the processing amount of a silane coupling agent is 0.1-3 mass parts per 100 mass parts of silica powder. The filler of the present invention can be produced, for example, by the method for producing the filler of the present invention.

本発明の充填材の製造方法は、100℃以上の温度下、含水率0.5質量%以下のシリカ粉末を浮遊させた状態で、結合性官能基含有シランカップリング剤の濃度が0.05〜2体積%であるガスと接触させるものである。本発明で重要なことは、表面処理されるシリカ粉末(以下、シリカ粉末原料ともいう。)の含水率であり、含水率が0.5質量%をこえると、シランカップリング剤の縮合反応がシリカ表面で起こりやすくなり、シリカ粉末同士を凝集させる恐れが高くなる。含水率の下限については、特に制約はないが、0.01質量%であることが好ましい。含水率の調整は、例えばシリカ粉末原料を100℃以上の加熱ガスで浮遊状態にしながら加熱処理することによって行うことができる。含水率はカールフィッシャー法によって測定することができる。   In the method for producing the filler of the present invention, the concentration of the binding functional group-containing silane coupling agent is 0.05 with the silica powder having a water content of 0.5% by mass or less suspended at a temperature of 100 ° C. or higher. It is made to contact with the gas which is -2 volume%. What is important in the present invention is the water content of the surface-treated silica powder (hereinafter also referred to as silica powder raw material). When the water content exceeds 0.5% by mass, the condensation reaction of the silane coupling agent is caused. It tends to occur on the surface of the silica, and the risk of agglomerating the silica powder increases. Although there is no restriction | limiting in particular about the minimum of a moisture content, It is preferable that it is 0.01 mass%. The moisture content can be adjusted, for example, by subjecting the silica powder raw material to a heat treatment while being floated with a heating gas of 100 ° C. or higher. The water content can be measured by the Karl Fischer method.

シリカ粉末原料の粒径は、最大粒径4μm以下、体積平均径0.01〜1μm、平均球形度0.9以上であることが好ましい。平均球形度は、次のようにして測定することができる。     The particle size of the silica powder raw material is preferably a maximum particle size of 4 μm or less, a volume average diameter of 0.01 to 1 μm, and an average sphericity of 0.9 or more. The average sphericity can be measured as follows.

実体顕微鏡、例えば「モデルSMZ−10型」(ニコン社製)、走査型電子顕微鏡、透過型電子顕微鏡等にて撮影した粒子像を画像解析装置、例えば(日本アビオニクス社製など)に取り込み、写真から粒子の投影面積(A)と周囲長(PM)を測定する。周囲長(PM)に対応する真円の面積を(B)とすると、その粒子の真円度はA/Bとして表示できる。そこで、試料粒子の周囲長(PM)と同一の周囲長を持つ真円を想定すると、PM=2πr、B=πrであるから、B=π×(PM/2π)となり、個々の粒子の球形度は、球形度=A/B=A×4π/(PM)として算出される。このようにして得られた任意の粒子200個の球形度を求めその平均値を平均球形度とする。 A particle image taken with a stereomicroscope such as “Model SMZ-10” (Nikon Corporation), a scanning electron microscope, a transmission electron microscope or the like is taken into an image analysis apparatus such as Nihon Avionics Co., Ltd. To measure the projected area (A) and perimeter (PM) of the particles. When the area of a perfect circle corresponding to the perimeter (PM) is (B), the roundness of the particle can be displayed as A / B. Therefore, assuming a perfect circle having the same circumference as the sample particle (PM), PM = 2πr and B = πr 2 , so that B = π × (PM / 2π) 2 , and each particle Is calculated as sphericity = A / B = A × 4π / (PM) 2 . The sphericity of 200 arbitrary particles thus obtained is obtained, and the average value is defined as the average sphericity.

本発明において、シリカ粉末原料の表面処理は、シリカ粉末原料を浮遊させた状態で結合性官能基含有シランカップリング剤を含むガスと接触させることによって行われる。シランカップリング剤を液滴で処理したのでは、凝集粒子の生成を抑制することはできない。シランカップリング剤のガス濃度は、0.05〜2体積%、好ましくは0.2〜1.5体積%である。0.05体積%未満では、シランカップリング剤による十分な表面処理ができず、また2体積%をこえると、シランカップリング剤が局所的に反応して、自己縮合による凝集を引き起こす恐れがある。結合性官能基含有シランカップリング剤を含むガスの調製は、窒素、空気等のキャリアガスに、ガス化させたシランカップリング剤を混合させることによって行うことができる。   In the present invention, the surface treatment of the silica powder raw material is performed by bringing the silica powder raw material into contact with a gas containing a binding functional group-containing silane coupling agent in a suspended state. If the silane coupling agent is treated with droplets, the formation of aggregated particles cannot be suppressed. The gas concentration of the silane coupling agent is 0.05 to 2% by volume, preferably 0.2 to 1.5% by volume. If it is less than 0.05% by volume, sufficient surface treatment with a silane coupling agent cannot be performed, and if it exceeds 2% by volume, the silane coupling agent may react locally to cause aggregation due to self-condensation. . The gas containing the binding functional group-containing silane coupling agent can be prepared by mixing the gasified silane coupling agent with a carrier gas such as nitrogen or air.

結合性官能基含有シランカップリング剤を例示すると、3−アミノプロピルトリエトキシシラン、3−アミノプロピルトリメトキシシラン、N−2(アミノエチル)3−アミノプロピルメチルジメトキシシラン、3−グリシドキシプロピルトリメトキシシラン、3−グリシドキシプロピルメチルジエトキシシラン、3−メルカプトプロピルトリメトキシシラン等である。これらの中でも、3−グリシドキシプロピルトリメトキシシランが最適である。   Examples of the binding functional group-containing silane coupling agent include 3-aminopropyltriethoxysilane, 3-aminopropyltrimethoxysilane, N-2 (aminoethyl) 3-aminopropylmethyldimethoxysilane, 3-glycidoxypropyl. Trimethoxysilane, 3-glycidoxypropylmethyldiethoxysilane, 3-mercaptopropyltrimethoxysilane and the like. Of these, 3-glycidoxypropyltrimethoxysilane is most suitable.

本発明のようにシリカ粉末原料を表面処理するためには、シリカ粉末原料を浮遊させることが必要となる。その方法を例示すれば、ステンレス製円筒容器の外周にはリボンヒーター等のヒーターが、下方の入口にはガスを均一に供給するための例えば20μmのステンレス製網が、更には上方の出口には粉末が系外へ飛散しないように例えばろ布が、それぞれ設けられてなる処理容器に、その内温を100℃以上に保持してシリカ粉末原料を投入し、処理容器の下方から窒素ガス等のキャリアガスを供給してシリカ粉末原料を浮遊させる一方、処理容器の下方からは結合性官能基含有シランカップリング剤を含むガスを供給し、シリカ粉末原料と接触させる方法である。また、ミキサーなどの攪拌装置でシリカ粉末原料を攪拌して浮遊状態を形成しておき、この場に結合性官能基含有シランカップリング剤を含むガスを送り込む方法であってもよい。いずれの場合であっても、結合性官能基含有シランカップリング剤を含むガスは、例えば内温200〜300℃に加熱された電気釜に結合性官能基含有シランカップリング剤を滴下してガス化させ、それを窒素ガス等のキャリアガスと混合することよって製造することができる。シランカップリング剤のガス濃度はキャリアガスの流量を一定にしておき、シランカップリング剤の電気釜への供給速度によって調整することができる。   In order to surface-treat the silica powder raw material as in the present invention, it is necessary to float the silica powder raw material. For example, a heater such as a ribbon heater is provided on the outer periphery of the stainless steel cylindrical container, a stainless steel net of, for example, 20 μm for uniformly supplying gas to the lower inlet, and further, an upper outlet is provided with the upper outlet. In order to prevent the powder from scattering out of the system, for example, a filter cloth is provided in each of the processing containers, and the silica powder raw material is charged while maintaining the internal temperature at 100 ° C. or higher. In this method, a carrier gas is supplied to float the silica powder raw material, while a gas containing a binding functional group-containing silane coupling agent is supplied from below the processing vessel and brought into contact with the silica powder raw material. Alternatively, the silica powder raw material may be stirred with a stirring device such as a mixer to form a floating state, and a gas containing a binding functional group-containing silane coupling agent may be sent to the site. In any case, the gas containing the binding functional group-containing silane coupling agent is obtained by dropping the binding functional group-containing silane coupling agent into an electric kettle heated to an internal temperature of 200 to 300 ° C., for example. And can be produced by mixing it with a carrier gas such as nitrogen gas. The gas concentration of the silane coupling agent can be adjusted by keeping the flow rate of the carrier gas constant and by supplying the silane coupling agent to the electric kettle.

浮遊状態のシリカ原料粉末と結合性官能基含有シランカップリング剤を含むガスとの接触は、温度100℃以上で行われる。その理由は、シランカップリング剤ガスの凝縮を防ぐこと、及びシランカップリング剤とシリカ粉末の反応副生物である水分を、シリカ粉末表面に吸着させないためである。接触温度の上限については特にないが、シランカップリング剤の分解を防ぐ理由から350℃であることが好ましい。特に好ましい接触温度は180〜250℃である。接触時間は1.0〜10secであることが好ましい。   Contact between the floating silica raw material powder and the gas containing the binding functional group-containing silane coupling agent is performed at a temperature of 100 ° C. or higher. The reason is to prevent condensation of the silane coupling agent gas and to prevent moisture, which is a reaction byproduct of the silane coupling agent and silica powder, from being adsorbed on the surface of the silica powder. Although there is no particular upper limit on the contact temperature, it is preferably 350 ° C. for the reason of preventing decomposition of the silane coupling agent. A particularly preferred contact temperature is 180 to 250 ° C. The contact time is preferably 1.0 to 10 seconds.

本発明においては、シリカ粉末原料の含水率、シランカップリング剤のガス濃度、処理(接触)温度等の条件を制御し、上記1式、2式の関係を有させるように処理することが特に好ましい。最頻径の比(DMt/DMs)及び体積平均径の比(DAt/DAs)は、表面処理前後においてシリカ粉末が凝集によって粒度変化した程度を表す指標であり、これらの値が小さいほど表面処理されたシリカ粉末は凝集していないことを示すものである。   In the present invention, the conditions such as the water content of the silica powder raw material, the gas concentration of the silane coupling agent, the treatment (contact) temperature, etc. are controlled, and the treatment is performed so as to have the relationship of the above formulas 1 and 2. preferable. The ratio of the mode diameter (DMt / DMs) and the ratio of the volume average diameter (DAt / DAs) are indices indicating the degree of change in the particle size of the silica powder due to aggregation before and after the surface treatment. This indicates that the silica powder is not agglomerated.

動的光散乱法による粒度分布測定は、例えば測定装置として日機装社製「マイクロトラックUPA150」を用い、試料を例えばメチエチルケトン、トルエン、エタノール等から選ばれた有機溶媒に分散させてスラリー化して行われる。本発明においては、表面処理前後の粒度分布変化をみているので、有機溶媒の種類には影響は受けないが、表面処理前後の測定では同じ有機溶媒を用いる必要がある。最頻径、体積平均径は、得られた粒度分布の結果から、測定装置が自動計算してくる。   For the particle size distribution measurement by the dynamic light scattering method, for example, “Microtrac UPA150” manufactured by Nikkiso Co., Ltd. is used as a measuring device, and the sample is dispersed in an organic solvent selected from, for example, methyl ethyl ketone, toluene, ethanol, etc., and slurried. Done. In the present invention, since the change in particle size distribution before and after the surface treatment is observed, the type of the organic solvent is not affected, but the same organic solvent must be used in the measurement before and after the surface treatment. The mode diameter and volume average diameter are automatically calculated from the obtained particle size distribution result.

本発明の充填材は、樹脂等の充填材として用いることができる。本発明の充填材を用いることによって、同一充填量においては、従来のシリカ充填材を用いた場合よりも曲げ強さを20%以上をも向上させることが容易となる。充填材の配合の一例を示せば、ゴム及び樹脂の少なくとも一方100質量部に対し、25〜250質量部である。   The filler of the present invention can be used as a filler such as a resin. By using the filler of the present invention, it becomes easier to improve the bending strength by 20% or more than when a conventional silica filler is used at the same filling amount. If an example of a mixing | blending of a filler is shown, it will be 25-250 mass parts with respect to 100 mass parts of at least one of rubber | gum and resin.

樹脂としては、例えばエポキシ樹脂、フェノール樹脂、メラミン樹脂、ユリア樹脂、不飽和ポリエステル、フッ素樹脂、ポリイミド、ポリアミドイミド、ポリエーテルイミド等のポリアミド、ポリブチレンテレフタレート、ポリエチレンテレフタレート等のポリエステル、ポリフェニレンエーテル、ポリフェニレンスルフィド、全芳香族ポリエステル、ポリスルホン、液晶ポリマー、ポリエーテルスルホン、ポリカーボネート、マレイミド変性樹脂、ABS樹脂、AAS(アクリロニトリル−アクリルゴム・スチレン)樹脂、AES(アクリロニトリル・エチレン・プロピレン・ジエンゴム−スチレン)樹脂等を用いることができる。また、ゴムとしては、例えばシリコーンゴム、ウレタンゴム、アクリルゴム、ブチルゴム、エチレンプロピレンゴム、ウレタンゴム、エチレン酢酸ビニル共重合体等を用いることができる。   Examples of the resin include epoxy resin, phenol resin, melamine resin, urea resin, unsaturated polyester, fluororesin, polyamide such as polyimide, polyamideimide, and polyetherimide, polyester such as polybutylene terephthalate and polyethylene terephthalate, polyphenylene ether, and polyphenylene. Sulfide, wholly aromatic polyester, polysulfone, liquid crystal polymer, polyethersulfone, polycarbonate, maleimide modified resin, ABS resin, AAS (acrylonitrile-acrylic rubber / styrene) resin, AES (acrylonitrile / ethylene / propylene / diene rubber / styrene) resin, etc. Can be used. Examples of the rubber that can be used include silicone rubber, urethane rubber, acrylic rubber, butyl rubber, ethylene propylene rubber, urethane rubber, and ethylene vinyl acetate copolymer.

本発明の充填材は、従来のシリカ充填材よりも樹脂組成物の曲げ強さを増大させることができ、また樹脂等との密着性が向上するので、特に多層配線板の層間絶縁材用充填材として好適となり、層間絶縁材の線熱膨張係数を大幅に低減する。配合の一例を示せば、エポキシ樹脂100質量部に対し、エポキシ硬化剤が30〜50質量部、エポキシ樹脂の有機溶媒が30〜100質量部、本発明の充填材が25〜250質量部である。このような組成物(ワニス)を配線板上に塗布し、加熱処理を施すことで層間絶縁材となる。   The filler of the present invention can increase the bending strength of the resin composition as compared with the conventional silica filler, and also improves the adhesion to the resin, etc., so that the interlayer insulating material filling of the multilayer wiring board in particular. It is suitable as a material, and greatly reduces the coefficient of linear thermal expansion of the interlayer insulating material. If an example of a mixing | blending is shown, with respect to 100 mass parts of epoxy resins, 30-50 mass parts of epoxy hardening agents, 30-100 mass parts of organic solvents of an epoxy resin, and 25-250 mass parts of the filler of this invention are. . Such a composition (varnish) is applied onto a wiring board and subjected to heat treatment to form an interlayer insulating material.

実施例1
シリカ粉末原料(注:動的光散乱法による体積平均径DAsが0.29μm、最頻径DMsが0.05μmであるもの。)の15kgを上記処理容器(寸法:直径600mm円筒)に投入し、下方から800NL/minの窒素を送給して浮遊させる一方、処理容器の内温を220℃になるように加熱し20分間保持した。これによって、シリカ粉末原料の含水率は0.2質量%となった。この加熱・浮遊状態の場に結合性官能基含有シランカップリング剤を含むガスを供給して処理を行った。用いた結合性官能基含有シランカップリング剤は、3−グリシドキシプロピルトリメトキシシラン(信越化学工業社製「KBM−403」)であり、これの250gを25g/minで供給することで、供給した全ガス量に対するシランカップリング剤のガス濃度を0.26体積%とした。シランカップリング剤ガスとシリカ粉末の接触時間は7.1secであり、シランカップリング剤の処理量はシリカ粉末100質量部あたり1.3質量部であった。表面処理後のシリカ粉末について、動的光散乱法による粒度分布を測定した。その結果を表1に示す。
Example 1
15 kg of silica powder raw material (Note: Volume average diameter DAs by dynamic light scattering method is 0.29 μm and mode diameter DMs is 0.05 μm) is put into the above processing container (dimension: diameter 600 mm cylinder). While 800 NL / min nitrogen was fed from below and floated, the internal temperature of the processing vessel was heated to 220 ° C. and held for 20 minutes. Thereby, the moisture content of the silica powder raw material became 0.2 mass%. The treatment was performed by supplying a gas containing a binding functional group-containing silane coupling agent to the heated / floating field. The binding functional group-containing silane coupling agent used was 3-glycidoxypropyltrimethoxysilane (“KBM-403” manufactured by Shin-Etsu Chemical Co., Ltd.), and 250 g of this was supplied at 25 g / min. The gas concentration of the silane coupling agent with respect to the total amount of gas supplied was 0.26% by volume. The contact time between the silane coupling agent gas and the silica powder was 7.1 sec, and the treatment amount of the silane coupling agent was 1.3 parts by mass per 100 parts by mass of the silica powder. About the silica powder after surface treatment, the particle size distribution by the dynamic light scattering method was measured. The results are shown in Table 1.

実施例2
3−グリシドキシプロピルトリメトキシシラン500gを50g/minで供給することで、供給した全ガス量に対するシランカップリング剤ガスの濃度を0.51体積%とし、シランカップリング剤の処理量をシリカ粉末100質量部あたり2.7質量部としたこと以外は、実施例1と同様の方法で表面処理シリカ粉末を製造した。
Example 2
By supplying 500 g of 3-glycidoxypropyltrimethoxysilane at 50 g / min, the concentration of the silane coupling agent gas with respect to the total amount of gas supplied is 0.51% by volume, and the treatment amount of the silane coupling agent is silica. A surface-treated silica powder was produced in the same manner as in Example 1 except that the amount was 2.7 parts by mass per 100 parts by mass of the powder.

実施例3
結合性官能基含有シランカップリング剤として、3−アミノプロピルトリエトキシシラン(信越化学工業社製「KBE−903」)を用いたこと以外は、実施例1と同様の方法で表面処理シリカ粉末を製造した。
Example 3
The surface-treated silica powder was treated in the same manner as in Example 1 except that 3-aminopropyltriethoxysilane (“KBE-903” manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the binding functional group-containing silane coupling agent. Manufactured.

実施例4
結合性官能基含有シランカップリング剤として、3−メルカプトプロピルトリメトキシシラン(信越化学工業社製「KBM−803」)を用いたこと以外は、実施例1と同様の方法で表面処理シリカ粉末を製造した。
Example 4
The surface-treated silica powder was treated in the same manner as in Example 1 except that 3-mercaptopropyltrimethoxysilane (“KBM-803” manufactured by Shin-Etsu Chemical Co., Ltd.) was used as the binding functional group-containing silane coupling agent. Manufactured.

比較例1
3−グリシドキシプロピルトリメトキシシラン2000gを200g/minの速度で供給し、供給した全ガス量に対するシランカップリング剤ガスの濃度を3.0体積%とし、シランカップリング剤の処理量をシリカ粉末100質量部あたり5.3質量部としたこと以外は、実施例1と同様の方法で表面処理シリカ粉末を製造した。
Comparative Example 1
2000 g of 3-glycidoxypropyltrimethoxysilane was supplied at a rate of 200 g / min, the concentration of the silane coupling agent gas with respect to the total amount of gas supplied was 3.0% by volume, and the treatment amount of the silane coupling agent was silica. A surface-treated silica powder was produced in the same manner as in Example 1 except that the amount was 5.3 parts by mass per 100 parts by mass of the powder.

比較例2
処理容器の内温を80℃とし、加熱処理をせずにシリカ粉末原料の含水率を1.0質量%としたこと以外は、実施例1に準じて表面処理を行った。
Comparative Example 2
Surface treatment was performed according to Example 1 except that the internal temperature of the treatment container was 80 ° C. and the moisture content of the silica powder raw material was 1.0% by mass without heat treatment.

比較例3
3−グリシドキシプロピルトリメトキシシランをガス状ではなく液状で噴霧したこと以外は、実施例1に準じて表面処理を行った。
Comparative Example 3
Surface treatment was performed according to Example 1 except that 3-glycidoxypropyltrimethoxysilane was sprayed in a liquid rather than gaseous form.

上記で得られたシリカ粉末について、樹脂等の充填材としての評価試験を行った。試験は、ビスフェノールA型液状エポキシ樹脂31.5gと、硬化剤として4,4−ジアミンジフェニルメタン9gと、試料13.5gとを、自公転混合機を用いて自転600rpm、公転2000rpmで5分間混合し、得られた混合物をステンレス製型流し込み、真空度0.1Paで5分間脱泡した後、200℃で2時間保持して硬化させた。得られた硬化体を長さ80mm、幅10mm、厚さ4mmに切り出して試験片とし、島津製作所社製「オートグラフAG−2000D」により室温3点曲げ強度を測定した。それらの結果を表1に示す。   The silica powder obtained above was subjected to an evaluation test as a filler such as a resin. In the test, 31.5 g of a bisphenol A type liquid epoxy resin, 9 g of 4,4-diaminediphenylmethane as a curing agent, and 13.5 g of a sample were mixed for 5 minutes at a rotation speed of 600 rpm and a rotation speed of 2000 rpm using a revolving mixer. The obtained mixture was poured into a stainless steel mold, defoamed at a vacuum of 0.1 Pa for 5 minutes, and then kept at 200 ° C. for 2 hours to be cured. The obtained cured product was cut into a length of 80 mm, a width of 10 mm, and a thickness of 4 mm to obtain a test piece, and the three-point bending strength at room temperature was measured by “Autograph AG-2000D” manufactured by Shimadzu Corporation. The results are shown in Table 1.

Figure 2006052357
Figure 2006052357

表1より、本発明の充填材によれば、曲げ強さが著しく増大する硬化体を製造することができた。この結果、硬化体の線熱膨張係数を大幅に低減するので、特に層間絶縁材の充填材として好適になることが示された。   From Table 1, according to the filler of this invention, the hardening body which bending strength remarkably increases was able to be manufactured. As a result, it was shown that the linear thermal expansion coefficient of the cured body is greatly reduced, so that it is particularly suitable as a filler for interlayer insulating materials.

本発明の充填材は、樹脂等の充填材、特に多層配線板の層間絶縁材の充填材として用いることができる。   The filler of the present invention can be used as a filler such as a resin, particularly as a filler for an interlayer insulating material of a multilayer wiring board.

Claims (6)

結合性官能基含有シランカップリング剤で表面処理されたシリカ粉末からなり、以下の方法で測定された曲げ強さが100N/mm以上であることを特徴とする樹脂及び/又はゴムの充填材。
(曲げ強さ)
ビスフェノールA型液状エポキシ樹脂31.5gと、4,4−ジアミンジフェニルメタン9gと、試料13.5gとを、自公転混合機を用いて自転600rpm、公転2000rpmで5分間混合し、得られた混合物をステンレス製型流し込み、真空度0.1Paで5分間脱泡した後、200℃で2時間保持して硬化させ、得られた硬化体から試験片(長さ80mm、幅10mm、厚さ4mm)を切り出し、室温下で測定された3点曲げ強さ。
A resin and / or rubber filler comprising a silica powder surface-treated with a binding functional group-containing silane coupling agent and having a bending strength of 100 N / mm 2 or more measured by the following method .
(Bending strength)
31.5 g of bisphenol A type liquid epoxy resin, 9 g of 4,4-diaminediphenylmethane, and 13.5 g of a sample were mixed for 5 minutes at a rotation speed of 600 rpm and a rotation speed of 2000 rpm using a revolving mixer, and the resulting mixture was obtained. Cast into a stainless steel mold, defoamed at a vacuum of 0.1 Pa for 5 minutes, held at 200 ° C. for 2 hours to cure, and a test piece (length 80 mm, width 10 mm, thickness 4 mm) was obtained from the resulting cured body. Three-point bending strength cut out and measured at room temperature.
結合性官能基含有シランカップリング剤が、3−グリシドキシプロピルトリメトキシシランであり、曲げ強さが130N/mm以上であることを特徴とする請求項1記載の樹脂及び/又はゴムの充填材。 2. The resin and / or rubber according to claim 1, wherein the binding functional group-containing silane coupling agent is 3-glycidoxypropyltrimethoxysilane and the bending strength is 130 N / mm 2 or more. Filler. 充填材が、多層配線板の層間絶縁材の充填材であることを特徴とする請求項1又は2記載の樹脂及び/又はゴムの充填材。     3. The resin and / or rubber filler according to claim 1, wherein the filler is a filler for an interlayer insulating material of a multilayer wiring board. 100℃以上の温度下、含水率0.5質量%以下のシリカ粉末を浮遊させ、これと、結合性官能基含有シランカップリング剤の濃度が0.05〜2体積%であるガスとを接触させることを特徴とする樹脂及び/又はゴムの充填材の製造方法。   A silica powder having a water content of 0.5% by mass or less is suspended at a temperature of 100 ° C. or higher, and this is contacted with a gas having a binding functional group-containing silane coupling agent concentration of 0.05 to 2% by volume. A method for producing a resin and / or rubber filler, characterized by comprising: 以下の1式、2式の条件を有することを特徴とする請求項4記載の製造方法。
0.5≦DAt/DAs≦2.5 ・・・(1)
1.0≦DMt/DMs≦1.5 ・・・(2)
DAt:シランカップリング剤処理後のシリカ粉末の動的光散乱法による体積平均径
DAs:シランカップリング剤処理前のシリカ粉末の動的光散乱法による体積平均径
DMt:シランカップリング剤処理後のシリカ粉末の動的光散乱法による最頻径
DMs:シランカップリング剤処理前のシリカ粉末の動的光散乱法による最頻径
The manufacturing method according to claim 4, wherein the following conditions are satisfied.
0.5 ≦ DAt / DAs ≦ 2.5 (1)
1.0 ≦ DMt / DMs ≦ 1.5 (2)
DAt: Volume average diameter of silica powder after silane coupling agent treatment by dynamic light scattering method DAs: Volume average diameter of silica powder before silane coupling agent treatment by dynamic light scattering method DMt: After silane coupling agent treatment Mode of silica powder by dynamic light scattering method DMs: Mode diameter of silica powder by dynamic light scattering method before silane coupling agent treatment
結合性官能基含有シランカップリング剤が、3−グリシドキシプロピルトリメトキシシランであることを特徴とする請求項5記載の製造方法。   6. The production method according to claim 5, wherein the binding functional group-containing silane coupling agent is 3-glycidoxypropyltrimethoxysilane.
JP2004236421A 2004-08-16 2004-08-16 Epoxy resin filler and method for producing the same Active JP4010420B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004236421A JP4010420B2 (en) 2004-08-16 2004-08-16 Epoxy resin filler and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004236421A JP4010420B2 (en) 2004-08-16 2004-08-16 Epoxy resin filler and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006052357A true JP2006052357A (en) 2006-02-23
JP4010420B2 JP4010420B2 (en) 2007-11-21

Family

ID=36030032

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004236421A Active JP4010420B2 (en) 2004-08-16 2004-08-16 Epoxy resin filler and method for producing the same

Country Status (1)

Country Link
JP (1) JP4010420B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690496A (en) * 2012-06-08 2012-09-26 苏州巨峰电气绝缘***股份有限公司 Nano modified epoxy vacuum pressure impregnation resin and preparation method thereof
WO2020054134A1 (en) * 2018-09-14 2020-03-19 エヌ・イーケムキャット株式会社 Organic/inorganic composite material
WO2023157542A1 (en) * 2022-02-21 2023-08-24 味の素株式会社 Resin composition

Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051613A (en) * 1983-07-26 1985-03-23 チバ−ガイギ− アクチエンゲゼルシヤフト Spherical fused silica and use as filler and resin composition
JPH0260955A (en) * 1988-08-26 1990-03-01 Somar Corp Resin composition suitable for forming interlayer insulation layer
JPH0726122A (en) * 1993-07-06 1995-01-27 Hitachi Chem Co Ltd Epoxy resin composition for printed-wiring board
JPH0841294A (en) * 1994-07-27 1996-02-13 Shin Etsu Chem Co Ltd Insulating resin paste and semiconductor apparatus
JPH10341083A (en) * 1997-06-10 1998-12-22 Hitachi Chem Co Ltd Multilayered wiring board
JPH1143320A (en) * 1997-07-25 1999-02-16 Toshiba Ceramics Co Ltd Production of silica filler, composition for filler and its production
JP2000264619A (en) * 1999-03-18 2000-09-26 Hidehiro Kamiya Siliceous powder and its production
JP2002146233A (en) * 2000-11-07 2002-05-22 Denki Kagaku Kogyo Kk Surface-treated fine spherical silica powder and resin composition
JP2002146232A (en) * 2000-11-07 2002-05-22 Denki Kagaku Kogyo Kk Surface modification method for fine silica powder
JP2002275356A (en) * 2001-03-22 2002-09-25 Denki Kagaku Kogyo Kk Filler for epoxy resin, and epoxy resin composition
JP2003013002A (en) * 2001-07-03 2003-01-15 Denki Kagaku Kogyo Kk Epoxy resin varnish for resin substrate
JP2003146648A (en) * 2001-11-15 2003-05-21 Denki Kagaku Kogyo Kk Spheroidal inorganic powder, and resin composition filled with the same
WO2003055800A1 (en) * 2001-12-25 2003-07-10 Asahi Kasei Chemicals Corporation Inorganic oxide
JP2006053458A (en) * 2004-08-16 2006-02-23 Denki Kagaku Kogyo Kk Toner external additive and method for manufacturing the same

Patent Citations (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6051613A (en) * 1983-07-26 1985-03-23 チバ−ガイギ− アクチエンゲゼルシヤフト Spherical fused silica and use as filler and resin composition
JPH0260955A (en) * 1988-08-26 1990-03-01 Somar Corp Resin composition suitable for forming interlayer insulation layer
JPH0726122A (en) * 1993-07-06 1995-01-27 Hitachi Chem Co Ltd Epoxy resin composition for printed-wiring board
JPH0841294A (en) * 1994-07-27 1996-02-13 Shin Etsu Chem Co Ltd Insulating resin paste and semiconductor apparatus
JPH10341083A (en) * 1997-06-10 1998-12-22 Hitachi Chem Co Ltd Multilayered wiring board
JPH1143320A (en) * 1997-07-25 1999-02-16 Toshiba Ceramics Co Ltd Production of silica filler, composition for filler and its production
JP2000264619A (en) * 1999-03-18 2000-09-26 Hidehiro Kamiya Siliceous powder and its production
JP2002146233A (en) * 2000-11-07 2002-05-22 Denki Kagaku Kogyo Kk Surface-treated fine spherical silica powder and resin composition
JP2002146232A (en) * 2000-11-07 2002-05-22 Denki Kagaku Kogyo Kk Surface modification method for fine silica powder
JP2002275356A (en) * 2001-03-22 2002-09-25 Denki Kagaku Kogyo Kk Filler for epoxy resin, and epoxy resin composition
JP2003013002A (en) * 2001-07-03 2003-01-15 Denki Kagaku Kogyo Kk Epoxy resin varnish for resin substrate
JP2003146648A (en) * 2001-11-15 2003-05-21 Denki Kagaku Kogyo Kk Spheroidal inorganic powder, and resin composition filled with the same
WO2003055800A1 (en) * 2001-12-25 2003-07-10 Asahi Kasei Chemicals Corporation Inorganic oxide
JP2006053458A (en) * 2004-08-16 2006-02-23 Denki Kagaku Kogyo Kk Toner external additive and method for manufacturing the same

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102690496A (en) * 2012-06-08 2012-09-26 苏州巨峰电气绝缘***股份有限公司 Nano modified epoxy vacuum pressure impregnation resin and preparation method thereof
WO2020054134A1 (en) * 2018-09-14 2020-03-19 エヌ・イーケムキャット株式会社 Organic/inorganic composite material
JPWO2020054134A1 (en) * 2018-09-14 2021-08-30 エヌ・イーケムキャット株式会社 Organic-inorganic composite material
WO2023157542A1 (en) * 2022-02-21 2023-08-24 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JP4010420B2 (en) 2007-11-21

Similar Documents

Publication Publication Date Title
JP4306951B2 (en) Surface-treated fine spherical silica powder and resin composition
JP5711111B2 (en) Filling resin and method for producing the filling resin
CN104371326A (en) Preparation method of liquid silicone rubber composition
WO2013046784A1 (en) Inorganic nitride particles, epoxy resin composition, semi-cured resin composition, cured resin composition, resin sheet, heat-generating electronic component, and method for producing inorganic nitride particles
JP2010195604A (en) Method for producing surface-reformed porous silica, surface-reformed porous silica, slurry composition for addition to resin, filler for resin, and resin composition
Tohsan et al. Novel biphasic structured composite prepared by in situ silica filling in natural rubber latex
Abe et al. Fabrication of highly refractive barium‐titanate‐incorporated polyimide nanocomposite films with high permittivity and thermal stability
CN110172157A (en) A kind of modified organic silicone resin and its preparation method and application
JPH08283425A (en) Component gradient composite of organic polymer and metal oxide and its production
CN103130232A (en) Silica composite particles and method of preparing the same
JP4516779B2 (en) Metal oxide surface-treated particles, method for producing the same, and method for producing a resin composition
JP2006052357A (en) Filler and method for producing the same
JP3983234B2 (en) Manufacturing method of toner external additive
JP5767863B2 (en) Spherical alumina powder, method for producing the same, and composition using the same
JP2001139725A (en) Inorganic powder and resin composition filled therewith
Rezaei et al. In situ generation of the surface‐modified silica nanoparticles within the silicone matrix
CN109280484A (en) A kind of ultralight removing PET release film of high performance antistatic
JPH03139564A (en) One-component thermoset organopolysiloxane composition and method for curing the same
TW200925113A (en) Alumina powder, process for producing the same, and composition containing the same
JP2017197416A (en) Silica particle dispersion and surface-treated silica particle
Chang et al. Fabrication of superhydrophobic silica‐based surfaces with high transmittance by using polypropylene and tetraeyhoxysilane precursors
JP2016193825A (en) Granule and method for producing the same
JP4649883B2 (en) Thermosensitive liquid crystal-containing microcapsules, method for producing the same, and coating composition containing the microcapsules
JP4459845B2 (en) Silica slurry, production method and use thereof
JP5961421B2 (en) Thermoplastic resin composition and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070417

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070525

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070626

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070802

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20070829

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20070829

R150 Certificate of patent or registration of utility model

Ref document number: 4010420

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100914

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110914

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120914

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130914

Year of fee payment: 6

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250