JP2006045366A - Poly(3-hydroxybutylate-co-3-hydroxyhexanoate) composition and its molding - Google Patents

Poly(3-hydroxybutylate-co-3-hydroxyhexanoate) composition and its molding Download PDF

Info

Publication number
JP2006045366A
JP2006045366A JP2004228935A JP2004228935A JP2006045366A JP 2006045366 A JP2006045366 A JP 2006045366A JP 2004228935 A JP2004228935 A JP 2004228935A JP 2004228935 A JP2004228935 A JP 2004228935A JP 2006045366 A JP2006045366 A JP 2006045366A
Authority
JP
Japan
Prior art keywords
composition
powder
hydroxyhexanoate
poly
phbh
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004228935A
Other languages
Japanese (ja)
Inventor
Fuminobu Hirose
文信 廣瀬
Toshio Miyagawa
登志夫 宮川
Kenichi Senda
健一 千田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kaneka Corp
Original Assignee
Kaneka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kaneka Corp filed Critical Kaneka Corp
Priority to JP2004228935A priority Critical patent/JP2006045366A/en
Publication of JP2006045366A publication Critical patent/JP2006045366A/en
Pending legal-status Critical Current

Links

Landscapes

  • Compositions Of Macromolecular Compounds (AREA)
  • Biological Depolymerization Polymers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composition which has an excellent processability unachievable by chemically synthesized aliphatic polyesters or naturally occurring polymers such as starch, is decomposed by the action of microorganisms and the like under an aerobic or an anaerobic environment, when discarded and is derived from plants actively fixing carbon dioxide on the earth and its molding. <P>SOLUTION: The composition comprises wood powder and/or cellulose powder and a microorganism-produced aliphatic polyester copolymer having a repeating unit expressed by formula (1): [-CHR-CH<SB>2</SB>-CO-O-] (wherein, R is an alkyl group expressed by C<SB>n</SB>H<SB>2n+1</SB>and n is an integer of 1-3), The composition is used as it is or as a molding. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、加工性に優れ、廃棄時に好気性、嫌気性環境下で微生物などの作用により分解し、地球上の炭素循環系に還る組成物、成形体に関する。   The present invention relates to a composition and a molded body that are excellent in processability, decompose by the action of microorganisms in an aerobic and anaerobic environment at the time of disposal, and return to the carbon circulation system on the earth.

従来、プラスチックは加工や使用しやすさや、再利用の困難さ、衛生上の問題などから使い捨てされてきた。しかし、プラスチックが多量に使用、廃棄されるにつれ、その埋め立て処理や焼却処理に伴う問題がクローズアップされており、例えばゴミ埋め立て地の不足、非分解性のプラスチックスが環境に残存することによる生態系への影響、燃焼時の有害ガス発生、大量の燃焼熱量による地球温暖化等、地球環境への大きな負荷が挙げられる。近年、プラスチック廃棄物の問題を解決できるものとして、生分解性プラスチックの開発が盛んになっている。一般的に生分解性プラスチックは、1)ポリヒドロキシアルカノエート(本発明においては特にポリ(3−ヒドロキシアルカノエート)、以下P3HAと示す)といった微生物生産系脂肪族ポリエステル、2)ポリ乳酸やポリカプロラクトン等の化学合成系脂肪族ポリエステル、3)澱粉や酢酸セルロース等の天然高分子といった、3種類に大別される。化学合成系脂肪族ポリエステルの多くは嫌気性分解しないため廃棄時の分解条件に制約があり、ポリ乳酸、ポリカプロラクトンは耐熱性に問題がある。また、澱粉は非熱可塑性で脆く耐水性に劣るといった問題がある。   Conventionally, plastics have been disposable due to ease of processing and use, difficulty in reuse, and hygiene problems. However, as plastics are used and disposed of in large quantities, the problems associated with landfilling and incineration are becoming more important. For example, the ecology caused by the shortage of landfills and non-degradable plastics remaining in the environment. The impact on the system, generation of toxic gas during combustion, global warming due to a large amount of combustion heat, and so on, can be a large load on the global environment. In recent years, biodegradable plastics have been actively developed as a solution to the problem of plastic waste. In general, biodegradable plastics are: 1) a microbially-produced aliphatic polyester such as polyhydroxyalkanoate (in the present invention, especially poly (3-hydroxyalkanoate), hereinafter referred to as P3HA), and 2) polylactic acid or polycaprolactone. Chemically synthesized aliphatic polyesters such as 3) and natural polymers such as starch and cellulose acetate. Most chemically synthesized aliphatic polyesters do not undergo anaerobic decomposition, so there are restrictions on the decomposition conditions at the time of disposal, and polylactic acid and polycaprolactone have a problem in heat resistance. Further, starch has a problem that it is non-thermoplastic, brittle and inferior in water resistance.

一方、P3HAは好気性、嫌気性何れの環境下での分解性にも優れ、燃焼時には有毒ガスを発生せず、植物原料を使用した微生物に由来するプラスチックで高分子量化が可能であり、地球上の二酸化炭素を増大させない、カーボンニュートラルである、といった優れた特徴を有している。該P3HAは脂肪族ポリエステルに分類されるが、先に述べた化学合成系の脂肪族ポリエステル、天然高分子物とはポリマーの性質が大きく異なり、嫌気性下で分解する性質や、耐湿性に優れる点、高分子量化が可能である点は特筆すべき性能である。また、P3HAが共重合体の場合、構成するモノマーの組成比を制御することで、融点、耐熱性や柔軟性といった物性を変化させることが可能である。P3HAの中でもその融点、結晶化度が高いことからポリヒドロキシブチレート(以下、略してPHB)が最も耐熱性に優れる。一方、PHBはその高い結晶性のゆえに硬くて脆い性質を有する。   On the other hand, P3HA is excellent in degradability in both aerobic and anaerobic environments, does not generate toxic gas during combustion, and can be made high molecular weight with plastic derived from microorganisms using plant raw materials. It has excellent characteristics such as not increasing carbon dioxide and being carbon neutral. The P3HA is classified as an aliphatic polyester, but the properties of the polymer are greatly different from those of the above-mentioned chemically synthesized aliphatic polyester and natural polymer, and are excellent in the property of degrading under anaerobic condition and moisture resistance. The point that high molecular weight is possible is a notable performance. When P3HA is a copolymer, physical properties such as melting point, heat resistance and flexibility can be changed by controlling the composition ratio of the constituent monomers. Among P3HA, polyhydroxybutyrate (hereinafter abbreviated as PHB) is most excellent in heat resistance because of its high melting point and high crystallinity. On the other hand, PHB is hard and brittle because of its high crystallinity.

この様にポリヒドロキシアルカノエートは、植物原料からなり、廃棄物の問題が解決され、環境適合性に優れるため、包装材料、食器材料、建築・土木・農業・園芸材料、自動車内装材、吸着・担体・濾過材等に応用可能な成形体が望まれている。   In this way, polyhydroxyalkanoates are made of plant materials, which solves the problem of waste and is excellent in environmental compatibility, so packaging materials, tableware materials, construction / civil engineering / agriculture / horticultural materials, automobile interior materials, adsorption / A molded body that can be applied to a carrier, a filter medium, and the like is desired.

一方、P3HAは加工性に関して二つの大きな問題を有する。一つは高温に加熱した場合の熱分解による分子量低下、もう一つは遅い結晶化速度に由来する加工性の悪さである。P3HAのなかでもPHBは、融点が約175℃と高温であり、加工温度が高くなる事から加熱加工時に非常に熱分解し易く、成形体の分子量が低下してしまうため、耐熱性が高くても、脆い成形体となりやすい。一方、P3HAの共重合体であるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(以下、略称PHBH)は、共重合成分のうち3−ヒドロキシヘキサノエート比率が増大することで融点が低下するため、加熱加工時の温度を下げることができ、熱分解を抑制しながら加工が出来るので、分子量を維持した加工ができる。一方、P3HAは遅い結晶化速度を改善するために結晶核剤の添加検討が多く行われており、好適に使用できる結晶核剤として窒化硼素や塩化アンモニウム、タルクなどの無機物がよく知られているが、本検討のような木粉やセルロース粉末の添加剤を結晶核剤として検討したものは無かった。   On the other hand, P3HA has two major problems regarding processability. One is a decrease in molecular weight due to thermal decomposition when heated to a high temperature, and the other is poor processability due to a slow crystallization rate. Among P3HAs, PHB has a high melting point of about 175 ° C., and since the processing temperature is high, it is very easily pyrolyzed at the time of heat processing, and the molecular weight of the molded product is lowered, so that the heat resistance is high. However, it tends to be a brittle shaped body. On the other hand, poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) (hereinafter abbreviated as PHBH), which is a copolymer of P3HA, has an increased proportion of 3-hydroxyhexanoate in the copolymer components. Since the melting point is lowered, the temperature at the time of heat processing can be lowered, and processing can be performed while suppressing thermal decomposition, so that processing with maintaining the molecular weight can be performed. On the other hand, P3HA has been studied to add a crystal nucleating agent in order to improve the slow crystallization rate, and inorganic materials such as boron nitride, ammonium chloride, and talc are well known as crystal nucleating agents that can be suitably used. However, there has been no investigation of wood powder or cellulose powder additives as the crystal nucleating agent as in this study.

ところで、生分解性プラスチックに木粉などを混合化する方法は古くから公知である。木粉等は主にプラスチックの増量の目的で混合されたり、生分解性促進剤として(特許文献1)、また耐熱性や弾性率、強度、寸法安定性の向上や、耐衝撃性改良添加剤として検討されている(特許文献2〜3)。例えば、P3HAの1種であるPHBに木粉やセルロース粉末を添加することで強度、弾性率、衝撃強度、耐熱性が向上するといった記載があるが(特許文献2)、本発明のように木粉などを核剤として検討した例は全く記載されていないし、実施例においても木粉と結晶核剤である窒化硼素を添加しており、木粉は加工性を改良するような結晶核剤ではなく強度や耐熱性を向上させる物性調整用の添加剤とされているし、本発明のようにP3HAに木粉だけを添加することで加工性を改善するか定かでない。また、融点の高いPHBを使用するため熱分解による加工性の問題がある。また、ポリ乳酸に木粉を使用したカード基材(特許文献3)に使用し、積層体のエンボス加工時の反りを改善しているが、これも単にフィラーとして素材の弾性を変化させる検討であり、木粉による核剤効果、加工性改良に関しては一切の記載がない。よって本発明のようにP3HAの一種であるPHBHと木粉やセルロース粉末からなる組成物で、加熱溶融加工時の熱分解による分子量低下をしにくく、PHBH押出溶融物の結晶化を促進する検討はなかった。   By the way, a method of mixing wood powder or the like with biodegradable plastic has been known for a long time. Wood flour is mixed mainly for the purpose of increasing the amount of plastic, or as a biodegradability accelerator (Patent Document 1), as well as heat resistance, elastic modulus, strength, dimensional stability improvement, and impact resistance improvement additive. (Patent Documents 2 to 3). For example, there is a description that strength, elastic modulus, impact strength, and heat resistance are improved by adding wood powder or cellulose powder to PHB, which is a kind of P3HA (Patent Document 2). No example of studying powders and the like as a nucleating agent is described at all, and in the examples, boron nitride, which is a wood nucleating agent and a crystal nucleating agent, is added, and wood flour is a crystal nucleating agent that improves workability. In addition, it is an additive for adjusting physical properties that improves strength and heat resistance, and it is unclear whether the processability is improved by adding only wood powder to P3HA as in the present invention. Further, since PHB having a high melting point is used, there is a problem of workability due to thermal decomposition. In addition, it is used for the card base material (Patent Document 3) that uses wood powder for polylactic acid to improve the warp during embossing of the laminate, but this is also just a study to change the elasticity of the material as a filler. Yes, there is no mention of the nucleating agent effect and processability improvement by wood flour. Therefore, as in the present invention, a composition comprising PHBH, which is a kind of P3HA, and wood powder or cellulose powder, it is difficult to lower the molecular weight due to thermal decomposition during heat-melting processing, and the study to promote crystallization of the PHBH extrusion melt is There wasn't.

また一方、プラスチックに混合される木粉の原料である針葉樹などは、その成長の際に、二酸化炭素を吸収、固定するため、木粉を使用、固定化することは、延いては地球温暖化防止効果が期待される。二酸化炭素固定化物質は非常に注目度が高く積極的使用が望まれている。
特開平5−320524号公報 特開2000−129143号公報 特開2003−1987号公報
On the other hand, conifers, which are raw materials for wood flour mixed with plastics, absorb and fix carbon dioxide during their growth, so the use and fixation of wood flour will eventually lead to global warming. The prevention effect is expected. Carbon dioxide immobilizing substances have a high level of attention and are expected to be actively used.
JP-A-5-320524 JP 2000-129143 A JP 2003-1987

本発明は、ポリヒドロキシアルカノエートの加熱成形時の加工性改良、熱分解性を抑制し、廃棄時に好気性、嫌気性環境下で微生物などの作用により分解し、地球上の二酸化炭素を積極的に固定化して得られる植物由来の組成物、成形体を得ることを目的とする。   The present invention improves the processability and thermodegradability of polyhydroxyalkanoate during thermoforming, decomposes it by the action of microorganisms in an aerobic and anaerobic environment at the time of disposal, and actively promotes carbon dioxide on the earth. An object of the present invention is to obtain a plant-derived composition and molded body obtained by immobilization on a plant.

本発明者らは、上記課題を解決するべく鋭意研究を重ねた結果、微生物から生産される特定のPHBHと、木粉および/またはセルロース粉末を混合した場合に、加熱加工時の結晶化速度が向上し加工性が改善され、PHBHを使用することで熱分解性を抑制することを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have found that when specific PHBH produced from microorganisms and wood powder and / or cellulose powder are mixed, the crystallization rate during heat processing is high. As a result, it was found that processability was improved and that thermal decomposition was suppressed by using PHBH, and the present invention was completed.

即ち本発明の第1は、木粉及び/又はセルロース粉末と、微生物から生産される式(1):[−CHR−CH2−CO−O−](ここに、RはCn2n+1で表されるアルキル基で、n=1及び3の整数)で示される繰り返し単位からなる、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)を含有する組成物に関する。好ましい実施態様は、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)の共重合成分の組成比が、ポリ(3−ヒドロキシブチレート)/ポリ(3−ヒドロキシヘキサノエート)=99/1〜80/20(mol/mol)であることを特徴とする上記記載の組成物に関する。より好ましくは、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)100重量部に対して、木粉及び/又はセルロース粉末を0.5〜100重量部含有する上記記載の組成物、更に好ましくは、示差走査熱量測定法によるDSC曲線において、木粉および/またはセルロース粉末とポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)からなる組成物をポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)単体の融点よりも30℃以上高い温度から200℃以下の温度で溶融させた後、10℃/minで0℃まで降温した場合に、降温時に結晶化に由来する発熱ピークが存在し、この発熱ピークの温度をTc1wとするとき、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)単体で同様の測定をした場合の発熱ピーク温度Tc1nとの関係が、Tc1w>Tc1n、若しくはTc1nは存在しない関係にあることを特徴とする上記記載の組成物、に関する。 That is, the first of the present invention is the formula (1): [—CHR—CH 2 —CO—O—] (where R is C n H 2n + ) produced from a wood powder and / or cellulose powder and a microorganism. The present invention relates to a composition containing poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) consisting of repeating units represented by an alkyl group represented by 1 and represented by an integer of n = 1 and 3. In a preferred embodiment, the composition ratio of the copolymer component of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is poly (3-hydroxybutyrate) / poly (3-hydroxyhexanoate) = It is 99 / 1-80 / 20 (mol / mol), It is related with the said composition characterized by the above-mentioned. More preferably, the composition according to the above, containing 0.5 to 100 parts by weight of wood powder and / or cellulose powder with respect to 100 parts by weight of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). More preferably, in a DSC curve obtained by differential scanning calorimetry, a composition comprising wood flour and / or cellulose powder and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is poly (3-hydroxy Butyrate-co-3-hydroxyhexanoate) When melted at a temperature of 30 ° C. or higher to 200 ° C. or lower than the melting point of the simple substance and then cooled to 0 ° C. at 10 ° C./min, There is an exothermic peak due to crystallization, and when the temperature of this exothermic peak is Tc1w, poly (3-hydroxybutyrate-co-3-hydro Shihekisanoeto) relationship between the exothermic peak temperature Tc1n in a case where the same measurement as the single, Tc1w> Tc1n, or Tc1n the compositions described above, characterized in that in the non-existent relationships relates.

本発明の第2は、上記記載の組成物からなる成形体に関する。   2nd of this invention is related with the molded object which consists of said composition.

本発明は、上述の化学合成系脂肪族ポリエステルを使用せず、澱粉などの天然物高分子で達成が困難な、加工性に優れた、植物由来の組成物及び成形体を得ることが出来る。また、廃棄時に好気性、嫌気性何れの環境下でも微生物などの作用により分解し、地球上の炭素循環系に還る組成物、成形体が得られる。さらには地球上の二酸化炭素を積極的に固定化して得られる植物由来の組成物、成形体であり地球温暖化防止が期待できる。   The present invention can provide a plant-derived composition and a molded article, which do not use the above-mentioned chemically synthesized aliphatic polyester and are excellent in processability, which are difficult to achieve with a natural polymer such as starch. In addition, a composition and a molded body that can be decomposed by the action of microorganisms and returned to the carbon circulatory system on the earth in both aerobic and anaerobic environments when discarded. Furthermore, it is a plant-derived composition and molded product obtained by positively fixing carbon dioxide on the earth, and it can be expected to prevent global warming.

本発明のポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート):略称PHBH)は、式(1)で示される3−ヒドロキシアルカノエートよりなる繰り返し構造を有し、かつ微生物から生産される脂肪族ポリエステルである。
[−CHR−CH2−CO−O−]………式(1)
ここで、RはCn2n+1で表されるアルキル基で、n=1及び3の整数である。
The poly (3-hydroxybutyrate-co-3-hydroxyhexanoate): abbreviated as PHBH of the present invention has a repeating structure composed of 3-hydroxyalkanoate represented by the formula (1) and is produced from a microorganism. Is an aliphatic polyester.
[—CHR—CH 2 —CO—O—] Formula (1)
Here, R is an alkyl group represented by C n H 2n + 1 and is an integer of n = 1 and 3.

本発明におけるn=1の3−ヒドロキシブチレート(3HBともいう)とn=3の3−ヒドロキシヘキサノエート(3HHともいう)の共重合体であるポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)(PHBHともいう)は、その組成比が3−ヒドロキシブチレート/3−ヒドロキシヘキサノエート=99/1〜80/20(mol/mol)であることが好ましい。   Poly (3-hydroxybutyrate-co-3) which is a copolymer of n = 1 3-hydroxybutyrate (also referred to as 3HB) and n = 3 3-hydroxyhexanoate (also referred to as 3HH) in the present invention. -Hydroxyhexanoate) (also referred to as PHBH) preferably has a composition ratio of 3-hydroxybutyrate / 3-hydroxyhexanoate = 99/1 to 80/20 (mol / mol).

また、本発明における木粉とは、特に限定はしないがマツやトガ等の針葉樹や竹等の木材を、機械的にミルやアトマイザーといった粉砕機で微粉化した物である。本発明におけるセルロース粉末とは、木粉に含まれるリグニン成分を取り除き、セルロースを精製した物である。また混練前の木粉およびセルロース粉末の粒子サイズ(メッシュ径)は特に限定されず、混練装置の能力により適宜調整されるが、通常は木粉やセルロース粉末の粒子は分散性の向上の観点から微細である方が好ましく、好ましくは50メッシュを通過できるもの、更に好ましくは200メッシュを通過できる物である。ただし、押出機等の混練装置で混合する場合、50メッシュを通過できないものでも混練装置の種類や条件によっては高剪断応力で更に粉砕が進むこともあるため、木粉およびセルロース粉末の粒子は押出機に投入できるサイズで、混練後の組成物に不分散塊状物が残存せず、力学的な物性を著しく低下させないレベルに粒子の粉砕が進むようであれば、サイズに特に限定はない。また、木粉やセルロース粉末は吸湿性があるため、PHBHに配合する際には乾燥する事が好ましく、乾燥は、組成物加熱成形時に水分の気化による気泡などを生じないレベルまで適宜実施すればよい。また、適度に乾燥している方が樹脂と混練する場合に粒子分散されやすい。但し160℃を越えるような高温で木粉やセルロース粉末を乾燥すると、セルロース中のフリーの水酸基が縮重、減少し変質するためPHBHとの親和性、接着性が悪化する場合がある。また、PHBHと混練する場合の押出温度も160℃を越えると木粉やセルロース粉末の変質が起こる可能性があるため、注意が必要である。この点からもPHBは融点が180℃近いため混練対象としては好ましくない。   The wood powder in the present invention is a product obtained by mechanically pulverizing coniferous trees such as pine and toga and wood such as bamboo with a pulverizer such as a mill or an atomizer, although not particularly limited. The cellulose powder in the present invention is a product obtained by removing lignin components contained in wood flour and purifying cellulose. The particle size (mesh diameter) of the wood powder and cellulose powder before kneading is not particularly limited and is appropriately adjusted depending on the ability of the kneading apparatus, but usually the particles of wood powder and cellulose powder are from the viewpoint of improving dispersibility. It is preferably finer, preferably one that can pass 50 mesh, more preferably one that can pass 200 mesh. However, when mixing with a kneading device such as an extruder, even if it cannot pass 50 mesh, pulverization may proceed further with high shear stress depending on the type and conditions of the kneading device. There is no particular limitation on the size as long as the particles can be put into a machine and the dispersion after kneading does not leave a non-dispersed lump in the composition after kneading and the mechanical properties of the particles are not significantly reduced. In addition, since wood powder and cellulose powder are hygroscopic, it is preferable to dry them when blended with PHBH, and if drying is appropriately carried out to a level that does not cause bubbles due to water vaporization during composition heat molding. Good. In addition, particles that are appropriately dried are more likely to be dispersed when kneaded with a resin. However, when wood powder or cellulose powder is dried at a high temperature exceeding 160 ° C., the free hydroxyl group in the cellulose degenerates, decreases and deteriorates, so that the affinity with PHBH and adhesiveness may deteriorate. Also, if the extrusion temperature when kneading with PHBH exceeds 160 ° C., wood powder or cellulose powder may be altered, so care must be taken. Also in this respect, PHB is not preferable as a kneading target because the melting point is close to 180 ° C.

本発明の木粉及び/又はセルロース粉末とPHBHからなる組成物は、PHBH100重量部に対して、木粉及び/又はセルロース粉末の含有量は0.5重量部以上が好ましく、0.5重量部〜100重量部であることがより好ましい。0.5重量部未満の添加量の場合、木粉やセルロース粉末を添加することによって得られる核剤効果の発現が殆どない場合がある。ロール成形機や開放系ニーダーで混練する場合は木粉及び/又はセルロース粉末を多量に混合する事も可能であるが、汎用の押出成形機によって混練を実施する場合は、100重量部を越えると、混練物の粘度が高くなり過ぎ、熱可塑性樹脂として機能することが困難となり、押出組成物を安定して得られにくい場合がある。但し、100重量部を越える場合でも、低分子量で低粘度のPHBHを使用するか、或いは可塑剤及び/又は滑剤及び/又は他の低粘度樹脂等を混合する方法により押出成形機の負荷を下げたり、高混練可能で押出機内での組成物が均質性を有する押出機であれば組成物を得ることは可能である。また、木粉及び/又はセルロース粉末をPHBHに多量に添加した組成物やその成形体は、廃棄の際に最終的に全て生分解するため、P3HAにとって従来公知の無機系核剤を多量に添加する組成物やその成形体と比較して廃棄時の残存物の問題がない点で優れている。   The composition comprising the wood flour and / or cellulose powder and PHBH of the present invention is preferably 0.5 parts by weight or more, based on 100 parts by weight of PHBH. More preferably, it is -100 weight part. In the case of an addition amount of less than 0.5 parts by weight, there may be almost no expression of the nucleating agent effect obtained by adding wood powder or cellulose powder. When kneading with a roll molding machine or an open kneader, it is possible to mix a large amount of wood powder and / or cellulose powder, but when kneading is performed with a general-purpose extruder, the amount exceeds 100 parts by weight. The viscosity of the kneaded product becomes too high, it becomes difficult to function as a thermoplastic resin, and it may be difficult to obtain an extruded composition stably. However, even when the amount exceeds 100 parts by weight, the load on the extruder is reduced by using PHBH having a low molecular weight and low viscosity, or by mixing a plasticizer and / or a lubricant and / or other low-viscosity resin. Alternatively, the composition can be obtained if it is an extruder that can be highly kneaded and the composition in the extruder is homogeneous. In addition, a composition in which a large amount of wood powder and / or cellulose powder is added to PHBH and its molded body are finally biodegraded at the time of disposal. Therefore, a large amount of inorganic nucleating agent known for P3HA is added. Compared to the composition to be molded and its molded product, it is excellent in that there is no problem of a residue at the time of disposal.

本発明の木粉及び/又はセルロース粉末とPHBHから得られる組成物は、示差走査熱量測定法による結晶固化性(核剤)評価において、PHBH単体の融点より30℃以上高い温度から200℃以下の温度で溶融させた後、10℃/minで0℃まで降温した場合に、結晶化に由来する発熱ピークTc1wが存在し、PHBH単体で同様の測定をした場合の発熱ピーク温度Tc1nとの関係が、Tc1w>Tc1n、若しくはTc1nは存在しない関係にあり、木粉及び/又はセルロース粉末が核剤として寄与することが好ましい。特にPHBH単独組成物の場合、融点を低下させる共重合成分(3HH成分)が増大した場合、融点が低下しただけ加工時の熱分解が抑制されるが、相対的に加熱加工時の結晶化が遅くなり加工性が悪化する場合があるため、核剤効果を有する物質、木粉及び/又はセルロース粉末を添加する必要がある。具体的に例示すると、3−ヒドロキシヘキサノエート単位の含有量がPHBH全体中6mol%になると融点は145℃±15℃になる(PHBホモポリマーの融点は175℃程度)が、上記示差走査熱量測定法による結晶固化性(結晶核剤)評価で、溶融させるため温度を200℃まで加熱した後、10℃/minで冷却する場合には再結晶化に由来する発熱ピークが存在しない。しかし木粉及び/又はセルロース粉末を添加すると、冷却時に結晶化に由来する発熱ピークが存在し、木粉及び/又はセルロース粉末には結晶化を促進する核剤効果があることが明かである。また、3−ヒドロキシヘキサノエート単位の含有量がPHBH全体中3mol%の場合、融点は150℃±15℃で、上記の結晶固化性評価において200℃で溶融後、冷却時に発熱ピークが存在(再結晶化)する場合もあり、木粉及び/又はセルロース粉末を添加しない場合でも結晶化しやすい共重合比率のものもある。しかし、3−ヒドロキシヘキサノエート単位の含有量がPHBH全体中3mol%の場合も、木粉及び/又はセルロース粉末添加により結晶化が促進され、冷却時の再結晶化に由来する発熱ピークTc1wがPHBH単独の再結晶化発熱ピークTc1nより融解温度に近い温度、Tc1w>Tc1nとなる。ただし、上記のDSC曲線による結晶固化性評価において再結晶化に由来する発熱ピークが上述の関係を満たさずとも、多くの場合、木粉及び/又はセルロース粉末添加による結晶化促進効果が押出加工時に見られ、成形性を改善する。これは木粉及び/又はセルロース粉末がPHBHと混練されることにより何らかの相互作用を示し、例えば木粉中の−OH基とPHBHの−C=O基等の分子間相互作用により擬似架橋が形成され、押出時に歪み回復による結晶核の誘起を促すこと等が考えられる。この様な結晶化誘起作用は木粉及び/又はセルロース粉末とPHBHから得られる組成物中の木粉及び/又はセルロース粉末の分散状態が良くないと、例えば組成物中に気泡が多数混入していたり、粉体が凝集塊を形成し、均一に分散していないと、従来の技術と同じく増量剤や生分解促進剤としての効果のみ示しているだけで、加熱加工時の成形性は改善されない場合がある。   The composition obtained from the wood flour and / or cellulose powder of the present invention and PHBH has a crystal solidification (nucleating agent) evaluation by differential scanning calorimetry of 30 ° C. or higher to 200 ° C. or lower than the melting point of PHBH alone. When the temperature is lowered to 0 ° C. at 10 ° C./min after melting at a temperature, there is an exothermic peak Tc1w derived from crystallization, and the relationship with the exothermic peak temperature Tc1n when the same measurement is performed with PHBH alone , Tc1w> Tc1n, or Tc1n does not exist, and it is preferable that wood powder and / or cellulose powder contribute as a nucleating agent. In particular, in the case of a PHBH single composition, when the copolymerization component (3HH component) that lowers the melting point is increased, thermal decomposition during processing is suppressed only as the melting point is lowered, but crystallization during heat processing is relatively reduced. Since it may become slow and workability may deteriorate, it is necessary to add a substance having a nucleating agent effect, wood powder and / or cellulose powder. Specifically, when the content of 3-hydroxyhexanoate units is 6 mol% in the entire PHBH, the melting point becomes 145 ° C. ± 15 ° C. (the melting point of the PHB homopolymer is about 175 ° C.), but the above differential scanning calorific value In the evaluation of crystal solidification (crystal nucleating agent) by the measurement method, when the temperature is increased to 200 ° C. for cooling and then cooled at 10 ° C./min, there is no exothermic peak derived from recrystallization. However, when wood powder and / or cellulose powder is added, there is an exothermic peak due to crystallization during cooling, and it is clear that wood powder and / or cellulose powder has a nucleating agent effect that promotes crystallization. When the content of 3-hydroxyhexanoate units is 3 mol% in the whole PHBH, the melting point is 150 ° C. ± 15 ° C., and after the melting at 200 ° C. in the above-mentioned crystal solidification evaluation, an exothermic peak is present during cooling ( In some cases, the copolymerization ratio is easy to crystallize even when wood powder and / or cellulose powder is not added. However, when the content of 3-hydroxyhexanoate unit is 3 mol% in the whole PHBH, crystallization is promoted by addition of wood powder and / or cellulose powder, and an exothermic peak Tc1w derived from recrystallization during cooling is obtained. A temperature closer to the melting temperature than the recrystallization exothermic peak Tc1n of PHBH alone is Tc1w> Tc1n. However, even if the exothermic peak derived from recrystallization does not satisfy the above-mentioned relationship in the crystal solidification evaluation by the DSC curve, in many cases, the crystallization promoting effect due to the addition of wood powder and / or cellulose powder is increased during the extrusion process. Seen and improves moldability. This shows some interaction when wood powder and / or cellulose powder is kneaded with PHBH. For example, pseudo-crosslinking is formed by intermolecular interaction such as —OH group in wood powder and —C═O group of PHBH. It is conceivable to promote the induction of crystal nuclei by strain recovery during extrusion. Such a crystallization inducing action is caused by the presence of a poor dispersion state of the wood powder and / or cellulose powder in the composition obtained from the wood powder and / or cellulose powder and PHBH. For example, many bubbles are mixed in the composition. If the powder forms an agglomerate and is not uniformly dispersed, it only shows the effect as a bulking agent or biodegradation accelerator as in the conventional technology, and the moldability during heat processing is not improved. There is a case.

本発明の木粉及び/又はセルロース粉末とPHBHから得られる組成物は、公知の方法で作製することが出来る。例えば、加熱溶融して混合する方法としては、単軸押出機、2軸押出機、ニーダー、ギアポンプ、混練ロール、撹拌機を持つタンクなどの機械的撹拌による混合や、流れの案内装置により分流と合流を繰り返す静止混合器の応用が挙げられる。加熱溶融の場合、熱分解による分子量低下に注意して混合する必要があり、180℃以下の温度で溶融させることが好ましい。より好ましくはPHBHの融点±10℃であり、融点±10℃で一旦溶融した樹脂を、PHBHの結晶化温度40〜90℃の範囲で冷却しながら結晶化を促進させ、高粘度体で且つ粉末との密着性を高めた溶融物とすると、木粉及び/又はセルロース粉末とPHBHが高い親和性を有し、粉体の微分散が進むため更に好ましい。また、可溶溶媒中にPHBHを溶解して、木粉及び/又はセルロース粉末を混合してもよく、その場合、室温に放置するなどして、溶媒を除去し、本発明の樹脂組成物を得る方法もある。この場合の可溶溶媒とは、クロロホルムや酢酸エチルなどが挙げられる。この方法の場合、木粉及び/又はセルロース粉末を予め良く粉砕するなどした方が、溶媒揮発後における組成物中の木粉やセルロース粉末の分散状態が良好となる。また微生物菌体内からPHBHを抽出し微生物の殻等を取り除き精製する段階において得られるスラリーに木粉及び/又はセルロース粉末を添加してもよく、例えば、PHBHの精製段階の内、メタノール洗浄を行う工程中に木粉やセルロース粉末を添加する例などが挙げられる。   The composition obtained from the wood flour and / or cellulose powder of the present invention and PHBH can be prepared by a known method. For example, as a method of mixing by heating and melting, mixing by mechanical stirring such as a single-screw extruder, a twin-screw extruder, a kneader, a gear pump, a kneading roll, a tank having a stirrer, One example is the application of a static mixer that repeats merging. In the case of heat melting, it is necessary to mix while paying attention to a decrease in molecular weight due to thermal decomposition, and it is preferable to melt at a temperature of 180 ° C. or less. More preferably, the melting point of PHBH is ± 10 ° C., and the resin once melted at the melting point of ± 10 ° C. is accelerated in the crystallization temperature of PHBH in the range of 40 to 90 ° C. If the melt has improved adhesion to the wood powder and / or cellulose powder and PHBH, the PHBH has a high affinity, and the fine dispersion of the powder proceeds, which is more preferable. Further, PHBH may be dissolved in a soluble solvent, and wood powder and / or cellulose powder may be mixed. In that case, the solvent is removed by leaving at room temperature, and the resin composition of the present invention is used. There is also a way to get it. Examples of the soluble solvent in this case include chloroform and ethyl acetate. In the case of this method, if the wood powder and / or cellulose powder is pulverized well in advance, the dispersion state of the wood powder and cellulose powder in the composition after the solvent volatilization becomes better. Further, wood powder and / or cellulose powder may be added to the slurry obtained in the stage of extracting PHBH from the microbial cells and removing the shells of microorganisms for purification. For example, methanol washing is performed in the PHBH purification stage. Examples include adding wood powder or cellulose powder during the process.

本発明の木粉及び/又はセルロース粉末とPHBHから得られる組成物は、上記したような押出機成形機を用いてペレット状やブロック状、フィルム状、シート状に加工しても良いし、射出成形する事も可能である。PHBH中での木粉及び/又はセルロース粉末の分散性や、PHBHと木粉やセルロース粉末の密着(接着)性が良好となるように一旦ペレット化した後、再度押出成形機でフィルム状、シート状に加工したり射出成形してもよい。また前述したようにロール成形機を使用すれば木粉及び/又はセルロース粉末の混合比率が高い場合でも加熱混練し、フィルム化やシート化が可能である。   The composition obtained from the wood powder and / or cellulose powder of the present invention and PHBH may be processed into pellets, blocks, films, and sheets using an extruder as described above, or injected. Molding is also possible. Once pelletized so that the dispersibility of wood powder and / or cellulose powder in PHBH and the adhesion (adhesion) between PHBH and wood powder or cellulose powder are good, the film and sheet are again formed with an extruder. Or may be injection molded. Further, as described above, if a roll forming machine is used, even if the mixing ratio of the wood powder and / or cellulose powder is high, it can be kneaded with heat to form a film or sheet.

本発明の組成物から得られたフィルムやシートは、単独のPHBHよりも溶融時のドローダウン性や離型性に優れるため、加熱による金型真空成形を実施しやすい。   Films and sheets obtained from the composition of the present invention are more excellent in draw-down property and release property at the time of melting than single PHBH, so that it is easy to perform mold vacuum forming by heating.

本発明の木粉及び/又はセルロース粉末とPHBHから得られる組成物には、本発明の効果を阻害しない範囲で公知の添加剤を添加することが出来る。公知の添加剤としては、ポリエチレンやポリプロピレンなどポリオレフィン樹脂やポリエチレンテレフタレートやポリブチレンテレフタレートなどの芳香族ポリエステル樹脂等汎用プラスチックやポリ乳酸系樹脂、その他、脂肪族ポリエステル系樹脂等他の生分解性樹脂において、増粘剤や結晶核剤として効果を示すものを本発明と併用しても良い。例えば、カーボンブラック、炭酸カルシウム、酸化ケイ素及びケイ酸塩、亜鉛華、ハイサイトクレー、カオリン、塩基性炭酸マグネシウム、マイカ、タルク、石英粉、ケイ藻土、ドロマイト粉、酸化チタン、酸化亜鉛、酸化アンチモン、硫酸バリウム、硫酸カルシウム、アルミナ、ケイ酸カルシウム、窒化ホウ素、塩化アンモニウム、架橋高分子ポリスチレン、ロジン系金属塩や、ガラス繊維、ウィスカー、炭素繊維等の無機繊維や、人毛、羊毛、竹繊維、パルプ繊維の有機繊維が挙げられる。また、必要に応じて、顔料、染料などの着色剤、無機系または有機系粒子、酸化防止剤、紫外線吸収剤などの安定剤、滑剤、離型剤、撥水剤、抗菌剤その他の副次的添加剤を配合することができる。上記添加剤は、少なくとも1種用いても構わない。   A known additive can be added to the composition obtained from the wood powder and / or cellulose powder of the present invention and PHBH within a range not inhibiting the effects of the present invention. Known additives include polyolefin resins such as polyethylene and polypropylene, general-purpose plastics such as aromatic polyester resins such as polyethylene terephthalate and polybutylene terephthalate, polylactic acid resins, and other biodegradable resins such as aliphatic polyester resins. Those showing effects as thickeners and crystal nucleating agents may be used in combination with the present invention. For example, carbon black, calcium carbonate, silicon oxide and silicate, zinc white, high-site clay, kaolin, basic magnesium carbonate, mica, talc, quartz powder, diatomaceous earth, dolomite powder, titanium oxide, zinc oxide, oxidation Antimony, barium sulfate, calcium sulfate, alumina, calcium silicate, boron nitride, ammonium chloride, crosslinked polymer polystyrene, rosin metal salts, inorganic fibers such as glass fiber, whiskers, carbon fiber, human hair, wool, bamboo Examples thereof include organic fibers such as fibers and pulp fibers. If necessary, colorants such as pigments and dyes, stabilizers such as inorganic or organic particles, antioxidants and UV absorbers, lubricants, mold release agents, water repellents, antibacterial agents and other secondary agents Additive may be included. You may use at least 1 sort (s) of the said additive.

本発明の木粉及び/又はセルロース粉末とPHBHから得られる組成物には、本発明の効果を阻害しない範囲で可塑剤(滑剤)を併用することも可能である。可塑剤を使用することで、加熱加工時、特に押出加工時の溶融粘度を低下させ、剪断発熱等による分子量の低下を抑制することが可能であり、場合によっては結晶化速度の向上も期待でき、更にフィルムやシートを成形品として得る場合には伸び性などを付与できる。可塑剤としては、エーテル系可塑剤、エステル系可塑剤、フタル酸系可塑剤、リン系可塑剤などが好ましく、ポリエステルとの相溶性に優れる点からエーテル系可塑剤、エステル系可塑剤がより好ましい。エーテル系可塑剤としては、例えばポリエチレングリコール、ポリプロピレングリコール、ポリテトラメチレングリコールなどのポリオキシアルキレングリコール等を挙げることができる。また、エステル系可塑剤としては脂肪族ジカルボン酸と脂肪族アルコールとのエステル類等を挙げることができ、脂肪族ジカルボン酸として、例えばシュウ酸、コハク酸、セバシン酸、アジピン酸等を挙げることができ、脂肪族アルコールとして、例えばメタノール、エタノール、n−プロパノール、イソプロパノール、n−ヘキサノール、n−オクタノール、2−エチルヘキサノール、n−ドデカノール、ステアリルアルコール等の一価アルコール、エチレングリコール、1、2−プロピレングリコール、1、3−プロピレングリコール、1、3−ブタンジオール、1、5−ペンタンジオール、1、6−ヘキサンジオール、ジエチレングリコール、ネオペンチルグリコール、ポリエチレングリコール等の2価アルコール、また、グリセリン、トリメチロールプロパン、ペンタエリストール等の多価アルコールを挙げることができる。また、上記ポリエーテルとポリエステルの2種以上の組み合わせからなる共重合体、ジ−コポリマー、トリ−コポリマー、テトラ−コポリマーなど、またはこれらのホモポリマー、コポリマー等から選ばれる2種以上のブレンド物が挙げられる。更にエステル化されたヒドロキシカルボン酸等も考えられる。上記可塑剤は、少なくとも1種用いても構わないし、これらに限定されるものでもない。   In the composition obtained from the wood powder and / or cellulose powder of the present invention and PHBH, a plasticizer (lubricant) can be used in combination as long as the effects of the present invention are not impaired. By using a plasticizer, it is possible to reduce the melt viscosity during heat processing, especially during extrusion processing, and to suppress a decrease in molecular weight due to shearing heat generation, etc.In some cases, an improvement in crystallization speed can also be expected. Furthermore, when a film or sheet is obtained as a molded product, extensibility and the like can be imparted. As the plasticizer, ether plasticizers, ester plasticizers, phthalic acid plasticizers, phosphorus plasticizers and the like are preferable, and ether plasticizers and ester plasticizers are more preferable from the viewpoint of excellent compatibility with polyester. . Examples of ether plasticizers include polyoxyalkylene glycols such as polyethylene glycol, polypropylene glycol, and polytetramethylene glycol. Examples of ester plasticizers include esters of aliphatic dicarboxylic acids and aliphatic alcohols. Examples of aliphatic dicarboxylic acids include oxalic acid, succinic acid, sebacic acid, and adipic acid. Examples of aliphatic alcohols include monohydric alcohols such as methanol, ethanol, n-propanol, isopropanol, n-hexanol, n-octanol, 2-ethylhexanol, n-dodecanol, stearyl alcohol, ethylene glycol, 1,2- Propylene glycol, 1,3-propylene glycol, 1,3-butanediol, 1,5-pentanediol, 1,6-hexanediol, dihydric alcohols such as diethylene glycol, neopentyl glycol, polyethylene glycol, and glycerin Trimethylolpropane, may be mentioned polyhydric alcohols pentaerythritol and the like. In addition, two or more kinds of blends selected from copolymers, di-copolymers, tri-copolymers, tetra-copolymers, etc., or homopolymers, copolymers, etc. composed of combinations of two or more of the above polyethers and polyesters. Can be mentioned. Furthermore, esterified hydroxycarboxylic acid and the like are also conceivable. The said plasticizer may be used at least 1 type, and is not limited to these.

本発明の木粉及び/又はセルロース粉末とPHBHから得られる組成物は紙、フィルム、シート、チューブ、板、棒、容器、袋、部品等の成形品となり、この組成物以外の単体物からなる各種繊維、糸、ロープ、織物、編物、不織布、紙、フィルム、シート、チューブ、板、棒、容器、袋、部品、発泡体等に複合化することで単体物性を改善できる。この様にして得られた成形品は、農業、漁業、林業、園芸、医学、衛生品、衣料、非衣料、包装、自動車、建材、その他の分野に好適に用いることができる。   The composition obtained from the wood powder and / or cellulose powder of the present invention and PHBH is a molded article such as paper, film, sheet, tube, plate, bar, container, bag, part, etc., and consists of a single substance other than this composition. Single substance properties can be improved by compounding various fibers, yarns, ropes, woven fabrics, knitted fabrics, non-woven fabrics, paper, films, sheets, tubes, plates, bars, containers, bags, parts, foams, and the like. The molded product thus obtained can be suitably used in agriculture, fishery, forestry, horticulture, medicine, hygiene, clothing, non-clothing, packaging, automobiles, building materials, and other fields.

次に本発明の木粉やセルロース粉末とPHBHから得られる組成物およびその成形品について実施例に基づいてさらに詳細に説明するが、本発明はかかる実施例のみに制限されるものではない。本発明で使用した樹脂は以下のように略した。
PHBH:ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)。
HH率:PHBH中の3−ヒドロキシヘキサノエートのモル分率(mol%)。
組成物WX:木粉やセルロース粉末とPHBHから得られる組成物及びそれからなる成形体。
Next, the composition obtained from the wood flour or cellulose powder of the present invention and PHBH and the molded product thereof will be described in more detail based on examples, but the present invention is not limited to such examples. The resin used in the present invention was abbreviated as follows.
PHBH: poly (3-hydroxybutyrate-co-3-hydroxyhexanoate).
HH ratio: the molar fraction (mol%) of 3-hydroxyhexanoate in PHBH.
Composition WX: a composition obtained from wood powder or cellulose powder and PHBH, and a molded article comprising the composition.

<分子量測定法>
PHBHおよび本発明により得られる組成物の重量平均分子量Mw値を、GPC測定によりポリスチレン換算により求めた。GPC装置はCCP&8020システム(東ソー製)のものを使用し、カラムはGPC K−805L(昭和電工製)、カラム温度は40℃とし、対象物質20mgをクロロホルム10mlに溶解したものを、200μl注入し、Mwを求めた。
<Molecular weight measurement method>
The weight average molecular weight Mw value of PHBH and the composition obtained by this invention was calculated | required by polystyrene conversion by GPC measurement. The GPC apparatus uses a CCP & 8020 system (manufactured by Tosoh Corporation), the column is GPC K-805L (manufactured by Showa Denko), the column temperature is 40 ° C., and 20 μl of 20 mg of the target substance dissolved in 10 ml of chloroform is injected, Mw was determined.

<融解温度(Tm)、結晶化温度(Tc)測定法>
セイコー電子工業製DSC200を用いて、PHBH、組成物WXについて各々1〜10mg、10℃/分の昇温速度で、0℃から樹脂が十分に融解する200℃(Tm1+30℃以上)まで昇温し(1stRUN)、ついで10℃/分の降温速度で0℃まで降温した(COOLING)。この時の樹脂の1stRUNの融解に伴う吸熱曲線最大ピークを融解温度Tm1、COOLING時の再結晶化に伴う発熱曲線の最大ピークをTc1とした。Tc1が高温なほど、結晶化し易いといえる。まとめると、結晶化のし易さはTc1高温>Tc1低温>Tcが存在しない、の順になる。尚、本発明に使用するPHBH、組成物WXの場合、共重合体であるため吸熱曲線ピークは、単一又は複数のピークを示し、複数の場合、高温側のピークトップ温度を融解温度Tmとする。
<Measuring method of melting temperature (Tm) and crystallization temperature (Tc)>
Using DSC200 manufactured by Seiko Denshi Kogyo, the temperature of PHBH and composition WX was increased from 0 ° C to 200 ° C (Tm1 + 30 ° C or higher) at 1 ° C to 10 ° C / min. (1stRUN), and then the temperature was decreased to 0 ° C. at a rate of temperature decrease of 10 ° C./min (COOOLING). The maximum endothermic curve peak associated with the 1stRUN melting of the resin at this time was defined as the melting temperature Tm1, and the maximum peak of the exothermic curve associated with recrystallization during COOLING was defined as Tc1. It can be said that the higher the Tc1, the easier it is to crystallize. In summary, the easiness of crystallization is in the order of Tc1 high temperature> Tc1 low temperature> Tc does not exist. In the case of PHBH and composition WX used in the present invention, since they are copolymers, the endothermic curve peak shows a single peak or multiple peaks, and in the case of multiple peaks, the peak top temperature on the high temperature side is the melting temperature Tm. To do.

<使用した樹脂、木粉およびセルロース粉末>
木粉は針葉樹であるマツやトガを粉砕した物で、以下に示したものを用いた(表1参照)。
木粉200メッシュ、木粉アトマイザー100:日東粉化商事株式会社
木粉200メッシュ、木粉アトマイザー100:日東粉化商事株式会社

Figure 2006045366
セルロース粉末としては、以下の物を使用した。
セルロース粉末:MERCK、Cellulose Microcrystalline
樹脂として、市販品としては、以下に示したものを用いた。
PHB:三菱瓦斯化学社製、「ビオグリーン」 <Used resin, wood powder and cellulose powder>
The wood flour was obtained by pulverizing pine and toga, which are conifers, and the following were used (see Table 1).
Wood powder 200 mesh, wood powder atomizer 100: Nitto Flour Trading Co., Ltd. Wood powder 200 mesh, wood powder atomizer 100: Nitto Flour Trading Co., Ltd.
Figure 2006045366
The following were used as the cellulose powder.
Cellulose powder: MERCK, Cellulose Microcrystalline
As the resin, those shown below were used as commercial products.
PHB: “Biogreen” manufactured by Mitsubishi Gas Chemical Company, Inc.

(実施例1)
微生物として、Alcaligenes eutrophusにAeromonas caviae由来のPHA合成酵素遺伝子を導入したAlcaligenes eutrophus AC32(J.Bacteriol.,179,4821(1997))を用い、原料、培養条件を適宜調整して生産されたPHBH(HH率6.0mol%、Mw=59万)を使用した。PHBH100重量部に対して、60℃×3hrの条件で加熱乾燥機で乾燥させた木粉200メッシュを2重量部添加、ドライブレンドした後、ニーダー付き単軸押出成形機(笠松加工製ラボ万能押出機φ35mm、ぺレット化温度150℃、ダイス径φ4mm、吐出3kg/hr)で混合し押出ペレット化を実施した。ストランドは最適結晶化温度である60〜70℃に制御された水槽を通し、組成物W1ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、35secであった。この組成物W1のペレットについて、Tm1、Tc1w、Mwの測定実施結果を表2に示す。木粉200メッシュを2重量部添加することで組成物W1は無添加物(比較例1)よりも結晶化速度が向上し押出溶融ペレット化も良好であった。また組成物W1ペレットのMw=55万で押出溶融加工で殆ど低下していなかった。
Example 1
As a microorganism, Alcaligenes eutrophus AC32 (J. Bacteriol., 179,4821 (1997)) in which a PHA synthase gene derived from Aeromonas caviae was introduced into Alcaligenes eutrophus, and PHBH produced by appropriately adjusting the raw materials and culture conditions ( HH rate 6.0 mol%, Mw = 590,000) was used. After adding 2 parts by weight of 200 mesh of wood powder dried with a heat dryer under the conditions of 60 ° C. × 3 hr to 100 parts by weight of PHBH, dry blending, single-screw extruder with kneader (Kasamatsu Processing Lab Universal Extrusion) Extrusion pelletization was carried out by mixing with a machine φ35 mm, pelletizing temperature 150 ° C., die diameter φ4 mm, discharge 3 kg / hr). The strand was passed through a water bath controlled at an optimum crystallization temperature of 60 to 70 ° C. to obtain a composition W1 pellet. At this time, it was 35 sec when the time for the strands to harden in the water tank was measured by palpation. Table 2 shows the measurement results of Tm1, Tc1w, and Mw for the pellets of the composition W1. By adding 2 parts by weight of 200 mesh of wood powder, the composition W1 was improved in crystallization rate and better in extrusion melt pelletization than the additive (Comparative Example 1). Further, Mw of the composition W1 pellet was 550,000, and almost no reduction was caused by extrusion melting.

Figure 2006045366
Figure 2006045366

(実施例2)
木粉200メッシュの添加量を10重量部とした以外は、実施例1と同様の方法で組成物W2ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、30secであった。組成物W2ペレットのTm1、Tc1w、Mwの測定結果を表2に示す。木粉200メッシュを10重量部添加することで組成物W2は無添加物(比較例1)、組成物W1よりも結晶化速度が向上し押出溶融ペレット化も良好であった。また組成物W2ペレットのMw=52万で押出溶融加工で殆ど低下していなかった。
(Example 2)
Composition W2 pellets were obtained in the same manner as in Example 1, except that the amount of wood powder 200 mesh added was 10 parts by weight. At this time, it was 30 seconds when the time for the strands to harden in the water tank was measured by palpation. Table 2 shows the measurement results of Tm1, Tc1w, and Mw of the composition W2 pellet. By adding 10 parts by weight of 200 mesh of wood flour, the composition W2 was improved in the crystallization rate and extrudate melt pelletization was better than the additive (Comparative Example 1) and the composition W1. Further, the Mw of the composition W2 pellet was 520,000, and almost no decrease was observed in the extrusion melt processing.

(実施例3)
木粉200メッシュの添加量を50重量部とした以外は、実施例1と同様の方法で組成物W3ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、22sec程度であった。組成物W3ペレットのTm1、Tc1w、Mwの測定結果を表2に示す。木粉200メッシュを50重量部添加することで組成物W3は無添加物(比較例1)、組成物W1〜2よりも結晶化速度が向上し押出溶融ペレット化も良好であった。また組成物W3ペレットのMw=48万で押出溶融加工で殆ど低下していなかった。
(Example 3)
Composition W3 pellets were obtained in the same manner as in Example 1 except that the amount of wood powder 200 mesh added was 50 parts by weight. At this time, when the time during which the strands harden in the water tank was measured by palpation, it was about 22 seconds. Table 2 shows the measurement results of Tm1, Tc1w, and Mw of the composition W3 pellet. By adding 50 parts by weight of 200 mesh of wood flour, the composition W3 had an improved crystallization rate and good extrusion melt pelletization compared to the additive-free (Comparative Example 1) and Compositions W1-2. In addition, Mw of the composition W3 pellet was 480,000, and almost no decrease was caused by extrusion melt processing.

(実施例4)
木粉アトマイザー100の添加量を2重量部とした以外は、実施例1と同様の方法で組成物W4ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、36sec程度であった。組成物W4ペレットのTm1、Tc1w、Mwの測定結果を表2に示す。木粉アトマイザー100を2重量部添加することで組成物W4は無添加物(比較例1)よりも結晶化速度が向上し押出溶融ペレット化も良好であった。また組成物W4ペレットのMw=56万で押出溶融加工で殆ど低下していなかった。
Example 4
Composition W4 pellets were obtained in the same manner as in Example 1 except that the amount of wood flour atomizer 100 added was 2 parts by weight. At this time, when the time during which the strands harden in the water bath was measured by palpation, it was about 36 seconds. Table 2 shows the measurement results of Tm1, Tc1w, and Mw of the composition W4 pellet. By adding 2 parts by weight of the wood powder atomizer 100, the composition W4 was improved in crystallization speed and better in extrusion melt pelletization than the additive (Comparative Example 1). Moreover, Mw of the composition W4 pellet was 560,000, and almost no reduction was caused by the extrusion melt processing.

(実施例5)
木粉アトマイザー100の添加量を10重量部とした以外は、実施例1と同様の方法で組成物W5ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、34sec程度であった。組成物W5ペレットのTm1、Tc1w、Mwの測定結果を表2に示す。木粉アトマイザー100を10重量部添加することで組成物W5は無添加物(比較例1)、組成物W1、W4よりも結晶化速度が向上し押出溶融ペレット化も良好であった。また組成物W5ペレットのMw=52万で押出溶融加工で殆ど低下していなかった。
(Example 5)
Composition W5 pellets were obtained in the same manner as in Example 1 except that the amount of wood powder atomizer 100 added was 10 parts by weight. At this time, when the time for the strands to harden in the water tank was measured by palpation, it was about 34 seconds. Table 2 shows the measurement results of Tm1, Tc1w, and Mw of the composition W5 pellet. By adding 10 parts by weight of the wood powder atomizer 100, the composition W5 was improved in crystallization speed and extrusion melt pelletization was better than the additive (Comparative Example 1) and the compositions W1 and W4. Further, Mw of the composition W5 pellet was 520,000, and almost no reduction was caused by extrusion melt processing.

(実施例6)
木粉アトマイザー100の添加量を50重量部とした以外は、実施例1と同様の方法で組成物W6ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、29sec程度であった。組成物W6ペレットのTm1、Tc1w、Mwの測定結果を表2に示す。木粉アトマイザー100を50重量部添加することで組成物W6は無添加物(比較例1)、組成物W1〜W2、W4〜5よりも結晶化速度が向上し押出溶融ペレット化も良好であった。同じ添加量でも元の粒子径が細かい物(木粉200メッシュ、実施例3)が核剤効果が高い。また組成物W6ペレットのMw=49万で押出溶融加工で殆ど低下していなかった。
(Example 6)
Composition W6 pellets were obtained in the same manner as in Example 1 except that the amount of addition of the wood powder atomizer 100 was 50 parts by weight. At this time, when the time during which the strands harden in the water bath was measured by palpation, it was about 29 seconds. Table 2 shows the measurement results of Tm1, Tc1w, and Mw of the composition W6 pellet. By adding 50 parts by weight of the wood flour atomizer 100, the composition W6 has an improved crystallization speed and good extrusion melt pelletization compared to the additive-free (Comparative Example 1), Compositions W1 to W2, and W4 to 5. It was. Even with the same addition amount, the original particle size (wood powder 200 mesh, Example 3) has a high nucleating agent effect. Further, Mw of the composition W6 pellet was 490,000, and almost no decrease was caused by extrusion melting.

(実施例7)
セルロース粉末の添加量を2重量部とした以外は、実施例1と同様の方法で組成物W7ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、35sec程度であった。組成物W7ペレットのTm1、Tc1w、Mwの測定結果を表2に示す。セルロース粉末を2重量部添加することで組成物W7は無添加物(比較例1)よりも結晶化速度が向上し押出溶融ペレット化も良好であった。また組成物W7ペレットのMw=55万で押出溶融加工で殆ど低下していなかった。
(Example 7)
Composition W7 pellets were obtained in the same manner as in Example 1 except that the amount of cellulose powder added was 2 parts by weight. At this time, when the time for the strands to harden in the water tank was measured by palpation, it was about 35 seconds. Table 2 shows the measurement results of Tm1, Tc1w, and Mw of the composition W7 pellet. By adding 2 parts by weight of the cellulose powder, the composition W7 was improved in crystallization speed and better in extrusion melt pelletization than the additive (Comparative Example 1). Further, Mw of the composition W7 pellet was 550,000, and almost no reduction was caused by extrusion melting.

(実施例8)
セルロース粉末の添加量を10重量部とした以外は、実施例1と同様の方法で組成物W8ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、31sec程度であった。組成物W8ペレットのTm1、Tc1w、Mwの測定結果を表2に示す。セルロース粉末を10重量部添加することで組成物W8は無添加物(比較例1)、組成物W1、W4〜5、W7よりも結晶化速度が向上し押出溶融ペレット化も良好であった。また組成物W8ペレットのMw=52万で押出溶融加工で殆ど低下していなかった。
(Example 8)
Composition W8 pellets were obtained in the same manner as in Example 1, except that the amount of cellulose powder added was 10 parts by weight. At this time, when the time during which the strands harden in the water bath was measured by palpation, it was about 31 sec. Table 2 shows the measurement results of Tm1, Tc1w, and Mw of the composition W8 pellet. By adding 10 parts by weight of cellulose powder, the composition W8 was improved in crystallization speed and extrusion melt pelletization better than the additive (Comparative Example 1), compositions W1, W4-5, and W7. Further, Mw of the composition W8 pellet was 520,000, and almost no reduction was caused by extrusion melt processing.

(実施例9)
セルロース粉末の添加量を50重量部とした以外は、実施例1と同様の方法で組成物W9ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、29sec程度であった。組成物W9ペレットのTm1、Tc1w、Mwの測定結果を表2に示す。セルロース粉末を50重量部添加することで組成物W9は無添加物(比較例1)、組成物W1〜2、W4〜5、W7〜8よりも結晶化速度が向上し押出溶融ペレット化も良好であった。また組成物W9ペレットのMw=48万で押出溶融加工で殆ど低下していなかった。
Example 9
Composition W9 pellets were obtained in the same manner as in Example 1 except that the amount of cellulose powder added was 50 parts by weight. At this time, when the time during which the strands harden in the water bath was measured by palpation, it was about 29 seconds. Table 2 shows the measurement results of Tm1, Tc1w, and Mw of the composition W9 pellets. By adding 50 parts by weight of cellulose powder, the composition W9 has no crystallization additive (Comparative Example 1), the compositions W1-2, W4-5, and W7-8, and the crystallization speed is improved and the extrusion melt pelletization is also good. Met. Further, Mw of the composition W9 pellet was 480,000, and almost no decrease was observed in the extrusion melt processing.

(比較例1)
原料、培養条件を適宜調整して生産されたPHBH(HH率6.0mol%)に木粉やセルロース粉末を添加せずに実施例1と同様の方法で押出ペレット化を実施したが、ストランドの固化が充分進まず、時折ペレタイザーの刃に付着するなどのトラブルが発生した。得られたHH率6.0mol%PHBH単独のペレットのTm1、Tc1n、Mwを測定したが、Tc1nは観測されなかった。HH率6.0mol%PHBH単独では木粉やセルロース粉末が無いため結晶化は促進されておらず、実施例1〜9よりも加工性の劣る物であった。
(Comparative Example 1)
Extrusion pelletization was carried out in the same manner as in Example 1 without adding wood powder or cellulose powder to PHBH (HH ratio 6.0 mol%) produced by appropriately adjusting the raw materials and culture conditions. Solidification did not progress sufficiently, and problems such as occasional sticking to the blades of the pelletizer occurred. Tm1, Tc1n, and Mw of the obtained pellet of the HH ratio 6.0 mol% PHBH alone were measured, but Tc1n was not observed. The HH ratio of 6.0 mol% PHBH alone was not a wood powder or a cellulose powder, so crystallization was not promoted, and it was inferior in processability to Examples 1-9.

(実施例10)
微生物として、Alcaligenes eutrophusにAeromonas caviae由来のPHA合成酵素遺伝子を導入したAlcaligenes eutrophus AC32(J.Bacteriol.,179,4821(1997))を用いて原料、培養条件を適宜調整して生産されたPHBH(HH率4.5mol%、Mw=85万)を使用した以外は実施例2と同様に木粉200メッシュ10重量部添加する方法で組成物W10ペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、22sec程度であった。組成物W10ペレットのTm1、Tc1w、Mwの測定結果を表2に示す。HH率4.5mol%のPHBHを使用した場合、HH率6.0mol%のPHBHに木粉200メッシュを50重量部添加した組成物W2と同レベル、無添加物(比較例1)より結晶化速度が向上し押出溶融ペレット化も良好であった。また組成物W10ペレットのMw=70万で押出溶融加工で殆ど低下していなかった。
(Example 10)
PHBH produced by using Alcaligenes eutrophus AC32 (J. Bacteriol., 179,4821 (1997)) in which a PHA synthase gene derived from Aeromonas caviae was introduced into Alcaligenes eutrophus as a microorganism, with appropriate adjustment of raw materials and culture conditions ( Composition W10 pellets were obtained by the method of adding 10 parts by weight of 200 mesh of wood flour in the same manner as in Example 2 except that the HH ratio was 4.5 mol% and Mw = 850,000. At this time, when the time during which the strands harden in the water tank was measured by palpation, it was about 22 seconds. Table 2 shows the measurement results of Tm1, Tc1w, and Mw of the composition W10 pellet. When PHBH having an HH ratio of 4.5 mol% is used, it is crystallized from an additive (Comparative Example 1) at the same level as composition W2 in which 50 parts by weight of wood flour is added to PHBH having an HH ratio of 6.0 mol%. The speed was improved and extrusion melt pelletization was good. Further, Mw of the composition W10 pellet was 700,000, and almost no reduction was caused by extrusion melting.

(比較例2)
原料、培養条件を適宜調整して生産されたPHBH(HH率4.5mol%)に木粉やセルロース粉末を添加せずに実施例1と同様の方法で押出ペレット化を実施しペレットを得た。この際、水槽中でストランドが硬くなる時間を触診測定したところ、34sec程度であった。Tm1、Tc1n、Mwの結果を表2に示す。実施例10のTc1wと比較すると、Tc1w>Tc1nであった。HH率6.0mol%PHBH単独では木粉やセルロース粉末が無いため結晶化は促進されておらず、実施例10よりも加工性の劣る物であった。
(Comparative Example 2)
Extrusion pelletization was carried out in the same manner as in Example 1 without adding wood powder or cellulose powder to PHBH (HH ratio 4.5 mol%) produced by appropriately adjusting the raw materials and culture conditions to obtain pellets. . At this time, when the time for the strands to harden in the water tank was measured by palpation, it was about 34 seconds. Table 2 shows the results of Tm1, Tc1n, and Mw. Compared with Tc1w of Example 10, Tc1w> Tc1n. The HH ratio of 6.0 mol% PHBH alone was not a wood powder or cellulose powder, so crystallization was not promoted, and it was inferior in workability to Example 10.

(参考例1)
樹脂としてPHBホモポリマー(Mw=61万)を使用し、木粉やセルロース粉末を添加せずにペレット化温度180℃で実施例1と同様の方法で押出ペレット化を実施した。PHBはダイスから出て直ぐに固化していたが、硬くて脆く、ストランドペレット化が出来ないものであった。吐出物のTm1、Tc1n、Mwの結果を表2に示す。結晶固化は早いが押出加工性に劣る物であった。
(Reference Example 1)
PHB homopolymer (Mw = 610,000) was used as the resin, and extrusion pelletization was performed in the same manner as in Example 1 at a pelletization temperature of 180 ° C. without adding wood powder or cellulose powder. PHB was solidified immediately after coming out of the die, but it was hard and brittle and could not be formed into a strand pellet. Table 2 shows the results of Tm1, Tc1n, and Mw of the discharged material. Crystallization was fast but inferior in extrudability.

(参考例2)
参考例1の押出物を溶融不足と考え、ペレット化温度190℃で参考例1と同様の方法で押出ペレット化を実施した。この際、水槽中でストランドが硬くなる時間を触診測定したところ、30sec程度であった。Tm1、Tc1n、Mwの結果を表2に示す。PHBホモポリマー押出加工は可能であったが、得られたペレットのMw=28万で大きく低下していた。
(Reference Example 2)
The extrudate of Reference Example 1 was considered insufficiently melted, and extrusion pelletization was performed in the same manner as in Reference Example 1 at a pelletization temperature of 190 ° C. At this time, when the time during which the strands harden in the water bath was measured by palpation, it was about 30 seconds. Table 2 shows the results of Tm1, Tc1n, and Mw. Although PHB homopolymer extrusion was possible, the resulting pellet had a significant decrease at Mw = 280,000.

(実施例11)
実施例2で作製した組成物W2をロール成形機で加熱成形し、厚み600μmのシートを作製した。このシートを惣菜容器形状の金型を設置した真空加熱成形機を使用して成形した結果、加熱時のドローダウンが少なく、金型離型性も良好で、均一な惣菜容器が得られた。
(Example 11)
The composition W2 produced in Example 2 was heat-molded with a roll molding machine to produce a sheet having a thickness of 600 μm. As a result of forming this sheet using a vacuum heating molding machine in which a mold for a sugar beet container was installed, there was little drawdown during heating, a mold release property was good, and a uniform sugar beet container was obtained.

(比較例3)
比較例1で作製したPHBHペレットをロール成形機で加熱成形し、厚み600μmのシートを作製した。このシートを惣菜容器形状の金型を設置した真空加熱成形機を使用し成形した結果、成形体は得られるが、加熱時にドローダウンする場合や金型にシートが粘着する場合があり、場合によってはシートが破れることがあった。
(Comparative Example 3)
The PHBH pellet produced in Comparative Example 1 was thermoformed with a roll molding machine to produce a sheet having a thickness of 600 μm. As a result of molding this sheet using a vacuum heating molding machine with a side dish container-shaped mold, a molded body is obtained, but the sheet may stick to the mold when it is drawn down during heating, or in some cases Could break the sheet.

Claims (5)

木粉及び/又はセルロース粉末と、微生物から生産される式(1):[−CHR−CH2−CO−O−](ここに、RはCn2n+1で表されるアルキル基で、n=1及び3の整数)で示される繰り返し単位からなる、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)を含有する組成物。 Formula (1): [—CHR—CH 2 —CO—O—] (where R is an alkyl group represented by C n H 2n + 1 ) produced from wood powder and / or cellulose powder and microorganisms , N = 1 and an integer of 3), and a composition containing poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)の共重合成分の組成比が、ポリ(3−ヒドロキシブチレート)/ポリ(3−ヒドロキシヘキサノエート)=99/1〜80/20(mol/mol)であることを特徴とする請求項1記載の組成物。   The composition ratio of the copolymer component of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) is poly (3-hydroxybutyrate) / poly (3-hydroxyhexanoate) = 99 / 1-80. The composition according to claim 1, wherein the composition is / 20 (mol / mol). ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)100重量部に対して、木粉及び/又はセルロース粉末を0.5〜100重量部含有する請求項1又は2に記載の組成物。   The composition according to claim 1 or 2, comprising 0.5 to 100 parts by weight of wood powder and / or cellulose powder with respect to 100 parts by weight of poly (3-hydroxybutyrate-co-3-hydroxyhexanoate). object. 示差走査熱量測定法によるDSC曲線において、木粉および/またはセルロース粉末とポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)からなる組成物をポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)単体の融点よりも30℃以上高い温度から200℃以下の温度で溶融させた後、10℃/minで0℃まで降温した場合に、降温時に結晶化に由来する発熱ピークが存在し、この発熱ピークの温度をTc1wとするとき、ポリ(3−ヒドロキシブチレート−コ−3−ヒドロキシヘキサノエート)単体で同様の測定をした場合の発熱ピーク温度Tc1nとの関係が、Tc1w>Tc1n、若しくはTc1nは存在しない関係にあることを特徴とする請求項1〜3の何れか1項に記載の組成物。   In a DSC curve obtained by differential scanning calorimetry, a composition comprising wood flour and / or cellulose powder and poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) was converted to poly (3-hydroxybutyrate-co-). 3-Hydroxyhexanoate) When melting at a temperature of 30 ° C. or higher from the melting point of the simple substance to a temperature of 200 ° C. or lower and then decreasing to 0 ° C. at 10 ° C./min, heat generated from crystallization at the time of temperature decrease When there is a peak and the temperature of this exothermic peak is Tc1w, the relationship with the exothermic peak temperature Tc1n when poly (3-hydroxybutyrate-co-3-hydroxyhexanoate) alone is measured Tc1w> Tc1n or Tc1n does not exist, The composition according to any one of claims 1 to 3. 請求項1〜4記載の組成物からなる成形体。   The molded object which consists of a composition of Claims 1-4.
JP2004228935A 2004-08-05 2004-08-05 Poly(3-hydroxybutylate-co-3-hydroxyhexanoate) composition and its molding Pending JP2006045366A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004228935A JP2006045366A (en) 2004-08-05 2004-08-05 Poly(3-hydroxybutylate-co-3-hydroxyhexanoate) composition and its molding

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004228935A JP2006045366A (en) 2004-08-05 2004-08-05 Poly(3-hydroxybutylate-co-3-hydroxyhexanoate) composition and its molding

Publications (1)

Publication Number Publication Date
JP2006045366A true JP2006045366A (en) 2006-02-16

Family

ID=36024330

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004228935A Pending JP2006045366A (en) 2004-08-05 2004-08-05 Poly(3-hydroxybutylate-co-3-hydroxyhexanoate) composition and its molding

Country Status (1)

Country Link
JP (1) JP2006045366A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008026632A1 (en) 2006-09-01 2008-03-06 Kaneka Corporation Thermoplastic elastomer composition
JP2008081588A (en) * 2006-09-27 2008-04-10 Toppan Printing Co Ltd Resin composition and molding and floor material each using the same composition
JP2011246502A (en) * 2010-05-21 2011-12-08 Yazaki Corp Aliphatic polyester resin composition
JP2012515549A (en) * 2009-01-26 2012-07-12 キシレコ インコーポレイテッド Biomass processing method
CN104428369A (en) * 2012-07-09 2015-03-18 巴斯夫欧洲公司 Method for complete anaerobic degradation of polymer mixtures
WO2020218565A1 (en) 2019-04-26 2020-10-29 株式会社フューエンス Polyhydroxyalkanoic acid and method for producing same
JP2021160807A (en) * 2020-04-01 2021-10-11 アイ‐コンポロジー株式会社 Device for food product and container package, marine material, and marine biodegradable resin composition

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188541A (en) * 1975-01-31 1976-08-03 KYOKAKOBUNSHISOSEIBUTSU OYOBI SONOSEIZOHOHO
JPH05320524A (en) * 1990-02-28 1993-12-03 Agency Of Ind Science & Technol Biodegradable molding material and molding molded therefrom
JPH11240962A (en) * 1998-02-24 1999-09-07 Nippon Shokubai Co Ltd Molded product of polyester resin composition having improved processabillty
JP2000129143A (en) * 1998-10-26 2000-05-09 Mitsubishi Gas Chem Co Inc Biodegradable molded product, its material and its production
JP2000239498A (en) * 1999-02-17 2000-09-05 Nippon Shokubai Co Ltd Polyester resin composition
JP2002003709A (en) * 2000-06-20 2002-01-09 Unitika Ltd Biodegradable heat-resistant resin composition, sheet, molded product and foamed product
JP2003001987A (en) * 2001-06-20 2003-01-08 Toppan Printing Co Ltd Card
JP2004161802A (en) * 2002-11-08 2004-06-10 Kanegafuchi Chem Ind Co Ltd Biodegradable polyester resin composition and method for producing the same
JP2004517983A (en) * 2000-12-21 2004-06-17 ザ プロクター アンド ギャンブル カンパニー Biodegradable polyhydroxyalkanoate copolymer with improved crystallization properties
JP2004182817A (en) * 2002-12-02 2004-07-02 Tosoh Corp Manufacturing method for resin composition

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5188541A (en) * 1975-01-31 1976-08-03 KYOKAKOBUNSHISOSEIBUTSU OYOBI SONOSEIZOHOHO
JPH05320524A (en) * 1990-02-28 1993-12-03 Agency Of Ind Science & Technol Biodegradable molding material and molding molded therefrom
JPH11240962A (en) * 1998-02-24 1999-09-07 Nippon Shokubai Co Ltd Molded product of polyester resin composition having improved processabillty
JP2000129143A (en) * 1998-10-26 2000-05-09 Mitsubishi Gas Chem Co Inc Biodegradable molded product, its material and its production
JP2000239498A (en) * 1999-02-17 2000-09-05 Nippon Shokubai Co Ltd Polyester resin composition
JP2002003709A (en) * 2000-06-20 2002-01-09 Unitika Ltd Biodegradable heat-resistant resin composition, sheet, molded product and foamed product
JP2004517983A (en) * 2000-12-21 2004-06-17 ザ プロクター アンド ギャンブル カンパニー Biodegradable polyhydroxyalkanoate copolymer with improved crystallization properties
JP2003001987A (en) * 2001-06-20 2003-01-08 Toppan Printing Co Ltd Card
JP2004161802A (en) * 2002-11-08 2004-06-10 Kanegafuchi Chem Ind Co Ltd Biodegradable polyester resin composition and method for producing the same
JP2004182817A (en) * 2002-12-02 2004-07-02 Tosoh Corp Manufacturing method for resin composition

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8748526B2 (en) 2006-09-01 2014-06-10 Kaneka Corporation Thermoplastic elastomer composition
WO2008026632A1 (en) 2006-09-01 2008-03-06 Kaneka Corporation Thermoplastic elastomer composition
JP2008081588A (en) * 2006-09-27 2008-04-10 Toppan Printing Co Ltd Resin composition and molding and floor material each using the same composition
JP2015146818A (en) * 2009-01-26 2015-08-20 キシレコ インコーポレイテッド Biomass processing method
JP2012515549A (en) * 2009-01-26 2012-07-12 キシレコ インコーポレイテッド Biomass processing method
US9388432B2 (en) 2009-01-26 2016-07-12 Xyleco, Inc. Processing biomass
JP2017127326A (en) * 2009-01-26 2017-07-27 キシレコ インコーポレイテッド Method of processing biomass
US9920335B2 (en) 2009-01-26 2018-03-20 Xyleco, Inc. Processing biomass
US10612050B2 (en) 2009-01-26 2020-04-07 Xyleco, Inc. Processing biomass
JP2011246502A (en) * 2010-05-21 2011-12-08 Yazaki Corp Aliphatic polyester resin composition
CN104428369A (en) * 2012-07-09 2015-03-18 巴斯夫欧洲公司 Method for complete anaerobic degradation of polymer mixtures
WO2020218565A1 (en) 2019-04-26 2020-10-29 株式会社フューエンス Polyhydroxyalkanoic acid and method for producing same
KR20220004129A (en) 2019-04-26 2022-01-11 퓨엔스 가부시끼가이샤 Polyhydroxyalkanoic acid and its preparation method
JP2021160807A (en) * 2020-04-01 2021-10-11 アイ‐コンポロジー株式会社 Device for food product and container package, marine material, and marine biodegradable resin composition

Similar Documents

Publication Publication Date Title
JP5183203B2 (en) Biodegradable resin composition and molded body thereof
Briassoulis et al. Alternative optimization routes for improving the performance of poly (3-hydroxybutyrate)(PHB) based plastics
JP2004161802A (en) Biodegradable polyester resin composition and method for producing the same
EP1698665B1 (en) Method for making biodegradable polyhydroxyalkanoate copolymers having improved crystallization properties
JP2006525136A (en) Molded or extruded articles comprising a polyhydroxyalkanoate copolymer and a thermoplastic polymer that is environmentally degradable
KR20090054434A (en) Mastermatch and polymer composition
JPWO2010013483A1 (en) Resin composition and sheet
AU2002249867B2 (en) Biodegradable polyhydroxyalkanoate copolymers having improved crystallization properties
JP5264487B2 (en) Biodegradable resin composition and molded article thereof
JP5467871B2 (en) Composition and molded body thereof
AU2002249867A1 (en) Biodegradable polyhydroxyalkanoate copolymers having improved crystallization properties
JP4200340B2 (en) Resin composition and molded body
JP2019119840A (en) Aliphatic polyester resin composition
JPWO2005054366A1 (en) Poly (3-hydroxyalkanoate) composition and molded article thereof
JP4503215B2 (en) Lactic acid-based resin composition, peroxide-modified lactic acid-based resin composition, and molded articles thereof
JP2006045366A (en) Poly(3-hydroxybutylate-co-3-hydroxyhexanoate) composition and its molding
JP5323312B2 (en) Method for producing polylactide
JP4326832B2 (en) Method for producing biodegradable polyester resin composition
JP2004331757A (en) Poly(3-hydroxyalkanoate) composition and method for producing the same
JP2010059354A (en) Polylactic acid composition
JP2008120878A (en) Polylactide granule and composition containing the same
JP7090523B2 (en) Resin composition and molded product
JP5170359B2 (en) Resin composition and molded body
JPH03290461A (en) Biodegradable plastic composition
WO2005059004A1 (en) Biodegradable aromatic polyester and molding thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070622

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080724

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20090213

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100412

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101026

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110329