JP2006046880A - Control device for hybrid air conditioner - Google Patents

Control device for hybrid air conditioner Download PDF

Info

Publication number
JP2006046880A
JP2006046880A JP2004249345A JP2004249345A JP2006046880A JP 2006046880 A JP2006046880 A JP 2006046880A JP 2004249345 A JP2004249345 A JP 2004249345A JP 2004249345 A JP2004249345 A JP 2004249345A JP 2006046880 A JP2006046880 A JP 2006046880A
Authority
JP
Japan
Prior art keywords
path
water
heat exchange
exchange medium
heat exchanger
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004249345A
Other languages
Japanese (ja)
Inventor
Satoyuki Tsubaki
智行 椿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Individual
Original Assignee
Individual
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Individual filed Critical Individual
Priority to JP2004249345A priority Critical patent/JP2006046880A/en
Publication of JP2006046880A publication Critical patent/JP2006046880A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Air Conditioning Control Device (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hybrid air conditioning control device that can efficiently operate an air conditioner having air-cooled and water-cooled heat exchangers and cause it to function as an air conditioner even when either heat exchanger fails. <P>SOLUTION: The device is for controlling a hybrid air conditioner 1 having a first path 4B with an air-cooled heat exchanger 5 for heat exchange via gas with a heat exchange medium circulated in a passage 4 for circulating the heat exchange medium to and from air conditioning equipment 11, a second path 4A with a water-cooled heat exchanger 20 for heat exchange via cooling water with the heat exchange medium circulated in the passage, switch means 22 to 25 for switching the path in which the heat exchange medium flows to the first path or second path, and a cooling water path 30 for circulating the cooling water to the water-cooled heat exchanger 20. The switch means are controlled to switch the path in which the heat exchange medium flows to the first path 4B if temperature information from temperature detection means 32 and 33 for detecting the temperature of the cooling water exceeds at least an upper limit temperature or upper limit temperature range, and to switch the path in which the heat exchange medium flows to the second path 4A if the detected temperature information falls below a lower limit temperature or lower limit temperature range. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱交換媒体を空気で熱交換する空冷式熱交換機と水熱源で熱交換する水冷式熱交換機を有するハイブリッドタイプの空調装置の制御に関する。  The present invention relates to control of a hybrid type air conditioner having an air-cooled heat exchanger that exchanges heat with a heat exchange medium and a water-cooled heat exchanger that exchanges heat with a water heat source.

空冷式の熱交換機となるヒートポンプを有する空調装置では、一般に直接膨張方式(以下、直膨方式)を用いて冷却及び加熱を行っている。以下、冷却サイクルを用いて冷却システムについて説明すると、直膨方式は室内に設置された蒸発器に熱交換媒体を送り、コイルの中で膨張気化させてコイルを冷却し、通過する空気と熱交換をし、その空気より吸熱を行っている。本空調装置は、室外に設置された凝縮器で空気と直接熱交換を行う構造であるため、構造が簡単である反面、放熱する空気温度(外気温度)によってその性能が大きく変化する特性となっている。  In an air conditioner having a heat pump serving as an air-cooled heat exchanger, cooling and heating are generally performed using a direct expansion method (hereinafter referred to as a direct expansion method). Hereinafter, the cooling system will be described using a cooling cycle. In the direct expansion method, a heat exchange medium is sent to an evaporator installed in a room, and the coil is expanded and vaporized in the coil to cool the coil and exchange heat with the passing air. It absorbs heat from the air. Since this air conditioner has a structure in which heat is exchanged directly with air using a condenser installed outside the room, the structure is simple, but the performance varies greatly depending on the air temperature (outside air temperature) to dissipate heat. ing.

一方、空冷式に比べて熱交換率が良いことで、水冷式の熱交換機としてのヒートポンプが種々提案されている。ここで空冷式と水冷式のヒートポンプの差を冷却サイクルで説明する。この水冷式のヒートポンプは、熱交換媒体を水熱源とする地下水、クーリングタワー内の水等の冷却水に放熱するので、空冷式に比べて熱交換性能が安定する特性がある。しかしながら、冷却水への放熱方式を行おうとしても、この冷却水として水道水を利用するとコストが高く、地下水を利用すると、汲み上げ規制のある地域では十分に利用できるものとは限らない。また、冷却水として水または不凍液を循環させる経路を地中に埋設して熱交換させる場合、ヒートポンプの原理的な問題から冷却水の温度がある一定温度を越えると、冷却水と熱交換媒体との間で熱交換を行えなくなる。  On the other hand, various heat pumps as water-cooled heat exchangers have been proposed because of their better heat exchange rate than air-cooled. Here, the difference between the air-cooled heat pump and the water-cooled heat pump will be described in terms of the cooling cycle. This water-cooled heat pump dissipates heat to cooling water such as ground water using a heat exchange medium as a water heat source, water in a cooling tower, etc., and thus has a characteristic that heat exchange performance is more stable than air-cooled heat pumps. However, even if a heat dissipation method for cooling water is used, the cost is high if tap water is used as the cooling water, and the use of groundwater may not be sufficient in areas where pumping is restricted. In addition, when heat exchange is performed by embedding a path for circulating water or antifreeze as cooling water, if the temperature of the cooling water exceeds a certain temperature due to the principle problem of the heat pump, the cooling water and the heat exchange medium Heat exchange between the two.

ここで、冷却水を熱源とするヒートポンプの原理について説明する。ヒートポンプは、図9、図10に示すように、エンタルピー(h)と圧力(p)に対して用いる熱交換媒体の飽和線上に変化を示した図で説明される。ヒートポンプは、加熱時と冷却時で熱交換媒体の動きが逆になるが、以下に示すように、加熱時及び冷却時においても、水冷式の方の熱交換効率が向上する。図9を用いて加熱時のサイクルを説明する。ヒートポンプにおいては、蒸発器が熱源との熱交換機分となり、ここが空冷冷却機と水冷冷却機で異なる部分となる。水の熱伝達率は、空気のそれと比べて数百倍と大変大きく、また、熱容量も大きくなることから、効率的に吸熱反応が行われ、ヒートポンプの動力費(電気消費量)が空気の場合と比べて小さく、効率が向上しており、加熱能力がよくなる。図10を用いて冷却時のサイクルを説明すると、熱交換媒体の循環サイクルは加熱時と逆向きとなり、凝縮器での放熱が冷却機の仕事となる。この効率も加熱時と同様に熱伝達率が、圧倒的に空気と比べて高いことから、水による放熱が少ない動力費で行われ、効率が向上して冷却能力もよくなる。
このような特性を鑑み、近年、空冷式と水冷式の熱交換機を備えたハイブリッド空調装置が、例えば特許文献1、2で提案されている。
Here, the principle of a heat pump using cooling water as a heat source will be described. As shown in FIGS. 9 and 10, the heat pump is described with a diagram showing a change on a saturation line of a heat exchange medium used for enthalpy (h) and pressure (p). In the heat pump, the movement of the heat exchange medium is reversed between heating and cooling. However, as shown below, the heat exchange efficiency of the water-cooled type is improved also during heating and cooling. The cycle during heating will be described with reference to FIG. In the heat pump, the evaporator serves as a heat exchanger with the heat source, and this is a different part between the air-cooled cooler and the water-cooled cooler. The heat transfer coefficient of water is very large, several hundred times that of air, and the heat capacity is also large, so the endothermic reaction is carried out efficiently, and the heat pump power cost (electricity consumption) is air. The efficiency is improved and the heating capacity is improved. The cycle during cooling will be described with reference to FIG. 10. The circulation cycle of the heat exchange medium is opposite to that during heating, and the heat radiation in the condenser is the work of the cooler. Since this heat efficiency is overwhelmingly higher than that of air as in the case of heating, it is performed at a power cost with less heat dissipation by water, improving efficiency and improving cooling capacity.
In view of such characteristics, in recent years, for example, Patent Documents 1 and 2 have proposed hybrid air conditioners including air-cooled and water-cooled heat exchangers.

特開2004−116800JP 2004-116800 A 特開2004−116806JP-A-2004-116806

特許文献1,2には、空冷式と水冷式の熱交換機を有する空調装置が提案されているが、冷却、加熱および除湿の運転時において、空冷式と水冷式の熱交換機の最適なタイミングで切換る事は記載されていない。これら空冷式と水冷式の熱交換機の切換えは、所謂冷凍サイクルを備えた各種装置、とりわけ空調装置を効率的に運転するのに非常に重要な課題となる。また、水冷式の熱交換機を用いた冷却、加熱、除湿の各運転時において、水熱源からの冷却水の供給が立たれてしまうと、水冷式の熱交換機による熱交換が行われず、装置の停止や故障の原因となる。
本発明は、空冷式と水冷式の熱交換機を有する空調装置を効率良く運転させつつ、何れかの熱交換機が故障した場合でも、空調装置として機能させることができるハイブリッド空調制御装置を提供することを、その目的とする。
Patent Documents 1 and 2 propose an air conditioner having an air-cooling type and a water-cooling type heat exchanger, but at the optimal timing of the air-cooling type and the water-cooling type heat exchanger during cooling, heating and dehumidifying operations. Switching is not described. Switching between these air-cooled and water-cooled heat exchangers is a very important issue for efficiently operating various devices equipped with a so-called refrigeration cycle, especially air conditioners. In addition, during cooling, heating, and dehumidifying operations using a water-cooled heat exchanger, if cooling water is supplied from the water heat source, heat exchange by the water-cooled heat exchanger is not performed, and the device It may cause a stop or failure.
The present invention provides a hybrid air-conditioning control device capable of functioning as an air-conditioning device even when one of the heat exchangers breaks down while efficiently operating an air-conditioning device having air-cooled and water-cooled heat exchangers. Is the purpose.

本発明は、空調機器との間で熱交換媒体を循環させる流路内を循環する熱交換媒体に対して気体を用いて熱交換する空冷式熱交換機が設けらたれ第1の経路と、流路内を循環する熱交換媒体に対して冷却水を用いて熱交換する水冷式熱交換機が設けられた第2の経路と、熱交換媒体が流れる経路を第1の経路または第2の経路に切換る切換手段と、水冷式熱交換機に冷却水を流通させる冷却水経路とを有するハイブリッド空調装置を制御する装置であって、冷却水の温度を検知する温度検知手段からの温度情報が少なくとも上限温度または上限温度範囲を超える場合に、熱交換媒体が流れる経路を第1の経路へ切換え、検知した温度情報が下限温度または下限温度範囲を超える場合には熱交換媒体が流れる経路を第2の経路へ切換るように切換手段を制御する冷却モードを少なくとも備えている。
このような構成においては、冷却水の温度が少なくとも上限温度または上限温度範囲を超えると、熱交換媒体が流れる経路が第1の経路へ切換えられ、熱交換媒体が空冷式熱交換機へ案内され、冷却水の温度が下限温度または下限温度範囲を超えると熱交換媒体が流れる経路が第2の経路へ切換えされ、熱交換媒体が水冷式熱交換機へと案内される。
The present invention includes a first path provided with an air-cooled heat exchanger that exchanges heat using a gas with respect to a heat exchange medium that circulates in a flow path that circulates the heat exchange medium with an air conditioner, A second path provided with a water-cooled heat exchanger for exchanging heat using cooling water for a heat exchange medium circulating in the path, and a path through which the heat exchange medium flows as a first path or a second path An apparatus for controlling a hybrid air conditioner having switching means for switching and a cooling water path for circulating cooling water to the water-cooled heat exchanger, wherein temperature information from the temperature detecting means for detecting the temperature of the cooling water is at least an upper limit When the temperature or upper limit temperature range is exceeded, the path through which the heat exchange medium flows is switched to the first path, and when the detected temperature information exceeds the lower limit temperature or lower limit temperature range, the path through which the heat exchange medium flows is changed to the second path. Switch to route It comprises at least a cooling mode for controlling the means.
In such a configuration, when the temperature of the cooling water exceeds at least the upper limit temperature or the upper limit temperature range, the path through which the heat exchange medium flows is switched to the first path, and the heat exchange medium is guided to the air-cooled heat exchanger, When the temperature of the cooling water exceeds the lower limit temperature or the lower limit temperature range, the path through which the heat exchange medium flows is switched to the second path, and the heat exchange medium is guided to the water-cooled heat exchanger.

