JP2006041210A - Iron-nitride magnetic powder excellent in weatherability - Google Patents

Iron-nitride magnetic powder excellent in weatherability Download PDF

Info

Publication number
JP2006041210A
JP2006041210A JP2004219582A JP2004219582A JP2006041210A JP 2006041210 A JP2006041210 A JP 2006041210A JP 2004219582 A JP2004219582 A JP 2004219582A JP 2004219582 A JP2004219582 A JP 2004219582A JP 2006041210 A JP2006041210 A JP 2006041210A
Authority
JP
Japan
Prior art keywords
powder
magnetic powder
weather resistance
magnetic
iron nitride
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004219582A
Other languages
Japanese (ja)
Other versions
JP4469994B2 (en
Inventor
Kenji Shoda
憲司 正田
Takefumi Amino
岳文 網野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Mining Co Ltd filed Critical Dowa Mining Co Ltd
Priority to JP2004219582A priority Critical patent/JP4469994B2/en
Publication of JP2006041210A publication Critical patent/JP2006041210A/en
Application granted granted Critical
Publication of JP4469994B2 publication Critical patent/JP4469994B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide an iron-nitride magnetic powder of which aging degradation of magnetism is suppressed and which is highly reliable. <P>SOLUTION: The iron-nitride magnetic powder is made mainly of Fe<SB>16</SB>N<SB>2</SB>containing at least more than one kind of element among V, Sc, Ti, Cr, and Mn at 1% or higher atomic ratio to Fe. Especially, it is made mainly of Fe<SB>16</SB>N<SB>2</SB>wherein ΔHc defined by a formula (1) is 10% or less and Δσs defined by a formula (2) is 20% or less. Formula (1): ΔHc=(Hc<SB>0</SB>-Hc<SB>1</SB>)/Hc<SB>0</SB>×100; formula (2): Δσs=(σs<SB>0</SB>-σs<SB>1</SB>)/σs<SB>0</SB>×100. In these formula, Hc<SB>1</SB>and σs<SB>1</SB>represent coercive force and saturation magnetization of the magnetic powder, respectively, after the magnetic powder is held at 60°C and 90%RH for one week, and Hc<SB>0</SB>and σs<SB>0</SB>represent coercive force and saturation magnetization thereof, respectively, before it is held at constant temperature and humidity. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高記録密度の磁気記録媒体に使用される窒化鉄系の磁性粉末であって、特に磁気特性の経時劣化を改善した耐候性に優れたものに関する。   The present invention relates to an iron nitride-based magnetic powder used for a magnetic recording medium having a high recording density, and particularly to a powder having excellent weather resistance with improved deterioration over time in magnetic properties.

近年の磁気記録媒体には一層の高記録密度化が望まれており、それを達成するために記録波長の短波長化が進められてきている。磁性粒子の大きさは、短波長の信号を記録する領域の長さよりも極めて小さくなければ、明瞭な磁化遷移状態を作り出すことができず、実質的に記録不可能となる。よって、磁性粉末には、その粒子の大きさが記録波長よりも十分に小さいことが要求される。   In recent years, higher recording density is desired for magnetic recording media, and in order to achieve this, the recording wavelength has been shortened. If the size of the magnetic particle is not much smaller than the length of the region for recording a signal with a short wavelength, a clear magnetization transition state cannot be created, and recording becomes impossible. Therefore, the magnetic powder is required to have a particle size sufficiently smaller than the recording wavelength.

また高密度化を進めるためには記録信号の分解能を上げる必要があり、そのために磁気記録媒体のノイズを低減することが重要となる。ノイズは粒子の大きさによる影響が大きく、微粒子であればあるほどノイズの低減が進む。よって、高記録密度用の磁性粉末としては、この点からも粒子の大きさが十分に小さいことが要求される。   In order to increase the density, it is necessary to increase the resolution of the recording signal. For this reason, it is important to reduce the noise of the magnetic recording medium. Noise is greatly influenced by the size of the particles, and the smaller the particles, the more the noise is reduced. Therefore, the magnetic powder for high recording density is required to have a sufficiently small particle size from this point.

しかし、微粒子になるに従ってお互いの粒子同士が一つ一つ独立して存在することが難しくなり、データストレージ用として一般的に使用されるメタル磁性粉の場合でも著しく微粒子化すると、その製造過程の還元時において焼結を起こし易いといった問題がある。焼結を起こしてしまうと、粒子体積が大きくなるため、ノイズの発生源となり、またテープ化する際には、分散性の悪化や表面平滑性が損なわれるなどの悪影響を及ぼす。高密度記録媒体に適した磁性粉末としては、磁性体として磁気特性が良好である必要があるが、それ以上にテープ化する際の粉体特性すなわち、粒子サイズ,粒度分布,比表面積,TAP密度,分散性などが重要となる。   However, as the particles become finer, it becomes difficult for each particle to exist independently, and even in the case of metal magnetic powders commonly used for data storage, if the particles become extremely fine, There is a problem that sintering is likely to occur during reduction. If the sintering occurs, the volume of the particles becomes large, so that it becomes a source of noise, and when taped, it has adverse effects such as deterioration of dispersibility and loss of surface smoothness. A magnetic powder suitable for a high-density recording medium needs to have good magnetic properties as a magnetic material, but powder properties when taped to more than that, that is, particle size, particle size distribution, specific surface area, TAP density , Dispersibility is important.

これまでに、優れた磁気特性を持つ高密度記録媒体に適した磁性粉末としてFe162相を主相とする窒化鉄系磁性粉末が知られており、特許文献1,2に開示されている。例えば特許文献1には、高保磁力(Hc),高飽和磁化(σs)を発現する磁性体として比表面積の大きな窒化鉄系の磁性体が開示され、Fe162相の結晶磁気異方性と磁性粉末の比表面積を大きくすることの相乗効果として、形状に因らず高磁気特性が得られると教示されている。特許文献2には、特許文献1に改良を加えた磁性粉末として、本質的に球状ないし楕円状の希土類−鉄−ホウ素系,希土類−鉄系,または希土類−窒化鉄系の磁性粉末が記載されており、それらを用いてテープ媒体を作製すると優れた特性が得られると教示されている。なかでもFe162相を主相とする希土類−窒化鉄系磁性粉末は20nm程度の微粒子であるにもかかわらず、保磁力が200kA/m(2512 Oe)以上と高く、またBET法による比表面積が小さいことから飽和磁化も高く、保存安定性もよいとされ、この希土類−窒化鉄系磁性粉末を使用することにより、塗布型磁気記録媒体の記録密度を飛躍的に高めることができると記載されている。また、特許文献2の実施例には20nm以下の粒子サイズレベルの磁気特性に優れた粒子の記載がある。 To date, iron nitride magnetic powders having a Fe 16 N 2 phase as a main phase have been known as magnetic powders suitable for high-density recording media having excellent magnetic properties, which are disclosed in Patent Documents 1 and 2. Yes. For example, Patent Document 1 discloses an iron nitride-based magnetic material having a large specific surface area as a magnetic material that exhibits a high coercive force (Hc) and a high saturation magnetization (σs), and the Fe 16 N 2 phase magnetocrystalline anisotropy. As a synergistic effect of increasing the specific surface area of the magnetic powder, it is taught that high magnetic properties can be obtained regardless of the shape. Patent Document 2 describes an essentially spherical or elliptical rare earth-iron-boron-based, rare earth-iron-based, or rare earth-iron nitride-based magnetic powder as an improved magnetic powder from Patent Document 1. It is taught that excellent properties can be obtained when they are used to make tape media. Among them, the rare earth-iron nitride magnetic powder mainly composed of Fe 16 N 2 phase has a high coercive force of 200 kA / m (2512 Oe) or more in spite of being fine particles of about 20 nm, and the ratio by the BET method. It is said that since the surface area is small, the saturation magnetization is also high and the storage stability is good. By using this rare earth-iron nitride magnetic powder, the recording density of the coating type magnetic recording medium can be dramatically increased. Has been. Moreover, the Example of patent document 2 has description of the particle | grains excellent in the magnetic characteristic of a particle size level of 20 nm or less.

この希土類−窒化鉄系磁性粉末の製法は、希土類元素とAl,Siの1種または2種を粒子表面に被着したマグネタイトを還元することによって希土類−鉄系の磁性粉末にした後、NH3ガスによる窒化処理を行うアンモニア窒化法であり、この窒化処理で生成するFe162相の大きな結晶磁気異方性により、高記録密度媒体に適した磁性粉末すなわち微粒子でかつ高Hc,高σs等の特性を有する磁性粉末を得ることができる。 The rare earth - preparation of an iron nitride-based magnetic powder, a rare earth by reducing the magnetite deposited rare earth element and Al, one or two of Si on the particle surface - after the magnetic powder of iron-based, NH 3 an ammonia nitriding method in which a nitriding treatment by the gas, due to the large crystal magnetic anisotropy of Fe 16 N 2 phase generated by this nitriding treatment, a high recording magnetic powder i.e. microparticles suitable density medium and high Hc, high σs A magnetic powder having the following characteristics can be obtained.

