JP2006049386A - Electric double layer capacitor - Google Patents

Electric double layer capacitor Download PDF

Info

Publication number
JP2006049386A
JP2006049386A JP2004224819A JP2004224819A JP2006049386A JP 2006049386 A JP2006049386 A JP 2006049386A JP 2004224819 A JP2004224819 A JP 2004224819A JP 2004224819 A JP2004224819 A JP 2004224819A JP 2006049386 A JP2006049386 A JP 2006049386A
Authority
JP
Japan
Prior art keywords
double layer
electric double
electrode
derivative
polyfluorene
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004224819A
Other languages
Japanese (ja)
Inventor
Shunzo Suematsu
俊造 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2004224819A priority Critical patent/JP2006049386A/en
Publication of JP2006049386A publication Critical patent/JP2006049386A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/04Hybrid capacitors
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES OR LIGHT-SENSITIVE DEVICES, OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/54Electrolytes
    • H01G11/58Liquid electrolytes
    • H01G11/60Liquid electrolytes characterised by the solvent
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/60Other road transportation technologies with climate change mitigation effect
    • Y02T10/70Energy storage systems for electromobility, e.g. batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrochemical capacitor having a high voltage characteristic. <P>SOLUTION: The electric double layer capacitor is provided with: an electrode using poly-fluorene or its dielectric; an electrode material having electric double layer capacitance; and non-aqueous system or aqueous system electrolyte. The electric double layer capacitor has a high voltage characteristic which does not exist in a conventional one since oxidation reduction potential of n-dope of a dielectric of poly-fluorene is lower compared with conventional activated carbon and oxidation reduction potential of poly-fluorene or p-dope of the dielectric is higher compared with conventional activated carbon. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電気二重層キャパシタに関し、さらに詳しくは出力やサイクル特性にすぐれ、高電圧特性を有する電気二重層キャパシタに関する。   The present invention relates to an electric double layer capacitor, and more particularly to an electric double layer capacitor having excellent output and cycle characteristics and high voltage characteristics.

近年、地球の環境問題などから、エンジン駆動であるガソリン車やディーゼル車に代わり、電気自動車やハイブリッド車への期待が高まっている。これらの電気自動車やハイブリッド車では、モーターを駆動させるための電源としては、高エネルギー密度かつ高出力密度特性を有する二次電池、電気二重層キャパシタ等の電気化学素子が用いられる。   In recent years, due to environmental problems on the earth, there are increasing expectations for electric vehicles and hybrid vehicles in place of engine-driven gasoline vehicles and diesel vehicles. In these electric vehicles and hybrid vehicles, electrochemical elements such as secondary batteries and electric double layer capacitors having high energy density and high output density characteristics are used as a power source for driving the motor.

このような電気化学素子である電気二重層キャパシタは、活性炭などの分極性電極を正負極とし、プロピレンカーボネートなどの有機溶媒に四フッ化ホウ素や六フッ化リンの四級オニウム塩を溶解させたものを電解液としている。このような、電気二重層キャパシタは電極表面と電解液との界面に生じる電気二重層を静電容量としており、電池のようなイオンの関与する反応がないので、充放電特性が高く、また充放電サイクルによる容量劣化が少ない。しかし、二重層容量によるエネルギー密度は電池に比べてエネルギー密度が低く、電気自動車の電源としては、大幅に不足する。これに対して、大容量化を目的として正極にポリピロールを用いる試みがあるが、作動電圧は2.6Vである。(特許文献1)
特開平6−104141号公報
An electric double layer capacitor, which is such an electrochemical element, has polarizable electrodes such as activated carbon as positive and negative electrodes, and boron tetrafluoride or phosphorus hexafluoride quaternary onium salt is dissolved in an organic solvent such as propylene carbonate. The thing is used as electrolyte. In such an electric double layer capacitor, the electric double layer generated at the interface between the electrode surface and the electrolyte has an electrostatic capacity, and there is no reaction involving ions like a battery. Less capacity degradation due to discharge cycle. However, the energy density due to the double layer capacity is lower than that of the battery, and it is significantly insufficient as a power source for electric vehicles. On the other hand, there is an attempt to use polypyrrole for the positive electrode for the purpose of increasing the capacity, but the operating voltage is 2.6V. (Patent Document 1)
JP-A-6-104141

しかしながら、電気自動車等の電源用途での小型化の要求は恒常的で、そのための高電圧化という強い要求がある。そこで、本発明は高電圧特性を有する電気二重層キャパシタを提供することをその目的とする。    However, the demand for miniaturization in power supply applications such as electric vehicles is constant, and there is a strong demand for higher voltage for that purpose. Therefore, an object of the present invention is to provide an electric double layer capacitor having high voltage characteristics.

