JP2006046286A - Method and device for exhaust gas emission control - Google Patents

Method and device for exhaust gas emission control Download PDF

Info

Publication number
JP2006046286A
JP2006046286A JP2004232141A JP2004232141A JP2006046286A JP 2006046286 A JP2006046286 A JP 2006046286A JP 2004232141 A JP2004232141 A JP 2004232141A JP 2004232141 A JP2004232141 A JP 2004232141A JP 2006046286 A JP2006046286 A JP 2006046286A
Authority
JP
Japan
Prior art keywords
exhaust gas
oxidation catalyst
oxidation
sector
catalyst
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004232141A
Other languages
Japanese (ja)
Inventor
Yasuyoshi Kato
泰良 加藤
Masatoshi Fujisawa
雅敏 藤澤
Keiichiro Kai
啓一郎 甲斐
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Power Ltd
Original Assignee
Babcock Hitachi KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Babcock Hitachi KK filed Critical Babcock Hitachi KK
Priority to JP2004232141A priority Critical patent/JP2006046286A/en
Publication of JP2006046286A publication Critical patent/JP2006046286A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method and a device for exhaust gas emission control, in which PM in DE exhaust gas can be efficiently eliminated without being affected by load fluctuation, and in which bad effects on environments can be reduced. <P>SOLUTION: In this device, exhaust gas containing particulate substances (PM) is introduced into an oxidation catalyst device to get in contact with nitrogen monoxide in exhaust gas to be oxidized to generate nitrogen dioxide (NO2), which is reacted with particulate substances (PM) collected by a filter installed on the back of the oxidation catalyst device for emission control of exhaust gas. The oxidation catalyst device is parted to a catalyst part that is high in oxidation catalyst function and a catalyst part that is low. A sector means is provided to vary the ratio of exhaust gas to flow to the respective catalyst parts parted from each other. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は排ガス浄化方法および装置に係り、特にディーゼルエンジンから排出される煤等の粒状物質(以下PM)をフィルタで捕集後、二酸化窒素(NO2)及び/又は酸素(O2)で酸化燃焼させてPMを除去する方法とその装置に関する。 The present invention relates to an exhaust gas purification method and apparatus, and in particular, particulate matter such as soot discharged from a diesel engine (hereinafter referred to as PM) is collected with a filter and then oxidized with nitrogen dioxide (NO 2 ) and / or oxygen (O 2 ). The present invention relates to a method and apparatus for removing PM by burning.

ディーゼルエンジンは内燃機関の内最も効率の高いものの1つであり、一定出力当りの二酸化炭素(CO2)排出量が低く、その上、重油の如き低質の燃料を使用できるため、経済的にも優れている。このため、近年、地球温暖化防止のためエネルギー利用効率の高く、CO2排出量の低いディーゼルエンジン(DE)を用いた車や定置式の発電設備が見直され、多用される傾向にある。 Diesel engines are one of the most efficient types of internal combustion engines, have low carbon dioxide (CO 2 ) emissions per fixed output, and can use low-quality fuels such as heavy oil. Are better. For this reason, in recent years, vehicles and stationary power generation facilities using diesel engines (DE) with high energy use efficiency and low CO 2 emissions to prevent global warming have been reviewed and tend to be used frequently.

一方、重質油や軽油を燃料とするディーゼルエンジンは、未燃炭化水素と煤が一体化した粒状物質が多く、公害の元凶になっていることが社会問題になっている。このため、ディーゼルエンジンメーカ及び自動車メーカなど、各方面で粒状物質(PM)の除去に関する研究、開発が進められ、優れた除去性能を有するフィルタや、前置の酸化触媒やフィルタに酸化触媒を担持して、排ガス中の一酸化窒素(NO)を二酸化窒素(NO2)にして煤を燃焼させ、長期間煤の詰まりを防止できるようにしたPMフィルタ(DPF)に関する研究・発明がなされている。 On the other hand, diesel engines that use heavy oil or light oil as fuels have many particulate materials in which unburned hydrocarbons and soot are integrated, and it is a social problem that they are the cause of pollution. For this reason, research and development related to the removal of particulate matter (PM) has been promoted in various areas, such as diesel engine manufacturers and automobile manufacturers, and filters with excellent removal performance, oxidation catalysts on the front and filters are supported by oxidation catalysts. In addition, research and inventions have been made on PM filters (DPF) that can prevent soot clogging for a long period of time by burning soot using nitrogen monoxide (NO) in the exhaust gas as nitrogen dioxide (NO 2 ). .

これらの発明の多くは、排ガスを数μmの多孔質セラミックスの薄壁に通して濾過することを目指したものであり、それには、金属またはセラミックス製の板状もしくは円筒状のフィルタ、ハニカム状のセラミックス多孔成形体の目を交互に埋めてフィルタにしたウォールスルーハニカムフィルタ、微細な金属線織布製フィルタなどが知られている。さらに、それらの目詰まりを防止もしくは緩和するため、これらフィルタにNOのNO2への酸化機能を持たせて煤を酸化燃焼させるものが知られている
産業環境管理協会、環境管理 Vol.37、p441-449 特開平1-318715号公報 特開昭60-235620号公報
Many of these inventions aim to filter exhaust gas through a thin wall of porous ceramics of several μm, and include plate or cylindrical filters made of metal or ceramics, honeycomb-like filters, etc. A wall-through honeycomb filter in which the eyes of a ceramic porous molded body are alternately filled to form a filter, a fine metal wire woven fabric filter, and the like are known. Furthermore, in order to prevent or alleviate the clogging, it is known that these filters have a function of oxidizing NO to NO 2 to oxidize and burn soot.
Industrial Environmental Management Association, Environmental Management Vol.37, p441-449 JP-A-1-318715 JP-A-60-235620