しかしながら、特許文献1および2に記載されているように、平均粒子径が小さくかつ磁気特性にも優れたFe162相を含む磁性粉末は、磁性材料としてのポテンシャルが高いことは示されているが、粉体としての諸性質、例えば粒度分布や分散性などについての開示はなく、使用される塗布型磁気記録媒体として適した磁性粉末かどうかは判断し難い。磁気特性に優れた磁性粉末であっても、例えば表面平滑性が悪いものは、結果として塗布型磁気記録媒体用には適用しにくいものとなる。 However, as described in Patent Documents 1 and 2, magnetic powders containing the small average particle diameter and Fe 16 N 2 phase that excellent magnetic properties, it high potential as a magnetic material is shown However, there are no disclosures about various properties as a powder, such as particle size distribution and dispersibility, and it is difficult to judge whether the powder is suitable as a coating type magnetic recording medium to be used. Even if the magnetic powder has excellent magnetic properties, for example, those having poor surface smoothness are difficult to apply to a coating type magnetic recording medium.

特許文献2では、大きな結晶磁気異方性を持つFe162相を生成させる際、焼結防止剤として、Si,Al,希土類元素(Yを含む)などを粒子表面に被着することにより、焼結のない微粒子を作製している。しかし、この被着により焼結防止を行う方法は、被着の条件が不十分な場合、粒子ごとに焼結防止剤の被着の度合いが異なるので、十分に被着されたところは焼結防止できる反面、あまり被着されていないところは焼結してしまい、その結果、得られる粉体の粒度分布が悪化する問題がある。特に微粒子となると、粒子は凝集しやすく、凝集体として振る舞うため、被着ムラが出やすい状態となる。粒度分布の悪化は、テープの表面性を悪化させる原因となり、ひいてはテープの電磁変換特性を悪化させる。 In Patent Document 2, when an Fe 16 N 2 phase having a large magnetocrystalline anisotropy is produced, Si, Al, rare earth elements (including Y), etc. are deposited on the particle surface as a sintering inhibitor. , Producing fine particles without sintering. However, the method of preventing sintering by this deposition is that when the deposition conditions are insufficient, the degree of deposition of the sintering inhibitor varies from particle to particle. Although it can be prevented, the part that is not so much coated is sintered, and as a result, there is a problem that the particle size distribution of the obtained powder is deteriorated. In particular, in the case of fine particles, the particles tend to aggregate and behave as aggregates, so that uneven deposition tends to occur. The deterioration of the particle size distribution causes the surface properties of the tape to deteriorate, and consequently the electromagnetic conversion characteristics of the tape.

また、粒子が凝集せず均一に分散されていたとしても、被着による焼結防止法では、微粒子化して比表面積が増えると、全ての表面をコーティングするためには、それに応じて焼結防止剤量も増やさなければならなくなる。このため、非磁性成分が増加することにより単位重量当たりの磁化が減少してしまう問題も生じる。さらに、Siを焼結防止剤として使用する場合には、Siは吸着力が強くて高い焼結防止効果が得られるが、その反面、Si同士の結合も強いために粒子の分散性を阻害する問題がある。   In addition, even if the particles are not uniformly aggregated and dispersed uniformly, the method of preventing sintering by deposition increases the specific surface area when fine particles are formed. The dosage will also have to be increased. For this reason, there also arises a problem that the magnetization per unit weight decreases due to an increase in the nonmagnetic component. Furthermore, when Si is used as an anti-sintering agent, Si has a strong adsorptive power and can provide a high anti-sintering effect, but on the other hand, since the bonding between Si is strong, it inhibits the dispersibility of particles. There's a problem.

そこで本出願人はこのような問題を解決すべく種々検討の末、窒化鉄系磁性粉末製造の出発材料としてAlを固溶したゲーサイトを使用すると、高記録密度磁気媒体に適する優れた磁気特性を具備し、粒度分布が狭く、焼結のない平均粒子径20nm以下の微粒子で、テープ化する際に良好な分散性を持つFe162相主体の窒化鉄系磁性粉末が得られることを見出し、特願2004−76090号として出願した。 Therefore, the present applicant has made various studies to solve such problems, and when using goethite containing Al as a starting material for the production of iron nitride magnetic powder, excellent magnetic properties suitable for high recording density magnetic media. It is possible to obtain Fe 16 N 2 phase-based iron nitride-based magnetic powder with fine particles having a narrow particle size distribution and an average particle size of 20 nm or less without sintering and having good dispersibility when taped. Filed as a headline, Japanese Patent Application No. 2004-76090.

特開2000−277311号公報JP 2000-277311 A 国際公開WO03/079333A1International Publication WO03 / 079333A1

上述のように、昨今では高記録密度磁性材料に好適な高性能の窒化鉄系磁性粉末が提供可能となったが、今後は更に、長期間使用しても磁気特性の劣化が少ない優れた「耐候性」を付与することが重要になってくる。例えば、大きく経時変化を起こすような窒化鉄系磁性粉末を使用してコンピューター用ストレージテープを作製した場合、時間が経過するにつれてHcやσsが下がってしまう現象が生じる。Hcが下がると、その磁性粉末に記録されていた情報は保持できなくなるため、情報が消えてしまうという問題が生じる。またσsが下がると、その磁性粉末に記録されていた情報が読み出せなくなり、結果として情報を失うといった問題が生じる。たとえ高記録密度の記録が可能であっても、情報が消えてしまうことはストレージテープにとって致命的となるため、優れた「耐候性」を持つことは磁性粉末にとって極めて重要な条件となる。   As described above, high performance iron nitride magnetic powder suitable for high recording density magnetic materials can be provided in recent years. It becomes important to provide "weather resistance". For example, when a computer storage tape is manufactured using an iron nitride-based magnetic powder that greatly changes with time, a phenomenon occurs in which Hc and σs decrease with time. When the Hc is lowered, the information recorded on the magnetic powder cannot be retained, which causes a problem that the information is lost. Further, when σs is lowered, information recorded on the magnetic powder cannot be read, resulting in a problem that information is lost. Even if recording at a high recording density is possible, it is fatal for the storage tape that information is lost. Therefore, having excellent “weather resistance” is an extremely important condition for magnetic powder.

本発明は、前記特願2004−76090号で開示した窒化鉄系磁性粉末の各種性能を兼備しつつ、耐候性を顕著に改善した新たな窒化鉄系磁性粉末を開発し提供しようというものである。   The present invention intends to develop and provide a new iron nitride magnetic powder having significantly improved weather resistance while combining various performances of the iron nitride magnetic powder disclosed in the aforementioned Japanese Patent Application No. 2004-76090. .

発明者らは種々検討の結果、Alとともに、V等の元素を固溶させたゲーサイトを基にして作ったFe1612主体の窒化鉄系粉末において、磁気特性の経時劣化が大幅に抑制されること、すなわち耐候性が顕著に改善されることを見出した。この耐候性改善のメカニズムについては不明な点も多いが、X線回折によれば従来のものにはないFeV24複合酸化物と思われる回折ピークが現れることから、表面にVの濃化した酸化物層が形成され、これが耐候性向上に寄与しているのではないかと推察される。 As a result of various studies, the inventors of the present invention have significantly suppressed the deterioration of magnetic characteristics over time in Fe 16 N 12- based iron nitride powders made based on goethite in which elements such as V are dissolved together with Al. It was found that the weather resistance is remarkably improved. Although there are many unclear points about the mechanism of this weather resistance improvement, the X-ray diffraction reveals a diffraction peak that appears to be a FeV 2 O 4 complex oxide that is not present in the prior art. It is speculated that an oxide layer formed may contribute to improving the weather resistance.

また、発明者らの更なる研究によれば、Vだけでなく、Sc,Ti,Cr,Mn等の元素添加によっても耐候性の大幅な改善効果が見られた。すなわち、特定の元素を固溶させたゲーサイトを原料とすることによって、従来にはない耐候性に優れた窒化鉄系磁性粉末が得られるのである。本発明はこのような知見に基づいて完成したものである。   Furthermore, according to further studies by the inventors, a significant improvement in weather resistance was observed not only by V but also by addition of elements such as Sc, Ti, Cr, and Mn. That is, by using goethite in which a specific element is dissolved as a raw material, an iron nitride-based magnetic powder excellent in weather resistance that has not been conventionally obtained can be obtained. The present invention has been completed based on such findings.

