JP2006048975A - Electrode material and electrochemical element - Google Patents

Electrode material and electrochemical element Download PDF

Info

Publication number
JP2006048975A
JP2006048975A JP2004224822A JP2004224822A JP2006048975A JP 2006048975 A JP2006048975 A JP 2006048975A JP 2004224822 A JP2004224822 A JP 2004224822A JP 2004224822 A JP2004224822 A JP 2004224822A JP 2006048975 A JP2006048975 A JP 2006048975A
Authority
JP
Japan
Prior art keywords
electrode
polyfluorene
derivative
electrode material
electrochemical device
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004224822A
Other languages
Japanese (ja)
Inventor
Shunzo Suematsu
俊造 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2004224822A priority Critical patent/JP2006048975A/en
Publication of JP2006048975A publication Critical patent/JP2006048975A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/13Energy storage using capacitors

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode material having higher voltage characteristics and its manufacturing method, and an electrochemical element using it. <P>SOLUTION: Because in the electrode material in which polyfluorene or its derivative is carried on the surface of a highly crystallized carbon material, the adhesiveness of the carbon material and polyfluorene or its derivative is superior, the resistance of the electrode material is reduced, voltage reduction caused by an IR drop at discharge is small, and furthermore because an oxidation-reduction potential of the negative electrode is lower and the oxidation-reduction potential of the positive electrode is higher, the electrochemical element such as a secondary battery and an electric double layer capacitor using this has higher voltage characteristics. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電極材料およびそれを用いた二次電池やキャパシタなどの電気化学素子に関し、さらに詳しくは出力やサイクル特性にすぐれ、高電圧特性を有する電極材料およびそれを用いた電気化学素子に関する。   The present invention relates to an electrode material and an electrochemical element such as a secondary battery and a capacitor using the electrode material, and more particularly relates to an electrode material excellent in output and cycle characteristics and having high voltage characteristics and an electrochemical element using the same.

近年、地球の環境問題などから、エンジン駆動であるガソリン車やディーゼル車に代わり、電気自動車やハイブリッド車への期待が高まっている。これらの電気自動車やハイブリッド車では、モーターを駆動させるための電源としては、高エネルギー密度かつ高出力密度特性を有する電気化学素子が用いられる。このような電気化学素子としては、二次電池、電気二重層キャパシタがある。   In recent years, due to environmental problems on the earth, there are increasing expectations for electric vehicles and hybrid vehicles in place of engine-driven gasoline vehicles and diesel vehicles. In these electric vehicles and hybrid vehicles, an electrochemical element having high energy density and high output density characteristics is used as a power source for driving the motor. Such electrochemical elements include secondary batteries and electric double layer capacitors.

二次電池には、鉛電池、ニッケル・カドミウム電池、ニッケル水素電池、またはプロトン電池などがある。これらの二次電池は、イオン伝導性の高い酸性またはアルカリ性の水系電解液を用いているため、充放電の際に大電流が得られるという優れた出力特性を有するが、水の電気分解電圧が1.23Vであるため、それ以上の高い電圧を得ることができない。電気自動車の電源としては、200V前後の高電圧が必要であるため、それだけ多くの電池を直列に接続しなければならず、電源の小型・軽量化には不利である。   Secondary batteries include lead batteries, nickel / cadmium batteries, nickel metal hydride batteries, or proton batteries. Since these secondary batteries use an acidic or alkaline aqueous electrolyte having high ion conductivity, they have excellent output characteristics that a large current can be obtained during charging and discharging, but the electrolysis voltage of water is low. Since it is 1.23V, a voltage higher than that cannot be obtained. As a power source for an electric vehicle, a high voltage of about 200 V is necessary, so that many batteries have to be connected in series, which is disadvantageous for reducing the size and weight of the power source.

高電圧型の二次電池としては、有機電解液を用いたリチウムイオン二次電池が知られている。このリチウムイオン二次電池は、分解電圧の高い有機溶媒を電解液溶媒としているため、最も卑な電位を示すリチウムイオンを充放電反応に関与する電荷とすれば、3V以上の電位を示す。リチウムイオン二次電池は、リチウムイオンを吸蔵、放出する炭素を負極とし、コバルト酸リチウム(LiCoO2 )を正極として用いたものが主流である。電解液には、六フッ化リン酸リチウム(LiPF6 )などのリチウム塩をエチレンカーボネートやプロピレンカーボネートなどの溶媒に溶解させたものが用いられている。このようなリチウムイオン二次電池は、平均作動電圧として3.6Vを示す。 As a high voltage type secondary battery, a lithium ion secondary battery using an organic electrolyte is known. Since this lithium ion secondary battery uses an organic solvent having a high decomposition voltage as the electrolyte solvent, if the lithium ion having the lowest potential is used as a charge involved in the charge / discharge reaction, it exhibits a potential of 3 V or more. Lithium ion secondary batteries mainly use carbon that absorbs and releases lithium ions as a negative electrode and lithium cobaltate (LiCoO 2 ) as a positive electrode. As the electrolytic solution, a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) dissolved in a solvent such as ethylene carbonate or propylene carbonate is used. Such a lithium ion secondary battery has an average operating voltage of 3.6V.