上記従来技術の内、第6図に示すように、排ガス煙道に貴金属等を担持した酸化触媒1とウォールスルーハニカムフィルタ2とをガス流れ方向に順次設け、排ガス中のNOを下記(1)式の反応で酸化して効率良くNO2を発生させ、ウオールスルーフィルタ2上に捕集した煤を(2)式または(3)式の反応により酸化分解する方法は、高いPM除去率の得られる優れた方法であるが、本法を重油を燃料とする定置式DEの排ガス処理に使用した場合には、次のような改善すべき点が残されていた。 Among the above prior arts, as shown in FIG. 6, an oxidation catalyst 1 carrying a noble metal or the like on an exhaust gas flue and a wall-through honeycomb filter 2 are sequentially provided in the gas flow direction. The method of generating NO 2 efficiently by oxidation by the reaction of the formula, and oxidizing and decomposing the soot collected on the wall-through filter 2 by the reaction of the formula (2) or (3) provides a high PM removal rate. However, when this method was used for exhaust gas treatment of stationary DE using heavy oil as fuel, the following points to be improved remained.

NO+1/2 O2 → NO2 (1)
NO2+煤(C) → NO+CO (2)
2NO2+煤(C) → 2NO+CO2 (3)
定置式DEは分散型電源等の発電に使用されるため、夜間や週末には定格負荷から低負荷の運転に切り替えて使われることが多い。定格負荷時にはフィルタ部の温度は、400℃以上の高温なるが、低負荷運転では300℃近くまで低下する。その結果、前記(1)式の反応が進行しなくなり、(2)式または(3)式の反応に必要なNO2を供給できなくなり、煤がフィルタ上に堆積し、圧損の上昇を招いてDEの運転ができなくなるという問題が発生する。
NO + 1/2 O 2 → NO 2 (1)
NO 2 + 煤 (C) → NO + CO (2)
2NO 2 + 煤 (C) → 2NO + CO 2 (3)
Since stationary DE is used for power generation of distributed power sources, it is often used by switching from rated load to low load operation at night and on weekends. At the rated load, the temperature of the filter section is as high as 400 ° C or higher, but decreases to near 300 ° C during low-load operation. As a result, the reaction of the formula (1) does not proceed, NO 2 necessary for the reaction of the formula (2) or (3) cannot be supplied, soot accumulates on the filter, and the pressure loss increases. A problem occurs that the DE cannot be operated.

これを避けるため、低温でも効率良くNO2を発生するように酸化触媒の貴金属担持量を増加させたり、触媒使用量そのものを増加すると、定格運転の高温時には(2)式または(3)式に必要なNO2が大過剰になり、余剰なNO2として排出されて、黄色煙を発生するという問題があった。また、酸化触媒により排ガス中のSO2がSO3に酸化される割合も著しく上昇し、白煙を発生するのみならず、環境上も好ましくないという問題があった。 To avoid this, increasing the amount of noble metal supported on the oxidation catalyst so as to efficiently generate NO 2 even at low temperatures, or increasing the amount of catalyst used itself, gives the formula (2) or (3) at high temperatures during rated operation. There was a problem that the necessary NO 2 was excessively large and discharged as excess NO 2 to generate yellow smoke. In addition, the rate at which SO 2 in the exhaust gas is oxidized to SO 3 by the oxidation catalyst is remarkably increased, which not only generates white smoke, but is also unfavorable from the environmental viewpoint.

本発明の課題は、上記した従来技術の抱える二律背反的な課題を解決し、DE排ガス中のPMを負荷の変動に影響されること無く、効率良く除去でき、かつ環境への悪影響も少なくできる排ガス浄化方法と装置を提供することにある。   The problem of the present invention is to solve the above-mentioned trade-off problem of the prior art, and to effectively remove PM in DE exhaust gas without being affected by load fluctuations, and to reduce adverse effects on the environment. It is to provide a purification method and apparatus.

上記課題を解決するため、本願で特許請求される発明は下記のとおりである。
(1)粒子状物質(PM)を含む排ガスを酸化触媒装置に導入し、排ガス中の一酸化窒素(NO)を接触酸化させて生成した二酸化窒素(NO2)と、酸化触媒装置の後流部に設置されたフィルタで捕集された粒子状物質(PM)とを反応させて排ガスを浄化する装置において、前記酸化触媒装置が酸化触媒機能が高い触媒体部分と低い触媒体部分とに区分分けされており、かつ区分分けされた触媒体の各部分を流れる排ガスの割合を変化させ得るセクター手段を有することを特徴とする排ガス浄化装置。
(2)前記セクター手段が、ディーゼルエンジンの負荷信号または排ガス温度信号に連動して制御される制御手段を有していることを特徴する(1)記載の排ガス浄化装置。
In order to solve the above problems, the invention claimed in the present application is as follows.
(1) Nitrogen dioxide (NO 2 ) generated by introducing exhaust gas containing particulate matter (PM) into the oxidation catalyst device and catalytically oxidizing nitrogen monoxide (NO) in the exhaust gas, and the downstream of the oxidation catalyst device In a device that purifies exhaust gas by reacting with particulate matter (PM) collected by a filter installed in the section, the oxidation catalyst device is divided into a catalyst body portion with a high oxidation catalyst function and a low catalyst body portion An exhaust gas purification apparatus comprising sector means that is divided and capable of changing a ratio of exhaust gas flowing through each portion of the divided catalyst body.
(2) The exhaust gas purification apparatus according to (1), wherein the sector means includes control means that is controlled in conjunction with a load signal or exhaust gas temperature signal of a diesel engine.