すなわち、本発明では下記(1)式で定義されるΔHcが10%以下、あるいは更に下記(2)式で定義されるΔσsが20%以下である耐候性に優れたFe162主体の磁性粉末が提供される。
ΔHc=(Hc0−Hc1)/Hc0×100 ……(1)
Δσs=(σs0−σs1)/σs0×100 ……(2)
ここで、Hc0およびσs0は、それぞれ発明対象となる当該Fe162主体の磁性粉末の保磁力(kA/m)および飽和磁化(Am2/kg)、Hc1およびσs1は、それぞれ当該Fe162主体の磁性粉末を恒温恒湿容器内で60℃,90%RHに1週間(すなわち24×7=168時間)保持したのちの保磁力(kA/m)および飽和磁化(Am2/kg)である。磁性粉末を恒温恒湿容器内に保持する際には、ガラス製容器に当該粉末2gを厚さ2〜4mmになるように均等に入れ、その容器ごと恒温恒湿容器内に入れ、60℃,90%RHの環境下に曝す方法が採用できる。
That, .DELTA.Hc than 10%, or even below (2) Magnetic Properties of the defined is Δσs excellent Fe 16 N 2 mainly to weather resistance is less than 20% formula is defined by the following formula (1) in the present invention A powder is provided.
ΔHc = (Hc 0 −Hc 1 ) / Hc 0 × 100 (1)
Δσs = (σs 0 −σs 1 ) / σs 0 × 100 (2)
Here, Hc 0 and σs 0 are the coercive force (kA / m) and saturation magnetization (Am 2 / kg), Hc 1 and σs 1 , respectively, of the Fe 16 N 2 main magnetic powder that is the subject of the invention. The coercive force (kA / m) and saturation magnetization (Am) after holding the Fe 16 N 2 main magnetic powder in a constant temperature and humidity container at 60 ° C. and 90% RH for one week (ie, 24 × 7 = 168 hours) 2 / kg). When holding the magnetic powder in a constant temperature and humidity container, 2 g of the powder is evenly placed in a glass container so as to have a thickness of 2 to 4 mm, and the whole container is placed in a constant temperature and humidity container. A method of exposing to an environment of 90% RH can be employed.

また本発明では、V,Sc,Ti,Cr,Mnのうち少なくとも1種以上の元素をFeに対する原子割合で1%以上含有してなるFe162主体磁性粉末であって、例えば、Alを固溶させ且つV,Sc,Ti,CrおよびMnのうち1種以上を固溶または被着させたゲーサイトを還元して得た鉄粉に対して窒化処理を施して得られる、耐候性に優れたFe162主体の磁性粉末が提供される。また、Vを含有するものにおいては特に、Co−Kα線を使用したX線回折パターンにおいて、回折角2θが40〜44°の間に回折ピークを有する耐候性に優れたV含有Fe162主体の磁性粉末が提供される。 In the present invention, the Fe 16 N 2 main magnetic powder contains at least one element of V, Sc, Ti, Cr, and Mn in an atomic ratio of 1% or more with respect to Fe, and includes, for example, Al. The weather resistance is obtained by nitriding iron powder obtained by reducing goethite that has been dissolved and deposited with at least one of V, Sc, Ti, Cr and Mn. An excellent Fe 16 N 2 based magnetic powder is provided. In particular, in the case of containing V, in an X-ray diffraction pattern using Co—Kα ray, V-containing Fe 16 N 2 having a diffraction peak between diffraction angles 2θ of 40 to 44 ° and excellent in weather resistance. A main magnetic powder is provided.

本発明によれば、高記録密度磁気媒体用の窒化鉄系磁性粉末において、長期間使用した場合の磁気特性の経時劣化を顕著に改善したもの、すなわち優れた「耐候性」を付与したものが提供可能になった。したがって本発明は、高記録密度磁気媒体およびそれを搭載した電子機器の耐久性・信頼性の向上に寄与するものである。   According to the present invention, in the iron nitride magnetic powder for high recording density magnetic media, the magnetic properties that have been remarkably improved over time when used for a long period of time, that is, those having excellent “weather resistance” are provided. Now available. Therefore, the present invention contributes to improvement in durability and reliability of a high recording density magnetic medium and an electronic device on which the high recording density magnetic medium is mounted.

本発明の窒化鉄系磁性粉末は、前述のように、磁気特性の経時劣化を大幅に抑制したものである。この粉末構造をミクロ的な視点で明確に記述することは現時点で容易ではないが、従来の窒化鉄系磁性粉末とは明らかに異なる耐候性を呈することから、本発明のものは磁気特性を用いて以下のように特定することができる。すなわち、耐候性が改善された本発明の窒化鉄系磁性粉末は、下記(1)式で定義されるΔHcが10%以下、あるいはさらに下記(2)式で定義されるΔσsが20%以下であるFe162主体の磁性粉末として特定される。
ΔHc=(Hc0−Hc1)/Hc0×100 ……(1)
Δσs=(σs0−σs1)/σs0×100 ……(2)
ここで、Hc0およびσs0は、それぞれ当該Fe162主体の磁性粉末の保磁力(kA/m)および飽和磁化(Am2/kg)、Hc1およびσs1は、それぞれ当該Fe162主体の磁性粉末を恒温恒湿容器内で60℃,90%RHに1週間保持したのちの保磁力(kA/m)および飽和磁化(Am2/kg)。
As described above, the iron nitride-based magnetic powder of the present invention is a material in which deterioration of magnetic properties with time is greatly suppressed. Although it is not easy to describe this powder structure clearly from a microscopic viewpoint, the present invention uses magnetic properties because it exhibits weather resistance that is clearly different from conventional iron nitride magnetic powders. Can be specified as follows. That is, the iron nitride magnetic powder of the present invention with improved weather resistance has a ΔHc defined by the following formula (1) of 10% or less, or a Δσs defined by the following formula (2) of 20% or less. It is specified as a certain Fe 16 N 2 based magnetic powder.
ΔHc = (Hc 0 −Hc 1 ) / Hc 0 × 100 (1)
Δσs = (σs 0 -σs 1) / σs 0 × 100 ...... (2)
Here, Hc 0 and σs 0 are the coercive force (kA / m) and saturation magnetization (Am 2 / kg) of the magnetic powder mainly composed of Fe 16 N 2 , respectively, and Hc 1 and σs 1 are the Fe 16 N respectively. 2 Coercive force (kA / m) and saturation magnetization (Am 2 / kg) after holding the main magnetic powder in a constant temperature and humidity container at 60 ° C. and 90% RH for 1 week.

つまり、あるFe162主体の磁性粉末が、本発明に係る窒化鉄系磁性粉末に特有の性質を有するものであるかどうかは、当該粉末のサンプルについて前記のような恒温恒湿保持による加速試験を施してみることにより判断することができる。 In other words, whether or not a certain Fe 16 N 2 main magnetic powder has a characteristic characteristic of the iron nitride magnetic powder according to the present invention is determined by accelerating the sample of the powder by maintaining the constant temperature and humidity as described above. Judgment can be made by conducting a test.

優れた耐候性は、Vや、Sc,Ti,Cr,Mnといった元素(本明細書では「耐候性改善元素」という)の添加によってもたらされるが、前述のようにその耐候性改善メカニズムは現時点で未解明の部分が多い。しかし、例えばVを添加して耐候性の改善を図ったFe162主体の窒化鉄系粉末についてX線回折パターンを取ると、FeV24複合酸化鉄に起因すると思われる回折ピークが現れる。 Excellent weather resistance is brought about by the addition of elements such as V, Sc, Ti, Cr, and Mn (referred to herein as “weather resistance improving elements”). There are many unexplained parts. However, for example, when an X-ray diffraction pattern is taken for an Fe 16 N 2 -based iron nitride-based powder that has been improved in weather resistance by adding V, a diffraction peak that appears to be due to FeV 2 O 4 composite iron oxide appears. .