本発明は、空調機器との間で熱交換媒体を循環させる流路内を循環する熱交換媒体に対して気体を用いて熱交換する空冷式熱交換機が設けらたれ第1の経路と、流路内を循環する熱交換媒体に対して冷却水を用いて熱交換する水冷式熱交換機が設けられた第2の経路と、熱交換媒体が流れる経路を第1の経路または第2の経路に切換る切換手段と、水冷式熱交換機に冷却水を流通させる冷却水経路とを有するハイブリッド空調装置を制御する装置であって、冷却水の温度を検知する温度検知手段からの温度情報が少なくとも下限温度または下限温度範囲を超える場合には熱交換媒体が流れる経路を第1の経路へ切換え、温度情報が上限温度または上限温度範囲を超える場合には熱交換媒体が流れる経路を第2の経路へ切換るように切換手段を制御する加熱モードを少なくとも備えている。
このような構成においては、冷却水の温度が少なくとも下限温度または下限温度範囲を超えると熱交換媒体が流れる経路が第1の経路へ切換えられて熱交換媒体が空冷式熱交換機へ案内され、冷却水の温度が上限温度または上限温度範囲を超える場合には熱交換媒体が流れる経路が第2の経路へ切換えられ熱交換媒体が水冷式熱交換機へ案内される。
The present invention includes a first path provided with an air-cooled heat exchanger that exchanges heat using a gas with respect to a heat exchange medium that circulates in a flow path that circulates the heat exchange medium with an air conditioner, A second path provided with a water-cooled heat exchanger for exchanging heat using cooling water for a heat exchange medium circulating in the path, and a path through which the heat exchange medium flows as a first path or a second path A device for controlling a hybrid air conditioner having switching means for switching and a cooling water path for circulating cooling water to the water-cooled heat exchanger, wherein temperature information from the temperature detecting means for detecting the temperature of the cooling water is at least a lower limit When the temperature or the lower limit temperature range is exceeded, the path through which the heat exchange medium flows is switched to the first path, and when the temperature information exceeds the upper limit temperature or the upper limit temperature range, the path through which the heat exchange medium flows is changed to the second path. Switching means to switch And it includes at least a Gosuru heating mode.
In such a configuration, when the temperature of the cooling water exceeds at least the lower limit temperature or the lower limit temperature range, the path through which the heat exchange medium flows is switched to the first path, and the heat exchange medium is guided to the air-cooled heat exchanger and cooled. When the water temperature exceeds the upper limit temperature or the upper limit temperature range, the path through which the heat exchange medium flows is switched to the second path, and the heat exchange medium is guided to the water-cooled heat exchanger.

本発明にかかるハイブリッド空調装置の制御装置では、冷却モードあるいは加熱モードの何れかを備えて入れはよく、空調装置を、冷却、冷凍、除湿あるいは加熱専用の空調装置として機能させることができるとともに、冷却、加熱の各モードを備えた場合には冷却と加熱を行える空調装置として機能させることができるようになる。除湿は冷凍サイクル的に言うと、冷却の一機能として捉えることができるので、冷却モードを有していれば達成することができる。  In the control device of the hybrid air conditioner according to the present invention, it can be provided with either a cooling mode or a heating mode, and the air conditioner can function as an air conditioner dedicated to cooling, freezing, dehumidification or heating, When each mode of cooling and heating is provided, it can function as an air conditioner capable of cooling and heating. Dehumidification can be considered as a function of cooling in terms of the refrigeration cycle, and can be achieved if it has a cooling mode.

本発明にかかるハイブリッド空調装置の制御装置では、冷却水経路の冷却水の圧力を検知する水圧検知手段からの検知情報を取り込み、その検知情報が所定圧に満たない場合には熱交換媒体が流れる経路を第1の経路へ切換えるように切換手段を制御することを特徴としている。水圧検知手段は、水冷式熱交換機に対する冷却水の流入側あるいは吐出側の何れかに設ければよい。流入側に設けてその検知信号を切換手段の切換制御のパラメーターとした場合、水冷式熱交換機に対する冷却水の搬送系に異常がある場合に、空冷式熱交換機に熱交換媒体が案内されることになる。吐出側に設けてその検知信号を切換手段の切換制御のパラメーターとする場合、水冷式熱交換機内あるいは吐出側の搬送系の異常に以上ある場合に、空冷式熱交換機に熱交換媒体が案内されることになり、空調装置の動作を停止させずに済む。  In the control device of the hybrid air conditioner according to the present invention, the detection information from the water pressure detection means for detecting the pressure of the cooling water in the cooling water path is taken in, and the heat exchange medium flows when the detection information is less than the predetermined pressure. The switching means is controlled to switch the route to the first route. The water pressure detecting means may be provided on either the cooling water inflow side or the discharge side for the water-cooled heat exchanger. When the detection signal is provided on the inflow side and the detection signal is used as a parameter for switching control of the switching means, the heat-exchange medium is guided to the air-cooled heat exchanger when there is an abnormality in the cooling water transport system for the water-cooled heat exchanger. become. When provided on the discharge side and the detection signal is used as a parameter for switching control of the switching means, the heat-exchange medium is guided to the air-cooled heat exchanger when there is an abnormality in the water-cooled heat exchanger or on the discharge-side transport system. Therefore, it is not necessary to stop the operation of the air conditioner.

水冷式熱交換機に対する冷却水の異常検知時の対策としては、冷却水経路の冷却水の流量を流量検知手段で検知し、その検知情報が所定流量に満たない場合に、熱交換媒体が流れる経路を第1の経路へ切換えるように切換手段を制御してもよい。この場合でも、流入側に流量検知手段を設けてその検知信号を切換手段の切換制御のパラメーターとした場合、水冷式熱交換機に対する冷却水の搬送系に異常がある場合に空冷式熱交換機に熱交換媒体が案内されることになる。吐出側に設けてその検知信号を切換手段の切換制御のパラメーターとした場合、水冷式熱交換機内でのスケール付着や吐出側の搬送系に異常がある場合に、空冷式熱交換機に熱交換媒体が案内されることになり、空調装置の動作を停止させずに済む。  As a countermeasure when detecting an abnormality in the cooling water for the water-cooled heat exchanger, the flow of the heat exchange medium is detected when the flow rate of the cooling water in the cooling water path is detected by the flow rate detection means and the detected information is less than the predetermined flow rate. The switching means may be controlled to switch to the first path. Even in this case, if the flow rate detection means is provided on the inflow side and the detection signal is used as a switching control parameter of the switching means, the air-cooled heat exchanger is heated if there is an abnormality in the cooling water transport system for the water-cooled heat exchanger. The exchange medium will be guided. When the detection signal is provided on the discharge side and used as a switching control parameter for the switching means, if there is an abnormality in scale adhesion in the water-cooled heat exchanger or the transport system on the discharge side, the air-cooled heat exchanger has a heat exchange medium. Therefore, it is not necessary to stop the operation of the air conditioner.

水冷式熱交換機の異常検知のパラメーターとしては、冷却水に関する各情報ではなく、水冷式熱交換機の表面温度を検知する温度検知手段からの検知情報をパラメーターとしてもよい。この場合、検知された温度情報が所定温度よりも高い場合、熱交換媒体が流れる経路を第1の経路へ切換えるように切換手段を制御する。水冷式熱交換機の温度上昇は、水冷式熱交換機内を冷却水が流れない異常な状態もしくは冷却水の温度上昇により交換機全体、あるいは部分的な温度上昇と見なすことができるので、このような場合には安全性の観点から熱交換媒体の経路を第1の経路へと切換ることで、空冷式熱交換機で熱交換を行えるため、空調装置の動作を停止させずに済む。  As a parameter for detecting an abnormality of the water-cooled heat exchanger, detection information from a temperature detecting means for detecting the surface temperature of the water-cooled heat exchanger may be used as a parameter instead of each piece of information regarding the cooling water. In this case, when the detected temperature information is higher than the predetermined temperature, the switching unit is controlled to switch the path through which the heat exchange medium flows to the first path. In such a case, the temperature rise of the water-cooled heat exchanger can be considered as an entire exchanger or a partial temperature rise due to an abnormal state where the cooling water does not flow in the water-cooled heat exchanger or the temperature rise of the cooling water. From the viewpoint of safety, the heat exchange medium path is switched to the first path so that heat exchange can be performed by the air-cooled heat exchanger, so that the operation of the air conditioner need not be stopped.

本形態にかかるハイブリッド空調装置の制御装置では、切換手段を制御して熱交換媒体が流れる経路を第1の経路へ切換えた後、冷却水経路を開閉する開閉手段を間接的に開閉制御することを特徴としている。第1の経路へ切換ると熱交換媒体は空冷式熱交換機へ案内されるが、水冷式熱交換機や冷却水経路には冷却水が滞停している。この冷却水の停滞を改善しなければ、冷却水の温度低減率は低く、水熱交換率の良い水冷式熱交換機による熱交換を行えない。このように、空冷式熱交換機による熱交換時においても、冷却水経路を開閉する開閉手段を間接的に開閉制御することで、冷却水を循環させることができるので冷却水の迅速な温度低減を図ることができる。この開閉手段の開閉は間欠的な制御できなく、時間や回数を予め設定しておき、これら値をパラメーターとして開閉制御するようにしても良い。  In the control device of the hybrid air conditioner according to the present embodiment, the switching means is controlled to switch the path through which the heat exchange medium flows to the first path, and then the opening / closing means for opening / closing the cooling water path is indirectly controlled to open / close. It is characterized by. When switching to the first path, the heat exchange medium is guided to the air-cooled heat exchanger, but the cooling water is stagnant in the water-cooled heat exchanger and the cooling water path. Unless the stagnation of the cooling water is improved, the temperature reduction rate of the cooling water is low, and heat exchange cannot be performed by a water-cooled heat exchanger having a good water heat exchange rate. Thus, even during heat exchange by an air-cooled heat exchanger, the cooling water can be circulated by indirectly controlling the opening and closing means for opening and closing the cooling water path, so that the temperature of the cooling water can be quickly reduced. Can be planned. The opening / closing of the opening / closing means cannot be intermittently controlled, and the opening / closing control may be performed by setting the time and the number of times in advance and using these values as parameters.

本発明によれば、冷却モード寺において、冷却水の温度が少なくとも上限温度または上限温度範囲を超えると、熱交換媒体が流れる経路が第1の経路へ切換えられ、熱交換媒体が空冷式熱交換機へ案内され、冷却水の温度が下限温度または下限温度範囲を超えると熱交換媒体が流れる経路が第2の経路へ切換えされ、熱交換媒体が水冷式熱交換機へと案内されるので、温度条件に応じて適宜、空冷式熱交換機と水冷式熱交換機の何れかに熱交換媒体が案内されて熱交換されるので、空冷式と水冷式の熱交換機を有する空調装置を効率良く運転させつつ、何れかの熱交換機が故障した場合でも空調装置として機能させることができる。
本発明によれば、加熱モード時において、冷却水の温度が少なくとも下限温度または下限温度範囲を超えると熱交換媒体が流れる経路が第1の経路へ切換えられて熱交換媒体が空冷式熱交換機へ案内され、冷却水の温度が上限温度または上限温度範囲を超える場合には熱交換媒体が流れる経路が第2の経路へ切換えられ熱交換媒体が水冷式熱交換機へ案内されるので、空冷式と水冷式の熱交換機を有する空調装置を効率良く運転させつつ、何れかの熱交換機が故障した場合でも空調装置として機能させることができる。
According to the present invention, in the cooling mode temple, when the temperature of the cooling water exceeds at least the upper limit temperature or the upper limit temperature range, the path through which the heat exchange medium flows is switched to the first path, and the heat exchange medium is an air-cooled heat exchanger. When the temperature of the cooling water exceeds the lower limit temperature or the lower limit temperature range, the path through which the heat exchange medium flows is switched to the second path, and the heat exchange medium is guided to the water-cooled heat exchanger. As appropriate, the heat exchange medium is guided to either the air-cooled heat exchanger or the water-cooled heat exchanger for heat exchange, so that the air-conditioning apparatus having the air-cooled and water-cooled heat exchangers is operated efficiently, Even if any of the heat exchangers fails, it can function as an air conditioner.
According to the present invention, in the heating mode, when the temperature of the cooling water exceeds at least the lower limit temperature or the lower limit temperature range, the path through which the heat exchange medium flows is switched to the first path, and the heat exchange medium becomes the air-cooled heat exchanger. If the temperature of the cooling water exceeds the upper limit temperature or the upper limit temperature range, the path through which the heat exchange medium flows is switched to the second path and the heat exchange medium is guided to the water-cooled heat exchanger. An air conditioner having a water-cooled heat exchanger can be operated efficiently, and can function as an air conditioner even when one of the heat exchangers fails.