(3)前記制御手段が、ディーゼルエンジンの負荷信号または排ガス温度信号をセクターの位置設定信号に加工するセクター位置設定器を有していることを特徴とする(2)記載の排ガス浄化装置。
(4)前記酸化触媒が少なくとも白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、コバルト(Co)、マンガン(Mn)および銅(Cu)から選ばれる1種以上の元素を含み、酸化機能の高い触媒体部分の触媒担持量を高く、酸化機能の低い触媒体部分の触媒担持量を低くしたことを特徴とする(1)ないし(3)のいずれかに記載の排ガス浄化装置。
(5)前記酸化触媒体が円筒状であって、前記触媒機能による区分分けが、ガス流れ断面に対して扇状の区画分けであることを特徴とする(1)ないし(4)のいずれかに記載の排ガス浄化装置。
(3) The exhaust gas purifying apparatus according to (2), wherein the control means includes a sector position setting device that processes a load signal or exhaust gas temperature signal of a diesel engine into a sector position setting signal.
(4) The oxidation catalyst contains at least one element selected from platinum (Pt), palladium (Pd), rhodium (Rh), cobalt (Co), manganese (Mn) and copper (Cu), and has an oxidation function. The exhaust gas purifying apparatus according to any one of (1) to (3), wherein the catalyst carrying amount of the catalyst body portion having a high level is high and the catalyst carrying amount of the catalyst body portion having a low oxidation function is low.
(5) In any one of (1) to (4), the oxidation catalyst body is cylindrical, and the division by the catalyst function is a fan-like division with respect to a gas flow cross section. The exhaust gas purification apparatus as described.

(6)前記酸化触媒体が直方体であり、前記触媒機能による区分分けが、ガス流れ断面に対し縞状または格子状であることを特徴とするる(1)ないし(4)のいずれかに記載の排ガス浄化装置。
(7)前記セクター手段には、前記触媒体の前面に配置された、該触媒体の酸化機能の高い部分と低い部分の前記区分分けの断面形状と同一の平面形状を有するセクターと、該セクターの回転または移動によって前記各区分のガス流れの割合を変化させる該セクターの駆動手段とを備えたことを特徴とする(1)ないし(6)のいずれかに記載の排ガス浄化装置。
(8)粒子状物質(PM)を含む排ガスを酸化触媒装置に導入し、排ガス中の一酸化窒素(NO)を接触酸化させて生成した二酸化窒素(NO2)と、酸化触媒装置の後流部に設置されたフィルタで捕集された粒子状物質(PM)とを反応させて排ガスを浄化する方法において、前記フィルタで捕集されたPMとNO2との反応に必要なNO2量より僅かに高いNO2量になるように、前記酸化触媒装置における触媒活性を変化させ、NO2の生成量を制御することを特徴とする排ガスの浄化方法。
(6) The oxidation catalyst body is a rectangular parallelepiped, and the division according to the catalytic function is a striped shape or a lattice shape with respect to a gas flow cross section, according to any one of (1) to (4) Exhaust gas purification equipment.
(7) The sector means includes a sector that is disposed in front of the catalyst body and has a planar shape that is the same as the sectional shape of the division of the high and low oxidation portions of the catalyst body, and the sector The exhaust gas purifying apparatus according to any one of (1) to (6), further comprising: a driving unit of the sector that changes the ratio of the gas flow in each section by rotating or moving the gas.
(8) Nitrogen dioxide (NO 2 ) generated by introducing exhaust gas containing particulate matter (PM) into the oxidation catalyst device and catalytically oxidizing nitrogen monoxide (NO) in the exhaust gas, and the downstream of the oxidation catalyst device In the method of purifying exhaust gas by reacting with particulate matter (PM) collected by a filter installed in the section, from the amount of NO 2 required for the reaction between PM collected by the filter and NO 2 A method for purifying exhaust gas, characterized in that the amount of NO 2 produced is controlled by changing the catalytic activity in the oxidation catalyst device so that the amount of NO 2 is slightly higher.

本発明によれば、フィルタで捕集されたPMの燃焼に必要なNO2を過不足なく供給して、余剰NO2の排出量を抑え、SO2酸化生成物である毒性の高いSO3の発生を抑制することができる。 According to the present invention, NO 2 necessary for combustion of PM collected by a filter is supplied without excess and deficiency, and the amount of excess NO 2 is suppressed, and SO 2 oxidation product highly toxic SO 3 is produced. Occurrence can be suppressed.