図1,図2にそのX線回折パターンの例を示す。図1には、後述の実施例3に準じた方法で、Vの添加量をFeに対する原子割合(以下「V/Fe原子比」という)で0%(無添加),1.0%,4.9%,7.7%と変えた場合のCo−Kα線を用いたX線回折パターンを並べて示してある。V添加量が増えると回折角2θ:40〜44°の間に明瞭なピークが現れるようになる。このピークはFeV24複合酸化物のピーク位置にほぼ一致している。図2のものは、図1のV/Fe原子比7.7%の回折パターンを縦軸方向にやや拡大して示したものである。前述の2θ:40〜44°の間にあるピークはγ−Fe23のものと重なる位置にあるが、図1のV/Fe原子比が0%のものでは当該位置のピークは明瞭でないことからして、Vを添加したことによって明瞭化する当該ピークはγ−Fe23のものではなく、FeV24のものであると考えられる。 1 and 2 show examples of the X-ray diffraction pattern. In FIG. 1, the amount of V added is 0% (no addition), 1.0%, 4% in terms of the atomic ratio to Fe (hereinafter referred to as “V / Fe atomic ratio”) by a method according to Example 3 described later. The X-ray diffraction patterns using Co-Kα rays in the case of changing to 9.9% and 7.7% are shown side by side. As the amount of V increases, a clear peak appears at a diffraction angle 2θ of 40 to 44 °. This peak almost coincides with the peak position of the FeV 2 O 4 composite oxide. FIG. 2 shows the diffraction pattern with a V / Fe atomic ratio of 7.7% in FIG. 1 slightly enlarged in the vertical axis direction. The peak between 2θ and 40 ° to 44 ° is in a position overlapping with that of γ-Fe 2 O 3 , but the peak at that position is not clear when the V / Fe atomic ratio in FIG. 1 is 0%. Therefore, the peak clarified by adding V is considered not to be γ-Fe 2 O 3 but to FeV 2 O 4 .

このことから、V等の耐候性改善元素を添加したものでは粉末粒子表面にそれらの元素の濃化した酸化物層が形成され、それが耐候性の向上に寄与しているのではないかと推察される。   From this, it can be inferred that with the addition of weather resistance improving elements such as V, an oxide layer enriched with these elements is formed on the surface of the powder particles, which contributes to the improvement of the weather resistance. Is done.

このような耐候性の改善された窒化鉄系磁性粉末は、例えばV等の耐候性改善元素を含んだゲーサイト(オキシ水酸化鉄)を出発原料として、これを還元してα−Feとし、その後アンモニア処理等によりFe162相主体の窒化鉄系粉末を得る方法で実現できる。この場合、出発原料のゲーサイトにはV等の耐候性改善元素を含ませる他、Alを固溶させておくのがよい。Alの固溶した原料を使用すると、還元や窒化処理の際に微粒子同士の焼結が抑制され、粒度分布が良く、分散性の良い粉末が得られるからである。この点は先に特願2004−76080号に開示したとおりである。 Such iron nitride magnetic powder with improved weather resistance is reduced to α-Fe by using goethite (iron oxyhydroxide) containing a weather resistance improving element such as V as a starting material. Thereafter, it can be realized by a method of obtaining an Fe 16 N 2 phase-based iron nitride powder by ammonia treatment or the like. In this case, the starting material goethite may contain a weathering improving element such as V, and Al may be dissolved. This is because when a raw material in which Al is dissolved is used, sintering of fine particles is suppressed during reduction or nitriding treatment, and a powder having a good particle size distribution and good dispersibility can be obtained. This point is as disclosed in Japanese Patent Application No. 2004-76080.

以下、耐候性を改善した本発明の窒化鉄系粉末を得る方法を説明する。
まず、酸化処理に供するためのゲーサイトとして、V、あるいはSc,Ti,Cr,Mnといった耐候性改善元素を固溶したゲーサイトを用意するか、あるいはこれらの耐候性改善元素を表面に被着させたゲーサイトを用意する。ただし、焼結防止剤としてのAlについては被着させるだけでは十分ではなく、ゲーサイト中に固溶させておく必要がある。
Hereinafter, a method for obtaining the iron nitride powder of the present invention having improved weather resistance will be described.
First, as a goethite for use in the oxidation treatment, a goethite prepared by dissolving a weather resistance improving element such as V or Sc, Ti, Cr, Mn is prepared, or these weather resistance improving elements are deposited on the surface. Prepare the game site. However, it is not sufficient to deposit Al as a sintering inhibitor, but it is necessary to dissolve it in goethite.

耐候性改善元素が固溶したゲーサイトを作るには以下のように、ゲーサイトを湿式法で合成する際に、V、あるいはSc,Ti,Cr,Mnといった耐候性改善元素をゲーサイトの生成反応に同伴させる。Alも同様に同伴させる。例えば、第一鉄塩水溶液(FeSO4,FeCl2などの水溶液)を水酸化アルカリ(NaOHやKOH水溶液)で中和した後、空気などで酸化してゲーサイトを生成させる方法では、このゲーサイトの生成反応を、上記耐候性改善元素の硫酸塩あるいは硝酸塩とAl含有塩とが存在する環境下で行えばよい。また、第一鉄塩水溶液を炭酸アルカリで中和した後、空気などで酸化してゲーサイトを生成させる方法でも、このゲーサイトの生成反応を上記耐候性改善元素の硫酸塩あるいは硝酸塩とAl含有塩との存在下で行えばよい。別法として、第二鉄塩水溶液(FeCl3などの水溶液)をNaOHなどで中和してゲーサイトを生成させる反応を、やはり上記耐候性改善元素の硫酸塩あるいは硝酸塩とAl含有塩との存在下で行ってもよい。 In order to make goethite in which the weather resistance improving element is dissolved, when synthesizing the goethite by the wet method, the weather resistance improving element such as V or Sc, Ti, Cr, Mn is generated as follows. Accompany it with the reaction. Al is also accompanied. For example, in a method in which a ferrous salt aqueous solution (an aqueous solution of FeSO 4 , FeCl 2, etc.) is neutralized with an alkali hydroxide (NaOH or KOH aqueous solution) and then oxidized with air or the like to generate goethite, The production reaction may be performed in an environment where the above-mentioned weatherability improving element sulfate or nitrate and an Al-containing salt are present. Further, even in a method in which a ferrous salt aqueous solution is neutralized with an alkali carbonate and then oxidized with air or the like to generate goethite, this goethite formation reaction is performed by containing the above-mentioned weatherability improving element sulfate or nitrate and Al. What is necessary is just to perform in presence of salt. Alternatively, the reaction of neutralizing a ferric salt aqueous solution (aqueous solution of FeCl 3 ) with NaOH or the like to generate goethite is also performed by the presence of the above-mentioned weatherability improving element sulfate or nitrate and an Al-containing salt. You may do it below.

前記の耐候性改善元素の硫酸塩あるいは硝酸塩としては、硫酸バナジル,硝酸スカンジウム,硫酸チタン,硫酸クロム,硫酸マンガンなどが挙げられる。また、Al源となるAl含有塩としては、水溶性Al塩やアルミン酸塩などが挙げられる。   Examples of the sulfate or nitrate of the weather resistance improving element include vanadyl sulfate, scandium nitrate, titanium sulfate, chromium sulfate, and manganese sulfate. Examples of the Al-containing salt that serves as the Al source include water-soluble Al salts and aluminates.

耐候性改善元素およびAlを固溶させたゲーサイトは、そのまま還元用の原料として使用することもできるが、焼結防止効果を高めたい場合は、このゲーサイトの表面にAl,希土類元素,Yなどを被着させることが効果的である。この場合には、ゲーサイトを水中に分散させた後、水溶性Al塩,希土類元素,Y等の水溶液(例えば硝酸イットリウム,硝酸ランタンなど)を添加して、アルカリで中和する方法や、該分散液から水を蒸発させる方法などによって、粒子表面に焼結防止材を被着することができる。この焼結防止剤としては、Al,希土類元素,Yの他、Zr,Mo,W,P,Bなども使用できる。   The goethite in which the weather resistance improving element and Al are dissolved can be used as a raw material for reduction as it is. However, if the anti-sintering effect is to be enhanced, Al, rare earth elements, Y are added to the surface of the goethite. It is effective to deposit them. In this case, after the goethite is dispersed in water, an aqueous solution of water-soluble Al salt, rare earth element, Y or the like (for example, yttrium nitrate, lanthanum nitrate, etc.) is added and neutralized with an alkali, An anti-sintering material can be applied to the particle surface by, for example, a method of evaporating water from the dispersion. As the sintering inhibitor, Al, rare earth elements, Y, Zr, Mo, W, P, B, etc. can be used.