本発明は、上記課題を解決するために、電極材料として導電性高分子の検討を行った結果、ポリフルオレンまたはその誘導体を電気二重層キャパシタの一方の電極として用い、活性炭等の電気二重層容量を有する電極材料を他方の電極として用いると高電圧特性を有する電気二重層キャパシタが得られることが判明した。ポリフルオレンの誘導体のn−ドープの酸化還元電位は従来の導電性高分子に比べて低く、ポリフルオレンまたはその誘導体のp−ドープの酸化還元電位は従来の導電性高分子に比べて高く、これらを電極に用いることによって、高電圧特性を有する電気二重層キャパシタを提供することができる。   In order to solve the above-mentioned problems, the present invention, as a result of investigating a conductive polymer as an electrode material, uses polyfluorene or a derivative thereof as one electrode of an electric double layer capacitor, and uses an electric double layer capacitance such as activated carbon. It has been found that an electric double layer capacitor having a high voltage characteristic can be obtained when an electrode material having s is used as the other electrode. The n-doped redox potential of polyfluorene derivatives is lower than that of conventional conductive polymers, and the p-doped redox potential of polyfluorene or its derivatives is higher than that of conventional conductive polymers. By using as the electrode, an electric double layer capacitor having high voltage characteristics can be provided.

すなわち、ポリフルオレンまたはその誘導体を用いた正極と、電気二重層容量を有する電極からなる負極と、非水系電解液を備えた本発明の電気二重層キャパシタは、正極が従来の活性炭よりp−ドープの酸化還元電位が高い状態で作動し、非水系電解液の分解電圧は高いので、作動電圧を高くすることができる。   That is, in the electric double layer capacitor of the present invention comprising a positive electrode using polyfluorene or a derivative thereof, a negative electrode composed of an electrode having an electric double layer capacity, and a non-aqueous electrolyte, the positive electrode is more p-doped than conventional activated carbon. Since the decomposition voltage of the non-aqueous electrolyte is high, the operating voltage can be increased.

また、ポリフルオレンの誘導体を用いた負極と、電気二重層容量を有する電極からなる正極と、非水系電解液を備えた電気二重層キャパシタは、負極が従来の活性炭よりn−ドープの酸化還元電位が低い状態で作動、非水系電解液の分解電圧は高いので、作動電圧を高くすることができる。     In addition, a negative electrode using a polyfluorene derivative, a positive electrode composed of an electrode having an electric double layer capacity, and an electric double layer capacitor equipped with a non-aqueous electrolyte have a redox potential in which the negative electrode is more n-doped than conventional activated carbon. Since the decomposition voltage of the non-aqueous electrolyte is high, the operating voltage can be increased.

さらに、ポリフルオレンまたはその誘導体を用いた正極と、電気二重層容量を有する電極からなる負極と、水系電解液を備えた電気二重層キャパシタは、正極が従来の活性炭よりp−ドープの酸化還元電位が高い状態で作動するので、作動電圧を高くすることができる。   Furthermore, a positive electrode using polyfluorene or a derivative thereof, a negative electrode composed of an electrode having an electric double layer capacity, and an electric double layer capacitor equipped with an aqueous electrolyte have a redox potential in which the positive electrode is more p-doped than conventional activated carbon. Therefore, the operating voltage can be increased.

そして、ポリフルオレンの誘導体としては、フルオレンの9位の置換基がアルキル基、カルボキシル基,ニトロ基,シアノ基,アルキルシアノ基,フェニル基(-Ph),ハロゲン原子(-X),-CX3,ハロゲン化フェニル基,アルキルフェニル基,アルキルハロゲン化フェニル基であるものを用いることが好ましい。 As a derivative of polyfluorene, the substituent at the 9-position of fluorene is an alkyl group, a carboxyl group, a nitro group, a cyano group, an alkyl cyano group, a phenyl group (-Ph), a halogen atom (-X), -CX 3 It is preferable to use a halogenated phenyl group, an alkylphenyl group, or an alkylhalogenated phenyl group.