以下、本発明の実施の形態について、図面を用いて説明する。図1は、ハイブリッド空調装置を示す概略図である。図1において、符号1は室内に装着される空調機器としてのファンコイルユニット11と接続する室外機1の内部構造を示す。この室外機1は、そのケーシング100の内部に、電磁的の四方弁2、膨張弁3、四方弁2と膨張弁3とを結ぶ流路4上に配置された空冷式熱交換機5、四方弁2と圧縮機6とを結ぶ低圧の流路7上にアキュムレータ8と低圧開閉弁9、四方弁2と膨張弁3の流路4を閉鎖して室外機1とファンコイルユニット11を切り離し可能とする停止弁10A,10B、水冷式熱交換機20、水冷式熱交換機20に冷却水を循環させる冷却水経路30がそれぞれ設けられている。空冷熱交換5と対向する部位には、駆動モータ19によって回転駆動される冷却用のファン18が設けられている。圧縮機6と四方弁2とを結ぶ高圧の流路12には、周知の消音器13と圧力開閉弁14が設けられている。これら各構成要素は、流路4内を循環する熱交換媒体の熱交換を行い、冷却と加熱を行う空冷式熱交換機と冷凍サイクルの構成要素である。熱交換媒体は、最適な性能を得られる量が流路4内に封入されている。熱交換媒体としては、科学冷媒として、CFC系のR−12、HCFC系のR−22,R−123、HFC系のR−134a,R−407(HFC−32、125d、134a混合),R410A(HFC−32、125混合)や、CO2やプロパン等の自然冷媒が挙げられる。  Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic diagram showing a hybrid air conditioner. In FIG. 1, the code | symbol 1 shows the internal structure of the outdoor unit 1 connected with the fan coil unit 11 as an air conditioning apparatus with which indoors are mounted | worn. The outdoor unit 1 includes an electromagnetic four-way valve 2, an expansion valve 3, an air-cooled heat exchanger 5, a four-way valve disposed on a flow path 4 connecting the four-way valve 2 and the expansion valve 3. The outdoor unit 1 and the fan coil unit 11 can be separated by closing the accumulator 8, the low-pressure on-off valve 9, the four-way valve 2 and the expansion valve 3 on the low-pressure channel 7 connecting the compressor 2 and the compressor 6. Stop valve 10A, 10B to perform, the water cooling type heat exchanger 20, and the cooling water path | route 30 which circulates cooling water to the water cooling type heat exchanger 20 are each provided. A cooling fan 18 that is rotationally driven by a drive motor 19 is provided at a portion facing the air cooling heat exchange 5. A known silencer 13 and a pressure opening / closing valve 14 are provided in the high-pressure flow path 12 connecting the compressor 6 and the four-way valve 2. Each of these components is a component of an refrigeration cycle and an air-cooled heat exchanger that performs heat exchange of the heat exchange medium circulating in the flow path 4 and performs cooling and heating. The amount of heat exchange medium that can obtain optimum performance is enclosed in the flow path 4. As a heat exchange medium, as a scientific refrigerant, CFC R-12, HCFC R-22, R-123, HFC R-134a, R-407 (HFC-32, 125d, 134a mixed), R410A (HFC-32, 125 mixed) and natural refrigerants such as CO2 and propane.

水冷式熱交換機20は、空冷式熱交換機5を迂回するように流路4に接続された流路4Aに配設されている。この流路4Aは、流路4内を流れる熱交換媒体を水冷式熱交換機20へ案内する第2の経路を構成する。また、水冷式熱交換機20に対して迂回流路となる流路4Bには空冷式熱交換機5が配設されている。流路4Bは第1の経路を構成する。水冷式熱交換機20の上流側と下流側に位置する流路4Aには電磁弁22,23が、水冷式熱交換機5の上流側と下流側に位置する経路4Bには電磁弁24,25がそれぞれ配設されている。これら電磁弁は、オフ状態では各経路を閉じて水冷式熱交換機20と空冷式熱交換機5への熱交換媒体の流入を停止し、オン状態となると各経路を開き各熱交換機に対して熱交換媒体を流入するように構成されている。  The water-cooled heat exchanger 20 is disposed in the flow path 4A connected to the flow path 4 so as to bypass the air-cooled heat exchanger 5. This flow path 4 </ b> A constitutes a second path for guiding the heat exchange medium flowing in the flow path 4 to the water-cooled heat exchanger 20. An air-cooled heat exchanger 5 is disposed in the flow path 4 </ b> B serving as a bypass flow path for the water-cooled heat exchanger 20. The flow path 4B constitutes a first path. Solenoid valves 22 and 23 are provided in the flow path 4A located upstream and downstream of the water-cooled heat exchanger 20, and electromagnetic valves 24 and 25 are provided in the path 4B located upstream and downstream of the water-cooled heat exchanger 5. Each is arranged. These solenoid valves close each path in the off state to stop the flow of the heat exchange medium into the water-cooled heat exchanger 20 and the air-cooled heat exchanger 5, and when turned on, open each path and heat each heat exchanger. The exchange medium is configured to flow in.

水冷式熱交換機20は、冷却水を、その内部に導入する流入口20A、内部の通過して熱交換された冷却水を排出する吐出口20Bとを備えている。流入口20Aには冷却水経路30を構成する給水流路34の一端34Aが接続され、吐出口20Bには冷却水経路30を構成する排水流路37の一端37Aがそれぞれ接続されている。給水流路34には、その他端34B側に接続される図示しないポンプから冷却水が供給される。この冷却水は水冷式熱交換機20内に導入されて排水流路37から排出される。すなわち、冷却水経路30は、水冷式熱交換機20に冷却水を流通する経路であり、水冷式熱交換機20は、流通する冷却水によって、ファンコイルユニット11との間で循環する熱交換媒体を冷却あるいは加熱するように構成されている。本形態において、冷却水を送るポンプの制御は別な系統で適宜オン/オフ制御される。  The water-cooled heat exchanger 20 includes an inlet 20A that introduces cooling water into the inside thereof, and a discharge port 20B that discharges the cooling water that has passed through the inside and exchanged heat. One end 34A of a water supply passage 34 constituting the cooling water passage 30 is connected to the inflow port 20A, and one end 37A of a drain passage 37 constituting the cooling water passage 30 is connected to the discharge port 20B. Cooling water is supplied to the water supply channel 34 from a pump (not shown) connected to the other end 34B side. This cooling water is introduced into the water-cooled heat exchanger 20 and discharged from the drainage channel 37. That is, the cooling water path 30 is a path for circulating cooling water to the water-cooled heat exchanger 20, and the water-cooled heat exchanger 20 uses a circulating water to flow a heat exchange medium that circulates between the fan coil unit 11. It is configured to cool or heat. In this embodiment, the pump for feeding the cooling water is appropriately turned on / off by another system.

給水流路34には、水冷式熱交換機20への冷却水の給水温度を検知する温度検知手段としての給水温度センサ33と、冷却水経路30内の冷却水の圧力のうち給水圧を検知する水圧検知手段としての水圧検知センサ32と、給水流路34を開閉する開閉手段としての電磁弁31とが設けられている。給水温度センサ33は、給水口33の近傍に配置され、水圧検知センサ32は、温度センサ33と電磁弁31との間に配置されている。排水流路37には、水冷式熱交換機20で熱交換された冷却水の吐出温度を検知する温度検知手段としての吐出温度センサ35と、冷却水経路30の冷却水の流量のうち、水冷式熱交換機20からの排出される冷却水の流量を検知する流量検知手段としての流量検知センサ36とが設けられている。吐出温度センサ35は吐出口20Bの近傍に配置され、流量検知センサ36は吐出温度センサよりも下流側に配置されている。  The feed water flow path 34 detects the feed water pressure of the feed water temperature sensor 33 as temperature sensing means for sensing the feed water temperature of the coolant to the water-cooled heat exchanger 20 and the coolant pressure in the coolant passage 30. A water pressure detection sensor 32 as a water pressure detection means and an electromagnetic valve 31 as an opening / closing means for opening and closing the water supply flow path 34 are provided. The water supply temperature sensor 33 is disposed in the vicinity of the water supply port 33, and the water pressure detection sensor 32 is disposed between the temperature sensor 33 and the electromagnetic valve 31. The drainage flow path 37 includes a discharge temperature sensor 35 as temperature detecting means for detecting the discharge temperature of the cooling water heat-exchanged by the water-cooled heat exchanger 20, and the water-cooling type of the flow rate of the cooling water in the cooling water path 30. A flow rate detection sensor 36 is provided as flow rate detection means for detecting the flow rate of the cooling water discharged from the heat exchanger 20. The discharge temperature sensor 35 is disposed in the vicinity of the discharge port 20B, and the flow rate detection sensor 36 is disposed on the downstream side of the discharge temperature sensor.

アキュムレータ8の一次側に位置する流路7と水冷式熱交換機20とは、第3の経路26で接続されている。この第3の経路26は、電磁弁22,23がオフ、かつ電磁弁24,25がオンの時に、水冷式熱交換機20内にある熱交換媒体をアキュムレータ8に導入するための媒体回収通路を構成する。アキュムレータ8の一次側に位置する流路7と空冷式熱交換機5とは、第4の経路27で接続されている。この第4の経路27は、電磁弁22,23がオン、かつ電磁弁24,25がオフの時に、空冷式熱交換機5内にある熱交換媒体をアキュムレータ8に導入するための媒体回収通路を構成する。これら第3及び第4の経路26,27には、同経路をそれぞれ開閉可能とする開閉手段としての電磁式の開閉弁28,29が設けられている。すなわち、電磁弁22,33及び電磁弁24,25は、そのオン/オン状態に応じて経路4Aと経路4Bとを切換る切換手段を構成している。  The flow path 7 located on the primary side of the accumulator 8 and the water-cooled heat exchanger 20 are connected by a third path 26. The third path 26 is a medium recovery passage for introducing the heat exchange medium in the water-cooled heat exchanger 20 into the accumulator 8 when the solenoid valves 22 and 23 are off and the solenoid valves 24 and 25 are on. Constitute. The flow path 7 located on the primary side of the accumulator 8 and the air-cooled heat exchanger 5 are connected by a fourth path 27. The fourth path 27 is a medium recovery passage for introducing the heat exchange medium in the air-cooled heat exchanger 5 to the accumulator 8 when the electromagnetic valves 22 and 23 are on and the electromagnetic valves 24 and 25 are off. Constitute. The third and fourth paths 26 and 27 are provided with electromagnetic on-off valves 28 and 29 as opening / closing means that can open and close the paths. That is, the solenoid valves 22 and 33 and the solenoid valves 24 and 25 constitute switching means for switching between the path 4A and the path 4B in accordance with the on / on state.

水冷式熱交換機20と開閉弁28の間の経路26と、空冷式熱交換機5と開閉弁29の間の経路27には、周知のアクセルバルブ261、271が設けられている。これらアクセスバルブ261,271は、密閉回路として構成されている流路4に対して熱交換媒体を注入する際や、注入した熱交換媒体を流路4から抜く際に用いる一方向圧力弁であって、その開閉部に対して外部から所定の圧を加えないと開放しないように構成されている。符号38は水冷式熱交換機20の表面温度を温度検知手段としての表面温度センサ38を示す。  Well-known accelerator valves 261 and 271 are provided in a path 26 between the water-cooled heat exchanger 20 and the on-off valve 28 and a path 27 between the air-cooled heat exchanger 5 and the on-off valve 29. These access valves 261 and 271 are one-way pressure valves used when injecting a heat exchange medium into the flow path 4 configured as a sealed circuit, or when removing the injected heat exchange medium from the flow path 4. The opening / closing portion is configured not to be opened unless a predetermined pressure is applied from the outside. Reference numeral 38 denotes a surface temperature sensor 38 that uses the surface temperature of the water-cooled heat exchanger 20 as temperature detection means.

駆動モータ19、電磁弁22,23,24,25、開閉弁28,29及び電磁弁31のオン/オフ制御は、図2に示す制御手段40で制御されるようになっている。制御手段40は、図示を省略したが、CPU(中央処理装置)、I/O(入出力)ポート、ROM(読み出し専用記憶装置)、RAM(読み書き可能な記憶装置)およびタイマー等をそれぞれ備え、これらが信号バスによって接続された構成を有する周知のコンピュータで構成されている。制御手段40の入力側には、水圧検知センサ32,給水温度センサ33、吐出温度センサ35、流量検知センサ36、表面温度検知センサ38と、装置の操作部50及び切換温度設定手段55が接続されている。本形態において、各温度センサには周知のサーミスタを用いるが、これ以外の構成であっても無論構わない。操作部50は、図3に示すように、冷却モードとなる冷房モードを選択する際に操作する冷房スイッチ51と、加熱モードとなる暖房モードを選択する際に操作する暖房スイッチ52と、除湿モードを選択する際に操作する除湿スイッチ53と、電源をオン/オフする電源スイッチ54とが設けられている。切換温度設定手段55とは、制御手段40に設定される後述の第1及び第2の所定上下温度と下限温度を変更するためのもので、この設定手段荷も受けた調整部を送付すると、上記各温度、すなわち、空冷式熱交換機5と水冷式熱交換機20への経路を切換えるパラメーターとなる切換温度を任意に設定変更できるように構成されている。  The on / off control of the drive motor 19, the electromagnetic valves 22, 23, 24, 25, the on-off valves 28, 29 and the electromagnetic valve 31 is controlled by the control means 40 shown in FIG. Although not shown, the control means 40 includes a CPU (central processing unit), an I / O (input / output) port, a ROM (read-only storage device), a RAM (read / write storage device), a timer, and the like. These are configured by a known computer having a configuration connected by a signal bus. Connected to the input side of the control means 40 are a water pressure detection sensor 32, a feed water temperature sensor 33, a discharge temperature sensor 35, a flow rate detection sensor 36, a surface temperature detection sensor 38, an operation unit 50 of the apparatus, and a switching temperature setting means 55. ing. In this embodiment, a known thermistor is used for each temperature sensor. However, other configurations may be used. As shown in FIG. 3, the operation unit 50 includes a cooling switch 51 that is operated when selecting a cooling mode that is a cooling mode, a heating switch 52 that is operated when selecting a heating mode that is a heating mode, and a dehumidifying mode. A dehumidifying switch 53 that is operated when selecting a power source and a power switch 54 for turning on / off the power source are provided. The switching temperature setting means 55 is for changing first and second predetermined upper and lower temperatures and a lower limit temperature, which will be described later, set in the control means 40. When an adjustment unit that receives this setting means load is sent, Each of the above temperatures, that is, a switching temperature serving as a parameter for switching the path to the air-cooled heat exchanger 5 and the water-cooled heat exchanger 20 can be arbitrarily set and changed.