以下、本発明を図面に基づいて詳細に説明する。
図1は、本発明の排ガス浄化方法および装置の一例を示す説明図である。図1において、この装置は、粒子状物質(PM)を含むディーゼルエンジン6の排ガスを排ガス煙道6Aに配置された酸化触媒装置1に導入し、排ガス中の一酸化窒素(NO)を接触酸化して生成した二酸化窒素(NO2)と、酸化触媒装置1の下流部に設置されたフィルタ(ディーゼルパティキュレートフィルタ)2で捕集された粒子状物質(PM)と反応させて排ガスを浄化する装置であり、前記酸化触媒装置1は、図2に示すように、酸化触媒機能が高い触媒体部分3と低い触媒体部分4とに区分わけされており、かつ区分分けされた触媒体の上流側に、触媒体の各部分を流れるガスの割合を変化することができるセクター手段5を有するものである。このセクター手段5は、触媒体の前面に配置された、該触媒体の酸化機能の高い部分と低い部分の前記区分分けの断面形状と同一の平面形状を有するセクター5Aと、該セクター5Aの回転または移動(図3の矢印参照)により前記各区分のガス流れの割合を変化させる該セクターの駆動手段(図示省略)とからなる。セクター手段5は、ディーゼルエンジン6の負荷信号10または排ガス温度信号11に連動し、これに応じて触媒体の各部分を流れるガスの割合を変化させるためのセクター駆動信号発生器12を有している。図中8は温度センサー、9は温度信号発生器、7はセクター駆動信号に応じてセクター5Aを所定位置に駆動するためのアクチュエータである。
Hereinafter, the present invention will be described in detail based on the drawings.
FIG. 1 is an explanatory view showing an example of an exhaust gas purification method and apparatus of the present invention. In FIG. 1, this apparatus introduces exhaust gas from a diesel engine 6 containing particulate matter (PM) into an oxidation catalyst device 1 disposed in an exhaust gas flue 6A, and catalytically oxidizes nitrogen monoxide (NO) in the exhaust gas. The exhaust gas is purified by reacting with the generated nitrogen dioxide (NO 2 ) and the particulate matter (PM) collected by the filter (diesel particulate filter) 2 installed downstream of the oxidation catalyst device 1. As shown in FIG. 2, the oxidation catalyst device 1 is divided into a catalyst body portion 3 having a high oxidation catalyst function and a catalyst body portion 4 having a low oxidation catalyst function, and upstream of the divided catalyst body. On the side, the sector means 5 that can change the ratio of the gas flowing through each part of the catalyst body is provided. The sector means 5 includes a sector 5A disposed on the front surface of the catalyst body and having a planar shape identical to the sectional shape of the division of the high oxidation function portion and the low oxidation portion of the catalyst body, and the rotation of the sector 5A. Alternatively, it comprises driving means (not shown) of the sector for changing the ratio of the gas flow of each section by movement (see the arrow in FIG. 3). The sector means 5 has a sector drive signal generator 12 that is linked to the load signal 10 or the exhaust gas temperature signal 11 of the diesel engine 6 and changes the ratio of the gas flowing through each part of the catalyst body in response thereto. Yes. In the figure, 8 is a temperature sensor, 9 is a temperature signal generator, and 7 is an actuator for driving the sector 5A to a predetermined position in accordance with the sector drive signal.

本発明に用いる酸化触媒体1は図2に示すように少なくとも2分割されており、酸化触媒機能が高い部分3と低い部分4が、ガス流れ方向の断面に交互に配列され、例えば図2(a)では扇形、図2(b)では縞状、図2(c)では千鳥状に配列されている。肝心なことは、酸化触媒体の流路がハニカムのセルのように排ガス流れ方向に貫通した流路が形成されており、その流路内面の酸化活性の高い流路の集まった部分と、酸化活性の低い流路の集まった部分とに区分けされていることである。酸化活性の高い部分と低い部分が交互に配列されていると、セクターの変化に対する追従性が高いので好結果を与えやすい。   As shown in FIG. 2, the oxidation catalyst body 1 used in the present invention is divided into at least two parts, and the portions 3 and 4 having high oxidation catalyst function are alternately arranged in a cross section in the gas flow direction. They are arranged in a fan shape in a), a stripe shape in FIG. 2B, and a staggered shape in FIG. The important thing is that the flow path of the oxidation catalyst body is formed in the exhaust gas flow direction like a honeycomb cell, and the flow path inside the flow path is gathered with the portion of the flow path with high oxidation activity. It is divided into the gathered parts of the flow paths with low activity. When the portions having high oxidation activity and the portions having low oxidation activity are alternately arranged, the followability to the sector change is high, and it is easy to give good results.

ここで酸化機能の高い触媒体部分とは、コーディエライトハニカム担体などの触媒担体に、白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、コバルト(Co)、マンガン(Mn)など、NOをNO2に酸化する活性に優れた公知の貴金属または金属酸化物の担持量を高くすることにより容易に実現することができる。他方、酸化機能の低い触媒体部分は、上記貴金属または金属酸化物を担持しないか、その担持量を前記活性の高い触媒体部分に比べ低くすることにより実現することができる。これらの触媒活性を担持する触媒体部分は、予めアルミナ、チタニア、ジルコニアなどに担持した粉末をスラリにして、所定区分の流路にウォッシュコーティングにより担持する方法、予めアルミナ、チタニア、ジルコニアなどを担体に担持しておき、酸化活性成分の塩類の溶液やコロイドをその上に担持させる方法など、公知の方法を用いることができる。要はこれらの触媒担持操作を区分分けして実施し、酸化活性成分の担持量に差異を持たせることが重要である。 Here, the catalyst body portion having a high oxidation function refers to a catalyst carrier such as a cordierite honeycomb carrier, a platinum (Pt), palladium (Pd), rhodium (Rh), cobalt (Co), manganese (Mn), NO, etc. It can be easily realized by increasing the loading of a known noble metal or metal oxide having an excellent activity of oxidizing NO to NO 2 . On the other hand, the catalyst body portion having a low oxidation function can be realized by not supporting the above-mentioned noble metal or metal oxide or by lowering the amount supported compared to the catalyst body portion having a high activity. The catalyst body part supporting these catalytic activities is a method in which powder previously supported on alumina, titania, zirconia, etc. is made into a slurry and supported by wash coating in a predetermined flow path, and alumina, titania, zirconia, etc. are supported beforehand. It is possible to use a known method such as a method in which a solution or colloid of a salt of an oxidatively active component is supported thereon. In short, it is important to carry out these catalyst loading operations in a divided manner so as to give a difference in the loading amount of the oxidation active component.