また、ドーピングしたポリフルオレンまたはその誘導体を塩基性溶媒に溶解した溶液を集電体に付着させ、溶媒を蒸発させて、ポリフルオレンまたはその誘導体の膜を集電体上に形成した電極を用いると、薄く均一な電極膜を形成することができ、電極の抵抗を低減させて放電電圧を高く保つことができるので、高電圧特性を得ることができる。     In addition, when a solution in which a doped polyfluorene or a derivative thereof is dissolved in a basic solvent is attached to a current collector, the solvent is evaporated, and an electrode in which a film of polyfluorene or a derivative thereof is formed on the current collector is used. A thin and uniform electrode film can be formed, and the resistance of the electrode can be reduced to keep the discharge voltage high, so that high voltage characteristics can be obtained.

以上のように、ポリフルオレンまたはその誘導体を用いた電極と、電気二重層容量を有する電極からなる電極によって、高電圧特性を有する電気二重層キャパシタを得ることができる。     As described above, an electric double layer capacitor having high voltage characteristics can be obtained by an electrode composed of an electrode using polyfluorene or a derivative thereof and an electrode having an electric double layer capacity.

本発明のポリフルオレンまたはその誘導体は、フルオレンまたはその誘導体のモノマーを化学重合、または電解重合によって重合させて得ることができる。化学重合の場合、これらのモノマーと酸化剤の溶液を用いて集電体の上で重合させて重合体の層を形成して電極とすることができる。また、集電体を電解重合の電極に用いて電解重合を行わせて、集電体上に重合体の層を形成して電極とすることもできる。また、ポリフルオレンまたはその誘導体とカーボン等の導電材を混合した後、成型して電極とすることもできる。     The polyfluorene or a derivative thereof of the present invention can be obtained by polymerizing a monomer of fluorene or a derivative thereof by chemical polymerization or electrolytic polymerization. In the case of chemical polymerization, it is possible to form a polymer layer by polymerizing on a current collector using a solution of these monomers and an oxidizing agent to form an electrode. Alternatively, the current collector may be used as an electrode for electrolytic polymerization to perform electrolytic polymerization, and a polymer layer may be formed on the current collector to form an electrode. Moreover, after mixing polyfluorene or its derivative (s), and conductive materials, such as carbon, it can also shape | mold and use as an electrode.

さらに、ポリフルオレンまたはその誘導体は、フルオレンまたはその誘導体のモノマーを化学重合、または電解重合によって重合させて得、このポリフルオレンまたはその誘導体をドーピングした状態で、クロロホルム、テトラヒドロフラン、N−メチルピロリドン等の塩基性の溶媒に溶解して溶液を作成する。そして、この溶液を集電体に塗布、乾燥してポリフルオレンまたはその誘導体の層を形成する。このようにして形成した電極は薄く均一なので、電極の抵抗が低減し、放電の際のIRドロップが低減して、電極の電圧を高く保つことができる。     Furthermore, polyfluorene or a derivative thereof is obtained by polymerizing a monomer of fluorene or a derivative thereof by chemical polymerization or electrolytic polymerization, and in a state doped with this polyfluorene or a derivative thereof, such as chloroform, tetrahydrofuran, N-methylpyrrolidone, etc. Dissolve in basic solvent to make a solution. Then, this solution is applied to a current collector and dried to form a layer of polyfluorene or a derivative thereof. Since the electrode formed in this way is thin and uniform, the resistance of the electrode is reduced, the IR drop during discharge is reduced, and the voltage of the electrode can be kept high.