一方、耐候性改善元素をゲーサイト表面に被着させることによって含有させる場合は、上述のゲーサイト合成方法において、耐候性改善元素の固溶操作を行わずに、Alを固溶させたものを作ればよい。その後、このゲーサイトを分散させた液に耐候性改善元素の硫酸塩あるいは硝酸塩を添加して、アルカリで中和する方法や、該分散液から水を蒸発させる方法などによって、粒子表面に耐候性改善元素を被着させることができる。耐候性改善元素の硫酸塩あるいは硝酸塩としては、この場合も硫酸バナジル,硝酸スカンジウム,硫酸チタン,硫酸クロム,硫酸マンガンなどが使用できる。また、上述のように、Al,希土類元素,Yのような焼結防止剤の被着を一緒に行うこともできる。その場合は、水溶性Al塩,希土類元素,Y等の水溶液を添加すればよい。なお、耐候性改善元素をある程度固溶させたゲーサイトに対して、更に耐候性改善元素を被着させる処理を行っても構わない。   On the other hand, when the weather resistance improving element is contained by adhering to the surface of the goethite, in the above-mentioned goethite synthesis method, the element in which Al is dissolved without performing the solid solution operation of the weather resistance improving element is used. Just make it. After that, the weather resistance is applied to the particle surface by adding a weather resistance improving element sulfate or nitrate to the solution in which the goethite is dispersed and neutralizing with alkali, or by evaporating water from the dispersion. Improvement elements can be deposited. In this case, vanadyl sulfate, scandium nitrate, titanium sulfate, chromium sulfate, manganese sulfate, etc. can be used as the weather resistance improving element sulfate or nitrate. Also, as described above, the deposition of a sintering inhibitor such as Al, rare earth elements, and Y can be performed together. In that case, an aqueous solution of water-soluble Al salt, rare earth element, Y, etc. may be added. In addition, you may perform the process which adheres a weather resistance improving element further to the goethite which made the weather resistance improving element some solid solution.

V等の耐候性改善元素の含有量(固溶量,被着量の合計)は、Feに対する原子比で1%以上とすることが好ましい。すなわちM/Fe原子比(Mは耐候性改善元素)が1%以上となるようにする。2種以上の耐候性改善元素を添加する場合は、それらの合計量がFeに対する原子比で1%以上となるようにするのが望ましい。M/Fe原子比が1%未満だと十分な耐候性改善効果が安定して得られない場合がある。一方、M/Fe原子比の上限については、最終的に得られた粉末が非磁性にならない範囲であれば特に限定されないが、例えば50%以下の範囲とするのがよい。現実的にはM/Fe原子比1〜10%の範囲でかなり大きな耐候性改善効果が得られる。   The content of weather resistance improving elements such as V (total amount of solid solution and deposition) is preferably 1% or more in terms of atomic ratio to Fe. That is, the M / Fe atomic ratio (M is a weather resistance improving element) is set to 1% or more. When two or more kinds of weather resistance improving elements are added, it is desirable that the total amount thereof is 1% or more in terms of atomic ratio relative to Fe. If the M / Fe atomic ratio is less than 1%, a sufficient weather resistance improving effect may not be obtained stably. On the other hand, the upper limit of the M / Fe atomic ratio is not particularly limited as long as the finally obtained powder does not become non-magnetic. For example, the upper limit is preferably 50% or less. Actually, a considerably large weather resistance improvement effect is obtained in the range of 1 to 10% of the M / Fe atomic ratio.

ゲーサイトに固溶させるAl量は、Feに対する原子比Al/Feで0.1〜30%好ましくは5〜15%程度とすればよい。Al/Fe原子比が0.1%未満だと、その磁性粉末のσsは高くなるが十分な焼結防止効果が得られない。逆に30%を超えると焼結防止効果は十分であるが、粒度分布の悪化や窒化の阻害により磁気特性が悪化するようになる。また、ゲーサイト表面に被着させる焼結防止剤の量(Al,希土類元素,Y等の合計量)は、Feに対する原子比X/Fe(Xは焼結防止剤元素)で0.1〜10%好ましくは0.1〜5%程度とすればよい。
なお、最終品である窒化鉄系粉末に含有される耐候性改善元素および焼結防止剤元素の量(Feに対する原子比)は、ゲーサイトに含有されるそれらの元素量(原子比)とほとんど同じものとなる。
The amount of Al dissolved in goethite is 0.1 to 30%, preferably about 5 to 15% in terms of the atomic ratio Al / Fe with respect to Fe. If the Al / Fe atomic ratio is less than 0.1%, the σs of the magnetic powder increases, but a sufficient sintering preventing effect cannot be obtained. On the other hand, if it exceeds 30%, the sintering preventing effect is sufficient, but the magnetic properties deteriorate due to the deterioration of the particle size distribution and the inhibition of nitriding. The amount of sintering inhibitor (total amount of Al, rare earth elements, Y, etc.) deposited on the goethite surface is 0.1 to 0.1 in terms of the atomic ratio X / Fe (where X is the sintering inhibitor element). 10%, preferably about 0.1 to 5%.
The amounts of the weather resistance improving element and sintering inhibitor element (atomic ratio to Fe) contained in the final iron nitride powder are almost the same as those contained in goethite (atomic ratio). It will be the same.

このようにして得られた耐候性改善元素を含むゲーサイトは、濾過、水洗工程を経た後、200℃以下の温度で乾燥し、これを原料粉末として使用することができる。あるいはゲーサイトを、200〜600℃で脱水する処理や、水分濃度5〜20%の水素雰囲気で還元する処理に供することにより、ゲーサイトから変性した鉄酸化物粒子とし、これを原料粉末としてもよい。これらの原料粉末は鉄と酸素の化合物であれば特に限定されるものではなく、ゲーサイト,ヘマタイト,マグヘマイト,マグネタイト,ウスタイト等が挙げられる。以下「原料粉末」と言うときは、このような鉄の酸化物を指す。原料粉末の平均粒子径については35nm以下のものが好ましい。35nmよりも大きい場合には、最終的に得られる窒化鉄系磁性粉末の粒径も大きくなり、その結果、粒子体積が大きくなって短波長記録に適さず、またその磁気テープの表面平滑性も悪くノイズも高くなるので、高記録密度磁気記録媒体用の磁性粉末には適さなくなる。   The goethite containing the weather resistance improving element thus obtained is filtered and washed with water, and then dried at a temperature of 200 ° C. or lower, and can be used as a raw material powder. Alternatively, the goethite is subjected to dehydration treatment at 200 to 600 ° C. or reduction treatment in a hydrogen atmosphere having a moisture concentration of 5 to 20% to obtain iron oxide particles modified from goethite. Good. These raw material powders are not particularly limited as long as they are compounds of iron and oxygen, and examples thereof include goethite, hematite, maghemite, magnetite, and wustite. Hereinafter, the term “raw material powder” refers to such an iron oxide. The average particle diameter of the raw material powder is preferably 35 nm or less. If it is larger than 35 nm, the particle diameter of the finally obtained iron nitride-based magnetic powder also becomes large. As a result, the particle volume becomes large and is not suitable for short wavelength recording, and the surface smoothness of the magnetic tape is also low. Unfortunately, the noise becomes high, so it is not suitable for magnetic powders for high recording density magnetic recording media.

次いで、原料粉末をα−Feに還元する。還元処理は一般的には水素(H2)を使用した乾式法が適しており、温度は300〜600℃が好ましい。300℃より低いと還元が不十分となることがあり、その場合、酸素が残留して窒化処理の速度が著しく低下することがある。還元温度が600℃を超えると、Al等の焼結防止剤を含有させる対策を採っても粒子間の焼結が起こりやすく、平均粒子径の増大や分散性の悪化を招き好ましくない。 Next, the raw material powder is reduced to α-Fe. In general, a dry process using hydrogen (H 2 ) is suitable for the reduction treatment, and the temperature is preferably 300 to 600 ° C. If the temperature is lower than 300 ° C., the reduction may be insufficient. In this case, oxygen may remain and the nitriding speed may be significantly reduced. When the reduction temperature exceeds 600 ° C., sintering between particles tends to occur even if measures such as inclusion of a sintering inhibitor such as Al are taken, which is not preferable because it causes an increase in average particle diameter and deterioration of dispersibility.

窒化処理自体は、同出願人による特開平11−340023号公報に記載されているアンモニア法を適用することがでる。すなわちアンモニアに代表される窒素含有ガスを200℃以下で流しながら、数十時間保持することによってFe162相を主体とする窒化鉄粉体を得ることができる。なお、この窒化処理に使用するガス中の酸素量は数ppmもしくはそれ以下であることが望ましい。 For the nitriding treatment itself, the ammonia method described in JP-A-11-340023 by the same applicant can be applied. That is, an iron nitride powder mainly composed of the Fe 16 N 2 phase can be obtained by holding a nitrogen-containing gas typified by ammonia at 200 ° C. or lower and holding it for several tens of hours. The amount of oxygen in the gas used for the nitriding treatment is preferably several ppm or less.

この窒化処理のあとは、窒素中に酸素を0.01〜2体積%程度含有させた混合ガスで粒子表面を徐酸化し、大気中でも安定に取り扱える窒化鉄系磁性粉末とするのが好ましい。   After the nitriding treatment, it is preferable to gradually oxidize the particle surface with a mixed gas containing about 0.01 to 2% by volume of oxygen in nitrogen to obtain an iron nitride-based magnetic powder that can be stably handled in the air.

以下に本発明の実施例を挙げるが、その前に、各実施例で得られた特性値を測定した方法について予め説明しておく。   Examples of the present invention will be described below, but before that, methods for measuring characteristic values obtained in the respective examples will be described in advance.