制御手段40の出力側には、四方弁2、電磁弁22〜25、開閉弁28,29、電磁弁31及び圧縮機6と駆動モータ19が電気的に接続されている。制御手段40のROMには、電磁弁22,23と開閉弁29及び電磁弁24,25と開閉弁28、駆動モータ19をオン/オフするためのパラメーターとなる各種温度情報、所定圧、所定流量及び冷房モードと暖房モードが予め記憶されている。各種温度情報としては、給水温度センサ33と吐出温度センサ35の冷房モード時の第1の上限温度(「WT1+max1、WT2+max1、第1の下限温度(WT1−max1、WT2−max1)」、給水温度センサ33と吐出温度センサ35の暖房モード時の第2の上限温度(WT1+max2、WT2+max2)、第2の下限温度(WT1−max2、WT2−max2)と、所定表面温度が設定されている。第1の上限温度(WT1+max1、WT2+max1)はWT1+max1<WT2+max1、第1の下限温度(WT1−max1、WT2−max1)はWT1−max1<WT2−max1の関係にある。第2の上限温度(WT1+max2、WT2+max2)はWT1+max2>WT2+max2、第2の下限温度(WT1−max2、WT2−max2)はWT1−max2<WT2−max2の関係にある。
また、第1の上限温度(WT1+max1、WT2+max1)は第1の下限温度(WT1−max1、WT2−max1)よりも高温域の温度帯とされ、第2の上限温度(WT1+max2、WT2+max2)は第2の下限温度(WT1−max2、WT2−max2)よりも高温域側の温度帯とされている。
On the output side of the control means 40, the four-way valve 2, the electromagnetic valves 22 to 25, the on-off valves 28 and 29, the electromagnetic valve 31, the compressor 6 and the drive motor 19 are electrically connected. In the ROM of the control means 40, the solenoid valves 22, 23 and the on-off valve 29, the solenoid valves 24, 25 and the on-off valve 28, and various temperature information that are parameters for turning on / off the drive motor 19, a predetermined pressure, a predetermined flow rate. The cooling mode and the heating mode are stored in advance. The various temperature information includes a first upper limit temperature (“WT1 + max1, WT2 + max1, first lower limit temperature (WT1-max1, WT2-max1)”) in the cooling mode of the feed water temperature sensor 33 and the discharge temperature sensor 35, and a feed water temperature sensor. The second upper limit temperature (WT1 + max2, WT2 + max2), the second lower limit temperature (WT1-max2, WT2-max2) and the predetermined surface temperature in the heating mode of the discharge temperature sensor 35 and the discharge temperature sensor 35 are set. The upper limit temperatures (WT1 + max1, WT2 + max1) are in the relationship of WT1 + max1 <WT2 + max1, the first lower limit temperature (WT1-max1, WT2-max1) is in the relationship of WT1-max1 <WT2-max1, and the second upper limit temperature (WT1 + max2, WT2 + max2) is WT1 + max2> WT2 + max2, second Lower limit temperature (WT1-max2, WT2-max2) is in the relation of WT1-max2 <WT2-max2.
Further, the first upper limit temperature (WT1 + max1, WT2 + max1) is set to a temperature range higher than the first lower limit temperature (WT1-max1, WT2-max1), and the second upper limit temperature (WT1 + max2, WT2 + max2) is the second. The lower temperature limit (WT1-max2, WT2-max2) is a temperature zone on the high temperature side.

制御手段40は、図4に示す基本動作処理と、冷房スイッチ51が操作されたときに始動する図5に示す冷房運転処理と、暖房スイッチ52が操作されたときに始動する図6に示す暖房運転処理を実行するルーチンが設定されている。なお、本形態において、四方弁2は、通常オアとされていて、この状態の時には熱交換媒体を図1において実線で示す方向に移動にさせるように経路4を繋ぎ、オン状態となると、熱交換媒体を図1において破線で示す方向に移動にさせるように経路4を繋ぐ用に切り替わる。四方弁2は、冷却モード及び除湿モードの時にはオフ状態とされ、暖房モードの時にはオンされる用に制御される。  The control means 40 includes the basic operation process shown in FIG. 4, the cooling operation process shown in FIG. 5 that starts when the cooling switch 51 is operated, and the heating shown in FIG. 6 that starts when the heating switch 52 is operated. A routine for executing the operation process is set. In this embodiment, the four-way valve 2 is normally ORed. In this state, the path 4 is connected so as to move the heat exchange medium in the direction indicated by the solid line in FIG. The exchange medium is switched to connect the path 4 so as to move in the direction indicated by the broken line in FIG. The four-way valve 2 is controlled to be turned off in the cooling mode and the dehumidifying mode and turned on in the heating mode.

以下、制御装置40による制御動作について説明する。図4において、基本動作処理は、ステップS1において、電源スイッチ54が操作されて電源がオンとなると、ステップS2おいて運転モードが判別される。本形態では、ステップS2において運転モードが冷房の場合にはステップS3に進んで冷房運転処理が行われ、ステップS2において運転モードが冷房でない場合にはステップS4に進む。ステップS4において運転モードが暖房の場合にはステップS5に進んで暖房運転処理が行われ、ステップS4において運転モードが冷房でない場合にはステップS6に進む。ステップS6において運転モードが除湿の場合にはステップS7に進んで除湿運転処理が行われる。そして、各運転処理が実行されていても、電源スイッチ54が操作されて電源オンとなると装置を停止させる。除湿運転は、冷房の一形態となるので、除湿運転処理は冷房運転処理と同一な処理内とし、除湿時の処理動作は省力するものとする。  Hereinafter, the control operation by the control device 40 will be described. 4, in the basic operation process, when the power switch 54 is operated and the power is turned on in step S1, the operation mode is determined in step S2. In the present embodiment, when the operation mode is cooling in step S2, the process proceeds to step S3 and the cooling operation process is performed, and when the operation mode is not cooling in step S2, the process proceeds to step S4. If the operation mode is heating in step S4, the process proceeds to step S5 and the heating operation process is performed. If the operation mode is not cooling in step S4, the process proceeds to step S6. If the operation mode is dehumidification in step S6, the process proceeds to step S7, where the dehumidification operation process is performed. Even if each operation process is executed, the apparatus is stopped when the power switch 54 is operated and the power is turned on. Since the dehumidifying operation is a form of cooling, the dehumidifying operation process is performed in the same process as the cooling operation process, and the processing operation at the time of dehumidification is saved.

ステップS2において、冷房運転が選択されると、図5の冷房運転処理が開始される。この処理では、ステップU1において運転モードの変換がないかが判断される。ここでは、操作部50の冷房モードが他の運転モードに変更されたか否かが判断され、冷房モードの場合には、ステップU2に進む。ステップU1において運転モードが冷房以外に変更されている場合には、この冷房運手処理を継続しないで、図4のステップS2にリターンして再度運転モードの確認が実行される。  When the cooling operation is selected in step S2, the cooling operation process of FIG. 5 is started. In this process, it is determined in step U1 whether or not there is an operation mode conversion. Here, it is determined whether or not the cooling mode of the operation unit 50 has been changed to another operation mode, and in the case of the cooling mode, the process proceeds to step U2. If the operation mode has been changed to other than cooling in step U1, the cooling maneuver process is not continued, and the process returns to step S2 in FIG. 4 to confirm the operation mode again.

ステップU2では、電磁弁31をオンして水冷式熱交換機20に対して冷却水を流通させてステップU3に進む。この電磁弁31の開弁動作によって冷却水経路30及び水冷式熱交換機20内の冷却水が流れる。ステップU3では、給水温度センサ33と吐出温度センサ33で検知した水温WT1、WT2と表面温度センサ38で検知した表面温度T、水圧検知センサ32及び流量検知センサ36から水圧WP及び流量WRの各情報の読込みが行なわれ、ステップU4に進む。ステップU4では水圧検知センサ32からの水圧情報WPと所定圧Pとが比較され、水圧情報WPが所定圧Pに大きい場合にはポンプから熱交換に必要十分な冷却水が供給されているものとしてステップU5に進む。ステップU5では、流量検知センサ38からの流量情報WRと所定流量Rとが比較され、流量情報WRが所定流量Rを越えている場合には、冷却水経路30や水冷式熱交換機20の破損やスケール付着による流量低減がなく、熱交換に必要な流量が水冷式熱交換機20に供給されているものとしてステップU6に進む。ステップU6では、表面温度センサ38からの表面温度情報Tと所定温度T1とが比較され、表面温度情報Tが所定温度T1よりも低い場合には、水冷式熱交換機20内の詰まりや冷却水温度に異常がないものとしてステップU7に水冷式熱交換機20を用いた冷却を行う水冷システムを動作させる。  In step U2, the electromagnetic valve 31 is turned on to allow cooling water to flow through the water-cooled heat exchanger 20, and the process proceeds to step U3. The opening of the electromagnetic valve 31 causes the cooling water in the cooling water path 30 and the water-cooled heat exchanger 20 to flow. In step U3, the water temperature WT1 detected by the feed water temperature sensor 33 and the discharge temperature sensor 33, the surface temperature T detected by the surface temperature sensor 38, the water pressure WP and the flow rate WR from the water pressure detection sensor 32 and the flow rate detection sensor 36, respectively. Is read and the process proceeds to step U4. In step U4, the water pressure information WP from the water pressure detection sensor 32 is compared with the predetermined pressure P. When the water pressure information WP is larger than the predetermined pressure P, it is assumed that sufficient cooling water necessary for heat exchange is supplied from the pump. Proceed to step U5. In step U5, the flow rate information WR from the flow rate detection sensor 38 is compared with the predetermined flow rate R. If the flow rate information WR exceeds the predetermined flow rate R, the cooling water path 30 or the water-cooled heat exchanger 20 may be damaged. The flow proceeds to Step U6 assuming that there is no flow reduction due to scale adhesion and that the flow required for heat exchange is supplied to the water-cooled heat exchanger 20. In step U6, the surface temperature information T from the surface temperature sensor 38 is compared with the predetermined temperature T1, and if the surface temperature information T is lower than the predetermined temperature T1, the clogging in the water-cooled heat exchanger 20 or the coolant temperature In step U7, a water cooling system that performs cooling using the water-cooled heat exchanger 20 is operated.