しかしながら、このリチウムイオン二次電池は、電圧が高くエネルギー密度も高いので電源として優れているが、充電反応が電極のリチウムイオンの吸蔵、放出であるため、出力特性に劣るという問題があり、大きな瞬間電流が必要とされる電気自動車用の電源には不利である。そこで、高電圧で、かつ充放電特性を改善するために正極にポリチオフェンの誘導体を用いる試みがあるが、作動電圧としては4.0Vである。(特許文献1)   However, this lithium ion secondary battery is excellent as a power source because of its high voltage and high energy density, but since the charging reaction is the insertion and extraction of lithium ions in the electrode, there is a problem that the output characteristics are inferior, It is disadvantageous for power sources for electric vehicles that require instantaneous current. Therefore, there is an attempt to use a polythiophene derivative for the positive electrode in order to improve the charge / discharge characteristics at a high voltage, but the operating voltage is 4.0V. (Patent Document 1)

また、電気二重層キャパシタは、活性炭などの分極性電極を正負極とし、プロピレンカーボネートなどの有機溶媒に四フッ化ホウ素や六フッ化リンの四級オニウム塩を溶解させたものを電解液としている。このような、電気二重層キャパシタは電極表面と電解液との界面に生じる電気二重層を静電容量としており、電池のようなイオンが関与する反応がないので、充放電特性が高く、また充放電サイクルによる容量劣化が少ない。しかし、二重層容量によるエネルギー密度は電池に比べてエネルギー密度が低く、電気自動車の電源としては、大幅に不足する。これに対して、大容量化を目的として正極にポリピロールを用いる試みがあるが、作動電圧は2.6Vである。(特許文献2)   In addition, the electric double layer capacitor uses a polarizable electrode such as activated carbon as positive and negative electrodes, and an electrolytic solution obtained by dissolving quaternary onium salt of boron tetrafluoride or phosphorus hexafluoride in an organic solvent such as propylene carbonate. . In such an electric double layer capacitor, the electric double layer generated at the interface between the electrode surface and the electrolyte has a capacitance, and there is no reaction involving ions like a battery. Less capacity degradation due to discharge cycle. However, the energy density due to the double layer capacity is lower than that of the battery, and it is significantly insufficient as a power source for electric vehicles. On the other hand, there is an attempt to use polypyrrole for the positive electrode for the purpose of increasing the capacity, but the operating voltage is 2.6V. (Patent Document 2)

そこで、高エネルギー密度と、高出力特性を有する、導電性高分子や金属酸化物を電極材料として用いた電気化学キャパシタが開発されている。この電気化学キャパシタは、電解液中のアニオン、カチオンの電極への吸脱着を電荷貯蔵機構としており、エネルギー密度、出力特性ともに優れている。なかでも、ポリアニリン、ポリピロール、ポリアセン、ポリチオフェン誘導体などの導電性高分子を用いた電気化学キャパシタは、非水系電解液中のアニオン、もしくはカチオンが導電性高分子にp-ドーピングまたはn-ドーピングすることによって、充放電を行う。このドーピングの電位は負極側では低く、正極側では高いので、2.5V以上の高電圧特性が得られる。(特許文献3)
特開2003−297362号公報 特開平6−104141号公報 特開2000−315527号公報
Thus, an electrochemical capacitor using a conductive polymer or metal oxide as an electrode material having high energy density and high output characteristics has been developed. This electrochemical capacitor uses an anion and a cation in an electrolyte solution as a charge storage mechanism, and is excellent in both energy density and output characteristics. In particular, electrochemical capacitors using conductive polymers such as polyaniline, polypyrrole, polyacene, and polythiophene derivatives must be p-doped or n-doped with anions or cations in non-aqueous electrolytes. To charge and discharge. Since the doping potential is low on the negative electrode side and high on the positive electrode side, a high voltage characteristic of 2.5 V or more can be obtained. (Patent Document 3)
JP 2003-297362 A JP-A-6-104141 JP 2000-315527 A

しかしながら、電気自動車等の電源用途での小型化の要求は恒常的で、そのための高電圧化という強い要求がある。そこで、本発明は高電圧特性を有する電極材料とそれを用いた電気化学素子を提供することをその目的とする。    However, the demand for miniaturization in power supply applications such as electric vehicles is constant, and there is a strong demand for higher voltage for that purpose. Therefore, an object of the present invention is to provide an electrode material having high voltage characteristics and an electrochemical element using the electrode material.

本発明は、上記課題を解決するために、電極材料として導電性高分子とその製造方法の検討を行った結果、高結晶性の炭素材料表面にポリフルオレンまたはその誘導体を担持させてなる電極材料を用いると高電圧特性を有する電気化学素子が得られることが判明した。以上のようにして作成した電極材料は、高結晶性の炭素材料表面にポリフルオレンまたはその誘導体を担持させた際に、高結晶性の炭素材料の六角形構造とポリフルオレンまたはその誘導体の六角形構造との相応性によるものと思われるが、密着性が良好で、電極材料の抵抗が低減し、放電の際のIRドロップが小さくなるので、電圧を高くすることができる。そして、この電極のp−ドープの酸化還元電位は高く、n−ドープの酸化還元電位が低いので、この電極を用いることによって、高電圧特性を有する電気化学素子を提供することができる。   In order to solve the above-mentioned problems, the present invention has been made by examining a conductive polymer and a production method thereof as an electrode material. It has been found that an electrochemical device having high voltage characteristics can be obtained by using. The electrode material prepared as described above has a hexagonal structure of a highly crystalline carbon material and a hexagonal shape of polyfluorene or a derivative thereof when polyfluorene or a derivative thereof is supported on the surface of the highly crystalline carbon material. Although it seems to be due to the compatibility with the structure, the voltage can be increased because the adhesion is good, the resistance of the electrode material is reduced, and the IR drop during discharge is reduced. Since this electrode has a high p-doped redox potential and a low n-doped redox potential, an electrochemical device having high voltage characteristics can be provided by using this electrode.