〔組成分析〕
磁性粉末中のAl,Yや、V等の耐候性改善元素の定量は日本ジャーレルアッシュ株式会社製高周波誘導プラズマ発光分析装置(IRIS/AP)を用いて行った。Feの定量は平沼産業株式会社製平沼自動滴定装置(COMTIME−980)を用いて行った。これらの定量結果は質量%として与えられるので、一旦全元素の割合を原子%に変換し、Al/Fe原子比,Y/Fe原子比や、M/Fe原子比(MはV等の耐候性改善元素)を算出した。
[Composition analysis]
Quantification of weather resistance improving elements such as Al, Y, and V in the magnetic powder was performed using a high frequency induction plasma emission analyzer (IRIS / AP) manufactured by Nippon Jarrell Ash. The amount of Fe was determined using a Hiranuma automatic titration apparatus (COMTIME-980) manufactured by Hiranuma Sangyo Co., Ltd. Since these quantitative results are given as mass%, the ratio of all elements is once converted to atomic%, and the Al / Fe atomic ratio, Y / Fe atomic ratio, and M / Fe atomic ratio (M is weather resistance such as V). Improved element) was calculated.

〔粉体バルク特性の評価〕
数平均粒子径:3万倍の透過型電子顕微鏡写真を縦横2倍に拡大し、その上に示された磁性粒子400個について各々最も長い部分を測定し、その平均値を用いた。
磁気特性(保磁力Hc,飽和磁化σs,残留磁化σr)の測定:VSM(デジタルメジャーメントシステムズ株式会社製)を用いて、最大796kA/mの外部印加磁場で測定した。
比表面積:BET法で測定した。
[Evaluation of powder bulk properties]
Number average particle diameter: A transmission electron micrograph of 30,000 times was enlarged twice in length and width, and the longest portion was measured for each of 400 magnetic particles shown thereon, and the average value was used.
Measurement of magnetic characteristics (coercive force Hc, saturation magnetization σs, residual magnetization σr): VSM (manufactured by Digital Measurement Systems Co., Ltd.) was used to measure at a maximum external magnetic field of 796 kA / m.
Specific surface area: measured by the BET method.

〔耐候性の評価〕
各製品粉末の磁気特性の経時劣化を加速試験によって評価した。すなわち、まず加速試験前の磁気特性Hc0およびσs0を、前記粉末バルク特性の磁気特性調査方法にて測定した(後述表1に記載のHcおよびσsがこれに相当する)。次いで、各製品粉末を恒温恒湿容器内で60℃,90%RHに1週間保持したのち、その粉末について前記粉末バルク特性の磁気特性調査方法によってHcおよびσsを測定し、得られた測定値をそれぞれHc1およびσs1とした。そして、下記(1)式および(2)式によってΔHcおよびΔσsを求め、これらの値で耐候性を評価した。ΔHc,Δσsが小さいものほど耐候性に優れる。
ΔHc=(Hc0−Hc1)/Hc0×100 ……(1)
Δσs=(σs0−σs1)/σs0×100 ……(2)
[Evaluation of weather resistance]
The deterioration over time of the magnetic properties of each product powder was evaluated by an accelerated test. That is, first, the magnetic properties Hc 0 and σs 0 before the acceleration test were measured by the magnetic property investigation method of the powder bulk properties (Hc and σs described in Table 1 described later correspond to this). Next, each product powder is kept at 60 ° C. and 90% RH for 1 week in a constant temperature and humidity container, and then Hc and σs are measured for the powder by the magnetic property investigation method of the powder bulk property, and the obtained measurement values are obtained. Are Hc 1 and σs 1 , respectively. And (DELTA) Hc and (DELTA) (sigma) s were calculated | required by the following (1) Formula and (2) Formula, and the weather resistance was evaluated by these values. The smaller ΔHc and Δσs, the better the weather resistance.
ΔHc = (Hc 0 −Hc 1 ) / Hc 0 × 100 (1)
Δσs = (σs 0 −σs 1 ) / σs 0 × 100 (2)

〔実施例1〕
0.2モル/L(Lはリットルを表す)のFeSO4水溶液4Lに、12モル/LのNaOH水溶液0.5Lと、Al/Fe(AlのFeに対する原子比、以下同様)=10%となる量のアルミン酸ナトリウムおよびV/Fe=10%となる量の硫酸バナジルを加えたうえで、40℃の液温を維持しながら空気を300mL/minの流量で2.5時間吹き込むことにより、Al,Vを固溶したゲーサイトを析出させた。この酸化処理のあと、析出した殿物(ゲーサイト)を濾過・水洗したうえ再度水中に分散させた。
[Example 1]
To 4 mol of 0.2 mol / L (L represents liter) FeSO 4 aqueous solution, 0.5 L of 12 mol / L NaOH aqueous solution, and Al / Fe (atomic ratio of Al to Fe, the same applies hereinafter) = 10% After adding an amount of sodium aluminate and an amount of vanadyl sulfate of V / Fe = 10%, air was blown in at a flow rate of 300 mL / min for 2.5 hours while maintaining a liquid temperature of 40 ° C. A goethite in which Al and V were dissolved was precipitated. After this oxidation treatment, the deposited residue (goethite) was filtered, washed with water, and dispersed again in water.

この分散液にY/Fe=2.0%となる量の硝酸イットリウムを加え、40℃でAl/Fe=1.6%となる量のアルミン酸ナトリウムおよびNaOHを添加してpH=7〜8に調整し、粒子表面にイットリウムおよびアルミニウム被着させた。その後、液を濾過して得た固形分を水洗したのち、空気中110℃の条件で乾燥した。   To this dispersion was added yttrium nitrate in an amount of Y / Fe = 2.0%, and sodium aluminate and NaOH in an amount of Al / Fe = 1.6% at 40 ° C. to obtain pH = 7-8. And yttrium and aluminum were deposited on the particle surface. Thereafter, the solid content obtained by filtering the liquid was washed with water and then dried in air at 110 ° C.

得られた粉末は、平均粒子径30nmのゲーサイトであり、組成分析の結果、Al/Fe=7.7%,Y/Fe=1.9%,V/Fe=9.9%を含有していた。この粉末を出発原料とし、500℃,3時間水素ガスにより還元処理を施した後、100℃まで冷却し、この温度で水素ガスをアンモニアガスに切り替え、再度昇温して140℃に達したところで、20時間窒化処理を行った。窒化処理後は80℃まで冷却し、窒素ガスに切り替えた。そして、この窒素ガスに0.01〜2%のO2濃度となるように空気を添加して粒子表面を徐酸化処理し、得られた粉末を大気中に取り出した。 The obtained powder is a goethite having an average particle diameter of 30 nm, and as a result of composition analysis, Al / Fe = 7.7%, Y / Fe = 1.9%, V / Fe = 9.9% are contained. It was. This powder was used as a starting material, subjected to reduction treatment with hydrogen gas at 500 ° C. for 3 hours, cooled to 100 ° C., hydrogen gas was switched to ammonia gas at this temperature, and the temperature was raised again to reach 140 ° C. Nitriding treatment was performed for 20 hours. After the nitriding treatment, it was cooled to 80 ° C. and switched to nitrogen gas. Then, the nitrogen gas of air so that the O 2 concentration of 0.01% to 2% of the particle surface and gradual oxidation treatment was added, and the obtained powder was taken out into the atmosphere.

得られた粉末はX線回折の結果Fe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。組成は原料のゲーサイトと同じであった。得られた窒化鉄系粉末は、耐候性改善元素を添加していない比較例1,2(後述)のものに比べ耐候性が大幅に改善されていた。 As a result of X-ray diffraction, the obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. The composition was the same as the raw material goethite. The obtained iron nitride-based powder had significantly improved weather resistance compared to those of Comparative Examples 1 and 2 (described later) in which no weather resistance improving element was added.

〔実施例2〕
酸化処理によりゲーサイトを析出させる際の硫酸バナジルの添加量をV/Fe=5.5%に変更した以外は、実施例1を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例のものに耐候性が大幅に改善されていた。
[Example 2]
Example 1 was repeated except that the amount of vanadyl sulfate added during precipitation of goethite was changed to V / Fe = 5.5%.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance of the comparative example was significantly improved.