ステップU7の水冷システム動作について、図7のフローチャートを用いて説明する。水冷システム動作では、電磁弁22,23、開閉弁29、圧縮機5がオン状態されるとともに、電磁弁24,25、開閉弁28及び駆動モータ19がオフ状態とされる。このため、冷却運転する場合には、熱交換媒体は、ファンコイルユニット11から四方弁2を介して図1において実線示す矢印方向に移動する。この時、電磁弁22,23はオンされて第2の経路4Aが開放されているので、熱交換媒体ま水冷式熱交換機20へ導入される。また、開閉弁28はオフ状態、開閉弁29はオン状態とされるので、第4の経路27が開放されて使用しない空冷式熱交換機5内の存在する熱交換媒体が、アキュムレータ8の負圧によりアキュムレータ8に回収される。このため、流路4内を循環する熱交換媒体の量が、封入時の量とほぼ同一の量とされて水冷式熱交換機20へ導入される。導入された熱交換媒体は、水冷式熱交換機20内の冷却水と間で熱交換されて冷却され、膨張弁3を介してファンコイルユニット11へと戻される。水冷式熱交換機5での熱交換を時には、駆動モータ19が停止状態となるので、省エネと、ファン18の回転に伴い発生する風切り音などの騒音を低減することができる。  The water cooling system operation in step U7 will be described with reference to the flowchart in FIG. In the water cooling system operation, the solenoid valves 22, 23, the on-off valve 29, and the compressor 5 are turned on, and the solenoid valves 24, 25, the on-off valve 28, and the drive motor 19 are turned off. For this reason, in the cooling operation, the heat exchange medium moves from the fan coil unit 11 through the four-way valve 2 in the direction indicated by the solid line in FIG. At this time, since the electromagnetic valves 22 and 23 are turned on and the second path 4A is opened, the heat exchange medium or the water-cooled heat exchanger 20 is introduced. Further, since the on-off valve 28 is turned off and the on-off valve 29 is turned on, the heat exchange medium existing in the air-cooled heat exchanger 5 that is not used when the fourth path 27 is opened is caused by the negative pressure of the accumulator 8. Is collected in the accumulator 8. For this reason, the amount of the heat exchange medium circulating in the flow path 4 is set to be substantially the same as the amount at the time of sealing and is introduced into the water-cooled heat exchanger 20. The introduced heat exchange medium is cooled by heat exchange with the cooling water in the water-cooled heat exchanger 20 and returned to the fan coil unit 11 via the expansion valve 3. When the heat exchange in the water-cooled heat exchanger 5 is sometimes performed, the drive motor 19 is stopped, so that energy saving and noise such as wind noise generated with the rotation of the fan 18 can be reduced.

一方、ステップU4において水圧情報WPが所定圧Pに満たない場合には、冷却水経路30またはポンプに異常があり、水冷式熱交換機20に対して十分な冷却水が供給されていないものと判断して、ステップU10に進んで、電磁弁31をオフして冷却水経路30を閉じて水冷式熱交換機20への冷却水の供給を絶ち、ステップU11に進んで空冷式熱交換機5を用いた冷却を行う空冷システムを動作させる。
ステップU5において、流量情報WRが所定流量Rに満たない場合には、水冷式熱交換機20内のスケール付着で十分な流量の冷却水が水冷式熱交換機20内で流れていないものとしてステップU10に進む。そして、電磁弁31をオフして冷却水経路30を閉じて水冷式熱交換機20への冷却水の供給を絶ち、ステップU11に進んで空冷式熱交換機5を用いた冷却を行う空冷システムを動作させる。
ステップU6において表面温度情報Tが所定温度T1よりも高い場合には、水冷式熱交換機20内の詰まりや冷却水温度に異常が発生していると判断してステップU10に進む。そして、電磁弁31をオフして冷却水経路30を閉じて水冷式熱交換機20への冷却水の供給を絶ち、ステップU11に進んで空冷式熱交換機5を用いた冷却を行う空冷システムを動作させる。このように、ステップU4からステップU6は水冷式熱交換機20や冷却水供給系に対する異常判定部を構成している。
On the other hand, if the water pressure information WP is less than the predetermined pressure P in step U4, it is determined that there is an abnormality in the cooling water passage 30 or the pump and sufficient cooling water is not supplied to the water-cooled heat exchanger 20. Then, the process proceeds to Step U10, the solenoid valve 31 is turned off, the cooling water path 30 is closed, the supply of the cooling water to the water-cooled heat exchanger 20 is stopped, and the process proceeds to Step U11 to use the air-cooled heat exchanger 5. Operate an air cooling system for cooling.
In step U5, when the flow rate information WR is less than the predetermined flow rate R, it is determined that the cooling water having a sufficient flow rate due to the scale adhesion in the water-cooled heat exchanger 20 is not flowing in the water-cooled heat exchanger 20 to step U10. move on. Then, the electromagnetic valve 31 is turned off to close the cooling water passage 30 to stop the supply of the cooling water to the water-cooled heat exchanger 20, and the process proceeds to Step U11 to operate the air-cooling system that performs cooling using the air-cooled heat exchanger 5 Let
If the surface temperature information T is higher than the predetermined temperature T1 in step U6, it is determined that the water-cooled heat exchanger 20 is clogged or the cooling water temperature is abnormal, and the process proceeds to step U10. Then, the electromagnetic valve 31 is turned off to close the cooling water passage 30 to stop the supply of the cooling water to the water-cooled heat exchanger 20, and the process proceeds to Step U11 to operate the air-cooling system that performs cooling using the air-cooled heat exchanger 5 Let Thus, Step U4 to Step U6 constitute an abnormality determination unit for the water-cooled heat exchanger 20 and the cooling water supply system.

ステップU11の空冷システム動作について、図8のフローチャートを用いて説明する。空冷システム動作では、圧縮機6、電磁弁24,25、開閉弁28、駆動モータ19がオン状態とされるとともに、電磁弁22,23と開閉弁29がオフ状態となる。このため、流路4Aは閉じ、第1の流路4Bが開放されて経路切換えが行われるとともに第3の経路26が開放されて使用しない水冷式熱交換機20内の存在する熱交換媒体がアキュムレータ8の負圧によりアキュムレータ8に回収されるとともにファン18が回転する。このため、圧縮機6、四方弁2を通過した熱交換媒体は、全て空冷式熱交換機5へ案内され、ファン18の回転に発生する気流により空気と間で熱交換されて冷却され、膨張弁3を介してファンコイルユニット11へと戻される。  The air cooling system operation in step U11 will be described using the flowchart of FIG. In the air cooling system operation, the compressor 6, the electromagnetic valves 24 and 25, the on-off valve 28, and the drive motor 19 are turned on, and the electromagnetic valves 22, 23 and the on-off valve 29 are turned off. For this reason, the flow path 4A is closed, the first flow path 4B is opened and the path switching is performed, and the third path 26 is opened and the heat exchange medium existing in the water-cooled heat exchanger 20 that is not used is an accumulator. The negative pressure of 8 is collected by the accumulator 8 and the fan 18 rotates. For this reason, the heat exchange medium that has passed through the compressor 6 and the four-way valve 2 is all guided to the air-cooled heat exchanger 5, and is cooled by being exchanged with air by the air flow generated by the rotation of the fan 18. 3 is returned to the fan coil unit 11.

ステップU7において水冷システムが動作されるとステップU8に進み、給水温度センサ33からの給水温度情報WT1と第1の上限温度WT1+max1とが比較される。そして、給水温度情報WT1が上限温度WT1+max1を超えていない場合には、現在の冷却水の温度でも十分に熱交換が可能であるとしてステップU7に戻り、水冷システムによる動作が継続されて、水冷式熱交換機20による熱交換が継続される。給水温度情報WT1が上限温度WT1+max1を超える場合にはステップU9に進み、吐出温度センサ35からの吐出温度情報WT2と第1の上限温度WT2+max1とが比較される。そして、吐出温度情報WT2が上限温度WT2+max1を超えていない場合には、現在の冷却水の温度でも十分に熱交換が可能であるとしてステップU7に戻り、水冷式熱交換機20による熱交換が継続される。吐出温度情報WT2が上限温度WT2+max1を超える場合には、現在の冷却水の温度では十分に熱交換が不可能であるとしてステップU11に進む。  When the water cooling system is operated in step U7, the process proceeds to step U8, where the feed water temperature information WT1 from the feed water temperature sensor 33 is compared with the first upper limit temperature WT1 + max1. If the feed water temperature information WT1 does not exceed the upper limit temperature WT1 + max1, the process returns to Step U7 as it is possible to sufficiently exchange heat even at the current cooling water temperature, and the operation by the water cooling system is continued, so that the water cooling type The heat exchange by the heat exchanger 20 is continued. If the feed water temperature information WT1 exceeds the upper limit temperature WT1 + max1, the process proceeds to step U9, and the discharge temperature information WT2 from the discharge temperature sensor 35 is compared with the first upper limit temperature WT2 + max1. If the discharge temperature information WT2 does not exceed the upper limit temperature WT2 + max1, the process returns to step U7 because heat exchange is possible even at the current cooling water temperature, and heat exchange by the water-cooled heat exchanger 20 is continued. The If the discharge temperature information WT2 exceeds the upper limit temperature WT2 + max1, the process proceeds to Step U11 because heat exchange is not possible at the current cooling water temperature.

このため、給水温度情報WT1が第1の上限温度WT1+max1、吐出温度情報WT2が第1の上限温度WT2+max1を超える場合、すなわち、冷却水の温度が第1の上限温度を越えると、熱交換媒体が流れる経路が第1の経路4Bへ切換えられる。また、本形態では、給水温度情報WT1と吐出温度情報WT2とがそれぞれ、上限温度WT1+max1及び所上限温度WT2+max1を越えないと、水冷式交換機20による熱交換媒体の冷却から空冷式熱交換機5による冷却へと切換えないので、切換えのパラメーターとしては上限温度ではなく、第1の上限温度範囲(上限温度WT1+max1〜上限温度WT2+max1)で判断しても良い。  Therefore, when the feed water temperature information WT1 exceeds the first upper limit temperature WT1 + max1 and the discharge temperature information WT2 exceeds the first upper limit temperature WT2 + max1, that is, when the temperature of the cooling water exceeds the first upper limit temperature, the heat exchange medium The flowing path is switched to the first path 4B. Further, in this embodiment, if the feed water temperature information WT1 and the discharge temperature information WT2 do not exceed the upper limit temperature WT1 + max1 and the upper limit temperature WT2 + max1, respectively, the cooling of the heat exchange medium by the water-cooled exchanger 20 to the cooling by the air-cooled heat exchanger 5 Therefore, the switching parameter may be determined not by the upper limit temperature but by the first upper limit temperature range (upper limit temperature WT1 + max1 to upper limit temperature WT2 + max1).

ステップU11において空冷システムが動作されるとステップU12に進み、電磁弁31が間欠的にオンされる。これは、空冷システム動作時においては、水冷式熱交換機20による熱交換を行わないため、電磁弁21をオフ状態とすることで消費電力を低減することができる。空冷システム動作中において電磁弁31を間欠的にオンして冷却水流路30を開状態とすると、同流路30及び水冷式熱交換機20内の冷却水が流通して放熱性が高まり、電磁弁31を全閉する場合よりも、早期に冷却水の温度の低下させることかできる。  When the air cooling system is operated in step U11, the process proceeds to step U12, and the solenoid valve 31 is intermittently turned on. This is because heat exchange by the water-cooled heat exchanger 20 is not performed during the operation of the air-cooling system, and thus power consumption can be reduced by turning off the solenoid valve 21. When the electromagnetic valve 31 is intermittently turned on during the operation of the air cooling system to open the cooling water flow path 30, the cooling water in the flow path 30 and the water-cooled heat exchanger 20 is circulated to improve heat dissipation, and the electromagnetic valve The temperature of the cooling water can be lowered earlier than when 31 is fully closed.

ステップU12では、給水温度センサ33からの給水温度情報WT1と第1の下限温度WT1−max1とが比較される。そして、給水温度情報WT1が所定加温度WT1−max1を超えていない(下回らない)場合には、冷却水が十分に放熱されて冷却されていないものとしてステップU11に戻り、空冷システムによる動作が継続されて空冷式熱交換機5による熱交換が継続される。給水温度情報WT1が下限温度WT1−max1を超える(下回る)場合にはステップU14に進み、吐出温度センサ35からの吐出温度情報WT2と第1の下限温度WT2−max1とが比較される。そして、吐出温度情報WT2が下限温度WT2−max1を超えていない場合には、未だ冷却水が十分に放熱されて冷却されていないものとしてステップU11に戻り、空冷システムによる動作が継続されて空冷式熱交換機5による熱交換が継続される。給水温度情報WT1が下限温度WT2−max1を超える(下回る)場合には、冷却水が冷却されて十分に熱交換が可能であるとしてステップU7に戻り、水冷システム動作が実行される。このように、冷却水の温度が第1の下限温度を越えると、熱交換媒体が流れる経路が第2の経路4Aへ切換えられる。  In step U12, the feed water temperature information WT1 from the feed water temperature sensor 33 is compared with the first lower limit temperature WT1-max1. If the feed water temperature information WT1 does not exceed the predetermined heating temperature WT1-max1 (does not fall below), the cooling water is sufficiently dissipated to return to step U11 and the operation by the air cooling system continues. Thus, heat exchange by the air-cooled heat exchanger 5 is continued. When the feed water temperature information WT1 exceeds (below) the lower limit temperature WT1-max1, the process proceeds to step U14, and the discharge temperature information WT2 from the discharge temperature sensor 35 is compared with the first lower limit temperature WT2-max1. If the discharge temperature information WT2 does not exceed the lower limit temperature WT2-max1, the process returns to step U11 on the assumption that the cooling water has not been sufficiently radiated and cooled, and the operation by the air cooling system is continued and the air cooling type is performed. Heat exchange by the heat exchanger 5 is continued. When the feed water temperature information WT1 exceeds (below) the lower limit temperature WT2-max1, it is determined that the cooling water is cooled and heat can be sufficiently exchanged, and the process returns to step U7 to execute the water cooling system operation. Thus, when the temperature of the cooling water exceeds the first lower limit temperature, the path through which the heat exchange medium flows is switched to the second path 4A.