そして、このようにして重合形成したポリフルオレンまたはその誘導体は重合液中のアニオンがドーピングして酸化状態となっているので、これを正極として用いる。この正極はアニオンを脱ドーピングすることによって放電反応、還元反応を生ずる。そして、このポリフルオレンの誘導体を電気的または化学的に還元して、カチオンをドーピングして負極として用いる。この負極はカチオンを脱ドーピングすることによって放電反応、酸化反応を生ずる。また、重合後のポリマーを還元して中性状態にして両極とし、充電反応によって負極の還元、正極の酸化を行ってもよい。     The polyfluorene or its derivative thus polymerized is in an oxidized state by doping with anions in the polymerization solution, and this is used as the positive electrode. This positive electrode causes a discharge reaction and a reduction reaction by undoping an anion. Then, this polyfluorene derivative is electrically or chemically reduced and doped with a cation to be used as a negative electrode. This negative electrode causes a discharge reaction and an oxidation reaction by dedoping cations. Alternatively, the polymer after polymerization may be reduced to a neutral state to form a bipolar electrode, and the negative electrode may be reduced and the positive electrode oxidized by a charging reaction.

さらに、フルオレンまたはその誘導体に、アルキルスルフォン酸、アルキルホスホン酸のようなフルオレンと共有結合することができるアニオンを反応させ、重合して、自己ドープ型の正極とすることができる。この正極は電解液中のカチオンとドーピングすることによって放電反応、酸化反応を生ずる。また、ポリフルオレンまたはその誘導体に3級アンモニウムのようなフルオレンと共有結合することができるカチオンを反応させ、重合して、自己ドープ型の負極とすることができる。この負極は電解液中のアニオンとドーピングすることによって放電反応、酸化反応を生ずる。   Furthermore, a self-doped positive electrode can be obtained by reacting fluorene or a derivative thereof with an anion that can be covalently bonded to fluorene such as alkyl sulfonic acid or alkyl phosphonic acid and polymerizing it. This positive electrode causes a discharge reaction and an oxidation reaction by doping with a cation in the electrolytic solution. Alternatively, polyfluorene or a derivative thereof can be reacted with a cation that can be covalently bonded to fluorene such as tertiary ammonium and polymerized to form a self-doped negative electrode. The negative electrode undergoes a discharge reaction and an oxidation reaction by doping with an anion in the electrolytic solution.

ここで、ポリフルオレンの誘導体としては、フルオレンの9位に置換基がある誘導体が好ましい。それは電子伝導性が低下せず、この置換基によってドーピングするアニオン、カチオンのドープ、脱ドープの反応が速くなって出力特性が向上するからである。なお、置換基としては、アルキル基、カルボキシル基,ニトロ基,シアノ基,アルキルシアノ基,フェニル基(-Ph),ハロゲン原子(-X),-CX3,ハロゲン化フェニル基,アルキルフェニル基,アルキルハロゲン化フェニル基であるものを用いることが好ましい。なお、9位に置換基のないフルオレンは9位の水素の反応性が高く、還元電位をかけた時にプロトンが脱離し、このプロトンの還元電位がフルオレンより高いのでフルオレンの還元反応がおこりにくく、フルオレンを負極として用いることは難しい。 Here, the polyfluorene derivative is preferably a derivative having a substituent at the 9-position of fluorene. This is because the electron conductivity is not lowered, and the anion and cation doping and dedoping reactions are accelerated by this substituent and the output characteristics are improved. In addition, as a substituent, an alkyl group, a carboxyl group, a nitro group, a cyano group, an alkyl cyano group, a phenyl group (-Ph), a halogen atom (-X), -CX 3 , a halogenated phenyl group, an alkylphenyl group, It is preferable to use an alkyl halogenated phenyl group. In addition, fluorene having no substituent at the 9-position has high reactivity at the 9-position hydrogen, and when a reduction potential is applied, the proton is eliminated, and the reduction potential of this proton is higher than that of fluorene, so that the reduction reaction of fluorene does not easily occur. It is difficult to use fluorene as a negative electrode.

