JP2006048972A - Secondary battery - Google Patents

Secondary battery Download PDF

Info

Publication number
JP2006048972A
JP2006048972A JP2004224817A JP2004224817A JP2006048972A JP 2006048972 A JP2006048972 A JP 2006048972A JP 2004224817 A JP2004224817 A JP 2004224817A JP 2004224817 A JP2004224817 A JP 2004224817A JP 2006048972 A JP2006048972 A JP 2006048972A
Authority
JP
Japan
Prior art keywords
secondary battery
electrode
group
derivative
polyfluorene derivative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004224817A
Other languages
Japanese (ja)
Inventor
Shunzo Suematsu
俊造 末松
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Chemi Con Corp
Original Assignee
Nippon Chemi Con Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Chemi Con Corp filed Critical Nippon Chemi Con Corp
Priority to JP2004224817A priority Critical patent/JP2006048972A/en
Publication of JP2006048972A publication Critical patent/JP2006048972A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium secondary battery having high voltage characteristics. <P>SOLUTION: The secondary battery is composed of an electrode using polyfluorene or its derivative, and a nonaqueous series electrolytic solution containing a lithium salt. This secondary battery has unprecedented high voltage characteristics because the oxidation-reduction potential of a n-doped polyfluorene derivative is low in comparison with that of a conventional conductive polymer and the oxidation-reduction potential of p-doped polyfluorene or its derivative is high in comparison with that of a conventional polymer. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、二次電池に関し、さらに詳しくは出力やサイクル特性にすぐれ、高電圧特性を有する二次電池に関する。   The present invention relates to a secondary battery, and more particularly to a secondary battery having excellent output and cycle characteristics and high voltage characteristics.

近年、地球の環境問題などから、エンジン駆動であるガソリン車やディーゼル車に代わり、電気自動車やハイブリッド車への期待が高まっている。これらの電気自動車やハイブリッド車では、モーターを駆動させるための電源としては、高エネルギー密度かつ高出力密度特性を有する二次電池、電気二重層キャパシタ等の電気化学素子が用いられる。   In recent years, due to environmental problems on the earth, there are increasing expectations for electric vehicles and hybrid vehicles in place of engine-driven gasoline vehicles and diesel vehicles. In these electric vehicles and hybrid vehicles, electrochemical elements such as secondary batteries and electric double layer capacitors having high energy density and high output density characteristics are used as a power source for driving the motor.

このような電気化学素子である二次電池には、鉛電池、ニッケル・カドミウム電池、ニッケル水素電池、またはプロトン電池などがある。これらの二次電池は、イオン伝導性の高い酸性またはアルカリ性の水系電解液を用いているため、充放電の際に大電流が得られるという優れた出力特性を有するが、水の電気分解電圧が1.23Vであるため、それ以上の高い電圧を得ることができない。電気自動車の電源としては、200V前後の高電圧が必要であるため、それだけ多くの電池を直列に接続しなければならず、電源の小型・軽量化には不利である。   Examples of the secondary battery which is such an electrochemical element include a lead battery, a nickel-cadmium battery, a nickel metal hydride battery, and a proton battery. Since these secondary batteries use an acidic or alkaline aqueous electrolyte having high ion conductivity, they have excellent output characteristics that a large current can be obtained during charging and discharging, but the electrolysis voltage of water is low. Since it is 1.23V, a voltage higher than that cannot be obtained. As a power source for an electric vehicle, a high voltage of about 200 V is necessary, so that many batteries have to be connected in series, which is disadvantageous for reducing the size and weight of the power source.