そして、ポリフルオレンの誘導体としては、フルオレンの9位の置換基がアルキル基、カルボキシル基,ニトロ基,シアノ基,アルキルシアノ基,フェニル基(-Ph),ハロゲン原子(-X),-CX3,ハロゲン化フェニル基,アルキルフェニル基,アルキルハロゲン化フェニル基であるものを用いることが好ましい。 As a derivative of polyfluorene, the substituent at the 9-position of fluorene is an alkyl group, a carboxyl group, a nitro group, a cyano group, an alkyl cyano group, a phenyl group (-Ph), a halogen atom (-X), -CX 3 It is preferable to use a halogenated phenyl group, an alkylphenyl group, or an alkylhalogenated phenyl group.

そして、この電極を用い、リチウムカチオン、またはプロトンを含む電解液を用いることによって高電圧特性を有する二次電池を提供することができる。   A secondary battery having high voltage characteristics can be provided by using this electrode and using an electrolytic solution containing lithium cations or protons.

また、この電極を一方の電極に、活性炭などの電気二重層容量を有する電極材料からなる電極を他方の電極に用いることによって、高電圧特性を有する電気二重層キャパシタを提供することができる。   Moreover, an electric double layer capacitor having high voltage characteristics can be provided by using this electrode as one electrode and an electrode made of an electrode material having an electric double layer capacity such as activated carbon as the other electrode.

さらに、この電極を用い、第4級アンモ ニウムカチオン又は第4級ホスホニウムカチオンを含む電解液を用いることによって、高電圧特性を有する電気化学キャパシタを提供することができる。   Furthermore, by using this electrode and using an electrolytic solution containing a quaternary ammonium cation or a quaternary phosphonium cation, an electrochemical capacitor having high voltage characteristics can be provided.

また、ドーピングしたポリフルオレンまたはその誘導体を塩基性溶媒に溶解した溶液を集電体に付着させ、溶媒を蒸発させて、ポリフルオレンまたはその誘導体の膜を集電体上に形成した電極を用いると、薄く均一な電極膜を形成することができ、電極の抵抗を低減させて放電電圧を高く保つことができるので、高電圧特性を得ることができる。     In addition, when a solution in which a doped polyfluorene or a derivative thereof is dissolved in a basic solvent is attached to a current collector, the solvent is evaporated, and an electrode in which a film of polyfluorene or a derivative thereof is formed on the current collector is used. A thin and uniform electrode film can be formed, and the resistance of the electrode can be reduced to keep the discharge voltage high, so that high voltage characteristics can be obtained.

以上のように、高結晶性の炭素材料表面にポリフルオレンまたはその誘導体を担持させてなる電極材料を用いることによって、高電圧特性を有する電気化学素子を得ることができる。     As described above, an electrochemical device having high voltage characteristics can be obtained by using an electrode material in which polyfluorene or a derivative thereof is supported on the surface of a highly crystalline carbon material.

本発明のポリフルオレンまたはその誘導体は、フルオレンまたはその誘導体のモノマーを化学重合、または電解重合によって重合させて得ることができる。そして、電解重合または化学重合によって得たポリフルオレンまたはその誘導体をクロロホルム、テトラヒドロフラン、N−メチルピロリドン等の塩基性の溶媒に溶解し、この溶液に高結晶性の炭素を分散させる。この時に、高結晶性の炭素材料の六角形構造とポリフルオレンまたはその誘導体の六角形構造との相応性によるものと思われるが、ポリフルオレンまたはその誘導体が炭素材料表面に密着性良く吸着する。そして、ポリマーは帯電しているので、ポリマーを吸着した炭素材料は溶液中で分散性良く分散する。したがって、この溶液を集電体に塗布、乾燥してポリフルオレンまたはその誘導体の層を形成した際に、薄く均一な層を形成することができ、ポリマーと炭素材料の良好な密着性による電極材料の抵抗の低減に加えて、層の抵抗も低減するので、放電の際のIRドロップがさらに小さくなり、高電圧特性を得ることができる。     The polyfluorene or a derivative thereof of the present invention can be obtained by polymerizing a monomer of fluorene or a derivative thereof by chemical polymerization or electrolytic polymerization. Then, polyfluorene or a derivative thereof obtained by electrolytic polymerization or chemical polymerization is dissolved in a basic solvent such as chloroform, tetrahydrofuran, N-methylpyrrolidone or the like, and highly crystalline carbon is dispersed in this solution. At this time, it seems that this is due to the correspondence between the hexagonal structure of the highly crystalline carbon material and the hexagonal structure of polyfluorene or its derivative, but the polyfluorene or its derivative adsorbs to the surface of the carbon material with good adhesion. Since the polymer is charged, the carbon material adsorbed with the polymer is dispersed with good dispersibility in the solution. Therefore, when this solution is applied to a current collector and dried to form a polyfluorene or its derivative layer, a thin and uniform layer can be formed, and an electrode material with good adhesion between the polymer and the carbon material. In addition to the reduction in resistance, the resistance of the layer is also reduced, so that the IR drop during discharge is further reduced and high voltage characteristics can be obtained.

本発明の電極は、従来のように高結晶性の炭素材料を電極として電解重合によって形成することもできるし、モノマーと酸化剤の重合液に高結晶性の炭素材料を混合して化学重合をおこなって形成することもできる。しかしながら、前記の本発明の方法のよれば、より薄く均一な電極膜が形成できるので好ましい。     The electrode of the present invention can be formed by electrolytic polymerization using a highly crystalline carbon material as an electrode as in the prior art, or chemical polymerization can be performed by mixing a highly crystalline carbon material into a polymerization solution of a monomer and an oxidizing agent. It can also be formed. However, the method of the present invention is preferable because a thinner and more uniform electrode film can be formed.

本発明に用いる高結晶性炭素材料としては以下のものを挙げることができる。すなわち、天然黒鉛、人造黒鉛、膨張黒鉛、黒鉛炭素繊維、黒鉛化カーボンブラック等である。形状としては、繊維状、粒状、粉末状、燐片状、板状をなど様々な形状であってよい。また、結晶性としては、c軸方向の結晶子の大きさLc(002)が50nm以上、平均格子面間隔d002が0.337nm以下の結晶性状を備えるものが好ましい。   Examples of the highly crystalline carbon material used in the present invention include the following. That is, natural graphite, artificial graphite, expanded graphite, graphitic carbon fiber, graphitized carbon black and the like. The shape may be various shapes such as a fiber shape, a granular shape, a powder shape, a flake shape, and a plate shape. Further, as the crystallinity, it is preferable to have crystallinity in which the crystallite size Lc (002) in the c-axis direction is 50 nm or more and the average lattice spacing d002 is 0.337 nm or less.

そして、このようにして重合形成したポリフルオレンまたはその誘導体は重合液中のアニオンがドーピングして酸化状態となっているので、これを正極として用いる。この正極はアニオンを脱ドーピングすることによって放電反応、還元反応を生ずる。そして、このポリフルオレンの誘導体を電気的または化学的に還元して、カチオンをドーピングして負極として用いる。この負極はカチオンを脱ドーピングすることによって放電反応、酸化反応を生ずる。また、重合後のポリマーを還元して中性状態にして両極とし、充電反応によって負極の還元、正極の酸化を行ってもよい。     The polyfluorene or its derivative thus polymerized is in an oxidized state by doping with anions in the polymerization solution, and this is used as the positive electrode. This positive electrode causes a discharge reaction and a reduction reaction by undoping an anion. Then, this polyfluorene derivative is electrically or chemically reduced and doped with a cation to be used as a negative electrode. This negative electrode causes a discharge reaction and an oxidation reaction by dedoping cations. Alternatively, the polymer after polymerization may be reduced to a neutral state to form a bipolar electrode, and the negative electrode may be reduced and the positive electrode oxidized by a charging reaction.

さらに、フルオレンまたはその誘導体に、アルキルスルフォン酸、アルキルホスホン酸のようなフルオレンと共有結合することができるアニオンを反応させ、重合して、自己ドープ型の正極とすることができる。この正極は電解液中のカチオンとドーピングすることによって放電反応、酸化反応を生ずる。また、ポリフルオレンまたはその誘導体に3級アンモニウムのようなフルオレンと共有結合することができるカチオンを反応させ、重合して、自己ドープ型の負極とすることができる。この負極は電解液中のアニオンとドーピングすることによって放電反応、酸化反応を生ずる。   Furthermore, a self-doped positive electrode can be obtained by reacting fluorene or a derivative thereof with an anion that can be covalently bonded to fluorene such as alkyl sulfonic acid or alkyl phosphonic acid and polymerizing it. This positive electrode causes a discharge reaction and an oxidation reaction by doping with a cation in the electrolytic solution. Alternatively, polyfluorene or a derivative thereof can be reacted with a cation that can be covalently bonded to fluorene such as tertiary ammonium and polymerized to form a self-doped negative electrode. The negative electrode undergoes a discharge reaction and an oxidation reaction by doping with an anion in the electrolytic solution.

ここで、ポリフルオレンの誘導体としては、フルオレンの9位に置換基がある誘導体が好ましい。それは電子伝導性が低下せず、この置換基によってドーピングするアニオン、カチオンのドープ、脱ドープの反応が速くなって出力特性が向上するからである。なお、置換基としては、アルキル基、カルボキシル基,ニトロ基,シアノ基,アルキルシアノ基,フェニル基(-Ph),ハロゲン原子(-X),-CX3,ハロゲン化フェニル基,アルキルフェニル基,アルキルハロゲン化フェニル基であるものを用いることが好ましい。なお、9位に置換基のないフルオレンは9位の水素の反応性が高く、還元電位をかけた時にプロトンが脱離し、このプロトンの還元電位がフルオレンより高いのでフルオレンの還元反応がおこりにくく、フルオレンを負極として用いることは難しい。 Here, the polyfluorene derivative is preferably a derivative having a substituent at the 9-position of fluorene. This is because the electron conductivity is not lowered, and the anion and cation doping and dedoping reactions are accelerated by this substituent and the output characteristics are improved. In addition, as a substituent, an alkyl group, a carboxyl group, a nitro group, a cyano group, an alkyl cyano group, a phenyl group (-Ph), a halogen atom (-X), -CX 3 , a halogenated phenyl group, an alkylphenyl group, It is preferable to use an alkyl halogenated phenyl group. In addition, fluorene having no substituent at the 9-position has high reactivity at the 9-position hydrogen, and when a reduction potential is applied, the proton is eliminated, and the reduction potential of this proton is higher than that of fluorene, so that the reduction reaction of fluorene does not easily occur. It is difficult to use fluorene as a negative electrode.

このようなポリフルオレンの誘導体のなかでも、9位の置換基がアルキル基またはフェニル基を有する置換基であるとドーピングするアニオン、カチオンのドープ、脱ドープの反応がさらに速くなって出力特性が向上するので好ましい。前者としては9,9−ジメチルフルオレン、9,9−ジオクチルフルオレン等、後者としては9−メチル−9−フェニルフルオレン,9−メチル−9−ベンジルフルオレン,ベンザルフルオレン,ベンズヒドリリジンフルオレン等を挙げることができる。なかでも、分子の大きなカチオンをドープ、脱ドープする負極、または自己ドープ型の正極として用いる場合は、n=1〜8のアルキル基が好ましい。     Among these polyfluorene derivatives, if the 9-position substituent is an alkyl group or a phenyl group-containing substituent, the anion, cation doping, and dedoping reactions are further accelerated, and output characteristics are improved. Therefore, it is preferable. Examples of the former include 9,9-dimethylfluorene and 9,9-dioctylfluorene, and examples of the latter include 9-methyl-9-phenylfluorene, 9-methyl-9-benzylfluorene, benzalfluorene, and benzhydrylidinefluorene. be able to. In particular, when used as a negative electrode doped or dedoped with a large molecular cation or a self-doped positive electrode, an alkyl group of n = 1 to 8 is preferable.

以上の電極と電解液を用いて電気化学素子を形成することができる。用いる電解液としては非水系、水系がある。非水系の場合、溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、アセトニトリル及びジメトキシエタンからなる群から選ばれる1種以上を含むことが好ましい。溶質としてリチウムイオンを有するリチウム塩、第4級アンモ ニウムカチオン又は第4級ホスホニウムカチオンを有する第4級アンモ ニウム塩又は第4級ホスホニウム塩を挙げることができる。リチウム塩としては、LiPF6 、LiBF4 、LiClO4、LiN(CF3 SO22 、LiCF3 SO3、LiC(SO2CF33 、LiAsF6 及びLiSbF6 等が挙げられる。また、第4級アンモ ニウム塩又は第4級ホスホニウム塩としては、R1 R2 R3 R4N+ 又はR1 R2 R3 R4 P+ で表されるカチオン(ただし、R1、R2 、R3、R4 は炭素数1〜6のアルキル基)と、PF6-、BF4-、ClO4-、N(CF3 SO2 )2-、CF3 SO3-、C(SO2 CF3 )3-、AsF6-又はSbF6-からなるアニオンとからなる塩であることが好ましい。特にPF6-、BF4-、ClO4-、N(CF3 SO2 )2-をアニオンとすることが好ましい。 An electrochemical element can be formed using the above electrodes and an electrolytic solution. There are non-aqueous and aqueous electrolytes. In the case of a non-aqueous system, the solvent preferably contains one or more selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, acetonitrile, and dimethoxyethane. Examples of the solute include a lithium salt having lithium ions, a quaternary ammonium cation or a quaternary phosphonium salt having a quaternary ammonium cation or a quaternary phosphonium cation. The lithium salt, LiPF 6, LiBF 4, LiClO 4, LiN (CF 3 SO 2) 2, LiCF 3 SO 3, LiC (SO 2 CF 3) 3, LiAsF 6 and LiSbF 6, and the like. Further, as the quaternary ammonium salt or quaternary phosphonium salt, a cation represented by R1 R2 R3 R4 N + or R1 R2 R3 R4 P + (wherein R1, R2, R3 and R4 have 1 to 6 carbon atoms). And an anion composed of PF6-, BF4-, ClO4-, N (CF3 SO2) 2-, CF3 SO3-, C (SO2 CF3) 3-, AsF6- or SbF6-. Is preferred. In particular, PF6-, BF4-, ClO4-, and N (CF3 SO2) 2- are preferably used as anions.

水系としては、カチオンとしてナトリウム、カリウム等のアルカリ金属、またはプロトンを用いる。アニオンとしては
硫酸、硝酸、塩酸、リン酸、テトラフルオロほう酸、六フッ化リン酸、六フッ化ケイ酸などの無機酸、飽和モノカルボン酸、脂肪族カルボン酸、オキシカルボン酸、p―トルエンスルホン酸、ポリビニルスルホン酸、ラウリン酸などの有機酸をプロトンとともに形成するアニオンを挙げることができる。
In the aqueous system, alkali metals such as sodium and potassium, or protons are used as cations. As anions, sulfuric acid, nitric acid, hydrochloric acid, phosphoric acid, tetrafluoroboric acid, hexafluorophosphoric acid, hexafluorosilicic acid and other inorganic acids, saturated monocarboxylic acids, aliphatic carboxylic acids, oxycarboxylic acids, p-toluenesulfone The anion which forms organic acids, such as an acid, polyvinylsulfonic acid, and lauric acid with a proton can be mentioned.

以下に本発明の電気化学素子について説明する。
(二次電池)
二次電池は以下のようにして作成することができる。リチウム二次電池の場合は、電解液としてリチウム塩を溶質とした非水系電解液を用いる。そして、正極として前記の本発明の正極、または自己ドープ型の正極を用い、負極としてリチウム金属、またはリチウムを吸蔵、放出する炭素などリチウムを吸蔵、放出する電極材料を用いる。ここで自己ドープ型の正極を用いた場合、充放電反応に関与するのは同量のリチウムカチオンであるので、電解液のイオン濃度が一定に保たれ、電解液の伝導度を一定に保つことができる。以上のリチウム二次電池は正極の電位が高いので、高電圧特性を有する。また、負極に本発明の負極を用いた場合は、出力特性、サイクル特性が向上する。
The electrochemical device of the present invention will be described below.
(Secondary battery)
The secondary battery can be produced as follows. In the case of a lithium secondary battery, a non-aqueous electrolyte solution having a lithium salt as a solute is used as the electrolyte solution. The positive electrode of the present invention or the self-doped positive electrode is used as the positive electrode, and lithium metal or an electrode material that absorbs and releases lithium such as carbon that absorbs and releases lithium is used as the negative electrode. When a self-doped positive electrode is used here, it is the same amount of lithium cation that participates in the charge / discharge reaction, so that the ion concentration of the electrolyte is kept constant and the conductivity of the electrolyte is kept constant. Can do. The above lithium secondary battery has high voltage characteristics because the potential of the positive electrode is high. Further, when the negative electrode of the present invention is used as the negative electrode, the output characteristics and cycle characteristics are improved.

また、プロトン電池を形成する場合は、電解液としてプロトンを有する酸水溶液を用いる。正極は本発明の正極、または自己ドープ型の正極を用い、負極はキノキサリン系ポリマー等のプロトン電池の負極を用いる。以上のプロトン電池は正極の電位が高いので、高電圧特性を有する。   In the case of forming a proton battery, an acid aqueous solution having protons is used as the electrolytic solution. The positive electrode of the present invention or a self-doped positive electrode is used as the positive electrode, and the negative electrode of a proton battery such as a quinoxaline-based polymer is used as the negative electrode. The proton battery described above has high voltage characteristics because the positive electrode has a high potential.

(電気二重層キャパシタ)
電気二重層キャパシタは次のようにして作成することができる。電解液としては、前記の非水系、水系のすべてを用いることができる。そして、正極として本発明の正極、または自己ドープ型の正極を用い、負極として活性炭などの電気二重層容量を有する電極を用いる。この電気二重層キャパシタは正極の電位が高いので、高電圧特性を有する。また、正極として電気二重層容量を有する電極を用い、負極として本発明の負極、または自己ドープ型の負極を用いることもできる。この場合は負極の電位が活性炭より低いので、高電圧特性を有する。
(Electric double layer capacitor)
The electric double layer capacitor can be produced as follows. As the electrolytic solution, any of the above non-aqueous and aqueous systems can be used. Then, the positive electrode of the present invention or a self-doped positive electrode is used as the positive electrode, and an electrode having an electric double layer capacity such as activated carbon is used as the negative electrode. This electric double layer capacitor has a high voltage characteristic because the potential of the positive electrode is high. Alternatively, an electrode having an electric double layer capacity can be used as the positive electrode, and the negative electrode of the present invention or a self-doped negative electrode can be used as the negative electrode. In this case, since the potential of the negative electrode is lower than that of activated carbon, it has high voltage characteristics.

(電気化学キャパシタ)
電気化学キャパシタは次のようにして作成することができる。電解液としては、第4級アンモ ニウム塩又は第4級ホスホニウム塩を溶質とした非水系電解液を用いる。そして、正極として本発明の正極、または自己ドープ型の正極を用い、負極として酸化還元反応特性を有するポリチオフェン等の導電性高分子を用いる。この電気化学キャパシタは正極の電位が高いので、高電圧特性を有する。また、正極として前記の導電性高分子、または酸化ルテニウム等の金属酸化物を用い、負極として本発明の負極、または自己ドープ型の負極を用いることもできる。この場合は負極の電位が低いので、高電圧特性を有する。さらに、両極に本発明の電極を用いると、負極の電位が低く、正極の電位が高いので従来にない高電圧特性を有する。また、自己ドープ型の電極を用いると、同種、同量のイオンが反応に関与するので、電解液中のイオン濃度が一定に保たれて電解液の伝導度が一定に保たれる。
(Electrochemical capacitor)
The electrochemical capacitor can be produced as follows. As the electrolytic solution, a non-aqueous electrolytic solution having a quaternary ammonium salt or a quaternary phosphonium salt as a solute is used. Then, the positive electrode of the present invention or a self-doped positive electrode is used as the positive electrode, and a conductive polymer such as polythiophene having redox reaction characteristics is used as the negative electrode. This electrochemical capacitor has high voltage characteristics because the potential of the positive electrode is high. Alternatively, the conductive polymer or a metal oxide such as ruthenium oxide can be used as the positive electrode, and the negative electrode of the present invention or a self-doped negative electrode can be used as the negative electrode. In this case, since the potential of the negative electrode is low, it has high voltage characteristics. Further, when the electrode of the present invention is used for both electrodes, the potential of the negative electrode is low and the potential of the positive electrode is high. When a self-doped electrode is used, the same type and amount of ions are involved in the reaction, so that the ion concentration in the electrolytic solution is kept constant and the conductivity of the electrolytic solution is kept constant.

以下に実施例により本発明をさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.

アセトニトリルにフルオレンの誘導体を溶解後,十分量の塩化鉄(III)を溶解させ72時間撹拌して重合を進行させた。次に反応液を減圧下で濾過し,濾過物を60COで約12時間真空乾燥して粗生成物を得た。この粗生成物をクロロホルムに溶解させ飽和状態にし,メタノールを加えることで生成物を再析出させた。再析出物を再び減圧濾過し,濾過物を60COで約12時間真空乾燥して精製したポリフルオレンの誘導体を得た。 After dissolving the fluorene derivative in acetonitrile, a sufficient amount of iron (III) chloride was dissolved and stirred for 72 hours to proceed the polymerization. Next, the reaction solution was filtered under reduced pressure, and the filtrate was vacuum dried with 60 C 2 O for about 12 hours to obtain a crude product. This crude product was dissolved in chloroform to be saturated, and methanol was added to reprecipitate the product. The reprecipitate was again filtered under reduced pressure, and the filtrate was vacuum-dried with 60 C 2 O for about 12 hours to obtain a purified polyfluorene derivative.

THF溶媒1Lに対して,得られたポリフルオレンの誘導体1.2gを溶解させ,ポリフルオレンの誘導体溶液を作製した。この溶液中に気相法炭素繊維(昭和電工製VGCF)を加え分散させた。このVGCF分散溶液をアルミ集電体上に滴下,乾燥させた。滴下と乾燥を繰り返すことで集電体上にポリフルオレン/VGCF膜を形成した。この集電体/ポリフルオレン/VGCF膜を電極として用いた。この電極を用いて電気化学素子を作成し、定電流充放電試験を行った。充放電電流値を0.5mA cm-2とし,充放電を繰り返した。用いた電極と作動電圧を(表1)に示す。 In 1 L of THF solvent, 1.2 g of the resulting polyfluorene derivative was dissolved to prepare a polyfluorene derivative solution. Vapor grown carbon fiber (VGCF manufactured by Showa Denko) was added and dispersed in this solution. This VGCF dispersion was dropped onto an aluminum current collector and dried. By repeating the dropping and drying, a polyfluorene / VGCF film was formed on the current collector. This current collector / polyfluorene / VGCF film was used as an electrode. An electrochemical device was prepared using this electrode, and a constant current charge / discharge test was conducted. The charge / discharge current was set to 0.5 mA cm -2 and charge / discharge was repeated. The electrodes and operating voltage used are shown in (Table 1).


TEABF4−MeCN:四フッ化硼酸テトラエチルアンモニウムアセトニトリル溶液
LiClO4−PC:過塩素酸リチウムプロピレンカーボネート溶液

TEABF4-MeCN: Tetraethylammonium tetrafluoroborate acetonitrile solution LiClO4-PC: Lithium perchlorate propylene carbonate solution

以上のように、本発明の電気化学素子の作動電圧は比較例に比べて高い作動電圧を示している。また、この作動電圧での充放電特性も300〜1000サイクルまで良好であった。
As described above, the operating voltage of the electrochemical device of the present invention is higher than that of the comparative example. The charge / discharge characteristics at this operating voltage were also good from 300 to 1000 cycles.

Claims (8)

高結晶性の炭素材料表面にポリフルオレンまたはその誘導体が担持した電極材料。 An electrode material in which polyfluorene or a derivative thereof is supported on the surface of a highly crystalline carbon material. ポリフルオレンの誘導体の9位の置換基がアルキル基、カルボキシル基,ニトロ基,シアノ基,アルキルシアノ基,フェニル基(-Ph),ハロゲン原子(-X),-CX3,ハロゲン化フェニル基, アルキルフェニル基,アルキルハロゲン化フェニル基である請求項1記載の電極材料。 The 9-position substituent of the polyfluorene derivative is alkyl group, carboxyl group, nitro group, cyano group, alkyl cyano group, phenyl group (-Ph), halogen atom (-X), -CX 3 , halogenated phenyl group, 2. The electrode material according to claim 1, which is an alkylphenyl group or an alkylhalogenated phenyl group. 請求項1または2記載の電極材料を用いた電気化学素子。 An electrochemical device using the electrode material according to claim 1. 電気化学素子が二次電池である請求項3記載の電気化学素子。 The electrochemical device according to claim 3, wherein the electrochemical device is a secondary battery. 電気化学素子が電気二重層キャパシタである請求項3記載の電気化学素子。 The electrochemical device according to claim 3, wherein the electrochemical device is an electric double layer capacitor. 電気化学素子が電気化学キャパシタである請求項3記載の電気化学素子。 The electrochemical device according to claim 3, wherein the electrochemical device is an electrochemical capacitor. ドーピングしたポリフルオレンまたはその誘導体と高結晶性の炭素材料を塩基性溶媒に溶解した溶液を集電体に付着させ、溶媒を蒸発させて、ポリフルオレンまたはその誘導体の膜を集電体上に形成した請求項1または2記載の電極材料。 A solution of doped polyfluorene or its derivative and highly crystalline carbon material dissolved in a basic solvent is attached to the current collector, and the solvent is evaporated to form a polyfluorene or its derivative film on the current collector. The electrode material according to claim 1 or 2. ドーピングしたポリフルオレンまたはその誘導体と高結晶性の炭素材料を塩基性溶媒に溶解した溶液を集電体に付着させ、溶媒を蒸発させて、ポリフルオレンまたはその誘導体の膜を集電体上に形成した電極材料を用いた請求項3ないし6記載の電気化学素子。

A solution of doped polyfluorene or its derivative and highly crystalline carbon material dissolved in a basic solvent is attached to the current collector, and the solvent is evaporated to form a polyfluorene or its derivative film on the current collector. The electrochemical element according to claim 3, wherein the electrode material is used.

JP2004224822A 2004-07-30 2004-07-30 Electrode material and electrochemical element Pending JP2006048975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224822A JP2006048975A (en) 2004-07-30 2004-07-30 Electrode material and electrochemical element

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224822A JP2006048975A (en) 2004-07-30 2004-07-30 Electrode material and electrochemical element

Publications (1)

Publication Number Publication Date
JP2006048975A true JP2006048975A (en) 2006-02-16

Family

ID=36027301

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224822A Pending JP2006048975A (en) 2004-07-30 2004-07-30 Electrode material and electrochemical element

Country Status (1)

Country Link
JP (1) JP2006048975A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234346A (en) * 2006-02-28 2007-09-13 Nippon Chemicon Corp Electrode material
JP2008251479A (en) * 2007-03-30 2008-10-16 Nippon Chemicon Corp Electrode material, its manufacturing method, electrode for electrochemical element, its manufacturing method, and electrochemical element
JP2009099524A (en) * 2007-09-28 2009-05-07 Nippon Chemicon Corp Electrode material and its manufacturing method, electrode for electrochemical element, and electrochemical element
JP2009245887A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Electrode material and its manufacturing method, electrode for electrochemical element, and electrochemical element
JP2011082485A (en) * 2009-09-11 2011-04-21 Dowa Holdings Co Ltd Electric double-layer capacitor and manufacturing method of the same
JP2011519122A (en) * 2008-04-07 2011-06-30 カーネギー メロン ユニバーシティ Aqueous electrolyte-based electrochemical secondary energy storage device using sodium ions

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007234346A (en) * 2006-02-28 2007-09-13 Nippon Chemicon Corp Electrode material
JP2008251479A (en) * 2007-03-30 2008-10-16 Nippon Chemicon Corp Electrode material, its manufacturing method, electrode for electrochemical element, its manufacturing method, and electrochemical element
JP2009099524A (en) * 2007-09-28 2009-05-07 Nippon Chemicon Corp Electrode material and its manufacturing method, electrode for electrochemical element, and electrochemical element
JP2009245887A (en) * 2008-03-31 2009-10-22 Nippon Chemicon Corp Electrode material and its manufacturing method, electrode for electrochemical element, and electrochemical element
JP2011519122A (en) * 2008-04-07 2011-06-30 カーネギー メロン ユニバーシティ Aqueous electrolyte-based electrochemical secondary energy storage device using sodium ions
JP2011082485A (en) * 2009-09-11 2011-04-21 Dowa Holdings Co Ltd Electric double-layer capacitor and manufacturing method of the same

Similar Documents

Publication Publication Date Title
EP3440683B1 (en) Direct growth of polyaniline nanotubes on carbon cloth for flexible and high-performance supercapacitors
Zhou et al. Fe (CN) 6− 4-doped polypyrrole: a high-capacity and high-rate cathode material for sodium-ion batteries
JP5011561B2 (en) Electrode material
CN108292568B (en) Electrochemical device and method for manufacturing the same
CN108604683B (en) Positive electrode active material for electrochemical device, positive electrode for electrochemical device, and method for producing positive electrode active material for electrochemical device
CN112106160A (en) Electrochemical device and method for manufacturing the same
JP2010044951A (en) Electrode active material and electrode using the same
JP5365052B2 (en) Electrode material and manufacturing method thereof, electrode for electrochemical element, and electrochemical element
JP2006048975A (en) Electrode material and electrochemical element
JP5360740B2 (en) Method for producing electrode material
CN110100332B (en) Electrochemical device
JP5333887B2 (en) Electrode active material and electrode using the same
JP2008166342A (en) Lithium ion capacitor
JP2006048974A (en) Electrode material for electrochemical element
CN109863633B (en) Electrochemical device
JPWO2013084767A1 (en) Polymer and secondary battery using the same
JP3723140B2 (en) Power storage device using quinoxaline compound
CN109792087B (en) Electrochemical device
JP2010239097A (en) Electrode active material, and electrode using the same
JP5218962B2 (en) Composite electrode
Le et al. Conjugated Polymer Nanostructures for Electrochemical Capacitor and Lithium‐Ion Battery Applications
CN111902990A (en) Electrochemical device
JP2006048976A (en) Manufacturing method of electrode material
JP2006049386A (en) Electric double layer capacitor
JP2006049387A (en) Electrochemical capacitor