酸化触媒の酸化性能の高い部分と低い部分とを通過する流量を変化させるセクター手段は、図3(a)、(b)、(c)にそれぞれ示すような、触媒体の区分分けに対応させて、バタフライ状、すのこ状、千鳥状などの邪魔板状セクターを触媒体の前流側に配置し、これを回転またはスラドさせる駆動手段を設けることにより達成できる。セクター5Aと触媒体1との距離は近い方が好結果を得やすいが、要は両区分を流れる流量比率の変化させることにあり、その目的を達するに十分な圧損差を与えられればよいため、数mm〜数cmの距離があっても目的を達することができる。また、DE負荷や温度信号は、予めエンジン特性及び触媒特性から決定された量の係数を乗じ、邪魔板状セクターの回転またはスライドさせるための制御信号として用いることができる。   The sector means for changing the flow rate passing through the high oxidation portion and the low oxidation portion of the oxidation catalyst correspond to the classification of the catalyst bodies as shown in FIGS. 3 (a), (b) and (c), respectively. The baffle-shaped sector such as butterfly-shaped, slatted-shaped, or staggered-shaped sector is arranged on the upstream side of the catalyst body, and this can be achieved by providing drive means for rotating or sliding the sector. The closer the distance between the sector 5A and the catalyst body 1 is, the easier it is to obtain good results, but the main point is to change the flow rate ratio flowing through both sections, because it is sufficient to provide a sufficient pressure loss difference to achieve the purpose. Even if there is a distance of several mm to several cm, the purpose can be achieved. Further, the DE load and the temperature signal can be used as a control signal for rotating or sliding the baffle plate sector by multiplying a coefficient of an amount determined in advance from engine characteristics and catalyst characteristics.

一方、酸化触媒体の後流に設置されるフィルタ(いわゆるDPF)としては、コージエライト、炭化ケイ素、ガラスなどの多孔質ハニカム体の流路を、千鳥状で、入口出口で互い違いに栓をする、いわゆるウォールスルーハニカム型DPFの他、無機繊維の織布、不織布、金属製網などを濾過材に用いるフィルターなど、各種の物が使用可能である。   On the other hand, as a filter (so-called DPF) installed downstream of the oxidation catalyst body, the channels of the porous honeycomb body such as cordierite, silicon carbide, and glass are staggered and plugged alternately at the inlet and outlet. In addition to the so-called wall-through honeycomb type DPF, various kinds of materials such as a filter using a woven fabric, a non-woven fabric, or a metal net of an inorganic fiber as a filter medium can be used.

以下、本発明の原理を詳細に説明する。
図4は、一般的な170kWクラスの定置式ディーゼルエンジン出口部に、図6の従来技術のPt系のNO酸化触媒及びDPFを設置した場合を例にとり、排ガス温度と酸化触媒出口のNO2濃度、SO3の濃度、及びPMの酸化に必要なNO2を前記(3)式に従い算出して示したものである。
Hereinafter, the principle of the present invention will be described in detail.
Fig. 4 shows an example of installing the conventional Pt-based NO oxidation catalyst and DPF of Fig. 6 at the outlet of a typical 170kW class stationary diesel engine. The exhaust gas temperature and NO 2 concentration at the oxidation catalyst outlet are taken as an example. , SO 3 concentration and NO 2 required for PM oxidation are calculated according to the above equation (3).

本図から明らかなように、排ガス温度の高い高負荷運転時には、PMを完全酸化するに必要なNO2濃度は、温度の低い低負荷運転時に比べ少なくて良い。これは、PM濃度は負荷で余り変らない上、温度が高いと(4)式のPMの酸素による酸化が優勢になるためである。一方、酸化触媒により酸化生成するNO2とSO3の濃度は、温度上昇に伴い大きく増大する傾向にある。このため、Pt担持量の少ない酸化能の低い酸化触媒を使用した場合は、低負荷運転時にはNO2が不足し、DPFへのPMの堆積と閉塞を起こす。逆にPt担持量の多い酸化触媒を使用した場合は、低負荷運転時でも必要なNO2を発生できるため閉塞トラブルを発生しない替わりに、高負荷運転時には余剰なNO2が排出されるだけではなく、高濃度のSO3が排出され、黄色煙や紫煙の問題を引き起こす。 As is apparent from this figure, during high load operation with a high exhaust gas temperature, the NO 2 concentration required for complete oxidation of PM may be less than during low load operation with a low temperature. This is because the PM concentration does not change much with the load, and oxidation of the PM of formula (4) by oxygen becomes dominant when the temperature is high. On the other hand, the concentrations of NO 2 and SO 3 that are oxidized by the oxidation catalyst tend to increase greatly as the temperature rises. For this reason, when using an oxidation catalyst with a low Pt carrying amount and low oxidation ability, NO 2 is insufficient during low load operation, causing PM to accumulate and block in the DPF. If you use more oxidation catalyst of Pt supporting amount Conversely, instead of not generating a blockage trouble because it generates a low load operation even necessary NO 2, only at the time of high load operation excess NO 2 is discharged Without high concentration of SO 3 , causing yellow and purple smoke problems.

本発明では、負荷変化に応じて、酸化触媒が酸化力の強い部分(Pt担持量の大きい部分)と酸化力が無いか低い部分(Pt担持量がゼロか低い部分)に流れる排ガス流量の比率を変え、図4の太線で示すように常に必要なNO2濃度を僅かに上回るようにセクター5Aの位置を調整する。これにより、DPFから流出するNO2は常に低い値で維持できるだけでなく、SO3濃度も図4に示すように常に低い値を維持することが可能である。 In the present invention, the ratio of the exhaust gas flow rate that flows in a portion where the oxidation catalyst has a strong oxidizing power (a portion where the Pt carrying amount is large) and a portion where there is no or low oxidizing power (a portion where the Pt carrying amount is zero or low) depending on the load change And the position of the sector 5A is adjusted so as to always slightly exceed the necessary NO 2 concentration as shown by the thick line in FIG. Thus, not only NO 2 flowing out from the DPF can always be maintained at a low value, but also the SO 3 concentration can be maintained at a low value as shown in FIG.

以下具体例を用いて本発明を詳細に説明する。
実施例1
本発明の酸化性能の高い部分と低い部分とを有する触媒体とセクターの組合わせにより発生NO2を常に所定値に維持できるか否かをベンチ試験装置を用いて確認した。
Hereinafter, the present invention will be described in detail using specific examples.
Example 1
It was confirmed using a bench test apparatus whether or not the generated NO 2 can always be maintained at a predetermined value by the combination of the catalyst body having a high oxidation performance portion and a low oxidation portion according to the present invention and the sector.

直径10cm、セル数300セル/平方インチ(300cpsi)、長さ50cmのコーディエライトハニカム担体をTiO2濃度15%チタニアゾルに浸漬、乾燥し、この操作を3回繰り返した後、350℃で2時間焼成してTiO2担持量90g/リットルの触媒担体を得た。この触媒担体をジニトロジアンミン白金溶液に、半径方向に半分だけ浸漬し、片方側にのみPtを0.3g/リットルの割合で担持、乾燥後、600℃で2時間焼成して図5の触媒体を得た。 A cordierite honeycomb carrier with a diameter of 10 cm, a cell count of 300 cells / square inch (300 cpsi), and a length of 50 cm is dipped in a titania sol with a TiO 2 concentration of 15% and dried. Firing was performed to obtain a catalyst carrier having a TiO 2 loading of 90 g / liter. This catalyst carrier is immersed in a dinitrodiammine platinum solution in half in the radial direction, Pt is supported at a rate of 0.3 g / liter only on one side, dried and then calcined at 600 ° C. for 2 hours to obtain the catalyst body of FIG. Obtained.

本触媒を充填した反応器に設置し、触媒体のガス入口の上流部に同心状に直径10cm、厚さ2mmのSUS製半月形円盤(セクター)を置いた。しかる後、本酸化触媒の上流より小型DE排ガスを50Nm3導入した。エンジンの負荷を100%負荷、75%負荷及び50%負荷で運転し、触媒層の温度が一定になった時点で半月円盤を移動回転させ、発生するNO2を50ppmになるように、半月円盤の回転角度を調節した。またSO2濃度の変化からSO3への酸化率を求めた。得られた結果を表1にまとめて示した。 The reactor was installed in a reactor filled with this catalyst, and a SUS half-moon disk (sector) having a diameter of 10 cm and a thickness of 2 mm was placed concentrically upstream of the gas inlet of the catalyst body. Thereafter, 50Nm 3 of small DE exhaust gas was introduced upstream from the oxidation catalyst. Operate the engine load at 100% load, 75% load and 50% load, and move and rotate the half moon disk when the temperature of the catalyst layer becomes constant, so that the generated NO 2 becomes 50 ppm The rotation angle of was adjusted. The oxidation rate to SO 3 was determined from the change in SO 2 concentration. The obtained results are summarized in Table 1.

Figure 2006046286
本エンジンのPM濃度は約20mg/Nm3であり、これを(3)式で酸化するには70ppmのNO2を発生させる必要があるが、表1のように、各負荷に対し、半月円盤(セクター)を適当に設定することにより、必要なNO2量を過不足なく供給でき、さらにSO2酸化率も、図4の従来技術のように急増することがなくなる。
Figure 2006046286
The PM concentration of this engine is about 20 mg / Nm 3 , and it is necessary to generate 70 ppm of NO 2 to oxidize this with the formula (3). By appropriately setting (sector), the required amount of NO 2 can be supplied without excess and deficiency, and the SO 2 oxidation rate does not increase rapidly as in the prior art of FIG.

本発明は、特にディーゼルエンジンの排ガスの浄化に有用である。   The present invention is particularly useful for purifying exhaust gas from a diesel engine.

本発明の実施例を示す説明図。Explanatory drawing which shows the Example of this invention. 本発明に用いる酸化触媒体の構造を示す斜視図。The perspective view which shows the structure of the oxidation catalyst body used for this invention. 本発明に用いる各種セクターの例を示す説明図。Explanatory drawing which shows the example of the various sectors used for this invention. 本発明の原理を示す説明図。Explanatory drawing which shows the principle of this invention. 本発明の実施例に用いた触媒の構造を示す斜視図。The perspective view which shows the structure of the catalyst used for the Example of this invention. 従来技術によるDE排ガス浄化装置の概要を示す説明図。Explanatory drawing which shows the outline | summary of DE exhaust gas purification apparatus by a prior art.

符号の説明Explanation of symbols

1…酸化触媒体、2…フィルタ(DPF)、3…酸化機能の高い部分、4…酸化機能の低い部分、5…セクター手段、5A…セクター、6…ディーゼルエンジン、6A…排ガス煙道、7…アクチュエータ、8…温度センサー、9…温度信号発生器、10…負荷信号、11…温度信号、12… セクター駆動信号発生器。






DESCRIPTION OF SYMBOLS 1 ... Oxidation catalyst body, 2 ... Filter (DPF), 3 ... High oxidation function part, 4 ... Low oxidation function part, 5 ... Sector means, 5A ... Sector, 6 ... Diesel engine, 6A ... Exhaust flue, 7 ... Actuator, 8 ... Temperature sensor, 9 ... Temperature signal generator, 10 ... Load signal, 11 ... Temperature signal, 12 ... Sector drive signal generator.






Claims (8)

粒子状物質(PM)を含む排ガスを酸化触媒装置に導入し、排ガス中の一酸化窒素(NO)を接触酸化させて生成した二酸化窒素(NO2)と、酸化触媒装置の後流部に設置されたフィルタで捕集された粒子状物質(PM)とを反応させて排ガスを浄化する装置において、前記酸化触媒装置が酸化触媒機能が高い触媒体部分と低い触媒体部分とに区分分けされており、かつ区分分けされた触媒体の各部分を流れる排ガスの割合を変化させ得るセクター手段を有することを特徴とする排ガス浄化装置。 Nitrogen dioxide (NO 2 ) produced by introducing exhaust gas containing particulate matter (PM) into the oxidation catalyst device and catalytically oxidizing nitrogen monoxide (NO) in the exhaust gas, and installed in the downstream part of the oxidation catalyst device In the apparatus for purifying exhaust gas by reacting with particulate matter (PM) collected by the filtered filter, the oxidation catalyst device is divided into a catalyst body part having a high oxidation catalyst function and a low catalyst body part. And an exhaust gas purification apparatus comprising sector means capable of changing a ratio of exhaust gas flowing through each part of the divided catalyst body. 前記セクター手段が、ディーゼルエンジンの負荷信号または排ガス温度信号に連動して制御される制御手段を有していることを特徴する請求項1記載の排ガス浄化装置。 2. The exhaust gas purification apparatus according to claim 1, wherein the sector means includes control means controlled in conjunction with a load signal or exhaust gas temperature signal of a diesel engine. 前記制御手段が、ディーゼルエンジンの負荷信号または排ガス温度信号をセクターの位置設定信号に加工するセクター位置設定器を有していることを特徴とする請求項2記載の排ガス浄化装置。 3. The exhaust gas purifying apparatus according to claim 2, wherein the control means has a sector position setting device for processing a load signal or exhaust gas temperature signal of a diesel engine into a sector position setting signal. 前記酸化触媒が少なくとも白金(Pt)、パラジウム(Pd)、ロジウム(Rh)、コバルト(Co)、マンガン(Mn)および銅(Cu)から選ばれる1種以上の元素を含み、酸化機能の高い触媒体部分の触媒担持量を高く、酸化機能の低い触媒体部分の触媒担持量を低くしたことを特徴とする請求項1ないし3のいずれかに記載の排ガス浄化装置。 The oxidation catalyst contains at least one element selected from platinum (Pt), palladium (Pd), rhodium (Rh), cobalt (Co), manganese (Mn) and copper (Cu), and has a high oxidation function. The exhaust gas purifying apparatus according to any one of claims 1 to 3, wherein the catalyst carrying amount of the medium portion is high and the catalyst carrying amount of the catalyst body portion having a low oxidation function is low. 前記酸化触媒体が円筒状であって、前記触媒機能による区分分けが、ガス流れ断面に対して扇状の区画分けであることを特徴とする請求項1ないし4のいずれかに記載の排ガス浄化装置。 The exhaust gas purifying apparatus according to any one of claims 1 to 4, wherein the oxidation catalyst body is cylindrical, and the division by the catalytic function is a fan-like division with respect to a gas flow cross section. . 前記酸化触媒体が直方体であり、前記触媒機能による区分分けが、ガス流れ断面に対し縞状または格子状であることを特徴とするる請求項1ないし4のいずれかに記載の排ガス浄化装置。 The exhaust gas purification apparatus according to any one of claims 1 to 4, wherein the oxidation catalyst body is a rectangular parallelepiped, and the division according to the catalytic function is a stripe shape or a lattice shape with respect to a gas flow cross section. 前記セクター手段には、前記触媒体の前面に配置された、該触媒体の酸化機能の高い部分と低い部分の前記区分分けの断面形状と同一の平面形状を有するセクターと、該セクターの回転または移動によって前記各区分のガス流れの割合を変化させる該セクターの駆動手段とを備えたことを特徴とする請求項1ないし6のいずれかに記載の排ガス浄化装置。 The sector means includes a sector disposed on the front surface of the catalyst body and having a planar shape that is the same as the sectional shape of the division of the high and low oxidation portions of the catalyst body, The exhaust gas purifying apparatus according to any one of claims 1 to 6, further comprising a driving unit for the sector that changes a gas flow rate of each section by movement. 粒子状物質(PM)を含む排ガスを酸化触媒装置に導入し、排ガス中の一酸化窒素(NO)を接触酸化させて生成した二酸化窒素(NO2)と、酸化触媒装置の後流部に設置されたフィルタで捕集された粒子状物質(PM)とを反応させて排ガスを浄化する方法において、前記フィルタで捕集されたPMとNO2との反応に必要なNO2量より僅かに高いNO2量になるように、前記酸化触媒装置における触媒活性を変化させ、NO2の生成量を制御することを特徴とする排ガスの浄化方法。 Nitrogen dioxide (NO 2 ) produced by introducing exhaust gas containing particulate matter (PM) into the oxidation catalyst device and catalytically oxidizing nitrogen monoxide (NO) in the exhaust gas, and installed in the downstream part of the oxidation catalyst device In the method of purifying exhaust gas by reacting particulate matter (PM) collected by the filtered filter, the amount of NO 2 required for the reaction between PM collected by the filter and NO 2 is slightly higher A method for purifying exhaust gas, characterized by controlling the amount of NO 2 produced by changing the catalytic activity of the oxidation catalyst device so that the amount of NO 2 is reduced.
JP2004232141A 2004-08-09 2004-08-09 Method and device for exhaust gas emission control Pending JP2006046286A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004232141A JP2006046286A (en) 2004-08-09 2004-08-09 Method and device for exhaust gas emission control

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004232141A JP2006046286A (en) 2004-08-09 2004-08-09 Method and device for exhaust gas emission control

Publications (1)

Publication Number Publication Date
JP2006046286A true JP2006046286A (en) 2006-02-16

Family

ID=36025143

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004232141A Pending JP2006046286A (en) 2004-08-09 2004-08-09 Method and device for exhaust gas emission control

Country Status (1)

Country Link
JP (1) JP2006046286A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008232101A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Exhaust emission control system
JP2010537823A (en) * 2007-09-04 2010-12-09 ナノミックス・インコーポレーテッド High efficiency, low loss NO to NO2 catalytic converter
JP2012516228A (en) * 2009-01-28 2012-07-19 ズード−ケミー アーゲー Diesel oxidation catalyst with excellent activity at low temperatures
US8754454B2 (en) 2005-05-19 2014-06-17 Nanomix, Inc. Sensor having a thin-film inhibition layer

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9291613B2 (en) 2002-06-21 2016-03-22 Nanomix, Inc. Sensor having a thin-film inhibition layer
US8754454B2 (en) 2005-05-19 2014-06-17 Nanomix, Inc. Sensor having a thin-film inhibition layer
JP2008232101A (en) * 2007-03-23 2008-10-02 Matsushita Electric Ind Co Ltd Exhaust emission control system
JP2010537823A (en) * 2007-09-04 2010-12-09 ナノミックス・インコーポレーテッド High efficiency, low loss NO to NO2 catalytic converter
JP2012516228A (en) * 2009-01-28 2012-07-19 ズード−ケミー アーゲー Diesel oxidation catalyst with excellent activity at low temperatures

Similar Documents

Publication Publication Date Title
EP1628735B1 (en) Catalytic filter for removing soot particulates from diesel engine exhaust and method of preparing the same
US7316106B2 (en) Method for processing combustion exhaust gas containing soot particles and NOx
EP1719883A1 (en) System and method for purifying exhaust gas of diesel engine
WO2000003790A1 (en) Self-regenerating oxidation catalyst for treating diesel engine exhaust gases
JP2008309160A (en) Exhaust emission purifier using particulate matter-containing exhaust emission controlling filter
EP1707774B1 (en) Particulate matter-containing exhaust emission controlling filter, exhaust emission controlling method and device
JP5075677B2 (en) Exhaust gas purification device
EP2436889B1 (en) Exhaust emission control device
JPH0979024A (en) Exhaust emission control device for diesel engine
JP2009255051A (en) Exhaust gas purification device
JP2006046286A (en) Method and device for exhaust gas emission control
JP4582806B2 (en) Exhaust gas purification device
EP1693099B1 (en) Filter for exhaust gas from diesel engine
JP4889585B2 (en) Internal combustion engine exhaust gas purification method
JP2006150223A (en) Exhaust-gas cleaning filter, production method of the filter and exhaust-gas cleaning apparatus
US20060048506A1 (en) System for processing combustion exhaust gas containing soot particles and NOx
JP2008121602A (en) Filter and exhaust gas cleaning system
JP2007239616A (en) Exhaust emission control device, exhaust emission control method, and purification catalyst
JP2005288362A (en) Diesel engine exhaust gas purification apparatus
JP2006257920A (en) Exhaust emission control device
KR20060105906A (en) Catalytic compositions for oxidizing particular matters and catalytic soot filters employing the compositions
JP2006226185A (en) Device and method for purifying exhaust gas containing particular matter
EP1153206A1 (en) Monolithic catalyst/filter to control gaseous and particulate emissions
JP2011025193A (en) Exhaust gas purifying structure and manufacturing method for the same
JP2006212585A (en) Filter for purifying exhaust gas and method for manufacturing the same