高電圧型の二次電池としては、有機電解液を用いたリチウムイオン二次電池が知られている。このリチウムイオン二次電池は、分解電圧の高い有機溶媒を電解液溶媒としているため、最も卑な電位を示すリチウムイオンを充放電反応に関与する電荷とすれば、3V以上の電位を示す。リチウムイオン二次電池は、リチウムイオンを吸蔵、放出する炭素を負極とし、コバルト酸リチウム(LiCoO2 )を正極として用いたものが主流である。電解液には、六フッ化リン酸リチウム(LiPF6 )などのリチウム塩をエチレンカーボネートやプロピレンカーボネートなどの溶媒に溶解させたものが用いられている。このようなリチウムイオン二次電池は、平均作動電圧として3.6Vを示す。 As a high voltage type secondary battery, a lithium ion secondary battery using an organic electrolyte is known. Since this lithium ion secondary battery uses an organic solvent having a high decomposition voltage as the electrolyte solvent, if the lithium ion having the lowest potential is used as a charge involved in the charge / discharge reaction, it exhibits a potential of 3 V or more. Lithium ion secondary batteries mainly use carbon that absorbs and releases lithium ions as a negative electrode and lithium cobaltate (LiCoO 2 ) as a positive electrode. As the electrolytic solution, a lithium salt such as lithium hexafluorophosphate (LiPF 6 ) dissolved in a solvent such as ethylene carbonate or propylene carbonate is used. Such a lithium ion secondary battery has an average operating voltage of 3.6V.

しかしながら、このリチウムイオン二次電池は、電圧が高くエネルギー密度も高いので電源として優れているが、充電反応が電極のリチウムイオンの吸蔵、放出であるため、出力特性に劣るという問題があり、大きな瞬間電流が必要とされる電気自動車用の電源には不利である。そこで、高電圧で、かつ充放電特性を改善するために正極にポリチオフェンの誘導体を用いる試みがあるが、作動電圧としては4.0Vである。(特許文献1)
特開2003−297362号公報
However, this lithium ion secondary battery is excellent as a power source because of its high voltage and high energy density, but there is a problem that the charging reaction is inferior in output characteristics because it is a lithium ion occlusion / release of the electrode. It is disadvantageous for power sources for electric vehicles that require instantaneous current. Therefore, there is an attempt to use a polythiophene derivative for the positive electrode in order to improve the charge / discharge characteristics at a high voltage, but the operating voltage is 4.0V. (Patent Document 1)
JP 2003-297362 A

しかしながら、電気自動車等の電源用途での小型化の要求は恒常的で、そのための高電圧化という強い要求がある。そこで、本発明は高電圧特性を有する二次電池を提供することをその目的とする。    However, the demand for miniaturization in power supply applications such as electric vehicles is constant, and there is a strong demand for higher voltage for that purpose. Accordingly, an object of the present invention is to provide a secondary battery having high voltage characteristics.

本発明は、上記課題を解決するために、電極材料として導電性高分子の検討を行った結果、ポリフルオレンの誘導体を二次電池の電極として用いると高電圧特性を有する二次電池が得られることが判明した。ポリフルオレンの誘導体のn−ドープの酸化還元電位は従来の導電性高分子に比べて低く、ポリフルオレンの誘導体のp−ドープの酸化還元電位は従来の導電性高分子に比べて高く、これらを電極に用いることによって、高電圧特性を有する二次電池を提供することができる。   In order to solve the above-mentioned problems, the present invention has studied a conductive polymer as an electrode material. As a result, when a polyfluorene derivative is used as an electrode of a secondary battery, a secondary battery having high voltage characteristics can be obtained. It has been found. The n-doped redox potential of the polyfluorene derivative is lower than that of the conventional conductive polymer, and the p-doped redox potential of the polyfluorene derivative is higher than that of the conventional conductive polymer. By using it as an electrode, a secondary battery having high voltage characteristics can be provided.

すなわち、ポリフルオレンの誘導体を用いた正極と、リチウムを吸蔵、放出する電極材料からなる負極と、リチウム塩を含む非水系電解液を備えた本発明のリチウム二次電池は、正極が従来の導電性高分子よりp−ドープの酸化還元電位が高い状態で作動し、非水系電解液の分解電圧は高いので、作動電圧を高くすることができる。また、ポリフルオレンの誘導体を負極に用い、従来の導電性高分子やコバルト酸リチウムのような金属酸化物を正極に用い、リチウム塩を含む非水系電解液を備えたリチウム二次電池は、負極のリチウムのインターカレーションがないので、出力特性、サイクル特性に優れている。   That is, the lithium secondary battery of the present invention comprising a positive electrode using a polyfluorene derivative, a negative electrode made of an electrode material that occludes and releases lithium, and a non-aqueous electrolyte containing a lithium salt, the positive electrode is a conventional conductive material. The p-doped redox potential is higher than that of the conductive polymer, and the decomposition voltage of the non-aqueous electrolyte is high. Therefore, the operating voltage can be increased. In addition, a lithium secondary battery using a non-aqueous electrolyte containing a lithium salt using a polyfluorene derivative as a negative electrode, a conventional conductive polymer or a metal oxide such as lithium cobaltate as a positive electrode, Because there is no lithium intercalation, the output characteristics and cycle characteristics are excellent.