このようなポリフルオレンの誘導体のなかでも、9位の置換基がアルキル基またはフェニル基を有する置換基であるとドーピングするアニオン、カチオンのドープ、脱ドープの反応がさらに速くなって出力特性が向上するので好ましい。前者としては9,9−ジメチルフルオレン、9,9−ジオクチルフルオレン等、後者としては9−メチル−9−フェニルフルオレン,9−メチル−9−ベンジルフルオレン,ベンザルフルオレン,ベンズヒドリリジンフルオレン等を挙げることができる。なかでも、分子の大きなカチオンをドープ、脱ドープする負極、または自己ドープ型の正極として用いる場合は、n=1〜8のアルキル基が好ましい。     Among these polyfluorene derivatives, if the 9-position substituent is an alkyl group or a phenyl group-containing substituent, the anion, cation doping, and dedoping reactions are further accelerated, and output characteristics are improved. Therefore, it is preferable. Examples of the former include 9,9-dimethylfluorene and 9,9-dioctylfluorene, and examples of the latter include 9-methyl-9-phenylfluorene, 9-methyl-9-benzylfluorene, benzalfluorene, and benzhydrylidinefluorene. be able to. In particular, when used as a negative electrode doped or dedoped with a large molecular cation or a self-doped positive electrode, an alkyl group of n = 1 to 8 is preferable.

電気二重層容量を有する電極材料としては、活性炭が好ましいが、炭素繊維、フェノール樹脂炭化物、ポリ塩化ビニリデン樹脂炭化物、微結晶炭素等も用いることができる。     As an electrode material having an electric double layer capacity, activated carbon is preferable, but carbon fiber, phenol resin carbide, polyvinylidene chloride resin carbide, microcrystalline carbon, and the like can also be used.

以上の電極と電解液を用いて電気二重層キャパシタを形成することができる。用いる電解液としては非水系、水系がある。非水系電解液の場合、溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、アセトニトリル及びジメトキシエタンからなる群から選ばれる1種以上を含むことが好ましい。溶質としてリチウムイオンを有するリチウム塩、第4級アンモ ニウムカチオン又は第4級ホスホニウムカチオンを有する第4級アンモ ニウム塩又は第4級ホスホニウム塩を挙げることができる。リチウム塩としては、LiPF6 、LiBF4 、LiClO4、LiN(CF3 SO22 、LiCF3 SO3、LiC(SO2CF33 、LiAsF6 及びLiSbF6 等が挙げられる。また、第4級アンモ ニウム塩又は第4級ホスホニウム塩としては、R1 R2 R3 R4N+ 又はR1 R2 R3 R4 P+ で表されるカチオン(ただし、R1、R2 、R3、R4 は炭素数1〜6のアルキル基)と、PF6-、BF4-、ClO4-、N(CF3 SO2 )2-、CF3 SO3-、C(SO2 CF3 )3-、AsF6-又はSbF6-からなるアニオンとからなる塩であることが好ましい。特にPF6-、BF4-、ClO4-、N(CF3 SO2 )2-をアニオンとすることが好ましい。 An electric double layer capacitor can be formed using the above electrode and electrolyte. There are non-aqueous and aqueous electrolytes. In the case of a non-aqueous electrolyte, the solvent preferably contains one or more selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, acetonitrile, and dimethoxyethane. . Examples of the solute include a lithium salt having lithium ions, a quaternary ammonium cation or a quaternary phosphonium salt having a quaternary ammonium cation or a quaternary phosphonium cation. The lithium salt, LiPF 6, LiBF 4, LiClO 4, LiN (CF 3 SO 2) 2, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiAsF 6 and LiSbF 6, and the like. Further, as the quaternary ammonium salt or quaternary phosphonium salt, a cation represented by R1 R2 R3 R4 N + or R1 R2 R3 R4 P + (wherein R1, R2, R3 and R4 have 1 to 6 carbon atoms). And an anion composed of PF6-, BF4-, ClO4-, N (CF3 SO2) 2-, CF3 SO3-, C (SO2 CF3) 3-, AsF6- or SbF6-. Is preferred. In particular, PF6-, BF4-, ClO4-, and N (CF3 SO2) 2- are preferably used as anions.

水系電解液としては、カチオンとしてナトリウム、カリウム等のアルカリ金属、またはプロトンを用いる。アニオンとしては硫酸、硝酸、塩酸、リン酸、テトラフルオロほう酸、六フッ化リン酸、六フッ化ケイ酸などの無機酸、飽和モノカルボン酸、脂肪族カルボン酸、オキシカルボン酸、p―トルエンスルホン酸、ポリビニルスルホン酸、ラウリン酸などの有機酸をプロトンとともに形成するアニオンを挙げることができる。   In the aqueous electrolyte, an alkali metal such as sodium or potassium or a proton is used as a cation. As anions, inorganic acids such as sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluorosilicic acid, saturated monocarboxylic acid, aliphatic carboxylic acid, oxycarboxylic acid, p-toluenesulfone The anion which forms organic acids, such as an acid, polyvinylsulfonic acid, and lauric acid with a proton can be mentioned.