図4のステップS4において、暖房運転が選択されると、図6の冷房運転処理が開始される。この処理では、ステップV1において運転モードの変換がないかが判断される。ここでは、操作部50の暖房モードが他の運転モードに変更されたか否かが判断され、暖房モードの場合にはステップV2に進む。ステップV1において運転モードが暖房以外に変更されている場合には、この暖房運手処理を継続しないで、図4のステップS2にリターンして再度運転モードの確認が実行される。  If heating operation is selected in step S4 of FIG. 4, the cooling operation process of FIG. 6 is started. In this process, it is determined in step V1 whether or not there is an operation mode conversion. Here, it is determined whether or not the heating mode of the operation unit 50 has been changed to another operation mode, and in the case of the heating mode, the process proceeds to step V2. If the operation mode is changed to other than heating in Step V1, the heating operation process is not continued, and the process returns to Step S2 in FIG. 4 to confirm the operation mode again.

ステップV2では、四方弁2をオンして、経路4を冷房用経路から暖房経路へと切換え、ステップV3に進む。ステップV3では、電磁弁31をオンして水冷式熱交換機20に対して冷却水を流通させてステップV4に進む。この電磁弁31の開弁動作によって冷却水経路30及び水冷式熱交換機20内の冷却水が流れる。ステップV4では、給水温度センサ33と吐出温度センサ33で検知した給水温度WT1、吐出温度WT2と表面温度センサ38で検知した表面温度T、水圧検知センサ32及び流量検知センサ36から水圧WP及び流量WRの各情報の読込みが行なわれステップV5に進む。ステップV5では水圧検知センサ32からの水圧情報WPと所定圧Pとが比較され、水圧情報WPが所定圧Pに大きい場合にはポンプから熱交換に必要十分な冷却水が供給されているものとしてステップV6に進む。ステップV6では、流量検知センサ38からの流量情報WRと所定流量Rとが比較され、流量情報WRが所定流量Rを越えている場合には、冷却水経路30や水冷式熱交換機20の破損やスケール付着による流量低減がなく、熱交換に必要な流量が水冷式熱交換機20に供給されているものとしてステップV7に進む。ステップV7では、表面温度センサ38からの表面温度情報Tと所定温度T1とが比較され、表面温度情報Tが所定温度T1よりも低い場合には、水冷式熱交換機20内の詰まりや冷却水温度に異常がないものとしてステップV8に水冷式熱交換機20を用いた冷却を行う水冷システムを動作させる。  In step V2, the four-way valve 2 is turned on, the path 4 is switched from the cooling path to the heating path, and the process proceeds to step V3. In step V3, the solenoid valve 31 is turned on to allow cooling water to flow through the water-cooled heat exchanger 20, and the process proceeds to step V4. The opening of the electromagnetic valve 31 causes the cooling water in the cooling water path 30 and the water-cooled heat exchanger 20 to flow. In step V4, the feed water temperature WT1 detected by the feed water temperature sensor 33 and the discharge temperature sensor 33, the surface temperature T detected by the discharge temperature WT2 and the surface temperature sensor 38, the water pressure WP and the flow rate WR from the water pressure detection sensor 32 and the flow rate detection sensor 36. Each information is read and the process proceeds to step V5. In step V5, the water pressure information WP from the water pressure detection sensor 32 is compared with the predetermined pressure P, and if the water pressure information WP is larger than the predetermined pressure P, it is assumed that sufficient cooling water necessary for heat exchange is supplied from the pump. Proceed to step V6. In step V6, the flow rate information WR from the flow rate detection sensor 38 is compared with the predetermined flow rate R, and if the flow rate information WR exceeds the predetermined flow rate R, the cooling water path 30 or the water-cooled heat exchanger 20 is damaged. The flow proceeds to Step V7 assuming that there is no flow reduction due to scale adhesion and that the flow required for heat exchange is supplied to the water-cooled heat exchanger 20. In Step V7, the surface temperature information T from the surface temperature sensor 38 is compared with the predetermined temperature T1, and when the surface temperature information T is lower than the predetermined temperature T1, the clogging in the water-cooled heat exchanger 20 or the cooling water temperature is detected. In step V8, a water cooling system that performs cooling using the water-cooled heat exchanger 20 is operated.

ステップV8の水冷システム動作は図7に示すように、電磁弁22,23、開閉弁29、圧縮機5がオン状態され、電磁弁24,25、開閉弁28及び駆動モータ19がオフ状態とされる。但し、四方弁2はオンされているので、暖房運転する場合、熱交換媒体はファンコイルユニット11から停止弁10Bを介して経路7に流入し、図1において破線で示す矢印方向にして、四方弁2から停止弁10Aへを介してファンコイルユニット11に戻される。この時、電磁弁22,23はオンされて第2の経路4Aが開放されているので、熱交換媒体は水冷式熱交換機20へ導入される。また、開閉弁28はオフ状態、開閉弁29はオン状態とされるので、第4の経路27が開放されて使用しない空冷式熱交換機5内の存在する熱交換媒体が、アキュムレータ8の負圧によりアキュムレータ8に回収される。このため、流路4内を循環する熱交換媒体の量が、封入時の量とほぼ同一の量とされて水冷式熱交換機20へ導入される。導入された熱交換媒体は、水冷式熱交換機20内の冷却水と間で熱交換されて冷却され、四方弁2を介してファンコイルユニット11へと戻される。水冷式熱交換機5での熱交換を時には、駆動モータ19が停止状態となるので、省エネと、ファン18の回転に伴い発生する風切り音などの騒音を低減することができる。  As shown in FIG. 7, in the operation of the water cooling system in step V8, the solenoid valves 22, 23, the on-off valve 29, and the compressor 5 are turned on, and the solenoid valves 24, 25, the on-off valve 28 and the drive motor 19 are turned off. The However, since the four-way valve 2 is turned on, when heating operation is performed, the heat exchange medium flows from the fan coil unit 11 into the path 7 via the stop valve 10B, and in the direction indicated by the broken line in FIG. The valve 2 is returned to the fan coil unit 11 through the stop valve 10A. At this time, since the electromagnetic valves 22 and 23 are turned on and the second path 4A is opened, the heat exchange medium is introduced into the water-cooled heat exchanger 20. Further, since the on-off valve 28 is turned off and the on-off valve 29 is turned on, the heat exchange medium existing in the air-cooled heat exchanger 5 that is not used when the fourth path 27 is opened is caused by the negative pressure of the accumulator 8. Is collected in the accumulator 8. For this reason, the amount of the heat exchange medium circulating in the flow path 4 is set to be substantially the same as the amount at the time of sealing and is introduced into the water-cooled heat exchanger 20. The introduced heat exchange medium is cooled by exchanging heat with the cooling water in the water-cooled heat exchanger 20 and returned to the fan coil unit 11 via the four-way valve 2. When the heat exchange in the water-cooled heat exchanger 5 is sometimes performed, the drive motor 19 is stopped, so that energy saving and noise such as wind noise generated with the rotation of the fan 18 can be reduced.

一方、ステップV5において水圧情報WPが所定圧Pに満たない場合には、冷却水経路30またはポンプに異常があり、水冷式熱交換機20に対して十分な冷却水が供給されていないものと判断して、ステップV11に進んで電磁弁31をオフして冷却水経路30を閉じて水冷式熱交換機20への冷却水の供給を絶ち、ステップV12に進んで空冷式熱交換機5を用いた冷却を行う空冷システムを動作させる。
ステップV6において、流量情報WRが所定流量Rに満たない場合には、水冷式熱交換機20内のスケール付着で十分な流量の冷却水が水冷式熱交換機20内で流れていないものとしてステップV11に進む。そして、電磁弁31をオフして冷却水経路30を閉じて水冷式熱交換機20への冷却水の供給を絶ち、ステップV12に進んで空冷式熱交換機5を用いた冷却を行う空冷システムを動作させる。
ステップV7において表面温度情報Tが所定温度T1よりも高い場合には、水冷式熱交換機20内の詰まりや冷却水温度に異常が発生していると判断してステップV11に進む。そして、電磁弁31をオフして冷却水経路30を閉じて水冷式熱交換機20への冷却水の供給を絶ち、ステップV12に進んで空冷式熱交換機5を用いた冷却を行う空冷システムを動作させる。このように、ステップV5からステップV7は水冷式熱交換機20や冷却水供給系に対する異常判定部を構成している。
On the other hand, if the water pressure information WP is less than the predetermined pressure P in step V5, it is determined that there is an abnormality in the cooling water passage 30 or the pump and sufficient cooling water is not supplied to the water-cooled heat exchanger 20. Then, the process proceeds to Step V11, the solenoid valve 31 is turned off, the cooling water path 30 is closed, the supply of the cooling water to the water-cooled heat exchanger 20 is stopped, and the process proceeds to Step V12 to perform cooling using the air-cooled heat exchanger 5. Operate the air cooling system.
In step V6, if the flow rate information WR is less than the predetermined flow rate R, it is determined that the cooling water having a sufficient flow rate due to the scale adhering in the water-cooled heat exchanger 20 is not flowing in the water-cooled heat exchanger 20; move on. Then, the solenoid valve 31 is turned off to close the cooling water passage 30 to stop the supply of the cooling water to the water-cooled heat exchanger 20, and the operation proceeds to step V12 to operate the air-cooling system that performs cooling using the air-cooled heat exchanger 5 Let
When the surface temperature information T is higher than the predetermined temperature T1 in step V7, it is determined that the water-cooled heat exchanger 20 is clogged or the cooling water temperature is abnormal, and the process proceeds to step V11. Then, the solenoid valve 31 is turned off to close the cooling water passage 30 to stop the supply of the cooling water to the water-cooled heat exchanger 20, and the operation proceeds to step V12 to operate the air-cooling system that performs cooling using the air-cooled heat exchanger 5 Let Thus, Step V5 to Step V7 constitute an abnormality determination unit for the water-cooled heat exchanger 20 and the cooling water supply system.

ステップV12の空冷システム動作は、図8に示すように圧縮機6、電磁弁24,25、開閉弁28、駆動モータ19がオン状態とされるとともに、電磁弁22,23と開閉弁29がオフ状態となる。無論暖房モードであるので、四方弁2はオン状態とされている。このため、流路4Aは閉じ、第1の流路4Bが開放されて経路切換えが行われるとともに第3の経路26が開放されて使用しない水冷式熱交換機20内の存在する熱交換媒体がアキュムレータ8の負圧によりアキュムレータ8に回収されるとともにファン18が回転する。このため、圧縮機6、四方弁2を通過した熱交換媒体は、全て空冷式熱交換機5へ案内され、ファン18の回転に発生する気流により空気と間で熱交換されて冷却され、膨張弁3を介してファンコイルユニット11へと戻される。  As shown in FIG. 8, the operation of the air cooling system in Step V12 is performed while the compressor 6, the electromagnetic valves 24 and 25, the on-off valve 28, and the drive motor 19 are turned on, and the electromagnetic valves 22, 23 and the on-off valve 29 are off. It becomes a state. Of course, since the heating mode is set, the four-way valve 2 is turned on. For this reason, the flow path 4A is closed, the first flow path 4B is opened and the path switching is performed, and the third path 26 is opened and the heat exchange medium existing in the water-cooled heat exchanger 20 that is not used is an accumulator. The negative pressure of 8 is collected by the accumulator 8 and the fan 18 rotates. For this reason, the heat exchange medium that has passed through the compressor 6 and the four-way valve 2 is all guided to the air-cooled heat exchanger 5, and is cooled by being exchanged with air by the air flow generated by the rotation of the fan 18. 3 is returned to the fan coil unit 11.

ステップV8において水冷システムが動作されるとステップV9に進み、給水温度センサ33からの給水温度情報WT1と第2の下限温度WT1−max2とが比較される。そして、給水温度情報WT1が下限温度WT1−max2を超えていない、すなわち下回っていない場合には、現在の冷却水の温度でも十分に熱交換が可能であるとしてステップV8に戻り、水冷システムによる動作が継続されて、水冷式熱交換機20による熱交換が継続される。給水温度情報WT1が下限温度WT1−max2を超える(下回った)場合にはステップV10に進み、吐出温度センサ35からの吐出温度情報WT2と第2の上限温度WT2−max2とが比較される。そして、吐出温度情報WT2が下限温度WT2−max2を超えていない(下回っていない)場合には、現在の冷却水の温度でも十分に熱交換が可能であるとしてステップV8に戻り、水冷式熱交換機20による熱交換が継続される。吐出温度情報WT2が下限温度WT2−max2を超える(下回る)場合には、現在の冷却水の温度では十分に熱交換が不可能であるとしてステップV12に進む。  When the water cooling system is operated in step V8, the process proceeds to step V9, and the feed water temperature information WT1 from the feed water temperature sensor 33 is compared with the second lower limit temperature WT1-max2. Then, if the feed water temperature information WT1 does not exceed the lower limit temperature WT1-max2, that is, not lower than the lower limit temperature WT1-max2, the process returns to Step V8 because it is possible to sufficiently exchange heat even at the current cooling water temperature, and the operation by the water cooling system Is continued, and heat exchange by the water-cooled heat exchanger 20 is continued. When the feed water temperature information WT1 exceeds (below) the lower limit temperature WT1-max2, the process proceeds to step V10, and the discharge temperature information WT2 from the discharge temperature sensor 35 is compared with the second upper limit temperature WT2-max2. If the discharge temperature information WT2 does not exceed the lower limit temperature WT2-max2 (is not lower than the lower limit temperature WT2-max2), the process returns to Step V8 because the heat can be sufficiently exchanged even at the current cooling water temperature, and the water-cooled heat exchanger The heat exchange by 20 is continued. If the discharge temperature information WT2 exceeds (below) the lower limit temperature WT2-max2, it is determined that heat exchange is not possible at the current cooling water temperature, and the process proceeds to step V12.

このため、給水温度情報WT1が第2の下限温度WT1−max2を、吐出温度情報WT2が第1の下限温度WT2−max2をそれぞれ下回る場合、すなわち、冷却水の温度が第2の下限温度を越えると、熱交換媒体が流れる経路が第1の経路4Bへ切換えられる。また、本形態では、給水温度情報WT1と吐出温度情報WT2とがそれぞれ、下限温度WT1−max2及び下限温度WT2−max2を越えないと、水冷式交換機20による熱交換媒体の加熱から空冷式熱交換機5による加熱へと切換えないので、切換えのパラメーターとしては上限温度ではなく、第2の下限温度範囲(下限温度WT2−max2〜下限温度WT1−max2)で判断しても良い。  Therefore, when the feed water temperature information WT1 is lower than the second lower limit temperature WT1-max2 and the discharge temperature information WT2 is lower than the first lower limit temperature WT2-max2, that is, the temperature of the cooling water exceeds the second lower limit temperature. Then, the path through which the heat exchange medium flows is switched to the first path 4B. Further, in this embodiment, if the feed water temperature information WT1 and the discharge temperature information WT2 do not exceed the lower limit temperature WT1-max2 and the lower limit temperature WT2-max2, respectively, the air-cooled heat exchanger is heated from the heating of the heat-exchange medium by the water-cooled exchanger 20. Therefore, the switching parameter may be determined not by the upper limit temperature but by the second lower limit temperature range (lower limit temperature WT2-max2 to lower limit temperature WT1-max2).

ステップV12において空冷システムが動作されるとステップV13に進み、電磁弁31が間欠的にオンされてステップV14に進む。このため、冷却水流路30が間欠的に開状態とされるので、同流路30及び水冷式熱交換機20内の冷却水が流通して放熱性が高まり、電磁弁31を全閉する場合よりも、早期に冷却水の温度の上昇させることかできる。  When the air cooling system is operated in step V12, the process proceeds to step V13, the electromagnetic valve 31 is intermittently turned on, and the process proceeds to step V14. For this reason, since the cooling water flow path 30 is intermittently opened, the cooling water in the flow path 30 and the water-cooled heat exchanger 20 is circulated to increase heat dissipation, and the electromagnetic valve 31 is fully closed. Also, the temperature of the cooling water can be raised early.

ステップV14では、給水温度センサ33からの給水温度情報WT1と第2の上限温度WT1+max2とが比較される。そして、給水温度情報WT1が所定温度WT1+max2を超えていない(上回らない)場合には、冷却水が十分に吸熱されて加温されていないものとしてステップU12に戻り、空冷システムによる動作が継続されて空冷式熱交換機5による熱交換が継続される。給水温度情報WT1が上限温度WT1+max2を超える(上回る)場合にはステップU15に進み、吐出温度センサ35からの吐出温度情報WT2と第2の上限温度WT2+max2とが比較される。そして、吐出温度情報WT2が上限温度WT2+max2を超えるまでは、未だ冷却水が十分に吸熱されて加温されていないものとしてステップU12に戻り、空冷システムによる動作が継続されて空冷式熱交換機5による熱交換が継続される。給水温度情報WT1が上限温度WT2+max2を超える(上回る)場合には、冷却水が加温(加熱)されて十分に熱交換が可能であるとしてステップU7に戻り、水冷システム動作が実行される。このように、冷却水の温度が第2の下限温度を越えると、熱交換媒体が流れる経路が第2の経路4Aへ切換えられる。  In step V14, the feed water temperature information WT1 from the feed water temperature sensor 33 is compared with the second upper limit temperature WT1 + max2. If the feed water temperature information WT1 does not exceed the predetermined temperature WT1 + max2 (does not exceed), the cooling water is sufficiently absorbed and returned to step U12, and the operation by the air cooling system is continued. Heat exchange by the air-cooled heat exchanger 5 is continued. When the feed water temperature information WT1 exceeds (exceeds) the upper limit temperature WT1 + max2, the process proceeds to step U15, and the discharge temperature information WT2 from the discharge temperature sensor 35 is compared with the second upper limit temperature WT2 + max2. Then, until the discharge temperature information WT2 exceeds the upper limit temperature WT2 + max2, it is assumed that the cooling water has not yet sufficiently absorbed heat and returned to step U12, and the operation by the air cooling system is continued to be performed by the air cooling heat exchanger 5 Heat exchange continues. When the feed water temperature information WT1 exceeds (exceeds) the upper limit temperature WT2 + max2, the cooling water is heated (heated), and the process returns to Step U7 and heat exchange is possible, and the water cooling system operation is executed. Thus, when the temperature of the cooling water exceeds the second lower limit temperature, the path through which the heat exchange medium flows is switched to the second path 4A.

本形態の制御手段40においては、冷却モード時において、冷却水の温度が第1の上限温度(WT1+max1、WT2+max1)または第1の上限温度範囲(WT1+max1〜WT2+max1)を超えると、熱交換媒体が流れる経路が第1の経路4Bへ切換えられ、熱交換媒体が空冷式熱交換機5に案内され、冷却水の温度が第1の下限温度(WT1−max1、WT2−max1)または下限温度範囲WT1−max1〜WT2−max1)を超えると熱交換媒体が流れる経路が第2の経路4Aへ切換えされて熱交換媒体が水冷式熱交換機20へと案内される。このため、温度条件に応じて適宜、空冷式熱交換機5と水冷式熱交換機20の何れかに熱交換媒体が案内されて熱交換され、空冷式と水冷式の熱交換機を有する空調装置1を効率良く運転させつつ、何れかの熱交換機が故障した場合でも空調装置として機能させることができる。  In the control means 40 of this embodiment, when the temperature of the cooling water exceeds the first upper limit temperature (WT1 + max1, WT2 + max1) or the first upper limit temperature range (WT1 + max1 to WT2 + max1) in the cooling mode, the heat exchange medium flows. The path is switched to the first path 4B, the heat exchange medium is guided to the air-cooled heat exchanger 5, and the temperature of the cooling water is the first lower limit temperature (WT1-max1, WT2-max1) or the lower limit temperature range WT1-max1. When WT2-max1) is exceeded, the path through which the heat exchange medium flows is switched to the second path 4A, and the heat exchange medium is guided to the water-cooled heat exchanger 20. For this reason, the air-conditioning apparatus 1 having an air-cooled type and a water-cooled type heat exchanger is provided with a heat exchange medium guided to one of the air-cooled heat exchanger 5 and the water-cooled heat exchanger 20 and heat-exchanged as appropriate according to temperature conditions. While operating efficiently, even if any heat exchanger fails, it can function as an air conditioner.

本形態の制御手段40においては、暖房モード時において、冷却水の温度が第2の下限温度(WT1−max2、WT2−max2)または下限温度範囲(WT1−max2〜WT2−max2)を超えると熱交換媒体が流れる経路が第1の経路4Bへ切換えられて熱交換媒体が空冷式熱交換機5へ案内され、冷却水の温度が第2の上限温度(WT1+max2、WT2+max2)または上限温度範囲(WT2+max2〜WT2+max2)を超える場合には熱交換媒体が流れる経路が第2の経路4Aへ切換えられて熱交換媒体が水冷式熱交換機20へ案内される。このため、空冷式と水冷式の熱交換機を有する空調装置1を効率良く運転させつつ、何れかの熱交換機が故障した場合でも空調装置として機能させることができる。  In the control means 40 of the present embodiment, when the temperature of the cooling water exceeds the second lower limit temperature (WT1-max2, WT2-max2) or the lower limit temperature range (WT1-max2-WT2-max2) in the heating mode, heat is generated. The path through which the exchange medium flows is switched to the first path 4B and the heat exchange medium is guided to the air-cooled heat exchanger 5, and the temperature of the cooling water is set to the second upper limit temperature (WT1 + max2, WT2 + max2) or the upper limit temperature range (WT2 + max2). When WT2 + max2) is exceeded, the path through which the heat exchange medium flows is switched to the second path 4A, and the heat exchange medium is guided to the water-cooled heat exchanger 20. Therefore, the air conditioner 1 having the air-cooled type and the water-cooled type heat exchanger can be efficiently operated, and can function as an air conditioner even when one of the heat exchangers fails.

本形態において、制御手段40は個別な形態で説明したが、空調装置1が備えた形態であっても良く、この場合、上述の機能を備えた制御御装置40を有するハイブリッド空調装置10とすることができる。
冷却水の温度は、環境や使用状況により、初期の温度や放熱/吸熱に要する時間にバラツキがあるまで、制御手段40に設定された各上限温度や下限温度を、切換温度設定手段55を操作して適宜、設定温度を変更することで、水冷システムと空冷システムの動作時間を変更することができる。
In the present embodiment, the control means 40 has been described in an individual form. However, the form provided in the air conditioner 1 may be used, and in this case, the hybrid air conditioner 10 including the control device 40 having the above-described functions is used. be able to.
The switching water temperature setting means 55 is operated by operating the switching temperature setting means 55 until the temperature of the cooling water varies depending on the environment and use conditions until the initial temperature and the time required for heat dissipation / heat absorption vary. Then, by appropriately changing the set temperature, the operation time of the water cooling system and the air cooling system can be changed.

本形態において、水圧検知センサ32は給水流路34に設けて給水圧(導入圧ともいう)を検知しているが、排水流路37に設けて水冷式熱交換機20からの吐出圧を冷却水の圧力として検知しても良い。すなわち、冷却水の水圧検知は、主に水冷式熱交換機20に対して、熱交換でき得るに足りる十分な量の冷却水が供給されているか、変言すると、図示しないポンプの故障や給水流路34や排水流路37の破損の有無を検知することにも成る。  In this embodiment, the water pressure detection sensor 32 is provided in the water supply flow path 34 to detect the water supply pressure (also referred to as introduction pressure), but is provided in the drainage flow path 37 to discharge the discharge pressure from the water-cooled heat exchanger 20 to the cooling water. It may be detected as a pressure. That is, the water pressure detection of the cooling water is mainly based on whether or not a sufficient amount of cooling water sufficient to be able to exchange heat is supplied to the water-cooled heat exchanger 20. It also detects the presence or absence of breakage of the channel 34 or the drainage channel 37.

流量検知センサ36は、排水流路37の吐出流量を検知しているが、給水流路34に設けて水冷式熱交換機20への給水流量(導入流量との言う)を検知するようにしても良い。すなわち、冷却水の流量は、主に水冷式熱交換機20内や給水/排水流路内へのスケール付着による流量低減や、図示しないポンプの故障や給水流路34及び排水流路37の破損の有無を検知することに成る。流量検知手段としては流量検知センサ36ではなく、デジタル方式の流量計36であっても良い。  The flow rate detection sensor 36 detects the discharge flow rate of the drainage flow path 37, but may be provided in the water supply flow path 34 to detect the water supply flow rate (referred to as the introduction flow rate) to the water-cooled heat exchanger 20. good. That is, the flow rate of the cooling water is reduced mainly due to the scale adhering in the water-cooled heat exchanger 20 and the water supply / drainage flow path, a pump failure (not shown), and the water supply flow path 34 and the drainage flow path 37 are damaged. It will be detected. The flow rate detection means may be a digital flow meter 36 instead of the flow rate detection sensor 36.