〔実施例3〕
0.2モル/LのFeSO4水溶液4Lに、12モル/LのNaOH水溶液0.5Lと、Al/Fe=10%となる量のアルミン酸ナトリウムを加えたうえで、40℃の液温を維持しながら空気を300mL/minの流量で2.5時間吹き込むことにより、Alを固溶したゲーサイトを析出させた。この酸化処理のあと、析出した殿物(ゲーサイト)を濾過・水洗したうえ再度水中に分散させた。
Example 3
To 4 L of 0.2 mol / L FeSO 4 aqueous solution, 0.5 L of 12 mol / L NaOH aqueous solution and sodium aluminate in an amount of Al / Fe = 10% were added, and the liquid temperature was adjusted to 40 ° C. While maintaining, air was blown in at a flow rate of 300 mL / min for 2.5 hours to precipitate goethite containing Al as a solid solution. After this oxidation treatment, the deposited residue (goethite) was filtered, washed with water, and dispersed again in water.

この分散液にV/Fe=10%となる量の硫酸バナジルを加え、40℃でAl/Fe=1.6%となる量のアルミン酸ナトリウムおよびNaOHを添加してpH=7〜8に調整し、粒子表面にアルミニウムおよびバナジウムを被着させた。その後、液を濾過して得た固形分を水洗したのち、空気中110℃の条件で乾燥した。   Add vanadyl sulfate in an amount of V / Fe = 10% to this dispersion, and add sodium aluminate and NaOH in an amount of Al / Fe = 1.6% at 40 ° C. to adjust the pH to 7-8. Then, aluminum and vanadium were deposited on the particle surfaces. Thereafter, the solid content obtained by filtering the liquid was washed with water and then dried in air at 110 ° C.

得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例のものに比べ耐候性が大幅に改善されていた。 The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved as compared with the comparative example.

〔実施例4〕
酸化処理によってゲーサイトを作製するところまで実施例3と同様に実施し、析出した殿物(ゲーサイト)を濾過・水洗したうえ再度水中に分散させた。
この分散液にY/Fe=2.0%となる量の硝酸イットリウムおよびV/Fe=5.0%となる量の硫酸バナジルを加え、40℃でAl/Fe=1.6%となる量のアルミン酸ナトリウムおよびNaOHを添加してpH=7〜8に調整し、粒子表面にイットリウム,アルミニウムおよびバナジウムを被着させた。その後、液を濾過して得た固形分を水洗したのち、空気中110℃の条件で乾燥した。
Example 4
The same procedure as in Example 3 was performed up to the point where goethite was produced by oxidation treatment, and the deposited residue (goethite) was filtered, washed with water, and dispersed again in water.
Y / Fe = 2.0% of yttrium nitrate and V / Fe = 5.0% of vanadyl sulfate are added to this dispersion, and Al / Fe = 1.6% at 40 ° C. Of sodium aluminate and NaOH were added to adjust the pH to 7 to 8, and yttrium, aluminum and vanadium were deposited on the particle surfaces. Thereafter, the solid content obtained by filtering the liquid was washed with water and then dried in air at 110 ° C.

得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例のものに比べ耐候性が大幅に改善されていた。 The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved as compared with the comparative example.

〔実施例5〕
酸化処理によりゲーサイトを析出させる際に添加する硫酸バナジルを、Sc/Fe=6.5%となる量の硝酸スカンジウムに変更した以外は、実施例1を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例のものに比べ耐候性が大幅に改善されていた。
Example 5
Example 1 was repeated except that vanadyl sulfate added when depositing goethite by oxidation treatment was changed to scandium nitrate in an amount that would be Sc / Fe = 6.5%.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved as compared with the comparative example.

〔実施例6〕
酸化処理によりゲーサイトを析出させる際に添加する硫酸バナジルを、Sc/Fe=4.0%となる量の硝酸スカンジウムに変更した以外は、実施例1を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例のものに比べ耐候性が大幅に改善されていた。
Example 6
Example 1 was repeated except that vanadyl sulfate, which was added when depositing goethite by oxidation treatment, was changed to scandium nitrate in an amount such that Sc / Fe = 4.0%.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved as compared with the comparative example.

〔実施例7〕
酸化処理によりゲーサイトを析出させる際に添加する硫酸バナジルを、Ti/Fe=7.4%となる量の硫酸チタンに変更し、被着処理の際に添加する硝酸イットリウムの量をY/Fe=6.0%に変更した以外は、実施例1を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例のものに比べ耐候性が大幅に改善されていた。
Example 7
The vanadyl sulfate added when the goethite is precipitated by the oxidation treatment is changed to titanium sulfate in an amount of Ti / Fe = 7.4%, and the amount of yttrium nitrate added during the deposition treatment is changed to Y / Fe. Example 1 was repeated except that it was changed to = 6.0%.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved as compared with the comparative example.

〔実施例8〕
酸化処理によりゲーサイトを析出させる際に添加する硫酸バナジルを、Ti/Fe=3.0%となる量の硫酸チタンに変更した以外は、実施例1を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例のものに比べ耐候性が大幅に改善されていた。
Example 8
Example 1 was repeated except that the vanadyl sulfate added when the goethite was precipitated by the oxidation treatment was changed to titanium sulfate in an amount such that Ti / Fe = 3.0%.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved as compared with the comparative example.

〔実施例9〕
被着処理の際に添加する硫酸バナジルを、Cr/Fe=10.0%となる量の硫酸クロムに変更した以外は、実施例3を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例のものに比べ耐候性が大幅に改善されていた。
Example 9
Example 3 was repeated except that the vanadyl sulfate added during the deposition treatment was changed to chromium sulfate having an amount of Cr / Fe = 10.0%.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved as compared with the comparative example.

〔実施例10〕
被着処理の際に添加する硫酸バナジルを、Cr/Fe=5.0%となる量の硫酸クロムに変更した以外は、実施例3を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例のものに比べ耐候性が大幅に改善されていた。
Example 10
Example 3 was repeated except that the vanadyl sulfate added during the deposition treatment was changed to chromium sulfate having an amount of Cr / Fe = 5.0%.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved as compared with the comparative example.

〔実施例11〕
酸化処理によりゲーサイトを析出させる際に添加する硫酸バナジルを、Mn/Fe=6.5%となる量の硫酸マンガンに変更した以外は、実施例1を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例ものに比べ耐候性が大幅に改善されていた。
Example 11
Example 1 was repeated except that the vanadyl sulfate added when the goethite was precipitated by the oxidation treatment was changed to manganese sulfate in an amount such that Mn / Fe = 6.5%.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved compared to the comparative example.

〔実施例12〕
酸化処理によりゲーサイトを析出させる際に添加する硫酸バナジルを、Mn/Fe=2.0%となる量の硫酸マンガンに変更した以外は、実施例1を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。実施例1と同様に、比較例ものに比べ耐候性が大幅に改善されていた。
Example 12
Example 1 was repeated except that vanadyl sulfate added when depositing goethite by oxidation treatment was changed to manganese sulfate in an amount that would give Mn / Fe = 2.0%.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. As in Example 1, the weather resistance was significantly improved compared to the comparative example.

〔比較例1〕
酸化処理によりゲーサイトを析出させる際に、Al/Fe=10%となる量のアルミン酸ナトリウムのみを添加した以外は、実施例1を繰り返した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。耐候性改善元素を含有させていないため、この粉末の耐候性は改善されていない。
[Comparative Example 1]
Example 1 was repeated except that only sodium aluminate in an amount of Al / Fe = 10% was added when goethite was precipitated by oxidation treatment.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. Since the weather resistance improving element is not contained, the weather resistance of the powder is not improved.

〔比較例2〕
比較例1と同様のゲーサイトを用いて、500℃,3時間水素ガスの還元処理を施した後、昇温して600℃,15分の処理を施し、その後100℃まで冷却した。この温度で水素ガスをアンモニアガスに切り替え、再度昇温して140℃に達したところで、20時間窒化処理を行った。窒化処理後は80℃まで冷却し、窒素ガスに切り替えた。そして、この窒素ガスに0.01〜2%のO2濃度となるように空気を添加して粒子表面の徐酸化処理を行い、大気中に取り出した。
得られた粉末はFe162を主体とする窒化鉄系粉末であり、楕円状の粒子で構成されていた。この窒化鉄系粉末の組成,特性等を表1に示してある。耐候性改善元素を含有させていないため、この粉末の耐候性は改善されていない。
[Comparative Example 2]
Using the same goethite as in Comparative Example 1, the hydrogen gas was reduced at 500 ° C. for 3 hours, then heated to 600 ° C. for 15 minutes, and then cooled to 100 ° C. At this temperature, the hydrogen gas was switched to ammonia gas, and when the temperature was raised again to reach 140 ° C., nitriding was performed for 20 hours. After the nitriding treatment, it was cooled to 80 ° C. and switched to nitrogen gas. Then, a slow oxidation process of particle surfaces by adding air so that the O 2 concentration of 0.01% to 2% in the nitrogen gas, was taken out into the atmosphere.
The obtained powder was an iron nitride-based powder mainly composed of Fe 16 N 2 and was composed of elliptical particles. Table 1 shows the composition, characteristics, and the like of the iron nitride powder. Since the weather resistance improving element is not contained, the weather resistance of the powder is not improved.