そして、前記の本発明の正極または自己ドープ型の正極を用い、負極に電気二重層容量を有する電極材料を用い、非水系電解液を用いて本発明の電気二重層キャパシタを形成することができる。この電気二重層キャパシタは、正極が従来の活性炭よりp−ドープの酸化還元電位が高い状態で作動し、非水系電解液の分解電圧は高いので、作動電圧を高くすることができる。さらに、本発明の正極はこれまでの導電性高分子に比べてp−ドープの酸化還元電位が高いので、少なくとも電気二重層容量を有する電極を一方に有する電気二重層キャパシタとしては、従来にない高電圧特性を有する。   The electric double layer capacitor of the present invention can be formed by using the positive electrode of the present invention or the self-doped positive electrode, using an electrode material having electric double layer capacity for the negative electrode, and using a non-aqueous electrolyte. . In this electric double layer capacitor, the positive electrode operates in a state where the p-doped redox potential is higher than that of conventional activated carbon, and the decomposition voltage of the non-aqueous electrolyte is high, so that the operating voltage can be increased. Furthermore, since the positive electrode of the present invention has a higher p-doped redox potential than conventional conductive polymers, there is no conventional electric double layer capacitor having at least one electrode having electric double layer capacity. Has high voltage characteristics.

また、本発明のフルオレンの誘導体からなる負極または自己ドープ型の負極を用い、正極に電気二重層容量を有する電極材料を用い、非水系電解液を用いて本発明の電気二重層キャパシタを形成することができる。この電気二重層キャパシタは、負極が従来の活性炭よりn−ドープの酸化還元電位が低い状態で作動し、非水系電解液の分解電圧は高いので、作動電圧を高くすることができる。   In addition, the negative electrode made of the fluorene derivative of the present invention or a self-doped negative electrode is used, the electrode material having electric double layer capacity is used for the positive electrode, and the non-aqueous electrolyte is used to form the electric double layer capacitor of the present invention. be able to. In this electric double layer capacitor, the negative electrode operates in a state where the n-doped redox potential is lower than that of conventional activated carbon, and the decomposition voltage of the non-aqueous electrolyte is high, so that the operating voltage can be increased.

さらに、水系電解液を用い、前記の本発明の正極または自己ドープ型の正極を用い、負極に電気二重層容量を有する電極材料を用いて本発明の電気二重層キャパシタを形成することができる。この電気二重層キャパシタは、正極が従来の活性炭よりp−ドープの酸化還元電位が高い状態で作動するので、作動電圧を高くすることができる。     Furthermore, the electric double layer capacitor of the present invention can be formed by using an aqueous electrolyte, using the positive electrode of the present invention or the self-doped positive electrode, and using an electrode material having an electric double layer capacity for the negative electrode. Since this electric double layer capacitor operates in a state where the positive electrode has a higher p-doped redox potential than the conventional activated carbon, the operating voltage can be increased.

以下に実施例により本発明をさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.

アセトニトリルにフルオレンの誘導体を溶解後,十分量の塩化鉄(III)を溶解させ72時間撹拌して重合を進行させた。次に反応液を減圧下で濾過し,濾過物を60COで約12時間真空乾燥して粗生成物を得た。この粗生成物をクロロホルムに溶解させ飽和状態にし,メタノールを加えることで生成物を再析出させた。再析出物を再び減圧濾過し,濾過物を60COで約12時間真空乾燥して精製したポリフルオレンの誘導体を得た。 After dissolving the fluorene derivative in acetonitrile, a sufficient amount of iron (III) chloride was dissolved and stirred for 72 hours to proceed the polymerization. Next, the reaction solution was filtered under reduced pressure, and the filtrate was vacuum dried with 60 C 2 O for about 12 hours to obtain a crude product. This crude product was dissolved in chloroform to be saturated, and methanol was added to reprecipitate the product. The reprecipitate was again filtered under reduced pressure, and the filtrate was vacuum-dried with 60 C 2 O for about 12 hours to obtain a purified polyfluorene derivative.