電磁弁31は、給水流路34に設けて、同流路を開閉することで、水冷式熱交換機20への冷却水の流通を制御しているが、排水流路37側に設けても同様の機能を果たすことができる。水熱源としての冷却水としては、地下水、水道水、クーリングタワーで用いる水、貯水されている水や工業用水、不凍液等が挙げられる。本形態では電磁弁31を開閉することで、水冷式熱交換機20への冷却水の流通を制御しているが、電磁弁31を設けずに冷却水を供給するポンプを制御手段40でオン/オフ制御して水冷式熱交換機20への冷却水の流通を制御するようにしても良い。  The electromagnetic valve 31 is provided in the water supply flow path 34 and controls the circulation of the cooling water to the water-cooled heat exchanger 20 by opening and closing the flow path. Can fulfill the functions of Examples of the cooling water as a water heat source include ground water, tap water, water used in a cooling tower, stored water, industrial water, antifreeze, and the like. In this embodiment, the flow of the cooling water to the water-cooled heat exchanger 20 is controlled by opening and closing the electromagnetic valve 31, but the pump for supplying the cooling water without providing the electromagnetic valve 31 is turned on / off by the control means 40. You may make it control off and control the distribution | circulation of the cooling water to the water-cooled heat exchanger 20. FIG.

本発明の一形態であるハイブリッド空調装置の概略構成図である。  It is a schematic block diagram of the hybrid air conditioner which is one form of this invention. ハイブリッド空調装置の制御手段とこれにつながる構成要素を示すブロック図である。  It is a block diagram which shows the control means of a hybrid air conditioner, and the component connected to this. 操作部の一形態を示す平面図である。  It is a top view which shows one form of an operation part. 制御手段による基本動作処理の一形態を示すフローチャートである。  It is a flowchart which shows one form of the basic operation process by a control means. 冷房運転処理の一形態を示すフローチャートである。  It is a flowchart which shows one form of a cooling operation process. 暖房運転処理の一形態を示すフローチャートである。  It is a flowchart which shows one form of heating operation processing. 水冷システムの動作を示すフローチャートである。  It is a flowchart which shows operation | movement of a water cooling system. 空冷システムの動作を示すフローチャートである。  It is a flowchart which shows operation | movement of an air cooling system. 熱交換媒体の加熱時の特性を示すモリエ線図である。  It is a Mollier diagram which shows the characteristic at the time of the heating of a heat exchange medium. 熱交換媒体の冷却時の特性を示すモリエ線図である。  It is a Mollier diagram which shows the characteristic at the time of cooling of a heat exchange medium.

符号の説明Explanation of symbols

1 ハイブリッド空調装置
4 流路内
4A 第2の経路
4B 第1の経路
5 空冷式熱交換機
11 空調機器
20 水冷式熱交換機
22〜25 切換手段
30 冷却水経路
31 開閉手段
32 水圧検知手段
33,34 温度検知手段
36 流量検知手段
38 温度検知手段
40 制御装置
WT1−max1,WT2−max1 下限温度
WT1−max2、WT2−max2 下限温度
WT1+max1、WT2+max1 上限温度
WT1+max2、WT2+max2 上限温度
WT1−max1〜WT2−max1 下限温度範囲
WT1−max2〜WT2−max2 下限温度範囲
WT1+max1〜WT2+max1 上限温度範囲
WT1+max2〜WT2+max2 上限温度範囲
DESCRIPTION OF SYMBOLS 1 Hybrid air conditioner 4 In a flow path 4A 2nd path | route 4B 1st path | route 5 Air cooling type heat exchanger 11 Air conditioning equipment 20 Water cooling type heat exchanger 22-25 Switching means 30 Cooling water path 31 Opening and closing means 32 Water pressure detection means 33,34 Temperature detection means 36 Flow rate detection means 38 Temperature detection means 40 Control device WT1-max1, WT2-max1 Lower limit temperature WT1-max2, WT2-max2 Lower limit temperature WT1 + max1, WT2 + max1 Upper limit temperature WT1 + max2, WT2 + max2 Upper limit temperature WT1-max1 to WT2-max1 Lower limit Temperature range WT1-max2 to WT2-max2 Lower limit temperature range WT1 + max1 to WT2 + max1 Upper limit temperature range WT1 + max2 to WT2 + max2 Upper limit temperature range

Claims (6)

空調機器との間で熱交換媒体を循環させる流路内を循環する熱交換媒体に対して気体を用いて熱交換する空冷式熱交換機が設けらたれ第1の経路と、前記流路内を循環する熱交換媒体に対して冷却水を用いて熱交換する水冷式熱交換機が設けられた第2の経路と、前記熱交換媒体が流れる経路を第1の経路または第2の経路に切換る切換手段と、前記水冷式熱交換機に冷却水を流通させる冷却水経路とを有するハイブリッド空調装置の制御装置であって、
前記冷却水の温度を検知する温度検知手段からの温度情報が少なくとも上限温度または上限温度範囲を超える場合には前記熱交換媒体が流れる経路を第1の経路へ切換え、前記温度情報が下限温度または下限温度範囲を超える場合には前記熱交換媒体が流れる経路を第2の経路へ切換るように前記切換手段を制御する冷却モードを少なくとも備えたハイブリッド空調装置の制御装置。
An air-cooled heat exchanger for exchanging heat using a gas with respect to the heat exchange medium that circulates in the flow path that circulates the heat exchange medium with the air conditioner is provided. The second path provided with a water-cooled heat exchanger for exchanging heat with the cooling water for the circulating heat exchange medium and the path through which the heat exchange medium flows are switched to the first path or the second path. A control device for a hybrid air conditioner having switching means and a cooling water path for circulating cooling water through the water-cooled heat exchanger,
When the temperature information from the temperature detecting means for detecting the temperature of the cooling water exceeds at least the upper limit temperature or the upper limit temperature range, the path through which the heat exchange medium flows is switched to the first path, and the temperature information is the lower limit temperature or A control device for a hybrid air conditioner comprising at least a cooling mode for controlling the switching means so that a path through which the heat exchange medium flows is switched to a second path when a lower limit temperature range is exceeded.
空調機器との間で熱交換媒体を循環させる流路内を循環する熱交換媒体に対して気体を用いて熱交換する空冷式熱交換機が設けらたれ第1の経路と、前記流路内を循環する熱交換媒体に対して冷却水を用いて熱交換する水冷式熱交換機が設けられた第2の経路と、前記熱交換媒体が流れる経路を第1の経路または第2の経路に切換る切換手段と、前記水冷式熱交換機に冷却水を流通させる冷却水経路とを有するハイブリッド空調装置の制御装置であって、
前記冷却水の温度を検知する温度検知手段からの温度情報が少なくとも下限温度または下限温度範囲を超える場合には前記熱交換媒体が流れる経路を第1の経路へ切換え、前記温度情報が上限温度または上限温度範囲を超える場合には前記熱交換媒体が流れる経路を第2の経路へ切換るように前記切換手段を制御する加熱モードを少なくとも備えたハイブリッド空調装置の制御装置。
An air-cooled heat exchanger for exchanging heat using a gas with respect to the heat exchange medium that circulates in the flow path that circulates the heat exchange medium with the air conditioner is provided. The second path provided with a water-cooled heat exchanger for exchanging heat with the cooling water for the circulating heat exchange medium and the path through which the heat exchange medium flows are switched to the first path or the second path. A control device for a hybrid air conditioner having switching means and a cooling water path for circulating cooling water through the water-cooled heat exchanger,
When the temperature information from the temperature detecting means for detecting the temperature of the cooling water exceeds at least the lower limit temperature or the lower limit temperature range, the path through which the heat exchange medium flows is switched to the first path, and the temperature information is the upper limit temperature or A control device for a hybrid air conditioner comprising at least a heating mode for controlling the switching means so that the path through which the heat exchange medium flows is switched to a second path when an upper limit temperature range is exceeded.
請求項1または2記載のハイブリッド空調装置の制御装置において、
前記冷却水経路の冷却水の圧力を検知する水圧検知手段からの検知情報が所定圧に満たない場合に、前記熱交換媒体が流れる経路を第1の経路へ切換えるように前記切換手段を制御するハイブリッド空調装置の制御装置。
In the control apparatus of the hybrid air conditioner according to claim 1 or 2,
When the detection information from the water pressure detecting means for detecting the pressure of the cooling water in the cooling water path is less than a predetermined pressure, the switching means is controlled to switch the path through which the heat exchange medium flows to the first path. Control device for hybrid air conditioner.
請求項1または2記載のハイブリッド空調装置の制御装置において、
前記冷却水経路の冷却水の流量を検知する流量検知手段からの検知情報が所定流量に満たない場合、前記熱交換媒体が流れる経路を第1の経路へ切換えるように前記切換手段を制御するハイブリッド空調装置の制御装置。
In the control apparatus of the hybrid air conditioner according to claim 1 or 2,
A hybrid that controls the switching means to switch the path through which the heat exchange medium flows to the first path when detection information from the flow rate detection means for detecting the flow rate of the cooling water in the cooling water path is less than a predetermined flow rate. Control device for air conditioner.
請求項1または2記載のハイブリッド空調装置の制御装置において、
前記水冷式熱交換機の表面温度を検知する温度検知手段からの検知情報が所定温度よりも高い場合、前記熱交換媒体が流れる経路を第1の経路へ切換えるように前記切換手段を制御するハイブリッド空調装置の制御装置。
In the control apparatus of the hybrid air conditioner according to claim 1 or 2,
Hybrid air conditioning for controlling the switching means to switch the path through which the heat exchange medium flows to the first path when the detection information from the temperature detection means for detecting the surface temperature of the water-cooled heat exchanger is higher than a predetermined temperature. Control device for the device.
請求項1乃至5の何れかに記載のハイブリッド空調装置の制御装置において、
前記切換手段を制御して前記熱交換媒体が流れる経路を第1の経路へ切換えた後、前記冷却水経路を開閉する開閉手段を間接的に開閉制御するハイブリッド空調装置の制御装置。
In the control apparatus of the hybrid air conditioner in any one of Claims 1 thru | or 5,
A control device for a hybrid air conditioner that indirectly opens and closes an opening and closing means for opening and closing the cooling water path after controlling the switching means to switch the path through which the heat exchange medium flows to the first path.
JP2004249345A 2004-08-01 2004-08-01 Control device for hybrid air conditioner Pending JP2006046880A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004249345A JP2006046880A (en) 2004-08-01 2004-08-01 Control device for hybrid air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004249345A JP2006046880A (en) 2004-08-01 2004-08-01 Control device for hybrid air conditioner

Publications (1)

Publication Number Publication Date
JP2006046880A true JP2006046880A (en) 2006-02-16

Family

ID=36025623

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004249345A Pending JP2006046880A (en) 2004-08-01 2004-08-01 Control device for hybrid air conditioner

Country Status (1)

Country Link
JP (1) JP2006046880A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445017A (en) * 2011-09-16 2012-05-09 西安君生实业有限公司 Host machine of air cooling and water cooling type cold-hot water air conditioner
CN102650465A (en) * 2012-05-10 2012-08-29 南京佳力图空调机电有限公司 Refrigerating system of air conditioner

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102445017A (en) * 2011-09-16 2012-05-09 西安君生实业有限公司 Host machine of air cooling and water cooling type cold-hot water air conditioner
CN102650465A (en) * 2012-05-10 2012-08-29 南京佳力图空调机电有限公司 Refrigerating system of air conditioner

Similar Documents

Publication Publication Date Title
JP5570531B2 (en) Heat pump equipment
KR100563306B1 (en) Ground source heat pump type heating and cooing system haviang means for feeding assistant heat source
JP6615345B2 (en) Refrigeration cycle system
KR100586989B1 (en) Air condition system for cooling and heating and control method thereof
EP2672204B1 (en) Binary refrigeration cycle device
CN108779938B (en) Air conditioner hot water supply system
CN101469911B (en) Air conditioner
KR100511242B1 (en) Air conditioner
JP4071250B2 (en) Heat pump control device
CN102770724A (en) Air conditioning device
JP4559134B2 (en) Water-cooled exhaust heat recovery heat pump
JP2006046880A (en) Control device for hybrid air conditioner
JP2005201631A (en) Air conditioner
JP2006046883A (en) Control device for hybrid air conditioner
KR101533112B1 (en) Heat pump system and method for controlling the same
KR102066694B1 (en) An engine-driven heat pump system
JP2006349333A (en) Air-and water-cooled hybrid heat pump, and air-conditioning system
JP5993673B2 (en) Double bundle type refrigerator
CN211424727U (en) Air conditioner and refrigerating system thereof
JP6989788B2 (en) Refrigeration cycle device
KR101175635B1 (en) An air conditioning system with non-defrost
JP4092320B2 (en) Control device for hybrid air conditioner
JP2010083223A (en) Vehicular air conditioner
KR100760211B1 (en) Cooling device for air conditioning and heating apparatus refrigerant
JP2007147133A (en) Air conditioner

Legal Events

Date Code Title Description
RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20061102

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20061010

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20070604

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20070907

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071112

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080208