Figure 2006041210
Figure 2006041210

V添加量を変えた場合の窒化鉄のX線回折パターンの変化を表す図。The figure showing the change of the X-ray-diffraction pattern of iron nitride at the time of changing V addition amount. V/Fe原子比が7.7%のV添加窒化鉄のX線回折パターンを表す図。The figure showing the X-ray-diffraction pattern of V addition iron nitride whose V / Fe atomic ratio is 7.7%.

Claims (5)

下記(1)式で定義されるΔHcが10%以下である耐候性に優れたFe162主体の磁性粉末。
ΔHc=(Hc0−Hc1)/Hc0×100 ……(1)
ここで、Hc0は、当該Fe162主体の磁性粉末の保磁力(kA/m)、
Hc1は、当該Fe162主体の磁性粉末を恒温恒湿容器内で60℃,90%RHに1週間保持したのちの保磁力(kA/m)。
Magnetic powder mainly composed of Fe 16 N 2 having excellent weather resistance, ΔHc defined by the following formula (1) being 10% or less.
ΔHc = (Hc 0 −Hc 1 ) / Hc 0 × 100 (1)
Here, Hc 0 is the coercive force (kA / m) of the Fe 16 N 2 -based magnetic powder,
Hc 1 is the coercive force (kA / m) after the Fe 16 N 2- based magnetic powder is held at 60 ° C. and 90% RH for 1 week in a constant temperature and humidity container.
下記(1)式で定義されるΔHcが10%以下且つ下記(2)式で定義されるΔσsが20%以下である耐候性に優れたFe162主体の磁性粉末。
ΔHc=(Hc0−Hc1)/Hc0×100 ……(1)
Δσs=(σs0−σs1)/σs0×100 ……(2)
ここで、Hc0およびσs0は、それぞれ当該Fe162主体の磁性粉末の保磁力(kA/m)および飽和磁化(Am2/kg)、
Hc1およびσs1は、それぞれ当該Fe162主体の磁性粉末を恒温恒湿容器内で60℃,90%RHに1週間保持したのちの保磁力(kA/m)および飽和磁化(Am2/kg)。
A Fe 16 N 2 -based magnetic powder excellent in weather resistance, wherein ΔHc defined by the following formula (1) is 10% or less and Δσs defined by the following formula (2) is 20% or less.
ΔHc = (Hc 0 −Hc 1 ) / Hc 0 × 100 (1)
Δσs = (σs 0 −σs 1 ) / σs 0 × 100 (2)
Here, Hc 0 and σs 0 are the coercive force (kA / m) and saturation magnetization (Am 2 / kg) of the Fe 16 N 2 -based magnetic powder, respectively.
Hc 1 and σs 1 are the coercive force (kA / m) and saturation magnetization (Am 2 ), respectively, after holding the Fe 16 N 2- based magnetic powder at 60 ° C. and 90% RH in a constant temperature and humidity container for 1 week. / Kg).
V,Sc,Ti,Cr,Mnのうち少なくとも1種以上の元素をFeに対する原子割合で1%以上含有してなる耐候性に優れたFe162主体の磁性粉末。 A magnetic powder mainly composed of Fe 16 N 2 having excellent weather resistance, comprising at least one element selected from V, Sc, Ti, Cr, and Mn in an atomic ratio of 1% or more with respect to Fe. Alを固溶させ且つV,Sc,Ti,CrおよびMnのうち1種以上を固溶または被着させたゲーサイトを還元して得た鉄粉に対して窒化処理を施して得られる請求項3に記載の耐候性に優れたFe162主体の磁性粉末。 Claims obtained by nitriding iron powder obtained by reducing goethite in which Al is dissolved and at least one of V, Sc, Ti, Cr and Mn is dissolved or deposited. 3. Magnetic powder mainly composed of Fe 16 N 2 having excellent weather resistance according to 3. Co−Kα線を使用したX線回折パターンにおいて、回折角2θ:40〜44°の間に回折ピークを有する耐候性に優れたV含有Fe162主体の磁性粉末。 A magnetic powder mainly composed of V-containing Fe 16 N 2 having a diffraction peak at a diffraction angle 2θ of 40 to 44 ° and having excellent weather resistance in an X-ray diffraction pattern using Co-Kα rays.
JP2004219582A 2004-07-28 2004-07-28 Iron nitride magnetic powder with excellent weather resistance Expired - Fee Related JP4469994B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004219582A JP4469994B2 (en) 2004-07-28 2004-07-28 Iron nitride magnetic powder with excellent weather resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004219582A JP4469994B2 (en) 2004-07-28 2004-07-28 Iron nitride magnetic powder with excellent weather resistance

Publications (2)

Publication Number Publication Date
JP2006041210A true JP2006041210A (en) 2006-02-09
JP4469994B2 JP4469994B2 (en) 2010-06-02

Family

ID=35905880

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004219582A Expired - Fee Related JP4469994B2 (en) 2004-07-28 2004-07-28 Iron nitride magnetic powder with excellent weather resistance

Country Status (1)

Country Link
JP (1) JP4469994B2 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258427A (en) * 2006-03-23 2007-10-04 Tdk Corp Magnetic particle and its manufacturing method
WO2007145301A1 (en) * 2006-06-14 2007-12-21 Dowa Electronics Materials Co., Ltd. Iron nitride-based magnetic powder, process for producing the same, and magnetic recording medium
JP2008071425A (en) * 2006-09-14 2008-03-27 Hitachi Maxell Ltd Magnetic recording medium
CN106082146A (en) * 2016-06-26 2016-11-09 彭晓领 A kind of preparation method of iron nitride magnetic material

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007258427A (en) * 2006-03-23 2007-10-04 Tdk Corp Magnetic particle and its manufacturing method
WO2007145301A1 (en) * 2006-06-14 2007-12-21 Dowa Electronics Materials Co., Ltd. Iron nitride-based magnetic powder, process for producing the same, and magnetic recording medium
JP2007335592A (en) * 2006-06-14 2007-12-27 Dowa Electronics Materials Co Ltd Iron nitride magnetic powder and its manufacturing method and magnetic recording medium
JP2008071425A (en) * 2006-09-14 2008-03-27 Hitachi Maxell Ltd Magnetic recording medium
CN106082146A (en) * 2016-06-26 2016-11-09 彭晓领 A kind of preparation method of iron nitride magnetic material

Also Published As

Publication number Publication date
JP4469994B2 (en) 2010-06-02

Similar Documents

Publication Publication Date Title
KR101192184B1 (en) Iron nitride magnetic powder and method of producing the powder
JP4769130B2 (en) Iron nitride magnetic powder, method for producing the same, and magnetic recording medium
JP4758203B2 (en) High coercive force iron-based magnetic powder and magnetic recording medium
JP4779092B2 (en) Magnetic powder suitable for low noise media
JP4469994B2 (en) Iron nitride magnetic powder with excellent weather resistance
JP2008103510A (en) Iron-nitride magnetic powder and manufacturing method therefor
JP4734599B2 (en) Iron nitride magnetic powder with good weather resistance and method for producing the same
JP5130456B2 (en) Ferromagnetic metal powder and magnetic recording medium using the same
JP2003263719A (en) Magnetic powder for magnetic recording
JP4700998B2 (en) Zn-containing iron nitride powder
US5989516A (en) Spindle-shaped geothite particles
JP5337286B2 (en) Metal magnetic powder
JPH08165501A (en) Fusiform metallic magnetic-grain powder consisting essentially of cobalt and iron and its production
JP4670088B2 (en) Ferromagnetic metal powder for magnetic recording medium and magnetic recording medium using the same
JP2933397B2 (en) Method for producing ferromagnetic iron oxide powder for magnetic recording
Pozas et al. Improving Co distribution in acicular Fe–Co nanoparticles and its effect on their magnetic properties
JPH06140222A (en) Magnetic metal powder and manufacture thereof
JP4336786B2 (en) Method for producing ferromagnetic metal powder
JP5102485B2 (en) Manufacturing method of metal magnetic powder
JPH08165117A (en) Spindlelike geothite particulate powder containing cobalt and its production
JP2008084900A (en) Magnetic powder for coating type magnetic recording medium, its production process and magnetic recording medium
JP2007149258A (en) Magnetic recording medium
JP2000203847A (en) Cobalt-containing fusiform hematite particulate powder for fusiform magnetic alloy particulate powder predominant in iron and cobalt
JP2007194666A (en) Precursor for use in manufacturing ferromagnetic metal powder
JPH0785470A (en) Manufacture of magnetic metal particles and manufacture of magnetic recording medium

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090825

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20091210

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100119

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100205

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100205

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20100206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130312

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140312

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees