JP2006041276A - 半導体装置およびその製造方法 - Google Patents

半導体装置およびその製造方法 Download PDF

Info

Publication number
JP2006041276A
JP2006041276A JP2004220664A JP2004220664A JP2006041276A JP 2006041276 A JP2006041276 A JP 2006041276A JP 2004220664 A JP2004220664 A JP 2004220664A JP 2004220664 A JP2004220664 A JP 2004220664A JP 2006041276 A JP2006041276 A JP 2006041276A
Authority
JP
Japan
Prior art keywords
conductive material
trench
embedded
insulating film
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004220664A
Other languages
English (en)
Inventor
Hirofumi Inoue
裕文 井上
Masato Shinohe
正人 四戸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP2004220664A priority Critical patent/JP2006041276A/ja
Priority to PCT/JP2005/014138 priority patent/WO2006011632A2/en
Publication of JP2006041276A publication Critical patent/JP2006041276A/ja
Priority to US11/638,492 priority patent/US7525142B2/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76877Filling of holes, grooves or trenches, e.g. vias, with conductive material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L21/00Processes or apparatus adapted for the manufacture or treatment of semiconductor or solid state devices or of parts thereof
    • H01L21/70Manufacture or treatment of devices consisting of a plurality of solid state components formed in or on a common substrate or of parts thereof; Manufacture of integrated circuit devices or of parts thereof
    • H01L21/71Manufacture of specific parts of devices defined in group H01L21/70
    • H01L21/768Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics
    • H01L21/76838Applying interconnections to be used for carrying current between separate components within a device comprising conductors and dielectrics characterised by the formation and the after-treatment of the conductors
    • H01L21/76841Barrier, adhesion or liner layers
    • H01L21/76843Barrier, adhesion or liner layers formed in openings in a dielectric
    • H01L21/76849Barrier, adhesion or liner layers formed in openings in a dielectric the layer being positioned on top of the main fill metal
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10BELECTRONIC MEMORY DEVICES
    • H10B12/00Dynamic random access memory [DRAM] devices
    • H10B12/01Manufacture or treatment
    • H10B12/02Manufacture or treatment for one transistor one-capacitor [1T-1C] memory cells
    • H10B12/03Making the capacitor or connections thereto
    • H10B12/038Making the capacitor or connections thereto the capacitor being in a trench in the substrate
    • H10B12/0385Making a connection between the transistor and the capacitor, e.g. buried strap

Landscapes

  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Physics & Mathematics (AREA)
  • Condensed Matter Physics & Semiconductors (AREA)
  • General Physics & Mathematics (AREA)
  • Computer Hardware Design (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Power Engineering (AREA)
  • Semiconductor Memories (AREA)
  • Semiconductor Integrated Circuits (AREA)
  • Internal Circuitry In Semiconductor Integrated Circuit Devices (AREA)

Abstract

【課題】半導体基板中に形成された深いトレンチの内部に埋め込まれる蓄積電極用の導電材の均一性の向上および抵抗値の低減を図り、蓄積電極の開放欠陥の発生を防止する。
【解決手段】半導体基板中に形成されたトレンチの内部にキャパシタ絶縁膜13を介して蓄積電極用の導電材を埋め込んだトレンチ型キャパシタを有し、導電材は、トレンチの下部に埋め込まれた第1の導電材14と、第1の導電材の上面の凹部に埋め込まれた第2の導電材17と、第1の導電材および第2の導電材の上部に接するよう埋め込まれた第3の導電材21とを具備する。
【選択図】 図8

Description

本発明は、半導体基板あるいは半導体基板上の絶縁層中に形成された深いホールの内部に導電材を埋め込んだ半導体装置およびその製造方法に関するもので、例えば半導体記憶装置に形成されるトレンチ型キャパシタ、コンタクトプラグ、Viaプラグなどに適用されるものである。
半導体集積回路の素子の微細化、高集積化に伴い、より小さな面積に、より高密度で素子を形成することが必要になっている。例えば、相補性MOS型の大容量のDRAM(ダイナミックランダムアクセスメモリ)のような半導体記憶装置においては、記憶素子の蓄積容量を狭い領域の中で有効に稼ぐために、トレンチ(Trench)の側面をキャパシタとするトレンチ型キャパシタが採用されている。このトレンチ型キャパシタの構造には、(1)トレンチに接する基板側に拡散層を形成してキャパシタ電極の一方とし、トレンチの内部にキャパシタ絶縁膜を介して蓄積電極を埋め込む構造、(2)トレンチが形成された基板をキャパシタ電極の一方(プレート電極)とし、トレンチの内部にキャパシタ絶縁膜を介して蓄積電極を埋め込む基板プレート型DRAMセル、などがある。
ここで、図15乃至図18を参照しながら、従来のトレンチ型キャパシタを用いた基板プレート型DRAMセルのトレンチ型キャパシタの形成プロセスの一例を説明する。まず、P型半導体基板の表層部にエッチングマスク51を形成し、異方性エッチングにより表面から深いトレンチ(Deep Trench)を形成する。そして、トレンチの内面にキャパシタ絶縁膜52を形成し、トレンチ内部に第1の導電材53を埋め込んだ後、トレンチ内部の下部に第1の導電材53を残すようにリセス・エッチングを行う。次に、トレンチ内面にカラー酸化膜54を堆積し、その底面部を除去する。この後、トレンチ内部に第2の導電材を埋め込み、この第2の導電材と第1の導電材53とを蓄積電極として使用し、後の工程で形成されるn型ウェル50をプレート電極として使用する。同様に、n型ウェル50の表層部に、カラー酸化膜54の下端部より浅い位置までの深さを有するp型ウェルを形成する。カラー酸化膜54はn型ウェルと基板表面に形成される第二の導電型のソース側との絶縁を確保する役割を有する。そして、p型ウェル上にDRAMセルの転送ゲート用のnMOSFETを形成する。
上記した深いトレンチを形成する際、断面形状を順テーパーの形状に維持できれば問題ない。しかし、素子の縮小化に伴ってトレンチのアスペクトレシオが高くなると、トレンチの断面形状の制御が困難になる。結果として、トレンチ側面がトレンチ底面の延長面に対してなす角度が垂直形状(例えば89°以上の順テーパー形状)、あるいは例えば100°以上の逆テーパー形状、あるいはオーバーハングの形状になる場合がある。この場合には、第1の導電材53中に空隙部(巣)55が発生したり、第1の導電材53の上面に凹部56が発生してしまう。
しかし、この状態で、トレンチ内面に埋め込みカラー酸化膜54を堆積した時に、カラー酸化膜54の底部が第1の導電材53中の巣55の内部あるいは第1の導電材53の上面の凹部56に埋め込まれてしまう。この後、埋め込みカラー酸化膜54の底面をエッチングすると、カラー酸化膜54のエッチング残りが発生する場合がある。この場合、後工程で、第1の導電材53上に第2の導電材を堆積した際に、第1の導電材53と第2の導電材との接続状態が不均一、不十分となって、蓄積電極の抵抗値の増加を招いたり、第1の導電材53と第2の導電材との接続が遮断状態になって蓄積電極のオープン不良が発生するという問題点がある。
一方、半導体基板上の絶縁層中に形成されたアスペクトレシオの大きなホール、例えばコンタクトホールやViaホールなどの内部にメタルやポリシリコンなどの導電材を埋め込んで埋め込みプラグを形成する際にも、前記したトレンチ型キャパシタと同様の問題が生じる。即ち、アスペクトレシオの大きなホールの断面形状を順テーパーの形状に維持できれば問題ないが、マイクロローディング効果等によりホールの断面形状を制御良く確保することが難しくなる。結果として、ホールの断面形状が垂直形状、あるいは逆テーパー形状、あるいはオーバーハングの形状になると、ホールへ導電材を埋め込んだ場合のカバレッジ特性が悪くなり、導電材中に巣が発生したり、導電材の上面に凹部が発生する。この結果、この後、導電材の表面にコンタクトさせるように上層配線を形成する工程において、上層配線と導電材とのコンタクトの均一性や、配線層の平坦性などに問題が発生する。
なお、特許文献1には、トレンチ型キャパシタを用いた基板プレート型DRAMセルの構造が開示されている。また、特許文献2には、トレンチに埋め込まれたポリシリコンをエッチバックし、その上にアモルファス・シリコンでキャップ層を形成する技術が開示されている。また、特許文献3には、トレンチ型キャパシタの埋め込みポリシリコン電極の上部にアモルファス・シリコンを埋め込み接続する技術が開示されている。また、特許文献4には、トレンチ内部にシリコン・ゲルマニウムを埋め込み、アニールすることによって熱応力を抑制したトレンチ埋め込み層を形成し、カラー酸化膜を形成した後に埋め込みを行うプロセス技術が開示されている。
米国特許第5300800号明細書 米国特許第5451809号明細書 米国特許第6638815号明細書 米国特許第6359300号明細書
本発明は前記した従来の問題点を解決すべくなされたもので、半導体基板中に形成された深いトレンチあるいは半導体基板上の絶縁層中に形成された深いホールの内部に埋め込まれる導電材の均一性の向上および抵抗値の低減を図り、蓄積電極の開放欠陥の発生を防止し得る半導体装置を提供することを目的とする。
また、本発明は、半導体基板中に形成された深いトレンチあるいは半導体基板上の絶縁層中に形成された深いホールの内部に、導電材を均一性が良い状態で埋め込むことが可能になり、導電材の抵抗値を低減し、ホール内の埋め込みプラグと上層配線のコンタクトをとり易くし得る半導体装置の製造方法を提供することを目的とする。
本発明の半導体装置の第1の態様は、半導体基板中に形成されたトレンチの内部にキャパシタ絶縁膜を介して蓄積電極用の導電材が埋め込まれたトレンチ型キャパシタを有し、前記導電材は、前記トレンチの下部に埋め込まれ、表面に凹部を有する第1の導電材と、前記第1の導電材の凹部に埋め込まれた第2の導電材と、前記第1の導電材および第2の導電材に接するよう前記第1および前記第2の導電材の上部に埋め込まれた第3の導電材とを具備することを特徴とする。
本発明の半導体装置の第2の態様は、半導体基板と、前記半導体基板の表層部に選択的に形成された第1導電型の半導体層と、前記半導体層上にゲート絶縁膜を介して形成された電荷転送ゲート用のMOSFETのゲート電極と、前記ゲート電極を挟んで前記半導体層の表層部に選択的に形成された第2導電型のソース・ドレイン領域と、前記ソース・ドレイン領域の一方に接続された蓄積電極を有する基板プレート型のトレンチ型キャパシタを有し、前記トレンチ型キャパシタは、前記半導体基板中に達する深さまで形成されたトレンチの内面で前記第1導電型の半導体層より下方に形成されたキャパシタ絶縁膜と、前記トレンチの内面で前記キャパシタ絶縁膜の上方に形成されたカラー絶縁膜と、前記トレンチの内部に埋め込まれた蓄積電極用の導電材とを有し、前記導電材は、前記キャパシタ絶縁膜を介して前記トレンチの下部に埋め込まれ、上面に凹部を有する第1の導電材と、前記第1の導電材の凹部に埋め込まれた第2の導電材と、前記カラー絶縁膜を介して前記第1の導電材および第2の導電材の上部に接するよう埋め込まれた第3の導電材とを具備することを特徴とする。
本発明の半導体装置の第3の態様は、半導体基板上の絶縁層中に形成されたホールの内部に導電材を埋め込んでなる埋め込みプラグを有し、前記導電材は、前記ホールの内部に埋め込まれた第1の導電材と、前記第1の導電材中に発生した巣および前記第1の導電材の上面に発生した凹部のうち少なくとも凹部に埋め込まれた第2の導電材とを具備することを特徴とする。
本発明の半導体装置の製造方法の第1の態様は、半導体基板中に形成されたトレンチの内部にキャパシタ絶縁膜を介して蓄積電極用の導電材が埋め込まれた構造を有するトレンチ型キャパシタ形成する際、導電材の埋め込みプロセスを複数回に分け、途中のプロセスで導電材中に発生している巣および導電材の上面に発生している凹部のうちの少なくとも凹部を埋め込むための専用の埋め込みプロセスを導入したことを特徴とする。
本発明の半導体装置の製造方法の第2の態様は、半導体基板上の絶縁層中にホールを形成する工程と、前記ホールの内部に導電材を埋め込んだ後、前記導電材の上部を前記ホールの開口面より低い位置まで除去する工程と、アモルファス・シリコンを低温で堆積した後、等方性エッチングによって前記アモルファス・シリコンのエッチバックを行うことにより、前記導電材の少なくとも上面の凹部を埋め込むことで上面をほぼ平坦化する工程と、前記アモルファス・シリコンにより上面の凹部が埋め込まれた前記導電材上に配線層を形成する工程とを具備することを特徴とする。
本発明の半導体装置の第1の態様によれば、半導体基板中に形成されたトレンチ型キャパシタの深いトレンチの内部に埋め込まれる蓄積電極用の導電材の均一性の向上および抵抗値の低減を図り、蓄積電極の開放欠陥の発生を防止することができる。
本発明の半導体装置の第2の態様によれば、基板プレート型のトレンチ型キャパシタの深いトレンチの内部に埋め込まれる蓄積電極用の導電材の均一性の向上および抵抗値の低減を図り、蓄積電極の開放欠陥の発生を防止することができ、基板プレート型DRAMメモリや垂直トランジスタ型DRAMメモリを欠陥が少ない状態で実現することができる。
本発明の半導体装置の第3の態様によれば、半導体基板上の絶縁層中に形成されたコンタクトホール、Viaホールなどの深いホールの内部に埋め込まれる導電材の均一性の向上および抵抗値の低減を図り、ホール内の埋め込みプラグと上層配線とのコンタクトをとり易くすることができる。
本発明の半導体装置の製造方法の第1の態様によれば、簡単な工程を追加することにより、半導体基板中に形成されたトレンチ型キャパシタの深いトレンチの内部に埋め込まれる蓄積電極用の導電材の均一性の向上および抵抗値の低減を図り、蓄積電極の開放欠陥の発生を防止することができる。したがって、基板プレート型のトレンチ型キャパシタに適用した場合には、トレンチ型DRAMメモリあるいは垂直トランジスタ型DRAMメモリを欠陥が少ない状態で製造することができる。
本発明の半導体装置の製造方法の第2の態様によれば、簡単な工程を追加することにより、半導体基板上の絶縁層中に形成されたコンタクトホール、Viaホールなどの深いホールの内部に埋め込まれる導電材の均一性の向上および抵抗値の低減を図り、ホール内の埋め込みプラグと上層配線とのコンタクトをとり易くすることができる。
以下、図面を参照して本発明の実施形態を説明する。この説明に際して、全図にわたり共通する部分には共通する参照符号を付す。
<第1の実施形態>
図8は、本発明の第1の実施形態に係るDRAMにおける基板プレート型のトレンチ型キャパシタを用いたDRAMセルの構造の一例を示す断面図である。
図8において、例えばP型シリコン基板からなる半導体基板の表層部にp型ウェル20が形成されており、半導体基板内には、基板表面から離間した深い位置にn型不純物が高濃度にドープされたn型ウェル10が形成されている。p型ウェル20の表層部には、浅いトレンチの内部に窒化シリコン膜あるいは酸化シリコン膜などからなる絶縁膜が埋め込まれたシャロートレンチ型の素子分離領域(STI)23が形成されている。
半導体基板には、n型ウェル10をプレート電極とする基板プレート型のトレンチ型キャパシタが形成されている。このトレンチ型キャパシタは、基板表面から少なくともn型ウェル10中に達する深いトレンチが形成され、このトレンチの内面にはキャパシタ絶縁膜13が形成され、トレンチの内面の上方部にp型ウェル20より深い位置まで例えば酸化シリコン膜あるいは窒化シリコン膜からなる絶縁カラー18が形成され、トレンチの内部にキャパシタの蓄積電極として導電材が埋め込み形成されている。この導電材として、本実施形態では、第1の導電材14上の凹部がアモルファス・シリコン17により埋め込まれて平坦化された状態で第3の導電材21が埋め込まれている。
トレンチ型キャパシタの周辺のp型ウェル表層部には、転送ゲート用のnMOSFET(絶縁ゲート型電界効果トランジスタ)の活性領域が形成されている。このnMOSFETは、p型ウェル表層部に形成されたn型不純物拡散層からなるソース・ドレイン領域22と、チャネルドープ層と、p型ウェル表面に形成されたゲート絶縁膜24と、ゲート絶縁膜24上に形成され、セルアレイのワード線の一部あるいは素子分離領域23上のパッシングワード線の一部となるゲート電極25を含む。
ゲート電極25の表面は保護絶縁膜により覆われ、さらに絶縁膜および層間絶縁膜(図示せず)が形成されている。この層間絶縁膜、絶縁膜およびゲート絶縁膜24に開口されたコンタクトホールには、DRAMセルの転送ゲート用のnMOSFETのドレイン領域にコンタクトするビット線コンタクト26が埋め込み形成されている。さらに、層間絶縁膜上にはビット線コンタクト26に接続された金属配線からなるビット線が形成されている。
なお、トレンチの開口部付近で絶縁カラー18の上縁部の一部が欠除されており、この欠除部を介して絶縁カラー18の内側の導電材21を転送ゲート用のnMOSFETのソース・ドレイン領域22の一方、本例ではソース領域に接続するための導電材として、例えばn型不純物として例えば砒素を含んだポリシリコンが形成されている。
次に、図8に示すDRAMの製造方法を、図1乃至図8を参照して説明する。まず、図1に示すように、例えばP型シリコン基板上に酸化シリコン膜11および窒化シリコン膜12のパターンを形成し、このパターンをエッチングマスクとする異方性エッチングにより、基板表面から深いトレンチを形成する。この際、トレンチのアスペクト比が3以上の場合には、トレンチの断面形状として、トレンチ側面がトレンチ底面の延長面に対してなす角度が垂直形状、例えば89°以上の順テーパ形状になる場合がある。
次に、トレンチの内面に、SiO2、あるいはSi34、あるいはAl23、HfO2などの高誘電体を組成に含むキャパシタ絶縁膜13を形成する。そして、トレンチ内部に、ドープト・ポリシリコン、あるいは金属シリサイド層、あるいは金属層からなる第1の導電材14を埋め込むように全面に堆積する。
この後、図2に示すように、例えばウェットエッチング或いは等方性ドライエッチングによるリセス・エッチングによって、基板上の第1の導電材14およびトレンチ内部の上部の第1の導電材14を除去し、第1の導電材14を後述するp型ウェル(図8中の20)より低い位置まで落とし込む。この際、前記したようにトレンチの断面形状が垂直形状であると、第1の導電材14の内部に巣15が発生したり、第1の導電材14の上面に凹部16が発生する場合がある。
次に、本実施形態では、図3に示すように、第2の導電材として、例えばアモルファス・シリコン(Amorphous Silicon)17を薄く堆積する。この場合、アモルファス・シリコン17のカバレッジ特性が良くなるように、低温でアモルファス・シリコンを生成する。そして、図4に示すように、CDE法などのドライエッチング、あるいは、KOHなどを用いたウェットエッチング等の等方性エッチングによってアモルファス・シリコン17のエッチバックを行うことにより、第1の導電材14中の巣15および第1の導電材14の上面の凹部16のうち、少なくとも凹部16をアモルファス・シリコン17により埋め込むことで表面をほぼ平坦化する。
因みに、前述したアモルファス・シリコン17のエッチバックに際して、アモルファス・シリコンのエッチング量がアモルファス・シリコンの堆積量と等しい量(ジャストエッチング)から50%程度、好ましくは20%程度オーバーするまでの範囲内になるようにエッチング時間を制御することによって、第1の導電材14の上面の平坦性を所望通り確保することが可能であることが判明した。
次に、図5に示すように、トレンチ内面に露呈しているキャパシタ絶縁膜13を除去する。
次に、図6に示すように、後述するようにトレンチ内部に埋め込まれる第3の導電材(図8中の21)と後述するように基板表層部に形成されるp型ウェル(図8中の20)との絶縁を十分に確保するために、トレンチ内面に酸化膜あるいは酸窒化膜などからなるカラー絶縁膜18を形成する。
この後、図7に示すように、カラー絶縁膜18の底面部を除去して、後工程でトレンチ内部に埋め込まれる第3の導電材21と既に埋め込まれているアモルファス・シリコン17および第1の導電材14との導通を確保し得るようにする。また、図8に示すように、カラー絶縁膜18のうちで、後述するようにp型ウェル表層部に選択的に形成されるDRAMセルの転送ゲート用のnMOSFETのソース領域(n+型不純物拡散層、図8中の22)に接する部分を除去して、後工程でトレンチ内部に埋め込まれる第3の導電材21とソース領域22との導通を確保し得るようにする。
次に、トレンチ内部に第3の導電材21を埋め込む。この際、前述したように第1の導電材14の上面の凹部はアモルファス・シリコン17が埋め込まれてほぼ平坦化されているので、第3の導電材21と第1の導電材14との接続が十分に図れ、両者間の接続状態が開放されるような欠陥は発生しない。この第1の導電材21と第3の導電材21はキャパシタの蓄積電極となり、この蓄積電極の抵抗値は低く、抵抗値のばらつきが少なくなる。
この後、通常の工程にしたがって、素子分離領域23を形成し、酸化シリコン膜11および窒化シリコン膜12のパターンを除去し転送ゲート用のnMOSFETのゲート絶縁膜24、ゲート電極(ワード線)25、ソース・ドレイン領域22、層間絶縁膜(図示せず)、ビット線コンタク26トおよびビット線(図示せず)などを形成して基板プレート型のDRAMセルの構造を得る。
なお、アモルファス・シリコン17としてノン・ドープのものを堆積した場合でも、第1の導電材14と第3の導電材21との接続の導電性については、第3の導電材21を埋め込んだ後の工程における例えば800 ℃程度以上での熱処理によって、第1の導電材14中および第3の導電材21中の不純物が自己整合的に拡散し、アモルファス・シリコン17が導電化されるので、支障はない。
上記した第1の実施形態におけるトレンチ型キャパシタによれば、トレンチの断面形状が垂直形状である場合でも、支障なく良好な蓄積電極を形成することができる。従来例の技術で説明したような問題点、つまり第1の導電材のカバレッジ特性が悪く、第1の導電材に巣が発生し、カラー酸化膜のエッチング残りが発生することが解消できる。
なお、上記実施形態では、トレンチの断面形状が垂直形状になる場合を想定して説明したが、例えば100°以上の逆テーパーの形状、あるいはオーバーハングの形状になる場合でも、上記実施形態と同様に実施して同様の効果を得られる。
また、上記したように半導体基板中に形成されたアスペクト比が3以上のトレンチの内部にキャパシタ絶縁膜を介して導電材を埋め込んだ構造を有するトレンチ型キャパシタ形成する際、導電材の埋め込みプロセスを複数回に分け、その途中に導電材中に発生している巣および導電材の上面に発生している凹部のうちの少なくとも上面の凹部を埋め込むための専用の埋め込みプロセスを導入した。これにより、トレンチの断面形状が垂直形状である場合でも、支障なく良好な蓄積電極を形成することができる。
<第1の実施形態の変形例>
第1の実施形態では、基板プレート型のトレンチ型キャパシタを用いたDRAMセルの構造の一例示したが、転送ゲート用MOSFETをトレンチ側面の延長上方で垂直方向に形成した垂直トランジスタ型のDRAMセルの構造についても、第1の実施形態に準じて実現することが可能である。
この垂直トランジスタ型のDRAMセルの構造は、図8に示したDRAMセルの構造と比べて、トレンチ側面の延長上方でp型ウェル上にnMOSFETのソース領域・ドレイン領域が垂直に形成され、ゲート絶縁膜もp型ウェル表面において垂直に形成されている点が異なり、その他は同じである。
<第2の実施形態>
図14は、本発明の第2の実施形態に係るDRAMにおける埋め込みプラグの一例として、絶縁層の上下配線間を接続するためのViaプラグの構造の一例を示す断面図である。このViaプラグは、半導体基板上の配線層上の絶縁層中に形成されたアスペクト比が高い微細なホールの内部に導電材を埋め込んだ場合を想定している。
図14において、半導体基板上の例えば配線層40上に形成された絶縁層30中には、アスペクト比が3以上のViaホールが形成されており、その内部に導電材が埋め込まれてなるViaプラグが形成されている。導電材は、ホールの内部に埋め込まれた第1の導電材31と、第1の導電材31中に発生した巣33および第1の導電材31の上面に発生した凹部のうち少なくとも凹部に埋め込まれた第2の導電材32とを具備する。
次に、図14に示す埋め込みプラグの製造方法を、図9乃至図14を参照して説明する。まず、図9に示すように、半導体基板上の配線層40上の絶縁層30中にアスペクト比が高い微細なホール30aを形成する。この際、ホール30aのアスペクト比が3以上、例えばホールの径が100nm、深さが500nmの場合には、ホール30aの断面形状として、ホール側面がホール底面の延長面に対してなす角度が垂直形状、例えば89°以上の順テーパ形状、あるいは例えば100°以上の逆テーパー形状、あるいはオーバーハングの形状になる場合がある。
次に、図10に示すように、ホール30aの内部に第1の導電材31を埋め込む。なお、第1の導電材31として、ドープト・ポリシリコン、あるいは金属(Tiなど)、あるいは例えばTiS、NiSi、CoSiなどのシリサイド層、TiNなどのいずれか1つからなる金属間化合物などが挙げられる。
しかし、前記したようにホール30aの断面形状が垂直形状あるいは逆テーパー形状あるいはオーバーハング形状であると、第1の導電材31の内部に巣33が発生したり、第1の導電材31の上面に凹部が発生する場合がある。もし、このような巣や凹部が存在したまま、ホール上部の少なくとも一部にかかるように上層配線を形成すると、従来例の工程のようにViaプラグの上面の凹部の付近で上層配線との接続が不十分な状態になったり、配線形成工程での異方性エッチング時にViaプラグ中の巣を通してホール底面の導電材およびホール底面下の下層配線がエッチオフされた状態が発生する場合がある。
そこで、本実施形態では、前記したようにホール30aの内部に第1の導電材31を埋め込んだ後、図11に示すように、等方性エッチング、あるいは異方性エッチング、あるいは化学的機械研磨(CMP)などの手法を用いて、第1の導電材31をホール開口面の位置、あるいはそれより低い位置まで除去する。さらに、図12に示すように、カバレッジ特性が良い第2の導電材として、例えば低温で生成されるアモルファス・シリコン32をスパッタ法などにより薄く形成する。そして、図13に示すように、等方性エッチングによってアモルファス・シリコン32のエッチバックを行うことにより、第1の導電材31の上面の凹部をアモルファス・シリコン32で完全に埋め込むことで上面をほぼ平坦化するとともに、さらに望ましくは、第1導電材31中の少なくとも上部付近の巣を埋め込む。これにより、上面の平坦性が良いViaプラグが得られる。
次に、絶縁層30上を含む全面に配線層を形成し、パターンニングを行うことにより、図14に示すように、Viaプラグに良好にコンタクトした上層配線34を得ることができる。
上記した第2の実施形態におけるViaプラグによれば、ホールの断面形状が垂直形状あるいは逆テーパーの形状あるいはオーバーハング形状である場合でも、支障なく良好なViaプラグを形成することができる。その結果、デザインルールの縮小に伴ってViaプラグの総面積に占めるViaプラグ中の巣の割合が高くなり、最終的にViaプラグの抵抗が高くなり過ぎたりばらついたりする不良、あるいはプロセス欠陥を誘発するなどの問題を解決することができる。
また、上記したように半導体基板上の絶縁層中に形成されたアスペクト比が3以上のホールの内部に導電材を埋め込んだ構造を有する埋め込みプラグを形成する際、導電材を埋め込んだ後に、導電材中に発生している巣および導電材の上面に発生している凹部のうちの少なくとも凹部を埋め込むための専用の埋め込みプロセスを導入した。これにより、ホールの断面形状が垂直形状あるいは逆テーパーの形状あるいはオーバーハング形状である場合でも、支障なく良好な埋め込みプラグを形成することができる。
なお、アモルファス・シリコン32をスパッタ法などにより形成する代わりに、例えばCVD(化学気相成長)法によって金属、バリアメタルなどをカバレッジ特性が良い状態で堆積してもよい。
<第2の実施形態の変形例>
第2の実施形態ではViaプラグの構造を実現した例を示したが、トレンチに接する基板側に拡散層を形成してキャパシタ電極の一方とし、トレンチの内部にキャパシタ絶縁膜を介して蓄積電極を埋め込む構造のトレンチ型キャパシタに対しても、第2の実施形態に準じて適用してもよい。
本発明の第1の実施形態に係るDRAMセルの最初の製造工程を示す断面図。 図1の工程に続く工程を示す断面図。 図2の工程に続く工程を示す断面図。 図3の工程に続く工程を示す断面図。 図4の工程に続く工程を示す断面図。 図5の工程に続く工程を示す断面図。 図6の工程に続く工程を示す断面図。 図7の工程に続く工程を示す断面図。 本発明の第2の実施形態に係るDRAMにおける埋め込みプラグの最初の製造工程を示す断面図。 図9の工程に続く工程を示す断面図。 図10の工程に続く工程を示す断面図。 図11の工程に続く工程を示す断面図。 図12の工程に続く工程を示す断面図。 図13の工程に続く工程を示す断面図。 従来のトレンチ型キャパシタの製造工程の一例を示す断面図。 図15の工程に続く工程を示す断面図。 図16の工程に続く工程を示す断面図。 図17の工程に続く工程を示す断面図。
符号の説明
10…n型ウェル、13…キャパシタ絶縁膜、14…第1の導電材、17…第2の導電材、18…絶縁カラー、20…p型ウェル、21…第3の導電材、22…ソース・ドレイン領域、23…素子分離領域、24…ゲート絶縁膜、25…ゲート電極。

Claims (5)

  1. 半導体基板中に形成されたトレンチの内部にキャパシタ絶縁膜を介して蓄積電極用の導電材が埋め込まれたトレンチ型キャパシタを有し、前記導電材は、前記トレンチの下部に埋め込まれ、表面に凹部を有する第1の導電材と、前記第1の導電材の凹部に埋め込まれた第2の導電材と、前記第1の導電材および第2の導電材に接するよう前記第1および前記第2の導電材の上部に埋め込まれた第3の導電材とを具備することを特徴とする半導体装置。
  2. 半導体基板と、前記半導体基板の表層部に選択的に形成された第1導電型の半導体層と、前記半導体層上にゲート絶縁膜を介して形成された電荷転送ゲート用のMOSFETのゲート電極と、前記ゲート電極を挟んで前記半導体層の表層部に選択的に形成された第2導電型のソース・ドレイン領域と、前記ソース・ドレイン領域の一方に接続された蓄積電極を有する基板プレート型のトレンチ型キャパシタを有し、
    前記トレンチ型キャパシタは、前記半導体基板中に達する深さまで形成されたトレンチの内面で前記第1導電型の半導体層より下方に形成されたキャパシタ絶縁膜と、前記トレンチの内面で前記キャパシタ絶縁膜の上方に形成されたカラー絶縁膜と、前記トレンチの内部に埋め込まれた蓄積電極用の導電材とを有し、前記導電材は、前記キャパシタ絶縁膜を介して前記トレンチの下部に埋め込まれ、上面に凹部を有する第1の導電材と、前記第1の導電材の凹部に埋め込まれた第2の導電材と、前記カラー絶縁膜を介して前記第1の導電材および第2の導電材の上部に接するよう埋め込まれた第3の導電材とを具備することを特徴とする半導体装置。
  3. 半導体基板上の絶縁層中に形成されたホールの内部に導電材を埋め込んでなる埋め込みプラグを有し、前記導電材は、前記ホールの内部に埋め込まれた第1の導電材と、前記第1の導電材中に発生した巣および前記第1の導電材の上面に発生した凹部のうち少なくとも凹部に埋め込まれた第2の導電材とを具備することを特徴とする半導体装置。
  4. 半導体基板中に形成されたトレンチの内部にキャパシタ絶縁膜を介して蓄積電極用の導電材が埋め込まれた構造を有するトレンチ型キャパシタ形成する際、導電材の埋め込みプロセスを複数回に分け、途中のプロセスで導電材中に発生している巣および導電材の上面に発生している凹部のうちの少なくとも凹部を埋め込むための専用の埋め込みプロセスを導入したことを特徴とする半導体装置の製造方法。
  5. 半導体基板上の絶縁層中にホールを形成する工程と、
    前記ホールの内部に導電材を埋め込んだ後、前記導電材の上部を前記ホールの開口面より低い位置まで除去する工程と、
    アモルファス・シリコンを低温で堆積した後、等方性エッチングによって前記アモルファス・シリコンのエッチバックを行うことにより、前記導電材の少なくとも上面の凹部を埋め込むことで上面をほぼ平坦化する工程と、
    前記アモルファス・シリコンにより上面の凹部が埋め込まれた前記導電材上に配線層を形成する工程
    とを具備することを特徴とする半導体装置の製造方法。
JP2004220664A 2004-07-28 2004-07-28 半導体装置およびその製造方法 Pending JP2006041276A (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004220664A JP2006041276A (ja) 2004-07-28 2004-07-28 半導体装置およびその製造方法
PCT/JP2005/014138 WO2006011632A2 (en) 2004-07-28 2005-07-27 Semiconductor device including a conductive layer buried in an opening and method of manufacturing the same
US11/638,492 US7525142B2 (en) 2004-07-28 2006-12-14 Semiconductor device including a conductive layer buried in an opening and method of manufacturing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004220664A JP2006041276A (ja) 2004-07-28 2004-07-28 半導体装置およびその製造方法

Publications (1)

Publication Number Publication Date
JP2006041276A true JP2006041276A (ja) 2006-02-09

Family

ID=35511307

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004220664A Pending JP2006041276A (ja) 2004-07-28 2004-07-28 半導体装置およびその製造方法

Country Status (3)

Country Link
US (1) US7525142B2 (ja)
JP (1) JP2006041276A (ja)
WO (1) WO2006011632A2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9646879B2 (en) 2013-12-27 2017-05-09 Tokyo Electron Limited Depression filling method and processing apparatus

Families Citing this family (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7294554B2 (en) * 2006-02-10 2007-11-13 International Business Machines Corporation Method to eliminate arsenic contamination in trench capacitors
US20110017581A1 (en) * 2009-07-23 2011-01-27 Keith Bryan Hardin Z-Directed Switch Components for Printed Circuit Boards
US8198548B2 (en) * 2009-07-23 2012-06-12 Lexmark International, Inc. Z-directed capacitor components for printed circuit boards
US8273996B2 (en) * 2009-07-23 2012-09-25 Lexmark International, Inc. Z-directed connector components for printed circuit boards
US8278568B2 (en) * 2009-07-23 2012-10-02 Lexmark International, Inc. Z-directed variable value components for printed circuit boards
US20110017502A1 (en) * 2009-07-23 2011-01-27 Keith Bryan Hardin Z-Directed Components for Printed Circuit Boards
US8735734B2 (en) * 2009-07-23 2014-05-27 Lexmark International, Inc. Z-directed delay line components for printed circuit boards
US8198547B2 (en) * 2009-07-23 2012-06-12 Lexmark International, Inc. Z-directed pass-through components for printed circuit boards
US8237061B2 (en) * 2009-07-23 2012-08-07 Lexmark International, Inc. Z-directed filter components for printed circuit boards
US20110017504A1 (en) * 2009-07-23 2011-01-27 Keith Bryan Hardin Z-Directed Ferrite Bead Components for Printed Circuit Boards
EP2666215A1 (en) * 2011-01-21 2013-11-27 Lexmark International, Inc. Z-directed pass- through components for printed circuit boards
US8790520B2 (en) 2011-08-31 2014-07-29 Lexmark International, Inc. Die press process for manufacturing a Z-directed component for a printed circuit board
US9009954B2 (en) 2011-08-31 2015-04-21 Lexmark International, Inc. Process for manufacturing a Z-directed component for a printed circuit board using a sacrificial constraining material
US8752280B2 (en) 2011-09-30 2014-06-17 Lexmark International, Inc. Extrusion process for manufacturing a Z-directed component for a printed circuit board
US8658245B2 (en) 2011-08-31 2014-02-25 Lexmark International, Inc. Spin coat process for manufacturing a Z-directed component for a printed circuit board
US9078374B2 (en) 2011-08-31 2015-07-07 Lexmark International, Inc. Screening process for manufacturing a Z-directed component for a printed circuit board
US8943684B2 (en) * 2011-08-31 2015-02-03 Lexmark International, Inc. Continuous extrusion process for manufacturing a Z-directed component for a printed circuit board
US9059030B2 (en) * 2011-10-07 2015-06-16 Micron Technology, Inc. Memory cells having capacitor dielectric directly against a transistor source/drain region
US8912452B2 (en) 2012-03-29 2014-12-16 Lexmark International, Inc. Z-directed printed circuit board components having different dielectric regions
US8822840B2 (en) 2012-03-29 2014-09-02 Lexmark International, Inc. Z-directed printed circuit board components having conductive channels for controlling transmission line impedance
US8830692B2 (en) 2012-03-29 2014-09-09 Lexmark International, Inc. Ball grid array systems for surface mounting an integrated circuit using a Z-directed printed circuit board component
US8822838B2 (en) 2012-03-29 2014-09-02 Lexmark International, Inc. Z-directed printed circuit board components having conductive channels for reducing radiated emissions

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172173A (ja) * 1994-09-07 1996-07-02 Toshiba Corp 半導体装置及びその製造方法
JP2002289816A (ja) * 2001-03-23 2002-10-04 Toshiba Corp 半導体装置及びその製造方法
US20040082137A1 (en) * 2002-10-25 2004-04-29 Nanya Technology Corporation Process for filling polysilicon seam
JP2004179451A (ja) * 2002-11-28 2004-06-24 Toshiba Corp 半導体装置およびその製造方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2819520B2 (ja) 1991-05-07 1998-10-30 インターナショナル・ビジネス・マシーンズ・コーポレイション Dramセル
US6180480B1 (en) 1998-09-28 2001-01-30 International Business Machines Corporation Germanium or silicon-germanium deep trench fill by melt-flow process
DE10019090A1 (de) 2000-04-12 2001-10-25 Infineon Technologies Ag Grabenkondensator sowie dazugehöriges Herstellungsverfahren
US6638815B1 (en) 2002-10-25 2003-10-28 International Business Machines Corporation Formation of self-aligned vertical connector
US6960503B2 (en) * 2003-11-16 2005-11-01 Nanya Technology Corp. Method for fabricating a trench capacitor

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08172173A (ja) * 1994-09-07 1996-07-02 Toshiba Corp 半導体装置及びその製造方法
JP2002289816A (ja) * 2001-03-23 2002-10-04 Toshiba Corp 半導体装置及びその製造方法
US20040082137A1 (en) * 2002-10-25 2004-04-29 Nanya Technology Corporation Process for filling polysilicon seam
JP2004179451A (ja) * 2002-11-28 2004-06-24 Toshiba Corp 半導体装置およびその製造方法

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9646879B2 (en) 2013-12-27 2017-05-09 Tokyo Electron Limited Depression filling method and processing apparatus

Also Published As

Publication number Publication date
US7525142B2 (en) 2009-04-28
WO2006011632A2 (en) 2006-02-02
WO2006011632A3 (en) 2006-07-13
US20070085125A1 (en) 2007-04-19

Similar Documents

Publication Publication Date Title
US7525142B2 (en) Semiconductor device including a conductive layer buried in an opening and method of manufacturing the same
US8053307B2 (en) Method of fabricating semiconductor device with cell epitaxial layers partially overlap buried cell gate electrode
US6326270B1 (en) Methods of forming integrated circuit memory devices using masking layers to inhibit overetching of impurity regions and conductive lines
US5950090A (en) Method for fabricating a metal-oxide semiconductor transistor
US6238967B1 (en) Method of forming embedded DRAM structure
JP4034535B2 (ja) 半導体メモリ装置及びその製造方法
US20090101968A1 (en) Structure of semiconductor device and manufacturing method of the same
KR100625795B1 (ko) 반도체 소자의 게이트 및 그 형성방법
US8357969B2 (en) Semiconductor device having vertical channel transistor and manufacturing method of the same
US20110281408A1 (en) Method of manufacturing a semiconductor device
US20080242024A1 (en) Method of manufacturing semiconductor device
US20100127398A1 (en) Wiring structure of a semiconductor device
JP2011129566A (ja) 半導体装置の製造方法
US20210320008A1 (en) Method for fabricating semiconductor device
US7944005B2 (en) Semiconductor device and method for fabricating the same
US20070077715A1 (en) Semiconductor device and method of fabricating the same
US7879703B2 (en) Method of fabricating semiconductor device for reducing thermal burden on impurity regions of peripheral circuit region
JPH1187529A (ja) 集積回路コンタクト
US8836019B2 (en) Recessed channel transistors, and semiconductor devices including a recessed channel transistor
US6130121A (en) Method for fabricating a transistor
US11610893B2 (en) Method for fabricating semiconductor memory device with buried capacitor and fin-like electrodes
US8697563B2 (en) Method for forming semiconductor device having multiple active layer structure
US8362541B2 (en) Manufacturing method of dynamic random access memory
US7696075B2 (en) Method of fabricating semiconductor device having a recess channel structure therein
JP4729863B2 (ja) 半導体記憶装置及びその製造方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061212

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110712

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20111108