そして、ポリフルオレンの誘導体としては、フルオレンの9位の置換基がアルキル基、カルボキシル基,ニトロ基,シアノ基,アルキルシアノ基,フェニル基(-Ph),ハロゲン原子(-X),-CX3,ハロゲン化フェニル基,アルキルフェニル基,アルキルハロゲン化フェニル基であるものを用いることが好ましい。 As a derivative of polyfluorene, the substituent at the 9-position of fluorene is an alkyl group, a carboxyl group, a nitro group, a cyano group, an alkyl cyano group, a phenyl group (-Ph), a halogen atom (-X), -CX 3 It is preferable to use a halogenated phenyl group, an alkylphenyl group, or an alkylhalogenated phenyl group.

また、ドーピングしたポリフルオレンの誘導体を塩基性溶媒に溶解した溶液を集電体に付着させ、溶媒を蒸発させて、ポリフルオレンの誘導体の膜を集電体上に形成した電極を用いると、薄く均一な電極膜を形成することができ、電極の抵抗を低減させて放電電圧を高く保つことができるので、高電圧特性を得ることができる。     In addition, when an electrode in which a solution of a doped polyfluorene derivative dissolved in a basic solvent is attached to a current collector and the solvent is evaporated to form a polyfluorene derivative film on the current collector is thinned. A uniform electrode film can be formed, the resistance of the electrode can be reduced, and the discharge voltage can be kept high, so that high voltage characteristics can be obtained.

以上のように、ポリフルオレンの誘導体を用いた電極と、リチウム塩を含む電解液を用いることによって、高電圧特性を有する二次電池を得ることができる。     As described above, a secondary battery having high voltage characteristics can be obtained by using an electrode using a polyfluorene derivative and an electrolytic solution containing a lithium salt.

本発明のポリフルオレンの誘導体は、フルオレンの誘導体のモノマーを化学重合、または電解重合によって重合させて得ることができる。化学重合の場合、これらのモノマーと酸化剤の溶液を用いて集電体の上で重合させて重合体の層を形成して電極とすることができる。また、集電体を電解重合の電極に用いて電解重合を行わせて、集電体上に重合体の層を形成して電極とすることもできる。また、ポリフルオレンの誘導体とカーボン等の導電材を混合した後、成型して電極とすることもできる。     The polyfluorene derivative of the present invention can be obtained by polymerizing a monomer of a fluorene derivative by chemical polymerization or electrolytic polymerization. In the case of chemical polymerization, it is possible to form a polymer layer by polymerizing on a current collector using a solution of these monomers and an oxidizing agent to form an electrode. Alternatively, the current collector may be used as an electrode for electrolytic polymerization to perform electrolytic polymerization, and a polymer layer may be formed on the current collector to form an electrode. Alternatively, a polyfluorene derivative and a conductive material such as carbon may be mixed and then molded into an electrode.

さらに、ポリフルオレンの誘導体は、フルオレンの誘導体のモノマーを化学重合、または電解重合によって重合させて得、このポリフルオレンの誘導体をドーピングした状態で、クロロホルム、テトラヒドロフラン、N−メチルピロリドン等の塩基性の溶媒に溶解して溶液を作成する。そして、この溶液を集電体に塗布、乾燥してポリフルオレンの誘導体の層を形成する。このようにして形成した電極は薄く均一なので、電極の抵抗が低減し、放電の際のIRドロップが低減して、電極の電圧を高く保つことができる。     Furthermore, the polyfluorene derivative is obtained by polymerizing a fluorene derivative monomer by chemical polymerization or electrolytic polymerization, and in a state doped with this polyfluorene derivative, a basic compound such as chloroform, tetrahydrofuran, N-methylpyrrolidone or the like. Dissolve in solvent to make a solution. Then, this solution is applied to a current collector and dried to form a polyfluorene derivative layer. Since the electrode formed in this way is thin and uniform, the resistance of the electrode is reduced, the IR drop during discharge is reduced, and the voltage of the electrode can be kept high.

そして、このようにして重合形成したポリフルオレンの誘導体は重合液中のアニオンがドーピングして酸化状態となっているので、これを正極として用いる。この正極はアニオンを脱ドーピングすることによって放電反応、還元反応を生ずる。そして、このポリフルオレンの誘導体を電気的または化学的に還元して、カチオンをドーピングして負極として用いる。この負極はカチオンを脱ドーピングすることによって放電反応、酸化反応を生ずる。また、重合後のポリマーを還元して中性状態にして両極とし、充電反応によって負極の還元、正極の酸化を行ってもよい。     The polyfluorene derivative polymerized in this manner is in an oxidized state by doping with anions in the polymerization solution, and this is used as the positive electrode. This positive electrode causes a discharge reaction and a reduction reaction by undoping an anion. Then, this polyfluorene derivative is electrically or chemically reduced and doped with a cation to be used as a negative electrode. This negative electrode causes a discharge reaction and an oxidation reaction by dedoping cations. Alternatively, the polymer after polymerization may be reduced to a neutral state to form a bipolar electrode, and the negative electrode may be reduced and the positive electrode oxidized by a charging reaction.

さらに、フルオレンの誘導体に、アルキルスルフォン酸、アルキルホスホン酸のようなフルオレンと共有結合することができるアニオンを反応させ、重合して、自己ドープ型の正極とすることができる。この正極は電解液中のカチオンとドーピングすることによって放電反応、酸化反応を生ずる。また、ポリフルオレンの誘導体に3級アンモニウムのようなフルオレンと共有結合することができるカチオンを反応させ、重合して、自己ドープ型の負極とすることができる。この負極は電解液中のアニオンとドーピングすることによって放電反応、酸化反応を生ずる。   Furthermore, a self-doped positive electrode can be obtained by reacting a fluorene derivative with an anion that can be covalently bonded to fluorene such as an alkyl sulfonic acid or an alkyl phosphonic acid. This positive electrode causes a discharge reaction and an oxidation reaction by doping with a cation in the electrolytic solution. Alternatively, a polyfluorene derivative can be reacted with a cation capable of covalently bonding with fluorene such as tertiary ammonium and polymerized to form a self-doped negative electrode. The negative electrode undergoes a discharge reaction and an oxidation reaction by doping with an anion in the electrolytic solution.

ここで、ポリフルオレンの誘導体としては、フルオレンの9位に置換基がある誘導体が好ましい。それは電子伝導性が低下せず、この置換基によってドーピングするアニオン、カチオンのドープ、脱ドープの反応が速くなって出力特性が向上するからである。なお、置換基としては、アルキル基、カルボキシル基,ニトロ基,シアノ基,アルキルシアノ基,フェニル基(-Ph),ハロゲン原子(-X),-CX3,ハロゲン化フェニル基,アルキルフェニル基,アルキルハロゲン化フェニル基であるものを用いることが好ましい。なお、9位に置換基のないフルオレンは9位の水素の反応性が高く、還元電位をかけた時にプロトンが脱離し、このプロトンの還元電位がフルオレンより高いのでフルオレンの還元反応がおこりにくく、フルオレンを負極として用いることは難しい。 Here, the polyfluorene derivative is preferably a derivative having a substituent at the 9-position of fluorene. This is because the electron conductivity is not lowered, and the anion and cation doping and dedoping reactions are accelerated by this substituent and the output characteristics are improved. In addition, as a substituent, an alkyl group, a carboxyl group, a nitro group, a cyano group, an alkyl cyano group, a phenyl group (-Ph), a halogen atom (-X), -CX 3 , a halogenated phenyl group, an alkylphenyl group, It is preferable to use an alkyl halogenated phenyl group. In addition, fluorene having no substituent at the 9-position has high reactivity at the 9-position hydrogen, and when a reduction potential is applied, the proton is eliminated, and the reduction potential of this proton is higher than that of fluorene, so that the reduction reaction of fluorene does not easily occur It is difficult to use fluorene as a negative electrode.

このようなポリフルオレンの誘導体のなかでも、9位の置換基がアルキル基またはフェニル基を有する置換基であるとドーピングするアニオン、カチオンのドープ、脱ドープの反応がさらに速くなって出力特性が向上するので好ましい。前者としては9,9−ジメチルフルオレン、9,9−ジオクチルフルオレン等、後者としては9−メチル−9−フェニルフルオレン,9−メチル−9−ベンジルフルオレン,ベンザルフルオレン,ベンズヒドリリジンフルオレン等を挙げることができる。なかでも、分子の大きなカチオンをドープ、脱ドープする負極、または自己ドープ型の正極として用いる場合は、n=1〜8のアルキル基が好ましい。     Among these polyfluorene derivatives, if the 9-position substituent is an alkyl group or a phenyl group-containing substituent, the anion, cation doping, and dedoping reactions are further accelerated, and output characteristics are improved. Therefore, it is preferable. The former includes 9,9-dimethylfluorene, 9,9-dioctylfluorene, and the latter includes 9-methyl-9-phenylfluorene, 9-methyl-9-benzylfluorene, benzalfluorene, benzhydrylidinefluorene, and the like. be able to. In particular, when used as a negative electrode doped or dedoped with a large molecular cation or a self-doped positive electrode, an alkyl group of n = 1 to 8 is preferable.

以上の電極と電解液を用いて本発明の二次電池を形成することができる。電解液としては非水系電解液を用いる。溶媒としては、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ジエチルカーボネート、スルホラン、アセトニトリル及びジメトキシエタンからなる群から選ばれる1種以上を含むことが好ましい。溶質としてリチウムイオンを有するリチウム塩を用いるリチウム塩としては、LiPF6 、LiBF4 、LiClO4、LiN(CF3 SO22 、LiCF3 SO3、LiC(SO2CF33 、LiAsF6 及びLiSbF6 等が挙げられる。 The secondary battery of the present invention can be formed using the above electrode and the electrolytic solution. A non-aqueous electrolyte solution is used as the electrolyte solution. The solvent preferably contains one or more selected from the group consisting of ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, ethyl methyl carbonate, diethyl carbonate, sulfolane, acetonitrile, and dimethoxyethane. Lithium salts using lithium salts having lithium ions as solutes include LiPF 6 , LiBF 4 , LiClO 4 , LiN (CF 3 SO 2 ) 2 , LiCF 3 SO 3 , LiC (SO 2 CF 3 ) 3 , LiAsF 6 and LiSbF 6, and the like.

そして、前記の本発明の正極または自己ドープ型の正極を用い、負極に金属リチウム、リチウムを吸蔵、放出する炭素材料等のリチウムを吸蔵、放出する電極材料を用い、リチウム塩を含む非水系電解液を用いて本発明のリチウム二次電池を形成することができる。この二次電池は、正極が従来の導電性高分子よりp−ドープの酸化還元電位が高い状態で作動し、非水系電解液の分解電圧は高いので、作動電圧は高い。また、本発明の負極または自己ドープ型の負極を用い、従来の導電性高分子やコバルト酸リチウムのような金属酸化物を正極に用い、リチウム塩を含む非水系電解液を備えたリチウム二次電池は、負極のリチウムのインターカレーションがないので、出力特性、サイクル特性に優れている。   Then, using the positive electrode of the present invention or the self-doped positive electrode, the negative electrode uses an electrode material that occludes and releases lithium, such as metallic lithium and a carbon material that occludes and releases lithium. The lithium secondary battery of the present invention can be formed using the liquid. This secondary battery operates in a state where the positive electrode has a higher p-doped redox potential than the conventional conductive polymer, and the decomposition voltage of the non-aqueous electrolyte is high, so the operating voltage is high. Further, the secondary electrode of the present invention or a self-doped negative electrode, a conventional conductive polymer or a metal oxide such as lithium cobaltate as a positive electrode, and a lithium secondary provided with a non-aqueous electrolyte containing a lithium salt The battery is excellent in output characteristics and cycle characteristics since there is no lithium intercalation of the negative electrode.

さらに、自己ドープ型の正極または負極を用いた場合、充放電反応において、カチオンのみが同量、反応に関与するので、電解液中のカチオン濃度が変化せず、電解液の伝導度を一定に保つことができる。   Furthermore, when a self-doped positive electrode or negative electrode is used, in the charge / discharge reaction, only cations are involved in the same amount, so the cation concentration in the electrolyte does not change and the conductivity of the electrolyte is kept constant. Can keep.

以下に実施例により本発明をさらに具体的に説明する。 The present invention will be described more specifically with reference to the following examples.

アセトニトリルにフルオレンの誘導体を溶解後,十分量の塩化鉄(III)を溶解させ72時間撹拌して重合を進行させた。次に反応液を減圧下で濾過し,濾過物を60COで約12時間真空乾燥して粗生成物を得た。この粗生成物をクロロホルムに溶解させ飽和状態にし,メタノールを加えることで生成物を再析出させた。再析出物を再び減圧濾過し,濾過物を60COで約12時間真空乾燥して精製したポリフルオレンの誘導体を得た。 After dissolving the fluorene derivative in acetonitrile, a sufficient amount of iron (III) chloride was dissolved and stirred for 72 hours to proceed the polymerization. Next, the reaction solution was filtered under reduced pressure, and the filtrate was vacuum dried with 60 C 2 O for about 12 hours to obtain a crude product. This crude product was dissolved in chloroform to be saturated, and methanol was added to reprecipitate the product. The reprecipitate was again filtered under reduced pressure, and the filtrate was vacuum-dried with 60 C 2 O for about 12 hours to obtain a purified polyfluorene derivative.

ついで、テトラヒドロフラン溶媒1Lに対して,得られたポリフルオレンの誘導体1.2gを溶解させ,この溶液をカーボンからなる集電体上に滴下,乾燥させた。滴下と乾燥を繰り返すことで集電体上にポリフルオレンの誘導体膜を形成した。この集電体/ポリフルオレンの誘導体膜をポリフルオレンの誘導体からなる電極として用いた。この電極を用いて電気化学素子を作成し、定電流充放電試験を行った。充放電電流値を0.5mA cm-2とし,充放電を繰り返した。用いた電極と作動電圧を(表1)に示す。なお、電極として用いたポリマーについてはモノマー名のみ記載した。 Subsequently, 1.2 g of the obtained polyfluorene derivative was dissolved in 1 L of tetrahydrofuran solvent, and this solution was dropped on a current collector made of carbon and dried. By repeating the dropping and drying, a polyfluorene derivative film was formed on the current collector. This current collector / polyfluorene derivative film was used as an electrode made of a polyfluorene derivative. An electrochemical device was prepared using this electrode, and a constant current charge / discharge test was conducted. The charge / discharge current was set to 0.5 mA cm -2 and charge / discharge was repeated. The electrodes and operating voltage used are shown in (Table 1). In addition, only the monomer name was described about the polymer used as an electrode.


LiClO4−PC:過塩素酸リチウムプロピレンカーボネート溶液

LiClO 4 -PC: lithium perchlorate propylene carbonate solution

以上のように、の二次電池の作動電圧は比較例に比べて高い作動電圧を示している。また、この作動電圧での充放電特性も300サイクルまで良好であった。
As described above, the operating voltage of the secondary battery is higher than that of the comparative example. The charge / discharge characteristics at this operating voltage were also good up to 300 cycles.

Claims (3)

ポリフルオレンの誘導体を用いた電極と、リチウム塩を含む非水溶液からなる電解液を備えた二次電池。 A secondary battery comprising an electrode using a polyfluorene derivative and an electrolytic solution comprising a non-aqueous solution containing a lithium salt. ポリフルオレンの誘導体の9位の置換基がアルキル基、カルボキシル基,ニトロ基,シアノ基,アルキルシアノ基,フェニル基(-Ph),ハロゲン原子(-X),-CX3,ハロゲン化フェニル基, アルキルフェニル基,アルキルハロゲン化フェニル基である請求項1記載の二次電池。 The 9-position substituent of the polyfluorene derivative is alkyl group, carboxyl group, nitro group, cyano group, alkyl cyano group, phenyl group (-Ph), halogen atom (-X), -CX 3 , halogenated phenyl group, The secondary battery according to claim 1, which is an alkylphenyl group or an alkylhalogenated phenyl group. ドーピングしたポリフルオレンの誘導体を塩基性溶媒に溶解した溶液を集電体に付着させ、溶媒を蒸発させて、ポリフルオレンの誘導体の膜を集電体上に形成した電極を用いた請求項1または2記載の二次電池。

A solution in which a doped polyfluorene derivative is dissolved in a basic solvent is attached to a current collector, the solvent is evaporated, and an electrode having a polyfluorene derivative film formed on the current collector is used. 2. The secondary battery according to 2.

JP2004224817A 2004-07-30 2004-07-30 Secondary battery Pending JP2006048972A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004224817A JP2006048972A (en) 2004-07-30 2004-07-30 Secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004224817A JP2006048972A (en) 2004-07-30 2004-07-30 Secondary battery

Publications (1)

Publication Number Publication Date
JP2006048972A true JP2006048972A (en) 2006-02-16

Family

ID=36027298

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004224817A Pending JP2006048972A (en) 2004-07-30 2004-07-30 Secondary battery

Country Status (1)

Country Link
JP (1) JP2006048972A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527518A (en) * 2009-05-18 2012-11-08 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Conductive polymer binder for lithium ion battery electrodes

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012527518A (en) * 2009-05-18 2012-11-08 ザ、リージェンツ、オブ、ザ、ユニバーシティ、オブ、カリフォルニア Conductive polymer binder for lithium ion battery electrodes
US8852461B2 (en) 2009-05-18 2014-10-07 The Regents Of The University Of California Electronically conductive polymer binder for lithium-ion battery electrode
US9653734B2 (en) 2009-05-18 2017-05-16 The Regents Of The University Of California Electronically conductive polymer binder for lithium-ion battery electrode

Similar Documents

Publication Publication Date Title
WO2010140512A1 (en) Electricity storage device
JP5011561B2 (en) Electrode material
JP6667178B2 (en) Electrolyte for non-aqueous secondary battery and non-aqueous secondary battery using the same
JP5076884B2 (en) Secondary battery electrode and secondary battery employing the electrode
US20100009256A1 (en) Polyradical compound-conductive material composite, method for producing the same, and battery using the same
WO2015005135A1 (en) Electricity-storage-device electrode, manufacturing method therefor, and electricity-storage device using said electrode
WO2020084828A1 (en) Polymer, electrode active substance and secondary battery
JP5843885B2 (en) Polymer and secondary battery using the same
JP3434677B2 (en) Secondary battery with non-aqueous solvent electrolyte
WO2014104005A1 (en) Nonaqueous electrolyte secondary battery
US20130095376A1 (en) Electrode active material for secondary battery and secondary battery
JP5333887B2 (en) Electrode active material and electrode using the same
JP2006048975A (en) Electrode material and electrochemical element
CN109863633B (en) Electrochemical device
JP2006048974A (en) Electrode material for electrochemical element
JP3723140B2 (en) Power storage device using quinoxaline compound
CN109792087B (en) Electrochemical device
WO2014103779A1 (en) Nonaqueous electrolyte secondary battery, and positive electrode used therein
WO2014077226A1 (en) Power storage device, and electrode and porous sheet used in same
JP2006048972A (en) Secondary battery
WO2021106834A1 (en) Electrode material
WO2014103780A1 (en) Nonaqueous electrolyte secondary battery, and positive electrode sheet used therein
JP2006049387A (en) Electrochemical capacitor
JP5218962B2 (en) Composite electrode
WO2014157059A1 (en) Electrode for power storage device and power storage device using same