JP2006050852A - Non-contact power feeding device - Google Patents

Non-contact power feeding device Download PDF

Info

Publication number
JP2006050852A
JP2006050852A JP2004231072A JP2004231072A JP2006050852A JP 2006050852 A JP2006050852 A JP 2006050852A JP 2004231072 A JP2004231072 A JP 2004231072A JP 2004231072 A JP2004231072 A JP 2004231072A JP 2006050852 A JP2006050852 A JP 2006050852A
Authority
JP
Japan
Prior art keywords
load
voltage
power
converter
circuit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004231072A
Other languages
Japanese (ja)
Other versions
JP4248460B2 (en
Inventor
Shingo Koyama
晋吾 小山
Makoto Uehira
眞 植平
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tsubakimoto Chain Co
Original Assignee
Tsubakimoto Chain Co
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tsubakimoto Chain Co filed Critical Tsubakimoto Chain Co
Priority to JP2004231072A priority Critical patent/JP4248460B2/en
Publication of JP2006050852A publication Critical patent/JP2006050852A/en
Application granted granted Critical
Publication of JP4248460B2 publication Critical patent/JP4248460B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Current-Collector Devices For Electrically Propelled Vehicles (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact power feeding device in which output voltage is prevented from deviating from the allowable upper limit voltage and the allowable lower limit voltage of connecting equipment and which can be reduced in size. <P>SOLUTION: The non-contact power feeding device comprises a power receiving section 3 for receiving power from the power feeding line 2 supplied with an alternative current, resonating at the frequency of the alternative current in a non-contact manner; and with a converter 4 for converting the alternative current received by the power receiving section 3 into a direct current, the direct current converted by the converter 4 being supplied to a load 13. The non-contact power feeding device is further comprises a judging means 15 for judging whether the opposite voltages of the load 13 is higher than a given voltage or not; and a chopper circuit 5 for connecting between the converter 4 and the load 13 when the judging means 15 judges that the opposite voltages are not higher, while cuts or discontinues the connection between the converter 4 and the load 13 when the judging means 15 judges that the opposite voltages are higher. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動倉庫の搬送体等への電力供給に好適に使用され、ピックアップが給電線から非接触で受電した電力を負荷に供給するように構成してある非接触給電装置に関するものである。   The present invention relates to a non-contact power feeding apparatus that is preferably used for power supply to a carrier or the like of an automatic warehouse and configured so that a pickup supplies power received in a non-contact manner from a power supply line to a load. .

自動倉庫内の搬送体等への電力供給に使用され、受電部がエリア内に敷設された給電線から非接触で受電する非接触給電装置は、本願出願人等が提案し既に実用化されている。
図6は、本願出願人が特願2003−148194号において提案した非接触給電装置の概略構成例を示すブロック図である。この非接触給電装置は、高周波電源1から高周波定電流を供給される給電線2に沿って、非接触で自在に移動出来るように、ピックアップ7が設けられ、ピックアップ7が有するコイルは、共振コンデンサ8に直列接続されている。
A non-contact power feeding device that is used for power supply to a carrier in an automatic warehouse and that receives power in a non-contact manner from a power feed line installed in the area of a power receiving unit has been proposed by the applicant of the present application and has already been put into practical use. Yes.
FIG. 6 is a block diagram showing a schematic configuration example of the non-contact power feeding apparatus proposed by the present applicant in Japanese Patent Application No. 2003-148194. This non-contact power feeding device is provided with a pickup 7 so that it can freely move in a non-contact manner along a power feeding line 2 supplied with a high-frequency constant current from a high-frequency power source 1. 8 are connected in series.

受電部3を構成するピックアップ7と共振コンデンサ8とが高周波定電流に直列共振して、給電線2から受電した交流電力は、ダイオードブリッジ4で直流電力に変換され、変換された直流電力は電解コンデンサ9で平滑され、モータ駆動回路等の負荷回路13に供給される。
特許第2929897号公報
AC power received from the feeder 2 is converted into DC power by the diode bridge 4 when the pickup 7 and the resonance capacitor 8 constituting the power receiving unit 3 are series-resonated with a high frequency constant current, and the converted DC power is electrolyzed. Smoothed by the capacitor 9 and supplied to a load circuit 13 such as a motor drive circuit.
Japanese Patent No. 2929897

上述したような従来の非接触給電装置では、負荷が増加し(抵抗が減少し)、出力電力が増加すると、磁束密度が増加して共振周波数がずれることと、ダイオードブリッジ4(整流回路)の垂下特性とに起因して、図7(a)に示すように、負荷への出力電圧は低下する。
この為、受電部3のピックアップ7のコア磁束密度等で決まる最大負荷時の出力電圧を、接続機器(負荷回路13)の使用電圧に合わせると、図7(b)に示すように、無負荷時に出力電圧が接続機器の上限許容電圧を超えることがある。
In the conventional non-contact power feeding device as described above, when the load increases (resistance decreases) and the output power increases, the magnetic flux density increases and the resonance frequency shifts, and the diode bridge 4 (rectifier circuit) Due to the drooping characteristic, the output voltage to the load decreases as shown in FIG.
For this reason, when the output voltage at the maximum load determined by the core magnetic flux density of the pickup 7 of the power receiving unit 3 is matched with the operating voltage of the connected device (load circuit 13), as shown in FIG. Sometimes the output voltage exceeds the upper limit allowable voltage of the connected device.

そこで、無負荷時の出力電圧が接続機器の上限許容電圧を超えないようにすると、図7(c)に示すように、最大負荷時の出力電圧が接続機器の下限許容電圧を下回ることになってしまう。
その為、無負荷時の出力電圧が接続機器の上限許容電圧を超えないようにすると共に、最大負荷時の出力電圧が接続機器の下限許容電圧より低下しないようにするには、受電容量が大きくサイズが大きい受電部3が必要になり、非接触給電装置を小型化出来ないという問題がある。
Therefore, if the output voltage at no load does not exceed the upper limit allowable voltage of the connected device, the output voltage at the maximum load is lower than the lower limit allowable voltage of the connected device as shown in FIG. End up.
Therefore, in order to prevent the output voltage at no load from exceeding the upper limit allowable voltage of the connected device and to prevent the output voltage at maximum load from dropping below the lower limit allowable voltage of the connected device, the power receiving capacity is increased. The power receiving unit 3 having a large size is required, and there is a problem that the non-contact power feeding device cannot be reduced in size.

また、負荷回路13から回生がかかった場合、回生電力の分、負荷が小さくなって、出力電圧が更に上昇し、接続機器の上限許容電圧を超えるという問題もある。
本発明は、上述したような事情に鑑みてなされたものであり、第1,2発明では、出力電圧が接続機器の上限許容電圧及び下限許容電圧を外れる虞がなく、また、小型化を図ることが出来る非接触給電装置を提供することを目的とする。
第3,4発明では、出力電圧が接続機器の上限許容電圧及び下限許容電圧を外れる虞がなく、また、小型化を図ることが出来、チョッパ回路にチョークコイル及び還流ダイオードが不要な非接触給電装置を提供することを目的とする。
Further, when regeneration is applied from the load circuit 13, there is a problem that the load is reduced by the amount of regenerative power, the output voltage further increases, and exceeds the upper limit allowable voltage of the connected device.
The present invention has been made in view of the circumstances as described above. In the first and second inventions, there is no possibility that the output voltage deviates from the upper limit allowable voltage and the lower limit allowable voltage of the connected device, and the size is reduced. It is an object of the present invention to provide a non-contact power feeding device that can perform the above.
In the third and fourth inventions, there is no possibility that the output voltage deviates from the upper limit allowable voltage and the lower limit allowable voltage of the connected device, the size can be reduced, and the chopper circuit does not require the choke coil and the free wheel diode. An object is to provide an apparatus.

第1発明に係る非接触給電装置は、交流電流が供給される給電線から、非接触で前記交流電流の周波数に共振して受電する受電部と、該受電部が受電した交流電力を直流電力に変換する変換器とを備え、該変換器が変換した直流電力を負荷に供給する非接触給電装置において、前記負荷の両端電圧が所定電圧より高いか否かを判定する判定手段と、該判定手段が否と判定しているときは、前記変換器及び負荷間を接続し、前記判定手段が高いと判定しているときは、前記変換器及び負荷間を切断又は断続するチョッパ回路とを備えることを特徴とする。   A contactless power supply device according to a first aspect of the present invention includes a power receiving unit that receives power by resonating with the frequency of the AC current in a non-contact manner from a power supply line to which an AC current is supplied, and AC power received by the power receiving unit is DC power. A non-contact power supply apparatus that supplies a DC power converted by the converter to a load, a determination unit that determines whether or not a voltage across the load is higher than a predetermined voltage, and the determination And a chopper circuit that connects between the converter and the load when the means is determined to be negative, and disconnects or interrupts between the converter and the load when the determination means is determined to be high. It is characterized by that.

この非接触給電装置では、受電部が、交流電流が供給される給電線から、非接触で交流電流の周波数に共振して受電し、変換器が、受電部が受電した交流電力を直流電力に変換し、変換器が変換した直流電力を負荷に供給する。判定手段が、負荷の両端電圧が所定電圧より高いか否かを判定し、チョッパ回路が、判定手段が否と判定しているときは、変換器及び負荷間を接続し、判定手段が高いと判定しているときは、変換器及び負荷間を切断又は断続する。   In this non-contact power supply device, the power receiving unit receives power by resonating with the frequency of the AC current in a non-contact manner from a power supply line to which AC current is supplied, and the converter converts the AC power received by the power receiving unit into DC power. The DC power converted by the converter is supplied to the load. When the determination means determines whether or not the voltage across the load is higher than a predetermined voltage, and the chopper circuit determines that the determination means is negative, the converter and the load are connected, and the determination means is high When judging, disconnect or interrupt between the converter and the load.

第2発明に係る非接触給電装置は、交流電流が供給される給電線から、非接触で前記交流電流の周波数に共振して受電する受電部と、該受電部が受電した交流電力を直流電力に変換する変換器とを備え、該変換器が変換した直流電力を負荷に供給する非接触給電装置において、前記負荷の両端電圧が所定電圧より高いか否かを判定する判定手段と、該判定手段が高いと判定しているときは、前記変換器及び負荷間を切断又は断続するチョッパ回路と、該チョッパ回路が前記変換器及び負荷間を切断又は断続しているときは、前記変換器及び負荷間を開放し、前記チョッパ回路が前記変換器及び負荷間を切断及び断続していないときは、前記変換器及び負荷間を接続するリレー接点とを備えることを特徴とする。   A contactless power supply device according to a second aspect of the present invention includes a power receiving unit that receives power by resonating with the frequency of the AC current in a non-contact manner from a power supply line to which an AC current is supplied, and AC power received by the power receiving unit as DC power. A non-contact power supply apparatus that supplies a DC power converted by the converter to a load, a determination unit that determines whether or not a voltage across the load is higher than a predetermined voltage, and the determination When it is determined that the means is high, a chopper circuit that disconnects or interrupts between the converter and the load, and when the chopper circuit disconnects or interrupts between the converter and the load, the converter and A relay contact for connecting between the converter and the load is provided when the load is opened and the chopper circuit is not disconnected and interrupted between the converter and the load.

この非接触給電装置では、受電部が、交流電流が供給される給電線から、非接触で交流電流の周波数に共振して受電し、変換器が、受電部が受電した交流電力を直流電力に変換し、変換器が変換した直流電力を負荷に供給する。判定手段が、負荷の両端電圧が所定電圧より高いか否かを判定し、チョッパ回路が、判定手段が高いと判定しているときは、変換器及び負荷間を切断又は断続する。リレー接点は、チョッパ回路が変換器及び負荷間を切断又は断続しているときは、変換器及び負荷間を開放し、チョッパ回路が変換器及び負荷間を切断及び断続していないときは、変換器及び負荷間を接続する。   In this non-contact power supply device, the power receiving unit receives power by resonating with the frequency of the AC current in a non-contact manner from a power supply line to which AC current is supplied, and the converter converts the AC power received by the power receiving unit into DC power. The DC power converted by the converter is supplied to the load. The determination means determines whether or not the voltage across the load is higher than a predetermined voltage, and when the chopper circuit determines that the determination means is high, the converter and the load are disconnected or interrupted. The relay contact opens when the chopper circuit is disconnected or interrupted between the converter and the load, and opens when the chopper circuit is not disconnected or interrupted between the converter and the load. Connect the instrument and the load.

第3発明に係る非接触給電装置は、前記受電部は、直列接続されたコイル及び共振コンデンサを備え、前記交流電流の周波数に直列共振して受電し、前記チョッパ回路は、前記変換器及び負荷間を接続、切断又は断続するスイッチング素子と、前記負荷の両端電圧を平滑する平滑コンデンサとからなり、前記受電部を、切断時又は断続時の過電流を抑制する手段とするように構成してあることを特徴とする。   According to a third aspect of the present invention, the power receiving unit includes a coil and a resonant capacitor connected in series, and receives power by series resonance with the frequency of the alternating current. The chopper circuit includes the converter and the load. A switching element that connects, disconnects, or interrupts between them, and a smoothing capacitor that smoothes the voltage across the load, and the power receiving unit is configured to serve as a means for suppressing overcurrent during disconnection or disconnection. It is characterized by being.

この非接触給電装置では、受電部は、直列接続されたコイル及び共振コンデンサが、交流電流の周波数に直列共振して受電する。チョッパ回路は、スイッチング素子が、変換器及び負荷間を接続、切断又は断続し、平滑コンデンサが、負荷の両端電圧を平滑する。また、チョッパ回路は、受電部を、切断時又は断続時の過電流を抑制する手段とする。   In this non-contact power supply device, the power reception unit receives power by series resonance of the series-connected coil and the resonance capacitor with the frequency of the alternating current. In the chopper circuit, the switching element connects, disconnects or interrupts the converter and the load, and the smoothing capacitor smoothes the voltage across the load. Further, the chopper circuit uses the power receiving unit as means for suppressing an overcurrent at the time of disconnection or interruption.

第4発明に係る非接触給電装置は、前記判定手段は、両端電圧と所定電圧との差に応じた信号を出力する差動増幅器であり、前記チョッパ回路は、両端電圧の方が高いときに前記差動増幅器が出力した信号に応じたパルス幅のパルス信号を出力するパルス幅変調回路を備え、該パルス幅変調回路が出力したパルス信号により、前記スイッチング素子をオン/オフするように構成してあることを特徴とする。   In the non-contact power feeding device according to a fourth aspect of the invention, the determination means is a differential amplifier that outputs a signal corresponding to a difference between the both-end voltage and a predetermined voltage, and the chopper circuit has a higher end-end voltage. A pulse width modulation circuit that outputs a pulse signal having a pulse width corresponding to a signal output from the differential amplifier is provided, and the switching element is turned on / off by the pulse signal output by the pulse width modulation circuit. It is characterized by being.

この非接触給電装置では、判定手段である差動増幅器が、両端電圧と所定電圧との差に応じた信号を出力する。チョッパ回路は、パルス幅変調回路が、両端電圧の方が高いときに差動増幅器が出力した信号に応じたパルス幅のパルス信号を出力し、パルス幅変調回路が出力したパルス信号により、スイッチング素子をオン/オフする。   In this non-contact power feeding device, a differential amplifier as a determination unit outputs a signal corresponding to the difference between the both-end voltage and a predetermined voltage. The chopper circuit outputs a pulse signal having a pulse width corresponding to a signal output from the differential amplifier when the voltage across the pulse width modulation circuit is higher, and a switching element is generated by the pulse signal output from the pulse width modulation circuit. Turn on / off.

第1,2発明に係る非接触給電装置によれば、出力電圧が接続機器の上限許容電圧及び下限許容電圧を外れる虞がなく、また、小型化を図ることが出来る非接触給電装置を実現することが出来る。
第3,4発明に係る非接触給電装置によれば、出力電圧が接続機器の上限許容電圧及び下限許容電圧を外れる虞がなく、また、小型化を図ることが出来、チョッパ回路にチョークコイル及び還流ダイオードが不要な非接触給電装置を実現することが出来る。
According to the non-contact power feeding device according to the first and second inventions, a non-contact power feeding device that does not have a risk that the output voltage deviates from the upper limit allowable voltage and the lower limit allowable voltage of the connected device and that can be reduced in size is realized. I can do it.
According to the non-contact power feeding device according to the third and fourth inventions, there is no possibility that the output voltage deviates from the upper limit allowable voltage and the lower limit allowable voltage of the connected device, and the miniaturization can be achieved. A non-contact power feeding device that does not require a free-wheeling diode can be realized.

以下に、本発明を、その実施の形態を示す図面を参照しながら説明する。
(実施の形態1)
図1は、本発明に係る非接触給電装置の実施の形態1の要部構成を示すブロック図である。この非接触給電装置は、高周波電源1から高周波定電流を供給される給電線2に沿って、非接触で自在に移動出来るように、ピックアップ7が設けられ、ピックアップ7が有するコイルは、共振コンデンサ8に直列接続されている。
受電部3を構成するピックアップ7と共振コンデンサ8とが高周波定電流に直列共振して、給電線2から受電した交流電力は、ダイオードブリッジ(変換器)4で直流電力に変換される。
Hereinafter, the present invention will be described with reference to the drawings showing embodiments thereof.
(Embodiment 1)
FIG. 1 is a block diagram showing the main configuration of Embodiment 1 of the non-contact power feeding apparatus according to the present invention. This non-contact power feeding device is provided with a pickup 7 so that it can freely move in a non-contact manner along a power feeding line 2 supplied with a high-frequency constant current from a high-frequency power source 1. 8 are connected in series.
AC power received from the feeder 2 is converted into DC power by a diode bridge (converter) 4 because the pickup 7 and the resonant capacitor 8 constituting the power receiving unit 3 are in series resonance with a high frequency constant current.

ダイオードブリッジ4の正極端子は、NPN型トランジスタ6のコレクタに接続され、トランジスタ6のエミッタは、電解コンデンサ(平滑コンデンサ)9の陽極に接続されている。電解コンデンサ9の陰極は、ダイオードブリッジ4の負極端子に接続され、電解コンデンサ9には、抵抗11,12からなる分圧回路と、モータ駆動回路等の負荷回路13とが並列接続されている。
抵抗11,12で分圧された電圧は、比較回路(判定手段)15で基準電圧回路16からの基準電圧と比較され、比較回路15の出力端子は、トランジスタ6のベースに接続されている。
トランジスタ6及び電解コンデンサ9は降圧チョッパ回路5を構成している。
The positive terminal of the diode bridge 4 is connected to the collector of the NPN transistor 6, and the emitter of the transistor 6 is connected to the anode of an electrolytic capacitor (smoothing capacitor) 9. The cathode of the electrolytic capacitor 9 is connected to the negative terminal of the diode bridge 4, and the electrolytic capacitor 9 is connected in parallel with a voltage dividing circuit composed of resistors 11 and 12 and a load circuit 13 such as a motor drive circuit.
The voltage divided by the resistors 11 and 12 is compared with the reference voltage from the reference voltage circuit 16 by the comparison circuit (determination means) 15, and the output terminal of the comparison circuit 15 is connected to the base of the transistor 6.
The transistor 6 and the electrolytic capacitor 9 constitute a step-down chopper circuit 5.

尚、ピックアップ7のコイルと共振コンデンサ8とは、給電線2の高周波定電流に直列共振して受電し、ピックアップ7のコイルを巻回してあるコアの磁気飽和により、流れる電流が制限されるので、降圧チョッパ回路5には、過電流を防止する為のチョークコイルが不要である。また、チョークコイルが無いので、還流ダイオードも不要である。
また、ピックアップ7のコイル及び共振コンデンサ8の共振条件を、コイルのインダクタンス成分が残るようにずらすことで、降圧チョッパ回路5がチョッピングするときの過電流を抑制することも可能である。
Note that the coil of the pickup 7 and the resonant capacitor 8 receive power by series resonance with the high-frequency constant current of the feeder line 2, and the flowing current is limited by the magnetic saturation of the core around which the coil of the pickup 7 is wound. The step-down chopper circuit 5 does not require a choke coil for preventing overcurrent. Further, since there is no choke coil, a free-wheeling diode is also unnecessary.
Further, by shifting the resonance conditions of the coil of the pickup 7 and the resonance capacitor 8 so that the inductance component of the coil remains, it is possible to suppress an overcurrent when the step-down chopper circuit 5 performs chopping.

以下に、このような構成の非接触給電装置の動作を説明する。
この非接触給電装置では、受電部3のピックアップ7と共振コンデンサ8とが、高周波定電流に直列共振して給電線2から受電した交流電力が、ダイオードブリッジ4で直流電力に変換される。
ダイオードブリッジ4が変換した直流電力は、降圧チョッパ回路5がチョッピングしない場合はオンであるトランジスタ6を通じて、電解コンデンサ9で平滑され、負荷回路13に供給される。
Below, operation | movement of the non-contact electric power feeder of such a structure is demonstrated.
In this non-contact power supply device, AC power received from the power supply line 2 by the pickup 7 and the resonance capacitor 8 of the power receiving unit 3 in series resonance with a high frequency constant current is converted into DC power by the diode bridge 4.
The DC power converted by the diode bridge 4 is smoothed by the electrolytic capacitor 9 through the transistor 6 which is on when the step-down chopper circuit 5 does not chop, and is supplied to the load circuit 13.

負荷回路13の負荷が小さくなり、図2(a)に示すように、負荷回路13への印加電圧(出力電圧)が上昇して、負荷回路13(接続機器)の使用電圧範囲の上限許容電圧(閾値電圧、所定電圧)を超えると、分圧回路11,12の分圧が、上限許容電圧に対応する基準電圧を超える。
これにより、比較回路15は、トランジスタ6をオフにし、降圧チョッパ回路5がチョッピングする。
トランジスタ6がオフになると、電解コンデンサ9が、電解コンデンサ9及び負荷回路の時定数に従って放電し、その放電電圧により分圧回路11,12の分圧が基準電圧以下に低下し、比較回路15が、トランジスタ6をオンにする。
The load of the load circuit 13 is reduced, and as shown in FIG. 2A, the applied voltage (output voltage) to the load circuit 13 is increased and the upper limit allowable voltage of the operating voltage range of the load circuit 13 (connected device). When (threshold voltage, predetermined voltage) is exceeded, the divided voltage of the voltage dividing circuits 11 and 12 exceeds the reference voltage corresponding to the upper limit allowable voltage.
As a result, the comparison circuit 15 turns off the transistor 6 and the step-down chopper circuit 5 performs chopping.
When the transistor 6 is turned off, the electrolytic capacitor 9 is discharged in accordance with the time constant of the electrolytic capacitor 9 and the load circuit, and the divided voltage of the voltage dividing circuits 11 and 12 is lowered below the reference voltage by the discharge voltage. The transistor 6 is turned on.

トランジスタ6がオンになると、電解コンデンサ9が、電解コンデンサ9及び負荷回路の時定数に従って充電され、その充電電圧により分圧回路11,12の分圧が基準電圧を超え、比較回路15が、トランジスタ6をオフにする。
降圧チョッパ回路5(過電圧制限回路)は、上記の動作を繰り返すことにより、図2(a)に示すように、非接触給電装置の出力電圧を閾値電圧以下に制限する。
尚、図2(a)に示すように、閾値電圧を接続機器の使用電圧範囲の上限付近にではなく、使用電圧範囲の中程に設定し、比較回路15の基準電圧をその閾値電圧に対応させれば、図2(b)に示すように、非接触給電装置の出力電圧を、負荷回路13の負荷の大小に関係なく、閾値電圧付近に保持することが可能である。
When the transistor 6 is turned on, the electrolytic capacitor 9 is charged according to the time constant of the electrolytic capacitor 9 and the load circuit, and the divided voltage of the voltage dividing circuits 11 and 12 exceeds the reference voltage by the charged voltage, and the comparison circuit 15 Turn 6 off.
The step-down chopper circuit 5 (overvoltage limiting circuit) limits the output voltage of the non-contact power feeding device to a threshold voltage or lower as shown in FIG. 2A by repeating the above operation.
As shown in FIG. 2A, the threshold voltage is set not in the vicinity of the upper limit of the operating voltage range of the connected device, but in the middle of the operating voltage range, and the reference voltage of the comparison circuit 15 corresponds to the threshold voltage. In this case, as shown in FIG. 2B, the output voltage of the non-contact power feeding device can be held near the threshold voltage regardless of the load of the load circuit 13.

(実施の形態2)
図3は、本発明に係る非接触給電装置の実施の形態2の要部構成を示すブロック図である。この非接触給電装置は、NPN型トランジスタ6のコレクタ及びエミッタ間を接続する常閉のリレー接点10が設けられている。リレー接点10の図示しないリレーは、例えば、比較回路15の出力信号により、トランジスタ6がオンになっているときは、オフになり(リレー接点10は閉になり)、トランジスタ6がオフになっているときは、オンになる(リレー接点10は開になる)ように構成されている。
(Embodiment 2)
FIG. 3 is a block diagram showing a main configuration of the second embodiment of the non-contact power feeding apparatus according to the present invention. This non-contact power feeding device is provided with a normally closed relay contact 10 that connects between the collector and emitter of the NPN transistor 6. The relay (not shown) of the relay contact 10 is turned off when the transistor 6 is turned on, for example, by the output signal of the comparison circuit 15 (the relay contact 10 is closed), and the transistor 6 is turned off. The relay contact 10 is configured to be turned on (the relay contact 10 is opened).

尚、リレー接点10が、トランジスタ6のチョッピングに合わせてチャタリングしないように、リレーが一度オンになったときは、遅延回路等により例えば数秒間、オフにならないように構成することも可能である。
トランジスタ6及び電解コンデンサ9は、降圧チョッパ回路5を構成している。その他の構成は、上述した実施の形態1の非接触給電装置の構成と同様であるので、同一箇所には同一符号を付して、説明を省略する。
It should be noted that the relay contact 10 may be configured not to be turned off for a few seconds, for example, for several seconds when the relay is turned on so that the relay contact 10 is not chattered in accordance with the chopping of the transistor 6.
The transistor 6 and the electrolytic capacitor 9 constitute a step-down chopper circuit 5. Other configurations are the same as the configuration of the contactless power supply device of the first embodiment described above, and thus the same portions are denoted by the same reference numerals and description thereof is omitted.

以下に、このような構成の非接触給電装置の動作を説明する。
この非接触給電装置では、ダイオードブリッジ4が変換した直流電力は、降圧チョッパ回路5がチョッピングしない場合はオンであるトランジスタ6及びリレー接点10を通じて、電解コンデンサ9で平滑され、負荷回路13に供給される。この場合、トランジスタ6のコレクタ−エミッタ間の内部抵抗よりリレー接点10の接触抵抗の方が小さいので、リレー接点10の方に多くの電流が流れる。また、これにより、電力損失をより小さくすることが出来、発熱量も低減させることが出来る。
Below, operation | movement of the non-contact electric power feeder of such a structure is demonstrated.
In this non-contact power feeding device, the DC power converted by the diode bridge 4 is smoothed by the electrolytic capacitor 9 and supplied to the load circuit 13 through the transistor 6 and the relay contact 10 which are on when the step-down chopper circuit 5 does not chop. The In this case, since the contact resistance of the relay contact 10 is smaller than the internal resistance between the collector and the emitter of the transistor 6, a large amount of current flows through the relay contact 10. In addition, this makes it possible to further reduce power loss and to reduce the amount of heat generated.

負荷回路13の負荷が小さくなり、図2(a)に示すように、負荷回路13への印加電圧(出力電圧)が上昇して、負荷回路13(接続機器)の使用電圧範囲の上限許容電圧(閾値電圧、所定電圧)を超えると、分圧回路11,12の分圧が、上限許容電圧に対応する基準電圧を超える。
これにより、比較回路15は、トランジスタ6をオフにし、降圧チョッパ回路5がチョッピングする。このとき、リレー接点10も開になる。
トランジスタ6がオフになると、電解コンデンサ9が、電解コンデンサ9及び負荷回路の時定数に従って放電し、その放電電圧により分圧回路11,12の分圧が基準電圧以下に低下し、比較回路15が、トランジスタ6をオンにする。
The load of the load circuit 13 is reduced, and as shown in FIG. 2A, the applied voltage (output voltage) to the load circuit 13 is increased and the upper limit allowable voltage of the operating voltage range of the load circuit 13 (connected device). When (threshold voltage, predetermined voltage) is exceeded, the divided voltage of the voltage dividing circuits 11 and 12 exceeds the reference voltage corresponding to the upper limit allowable voltage.
As a result, the comparison circuit 15 turns off the transistor 6 and the step-down chopper circuit 5 performs chopping. At this time, the relay contact 10 is also opened.
When the transistor 6 is turned off, the electrolytic capacitor 9 is discharged in accordance with the time constant of the electrolytic capacitor 9 and the load circuit, and the divided voltage of the voltage dividing circuits 11 and 12 is lowered below the reference voltage by the discharge voltage. The transistor 6 is turned on.

トランジスタ6がオンになると、電解コンデンサ9が、電解コンデンサ9及び負荷回路の時定数に従って充電され、その充電電圧により分圧回路11,12の分圧が基準電圧を超え、比較回路15が、トランジスタ6をオフにする。
降圧チョッパ回路5(過電圧制限回路)は、上記の動作を繰り返すことにより、図2(a)に示すように、非接触給電装置の出力電圧を閾値電圧以下に制限する。リレー接点10は、降圧チョッパ回路5が上記の動作を繰り返してチョッピングしている間は、例えば数秒毎に閉になるが、トランジスタ6のオフに合わせて直ちに開になり、数秒間は開状態を維持する。その他の動作は、上述した実施の形態1の非接触給電装置の動作と同様であるので、説明を省略する。
When the transistor 6 is turned on, the electrolytic capacitor 9 is charged according to the time constant of the electrolytic capacitor 9 and the load circuit, and the divided voltage of the voltage dividing circuits 11 and 12 exceeds the reference voltage by the charged voltage, and the comparison circuit 15 Turn 6 off.
The step-down chopper circuit 5 (overvoltage limiting circuit) limits the output voltage of the non-contact power feeding device to a threshold voltage or lower as shown in FIG. 2A by repeating the above operation. The relay contact 10 closes, for example, every few seconds while the step-down chopper circuit 5 repeats the above-described operation, but opens immediately when the transistor 6 is turned off, and remains open for several seconds. maintain. Since other operations are the same as the operations of the contactless power supply device of the first embodiment described above, description thereof is omitted.

(実施の形態3)
図4は、本発明に係る非接触給電装置の実施の形態3の要部構成を示すブロック図である。この非接触給電装置は、抵抗11,12で分圧された電圧と、基準電圧回路16からの基準電圧との差が、差動増幅器(判定手段)15aで増幅され、増幅された差が正のとき、つまり、分圧された電圧の方が高いとき、PWM(Pulse Width Modulation)回路14が、その差に応じたパルス幅の高周波(例えば数十kHz)のパルス信号により、トランジスタ6をオン/オフする。PWM回路14は、差が大きい程、トランジスタ6を長時間オフにする。
(Embodiment 3)
FIG. 4 is a block diagram showing a main configuration of the third embodiment of the non-contact power feeding device according to the present invention. In this non-contact power feeding device, the difference between the voltage divided by the resistors 11 and 12 and the reference voltage from the reference voltage circuit 16 is amplified by the differential amplifier (determination means) 15a, and the amplified difference is positive. In other words, that is, when the divided voltage is higher, the PWM (Pulse Width Modulation) circuit 14 turns on the transistor 6 by a high-frequency (for example, several tens of kHz) pulse signal having a pulse width corresponding to the difference. / Turn off. The PWM circuit 14 turns off the transistor 6 for a longer time as the difference is larger.

PWM回路14、トランジスタ6及び電解コンデンサ9は、降圧チョッパ回路5aを構成している。その他の構成は、上述した実施の形態1の非接触給電装置の構成と同様であるので、同一箇所には同一符号を付して、説明を省略する。   The PWM circuit 14, the transistor 6, and the electrolytic capacitor 9 constitute a step-down chopper circuit 5a. Other configurations are the same as the configuration of the contactless power supply device of the first embodiment described above, and thus the same portions are denoted by the same reference numerals and description thereof is omitted.

以下に、このような構成の非接触給電装置の動作を説明する。
この非接触給電装置では、ダイオードブリッジ4が変換した直流電力は、降圧チョッパ回路5aがチョッピングしない場合はオンであるトランジスタ6を通じて、電解コンデンサ9で平滑され、負荷回路13に供給される。
Below, operation | movement of the non-contact electric power feeder of such a structure is demonstrated.
In this non-contact power feeding device, the DC power converted by the diode bridge 4 is smoothed by the electrolytic capacitor 9 and supplied to the load circuit 13 through the transistor 6 which is on when the step-down chopper circuit 5 a does not chop.