ついで、テトラヒドロフラン溶媒1Lに対して,得られたポリフルオレンの誘導体1.2gを溶解させ,この溶液をカーボンからなる集電体上に滴下,乾燥させた。滴下と乾燥を繰り返すことで集電体上にポリフルオレンの誘導体膜を形成した。この集電体/ポリフルオレンの誘導体膜をポリフルオレンの誘導体からなる電極として用いた。この電極を用いて二次電池を作成し、定電流充放電試験を行った。充放電電流値を0.5mA cm-2とし,充放電を繰り返した。用いた電極と作動電圧を(表1)に示す。なお、電極として用いたポリマーについてはモノマー名のみ記載した。 Subsequently, 1.2 g of the obtained polyfluorene derivative was dissolved in 1 L of tetrahydrofuran solvent, and this solution was dropped on a current collector made of carbon and dried. By repeating the dropping and drying, a polyfluorene derivative film was formed on the current collector. This current collector / polyfluorene derivative film was used as an electrode made of a polyfluorene derivative. A secondary battery was prepared using this electrode, and a constant current charge / discharge test was conducted. The charge / discharge current was set to 0.5 mA cm -2 and charge / discharge was repeated. The electrodes and operating voltage used are shown in (Table 1). In addition, only the monomer name was described about the polymer used as an electrode.


TEABF4−MeCN:四フッ化硼酸テトラエチルアンモニウムアセトニトリル溶液
LiClO4−PC:過塩素酸リチウムプロピレンカーボネート溶液
以上のように、本発明の電気二重層キャパシタの作動電圧は比較例に比べて高い作動電圧を示している。また、この作動電圧での充放電特性も非水系は300〜1000サイクル、水系は10000サイクルまで良好であった。

TEABF4-MeCN: tetraethylammonium tetrafluoroborate acetonitrile solution LiClO4-PC: lithium propylene carbonate solution As described above, the operating voltage of the electric double layer capacitor of the present invention is higher than that of the comparative example. Yes. The charge / discharge characteristics at this operating voltage were also good up to 300 to 1000 cycles for the non-aqueous system and 10,000 cycles for the aqueous system.

Claims (6)

ポリフルオレンまたはその誘導体を用いた電極と、電気二重層容量を有する電極からなる電気二重層キャパシタ。 An electric double layer capacitor comprising an electrode using polyfluorene or a derivative thereof and an electrode having electric double layer capacitance. ポリフルオレンまたはその誘導体を用いた正極と、電気二重層容量を有する電極からなる負極と、非水系電解液を備えた請求項1記載の電気二重層キャパシタ。 The electric double layer capacitor of Claim 1 provided with the positive electrode using polyfluorene or its derivative (s), the negative electrode which consists of an electrode which has an electric double layer capacity | capacitance, and a non-aqueous electrolyte. ポリフルオレンの誘導体を用いた負極と、電気二重層容量を有する電極からなる正極と、非水系電解液を備えた請求項1記載の電気二重層キャパシタ。 The electric double layer capacitor of Claim 1 provided with the negative electrode using the derivative | guide_body of a polyfluorene, the positive electrode which consists of an electrode which has an electric double layer capacity | capacitance, and a non-aqueous electrolyte. ポリフルオレンまたはその誘導体を用いた正極と、電気二重層容量を有する電極からなる負極と、水系電解液を備えた請求項1記載の電気二重層キャパシタ。 The electric double layer capacitor according to claim 1, comprising a positive electrode using polyfluorene or a derivative thereof, a negative electrode comprising an electrode having an electric double layer capacity, and an aqueous electrolyte. ポリフルオレンの誘導体の9位の置換基がアルキル基、カルボキシル基,ニトロ基,シアノ基,アルキルシアノ基,フェニル基(-Ph),ハロゲン原子(-X),-CX3,ハロゲン化フェニル基, アルキルフェニル基,アルキルハロゲン化フェニル基である請求項1ないし4記載の電気二重層キャパシタ。 The 9-position substituent of the polyfluorene derivative is alkyl group, carboxyl group, nitro group, cyano group, alkyl cyano group, phenyl group (-Ph), halogen atom (-X), -CX 3 , halogenated phenyl group, 5. The electric double layer capacitor according to claim 1, which is an alkylphenyl group or an alkylhalogenated phenyl group. ドーピングしたポリフルオレンまたはその誘導体を塩基性溶媒に溶解した溶液を集電体に付着させ、溶媒を蒸発させて、ポリフルオレンまたはその誘導体の膜を集電体上に形成した電極を用いた請求項1ないし5記載の電気二重層キャパシタ。
Claims using an electrode in which a solution of doped polyfluorene or a derivative thereof in a basic solvent is attached to a current collector and the solvent is evaporated to form a polyfluorene or derivative film on the current collector. The electric double layer capacitor according to 1 to 5.
JP2004224819A 2004-07-30 2004-07-30 Electric double layer capacitor Pending JP2006049386A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224819A JP2006049386A (en) 2004-07-30 2004-07-30 Electric double layer capacitor

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224819A JP2006049386A (en) 2004-07-30 2004-07-30 Electric double layer capacitor

Publications (1)

Publication Number Publication Date
JP2006049386A true JP2006049386A (en) 2006-02-16

Family

ID=36027624

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224819A Pending JP2006049386A (en) 2004-07-30 2004-07-30 Electric double layer capacitor

Country Status (1)

Country Link
JP (1) JP2006049386A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048974A (en) * 2004-07-30 2006-02-16 Nippon Chemicon Corp Electrode material for electrochemical element
JP2008251479A (en) * 2007-03-30 2008-10-16 Nippon Chemicon Corp Electrode material, its manufacturing method, electrode for electrochemical element, its manufacturing method, and electrochemical element

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288717A (en) * 1998-04-03 1999-10-19 Nec Corp Proton conductive type polymer battery and its manufacture
WO2002063073A1 (en) * 2000-12-23 2002-08-15 Wen Lu Long-lived conjugated polymer electrochemical devices incorporating ionic liquids

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11288717A (en) * 1998-04-03 1999-10-19 Nec Corp Proton conductive type polymer battery and its manufacture
WO2002063073A1 (en) * 2000-12-23 2002-08-15 Wen Lu Long-lived conjugated polymer electrochemical devices incorporating ionic liquids

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006048974A (en) * 2004-07-30 2006-02-16 Nippon Chemicon Corp Electrode material for electrochemical element
JP2008251479A (en) * 2007-03-30 2008-10-16 Nippon Chemicon Corp Electrode material, its manufacturing method, electrode for electrochemical element, its manufacturing method, and electrochemical element

Similar Documents

Publication Publication Date Title
JP5011561B2 (en) Electrode material
EP2027588A1 (en) Highly electron conductive polymer and electrochemical energy storage device with high capacity and high power using the same
JP2007281107A (en) Electricity storage device
JP5218963B2 (en) Composite electrode
WO2015005135A1 (en) Electricity-storage-device electrode, manufacturing method therefor, and electricity-storage device using said electrode
JP2010044951A (en) Electrode active material and electrode using the same
Yang et al. Towards Ultrahigh Capacity and High Cycling Stability Lithium-Conducting Polymer Batteries by In Situ Construction of Nanostructured Porous Cathodes
US20180090282A1 (en) Electrochemical capacitor
JP5110625B2 (en) Electricity storage device
JP5365052B2 (en) Electrode material and manufacturing method thereof, electrode for electrochemical element, and electrochemical element
JP4640915B2 (en) Electrode and electrode manufacturing method
JP5360740B2 (en) Method for producing electrode material
JP5333887B2 (en) Electrode active material and electrode using the same
JP2006048975A (en) Electrode material and electrochemical element
JP2006048974A (en) Electrode material for electrochemical element
JP2006049386A (en) Electric double layer capacitor
JP3723140B2 (en) Power storage device using quinoxaline compound
CN109863633B (en) Electrochemical device
JP2010239097A (en) Electrode active material, and electrode using the same
CN109792087B (en) Electrochemical device
JP2006049387A (en) Electrochemical capacitor
JP5218962B2 (en) Composite electrode
JP2006048976A (en) Manufacturing method of electrode material
JP3991566B2 (en) Electrochemical capacitor
JP2014116278A (en) Electricity storage device, and electrode and porous sheet used for the same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070730

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100310

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100510

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100915