負荷回路13の負荷が小さくなり、図2(a)に示すように、負荷回路13への印加電圧(出力電圧)が上昇して、負荷回路13(接続機器)の使用電圧範囲の上限許容電圧(閾値電圧、所定電圧)を超えると、分圧回路11,12の分圧が、上限許容電圧に対応する基準電圧を超える。
これにより、差動増幅器15aは、抵抗11,12で分圧された電圧と、基準電圧回路16からの基準電圧との差を増幅し、PWM回路14が、その正の差に応じたパルス幅の高周波のパルス信号により、トランジスタ6をオン/オフし、降圧チョッパ回路5aがチョッピングする。PWM回路14は、差が大きい程、トランジスタ6を長時間オフにする。
The load of the load circuit 13 is reduced, and as shown in FIG. 2A, the applied voltage (output voltage) to the load circuit 13 is increased and the upper limit allowable voltage of the operating voltage range of the load circuit 13 (connected device). When (threshold voltage, predetermined voltage) is exceeded, the divided voltage of the voltage dividing circuits 11 and 12 exceeds the reference voltage corresponding to the upper limit allowable voltage.
As a result, the differential amplifier 15a amplifies the difference between the voltage divided by the resistors 11 and 12 and the reference voltage from the reference voltage circuit 16, and the PWM circuit 14 has a pulse width corresponding to the positive difference. The high frequency pulse signal turns on / off the transistor 6 and the step-down chopper circuit 5a chops. The PWM circuit 14 turns off the transistor 6 for a longer time as the difference is larger.

降圧チョッパ回路5aがチョッピングすると、電解コンデンサ9の放電が進み、放電電圧が低下して、その放電電圧により分圧回路11,12の分圧が基準電圧以下に低下し、差動増幅器15aが、PWM回路14をオフにし、トランジスタ6をオンにする。
トランジスタ6がオンになると、電解コンデンサ9が充電され、その充電電圧により分圧回路11,12の分圧が基準電圧を超え、差動増幅器15aが、抵抗11,12で分圧された電圧と基準電圧との差を増幅し、PWM回路14が、その正の差に応じたパルス幅の高周波のパルス信号により、トランジスタ6をオン/オフし、降圧チョッパ回路5aがチョッピングする。
When the step-down chopper circuit 5a chops, the discharge of the electrolytic capacitor 9 proceeds, the discharge voltage decreases, and the divided voltage of the voltage dividing circuits 11 and 12 decreases below the reference voltage by the discharge voltage, and the differential amplifier 15a The PWM circuit 14 is turned off and the transistor 6 is turned on.
When the transistor 6 is turned on, the electrolytic capacitor 9 is charged, the divided voltage of the voltage dividing circuits 11 and 12 exceeds the reference voltage by the charged voltage, and the differential amplifier 15a is divided into the voltage divided by the resistors 11 and 12. The difference from the reference voltage is amplified, and the PWM circuit 14 turns on / off the transistor 6 with a high-frequency pulse signal having a pulse width corresponding to the positive difference, and the step-down chopper circuit 5a chops.

降圧チョッパ回路5a(過電圧制限回路)は、上記の動作を繰り返すことにより、図2(a)に示すように、非接触給電装置の出力電圧を閾値電圧以下に制限する。その他の動作は、上述した実施の形態1の非接触給電装置の動作と同様であるので、説明を省略する。   The step-down chopper circuit 5a (overvoltage limiting circuit) limits the output voltage of the non-contact power feeding device to a threshold voltage or lower as shown in FIG. 2A by repeating the above operation. Since other operations are the same as the operations of the contactless power supply device of the first embodiment described above, description thereof is omitted.

(実施の形態4)
図5は、本発明に係る非接触給電装置の実施の形態4の要部構成を示すブロック図である。この非接触給電装置は、ダイオードブリッジ4の正極端子及び負極端子間に、順方向のダイオード17と、コンデンサ18及び抵抗9の並列回路とが、直列に接続され、スナバ回路が構成されている。その他の構成は、上述した実施の形態1の非接触給電装置の構成と同様であるので、同一箇所には同一符号を付して、説明を省略する。
(Embodiment 4)
FIG. 5 is a block diagram showing a main configuration of the fourth embodiment of the non-contact power feeding apparatus according to the present invention. In this non-contact power feeding device, a forward diode 17 and a parallel circuit of a capacitor 18 and a resistor 9 are connected in series between the positive terminal and the negative terminal of the diode bridge 4 to form a snubber circuit. The other configuration is the same as the configuration of the non-contact power feeding device of the first embodiment described above, and therefore the same portions are denoted by the same reference numerals and description thereof is omitted.

以下に、このような構成の非接触給電装置の動作を説明する。
この非接触給電装置では、ダイオードブリッジ4が変換した直流電力は、降圧チョッパ回路5がチョッピングしない場合はオンであるトランジスタ6を通じて、電解コンデンサ9で平滑され、負荷回路13に供給される。
負荷回路13の負荷が小さくなり、図2(a)に示すように、負荷回路13への印加電圧(出力電圧)が上昇して、負荷回路13(接続機器)の使用電圧範囲の上限許容電圧(閾値電圧、所定電圧)を超えると、分圧回路11,12の分圧が、上限許容電圧に対応する基準電圧を超える。
これにより、比較回路15は、トランジスタ6をオフにし、降圧チョッパ回路5がチョッピングする。
Below, operation | movement of the non-contact electric power feeder of such a structure is demonstrated.
In this non-contact power feeding device, the DC power converted by the diode bridge 4 is smoothed by the electrolytic capacitor 9 and supplied to the load circuit 13 through the transistor 6 which is on when the step-down chopper circuit 5 does not chop.
The load of the load circuit 13 is reduced, and as shown in FIG. 2A, the applied voltage (output voltage) to the load circuit 13 is increased and the upper limit allowable voltage of the operating voltage range of the load circuit 13 (connected device). When (threshold voltage, predetermined voltage) is exceeded, the divided voltage of the voltage dividing circuits 11 and 12 exceeds the reference voltage corresponding to the upper limit allowable voltage.
As a result, the comparison circuit 15 turns off the transistor 6 and the step-down chopper circuit 5 performs chopping.

トランジスタ6がオフになると、電解コンデンサ9が、電解コンデンサ9及び負荷回路の時定数に従って放電し、その放電電圧により分圧回路11,12の分圧が基準電圧以下に低下し、比較回路15が、トランジスタ6をオンにする。
トランジスタ6がオンになると、電解コンデンサ9が、電解コンデンサ9及び負荷回路の時定数に従って充電され、その充電電圧により分圧回路11,12の分圧が基準電圧を超え、比較回路15が、トランジスタ6をオフにする。
When the transistor 6 is turned off, the electrolytic capacitor 9 is discharged in accordance with the time constants of the electrolytic capacitor 9 and the load circuit, and the divided voltage of the voltage dividing circuits 11 and 12 is lowered below the reference voltage by the discharge voltage. The transistor 6 is turned on.
When the transistor 6 is turned on, the electrolytic capacitor 9 is charged according to the time constant of the electrolytic capacitor 9 and the load circuit, and the divided voltage of the voltage dividing circuits 11 and 12 exceeds the reference voltage by the charged voltage, and the comparison circuit 15 Turn 6 off.

降圧チョッパ回路5(過電圧制限回路)は、上記の動作を繰り返すことにより、図2(a)に示すように、非接触給電装置の出力電圧を閾値電圧以下に制限する。また、ダイオード17、コンデンサ18及び抵抗9からなるスナバ回路は、トランジスタ6のオン又はオフにより発生するスパイク電圧を吸収し、半導体素子(ダイオード、トランジスタ)の破壊を防止する。   The step-down chopper circuit 5 (overvoltage limiting circuit) limits the output voltage of the non-contact power feeding device to a threshold voltage or lower as shown in FIG. 2A by repeating the above operation. In addition, the snubber circuit including the diode 17, the capacitor 18, and the resistor 9 absorbs a spike voltage generated when the transistor 6 is turned on or off, and prevents the semiconductor element (diode, transistor) from being destroyed.

尚、上述した各実施の形態では、降圧チョッパ回路を使用しているが、降圧チョッパ回路の代わりに昇圧チョッパ回路を使用して、昇圧チョッパ回路を作動させることにより、接続機器の作動範囲の出力電圧を供給し、出力電圧が上限許容電圧を超えるときは、昇圧チョッパ回路を停止させる構成にすることも可能である。この場合、ピックアップのコイルのインダクタンス成分を残すことにより、昇圧チョッパ回路のチョークコイルを省くことが可能である。   In each of the above-described embodiments, the step-down chopper circuit is used. However, the step-up chopper circuit is used instead of the step-down chopper circuit and the step-up chopper circuit is operated to output the operating range of the connected device. When the voltage is supplied and the output voltage exceeds the upper limit allowable voltage, the boost chopper circuit may be stopped. In this case, it is possible to omit the choke coil of the step-up chopper circuit by leaving the inductance component of the pickup coil.

本発明に係る非接触給電装置の実施の形態の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of embodiment of the non-contact electric power supply which concerns on this invention. 本発明に係る非接触給電装置の動作を示す説明図である。It is explanatory drawing which shows operation | movement of the non-contact electric power supply which concerns on this invention. 本発明に係る非接触給電装置の実施の形態の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of embodiment of the non-contact electric power supply which concerns on this invention. 本発明に係る非接触給電装置の実施の形態の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of embodiment of the non-contact electric power supply which concerns on this invention. 本発明に係る非接触給電装置の実施の形態の要部構成を示すブロック図である。It is a block diagram which shows the principal part structure of embodiment of the non-contact electric power supply which concerns on this invention. 従来の非接触給電装置の要部構成例を示すブロック図である。It is a block diagram which shows the principal part structural example of the conventional non-contact electric power supply. 従来の非接触給電装置の問題点を示す説明図である。It is explanatory drawing which shows the problem of the conventional non-contact electric power feeder.

符号の説明Explanation of symbols

1 高周波電源
2 給電線
3 受電部
4 ダイオードブリッジ(変換器)
5,5a 降圧チョッパ回路
6 (NPN型)トランジスタ
7 ピックアップ
8 共振コンデンサ
9 電解コンデンサ(平滑コンデンサ)
10 リレー接点
11,12 抵抗
13 負荷回路
14 PWM回路
15 比較回路(判定手段)
15a 差動増幅器(判定手段)
16 基準電圧回路
17 ダイオード
18 コンデンサ
DESCRIPTION OF SYMBOLS 1 High frequency power supply 2 Feed line 3 Power receiving part 4 Diode bridge (converter)
5,5a Step-down chopper circuit 6 (NPN type) transistor 7 Pickup 8 Resonance capacitor 9 Electrolytic capacitor (smoothing capacitor)
DESCRIPTION OF SYMBOLS 10 Relay contact 11, 12 Resistance 13 Load circuit 14 PWM circuit 15 Comparison circuit (determination means)
15a Differential amplifier (determination means)
16 Reference voltage circuit 17 Diode 18 Capacitor

Claims (4)

交流電流が供給される給電線から、非接触で前記交流電流の周波数に共振して受電する受電部と、該受電部が受電した交流電力を直流電力に変換する変換器とを備え、該変換器が変換した直流電力を負荷に供給する非接触給電装置において、
前記負荷の両端電圧が所定電圧より高いか否かを判定する判定手段と、該判定手段が否と判定しているときは、前記変換器及び負荷間を接続し、前記判定手段が高いと判定しているときは、前記変換器及び負荷間を切断又は断続するチョッパ回路とを備えることを特徴とする非接触給電装置。
A power receiving unit that receives power by resonating with the frequency of the AC current in a contactless manner from a power supply line to which an AC current is supplied, and a converter that converts AC power received by the power receiving unit into DC power, the conversion In the non-contact power feeding device that supplies the DC power converted by the device to the load,
A determination unit that determines whether or not the voltage across the load is higher than a predetermined voltage; and when the determination unit determines NO, the converter and the load are connected and the determination unit is determined to be high And a chopper circuit for disconnecting or intermittently connecting between the converter and the load.
交流電流が供給される給電線から、非接触で前記交流電流の周波数に共振して受電する受電部と、該受電部が受電した交流電力を直流電力に変換する変換器とを備え、該変換器が変換した直流電力を負荷に供給する非接触給電装置において、
前記負荷の両端電圧が所定電圧より高いか否かを判定する判定手段と、該判定手段が高いと判定しているときは、前記変換器及び負荷間を切断又は断続するチョッパ回路と、該チョッパ回路が前記変換器及び負荷間を切断又は断続しているときは、前記変換器及び負荷間を開放し、前記チョッパ回路が前記変換器及び負荷間を切断及び断続していないときは、前記変換器及び負荷間を接続するリレー接点とを備えることを特徴とする非接触給電装置。
A power receiving unit that receives power by resonating with the frequency of the AC current in a contactless manner from a power supply line to which an AC current is supplied, and a converter that converts AC power received by the power receiving unit into DC power, the conversion In the non-contact power feeding device that supplies the DC power converted by the device to the load,
Determining means for determining whether or not the both-end voltage of the load is higher than a predetermined voltage; and a chopper circuit for disconnecting or interrupting between the converter and the load when the determining means is determined to be high; and the chopper When the circuit is disconnected or interrupted between the converter and the load, the converter and the load are opened. When the chopper circuit is not disconnected and interrupted between the converter and the load, the conversion is performed. And a relay contact for connecting between the load and the load.
前記受電部は、直列接続されたコイル及び共振コンデンサを備え、前記交流電流の周波数に直列共振して受電し、前記チョッパ回路は、前記変換器及び負荷間を接続、切断又は断続するスイッチング素子と、前記負荷の両端電圧を平滑する平滑コンデンサとからなり、前記受電部を、切断時又は断続時の過電流を抑制する手段とするように構成してある請求項1又は2記載の非接触給電装置。   The power receiving unit includes a coil and a resonance capacitor connected in series, receives power by series resonance with the frequency of the alternating current, and the chopper circuit includes a switching element that connects, disconnects, or interrupts between the converter and the load. 3. The non-contact power feeding according to claim 1 or 2, comprising a smoothing capacitor for smoothing a voltage across the load, wherein the power receiving unit is configured to suppress overcurrent during disconnection or interruption. apparatus. 前記判定手段は、両端電圧と所定電圧との差に応じた信号を出力する差動増幅器であり、前記チョッパ回路は、両端電圧の方が高いときに前記差動増幅器が出力した信号に応じたパルス幅のパルス信号を出力するパルス幅変調回路を備え、該パルス幅変調回路が出力したパルス信号により、前記スイッチング素子をオン/オフするように構成してある請求項3記載の非接触給電装置。   The determination means is a differential amplifier that outputs a signal according to a difference between a voltage at both ends and a predetermined voltage, and the chopper circuit responds to a signal output by the differential amplifier when the voltage at both ends is higher. 4. A non-contact power feeding apparatus according to claim 3, further comprising: a pulse width modulation circuit that outputs a pulse signal having a pulse width, wherein the switching element is turned on / off by the pulse signal output from the pulse width modulation circuit. .
JP2004231072A 2004-08-06 2004-08-06 Non-contact power feeding device Expired - Fee Related JP4248460B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004231072A JP4248460B2 (en) 2004-08-06 2004-08-06 Non-contact power feeding device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004231072A JP4248460B2 (en) 2004-08-06 2004-08-06 Non-contact power feeding device

Publications (2)

Publication Number Publication Date
JP2006050852A true JP2006050852A (en) 2006-02-16
JP4248460B2 JP4248460B2 (en) 2009-04-02

Family

ID=36028730

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004231072A Expired - Fee Related JP4248460B2 (en) 2004-08-06 2004-08-06 Non-contact power feeding device

Country Status (1)

Country Link
JP (1) JP4248460B2 (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528812A (en) * 2006-02-28 2009-08-06 オークランド ユニサービシズ リミテッド Single phase power supply for inductively coupled power transfer system
JP2010154696A (en) * 2008-12-26 2010-07-08 Daifuku Co Ltd Secondary power-receiving circuit in noncontact power supply equipment
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
JP2012196026A (en) * 2011-03-16 2012-10-11 Daifuku Co Ltd Non-contact feeding facility
KR20150031064A (en) * 2013-09-13 2015-03-23 엘지이노텍 주식회사 Apparatus for contolling the charging, method for controlling the charging and apparatus for receiving wireless power having the same

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009528812A (en) * 2006-02-28 2009-08-06 オークランド ユニサービシズ リミテッド Single phase power supply for inductively coupled power transfer system
JP2010154696A (en) * 2008-12-26 2010-07-08 Daifuku Co Ltd Secondary power-receiving circuit in noncontact power supply equipment
JP2012125138A (en) * 2010-11-18 2012-06-28 Fuji Electric Co Ltd Non-contact power supply device, and control method thereof
JP2012196026A (en) * 2011-03-16 2012-10-11 Daifuku Co Ltd Non-contact feeding facility
KR101802895B1 (en) 2011-03-16 2017-11-29 가부시키가이샤 다이후쿠 Contactless power feed equipment
US9362048B2 (en) 2011-03-16 2016-06-07 Daifuku Co., Ltd. Contactless power feed equipment
CN105723591A (en) * 2013-09-13 2016-06-29 Lg伊诺特有限公司 Charging control device, charging control method and wireless power receiving device equipped with same
JP2016534705A (en) * 2013-09-13 2016-11-04 エルジー イノテック カンパニー リミテッド CHARGE CONTROL DEVICE, CHARGE CONTROL METHOD, AND WIRELESS POWER RECEPTION DEVICE HAVING THE SAME
KR20150031064A (en) * 2013-09-13 2015-03-23 엘지이노텍 주식회사 Apparatus for contolling the charging, method for controlling the charging and apparatus for receiving wireless power having the same
CN105723591B (en) * 2013-09-13 2018-09-04 Lg伊诺特有限公司 Battery charge controller, charge control method and the wireless power reception device for being equipped with the battery charge controller
US10069343B2 (en) 2013-09-13 2018-09-04 Lg Innotek Co., Ltd. Charging control device, charging control method and wireless power receiving device equipped with same
US10348135B2 (en) 2013-09-13 2019-07-09 Lg Innotek Co., Ltd. Charging control device, charging control method and wireless power receiving device equipped with same
US10608475B2 (en) 2013-09-13 2020-03-31 Lg Innotek Co., Ltd. Charging control device, charging control method and wireless power receiving device equipped with same
KR102152691B1 (en) * 2013-09-13 2020-09-08 엘지이노텍 주식회사 Apparatus for contolling the charging, method for controlling the charging and apparatus for receiving wireless power having the same

Also Published As

Publication number Publication date
JP4248460B2 (en) 2009-04-02

Similar Documents

Publication Publication Date Title
JP5584089B2 (en) Drive circuit with increased power factor
KR102238311B1 (en) LLC resonant converter
JP4824524B2 (en) Unidirectional DC-DC converter and control method thereof
US9362048B2 (en) Contactless power feed equipment
US6912143B2 (en) Synchronous rectifier with burst mode control
JP3416863B2 (en) Power supply
JP6272438B1 (en) Power converter
JP5563425B2 (en) Power supply
US9467059B2 (en) Activation apparatus and method for activating a direct voltage converter
JP2003018828A (en) Dc-dc converter
US6791279B1 (en) Single-switch electronic dimming ballast
JP4759046B2 (en) Solid state switching circuit
JP2006050852A (en) Non-contact power feeding device
JP2009050080A (en) Snubber circuit
JP5554591B2 (en) Power supply
JPH11150952A (en) Switching dc power supply equipment
JP4321408B2 (en) DC-DC converter for control power supply of power switching device
JP2005176535A (en) Switching power supply unit
JP4232881B2 (en) Switching power supply
JP2012175809A (en) Switching power supply unit
CN213185894U (en) Power conversion circuit, DC-DC converter, and AC-DC converter
JP2002125368A (en) Switching power supply and its control method
KR100356270B1 (en) Centrally-controlled electronic ballast with enhanced power savings
JPH10309078A (en) Switching dc power unit
JP2000069750A (en) Current resonance converter

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060911

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080926

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080930

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20081128

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090113

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090113

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120123

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130123

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140123

Year of fee payment: 5

LAPS Cancellation because of no payment of annual fees