JP2006041102A - Printed wiring board and its manufacturing method - Google Patents

Printed wiring board and its manufacturing method Download PDF

Info

Publication number
JP2006041102A
JP2006041102A JP2004217322A JP2004217322A JP2006041102A JP 2006041102 A JP2006041102 A JP 2006041102A JP 2004217322 A JP2004217322 A JP 2004217322A JP 2004217322 A JP2004217322 A JP 2004217322A JP 2006041102 A JP2006041102 A JP 2006041102A
Authority
JP
Japan
Prior art keywords
component mounting
printed wiring
wiring board
linear conductor
conductor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004217322A
Other languages
Japanese (ja)
Inventor
Yasushi Inatani
裕史 稲谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujikura Ltd
Original Assignee
Fujikura Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujikura Ltd filed Critical Fujikura Ltd
Priority to JP2004217322A priority Critical patent/JP2006041102A/en
Publication of JP2006041102A publication Critical patent/JP2006041102A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Metallic Protective Coatings For Printed Circuits (AREA)
  • Structure Of Printed Boards (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a printed wiring board and its manufacturing method such that only the linear conductor of a flexible transmission line to be bent is given an insulation coating of resin, such as polyimide, fluorine-based resin, and LCP, which withstands high bending and has flexibility, and that only the flexible transmission line is given high bending resistance separately from a component mount. <P>SOLUTION: The print wiring board is provided with: component mount parts A and B have component mounting conductors 12 on at least one-surface sides of base insulating layers 11; and the flexible transmission C comprising linear conductors 21 for transmission which connect with the component mounting conductors 12, and insulation coating parts 22 which insulate and cover all the linear conductors 21 with single flexible resin. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、プリント配線板およびその製造方法に関し、特に、電子機器に使用される屈曲性が重要となるプリント配線板およびその製造方法に関するものである。   The present invention relates to a printed wiring board and a manufacturing method thereof, and more particularly to a printed wiring board and a manufacturing method thereof in which flexibility used in electronic equipment is important.

電子機器に使用されるプリント配線板として、折りたたみ式の携帯電話のヒンジ部分、ハードディスクドライバ(HDD)の信号読取部と処理基板とをつなぐ配線部等、高屈曲性を求められる部分を含むプリント配線板には、フレキシブルプリント配線板(FPC)やフレックスリジッドプリント配線板が使用されている(例えば、非特許文献1、特許文献1)。   Printed wiring including parts that require high flexibility, such as a hinge part of a folding mobile phone, a wiring part that connects a signal reading part of a hard disk driver (HDD) and a processing board, as a printed wiring board used in an electronic device A flexible printed wiring board (FPC) or a flex-rigid printed wiring board is used as the board (for example, Non-Patent Document 1 and Patent Document 1).

それらの製品の屈曲性は、エンドユーザによってそれぞれ異なるが、実製品と同状態の屈曲構造で、20万回以上、30万回以上という膨大な回数の繰り返し屈曲に耐えること、つまり、高屈曲耐性を求められる。   The bendability of these products varies depending on the end user, but with a bending structure that is in the same state as the actual product, it can withstand repeated bending of 200,000 times or more and 300,000 times or more, that is, high bending resistance Is required.

可撓性のベース絶縁層と、銅箔等による導体層と、カバーレジスト層とによる通常構造をもつFPCにおいても、ベース絶縁層やカバーレジスト層を構成する材料のそれぞれの種類の選択により、屈曲性に耐え得るかどうかが大きく変わる。   Even in an FPC having a normal structure consisting of a flexible base insulating layer, a conductor layer made of copper foil or the like, and a cover resist layer, it can be bent by selecting each type of material constituting the base insulating layer and the cover resist layer. The ability to withstand sex changes greatly.

通常、高屈曲耐性を実現するには、導体層を屈曲中心(曲げモーメントの中立線位置)に配置し、その両側において、ベース絶縁層とカバーレジスト層が、厚み、硬度等に対して対称となるような構成を取ることで、導体層に作用する曲げ応力を緩和することが行われている。また、高屈曲に耐え得る材料を製造メーカが、それぞれの経験から選択し、製造製品としての高屈曲耐性を実現している。さらに、材料選択、構造選択のほかに、屈曲部の総厚を薄くすることも、高屈曲耐性を得る上で、重要である。   Usually, to achieve high bending resistance, the conductor layer is placed at the bending center (the neutral line position of the bending moment), and on both sides, the base insulating layer and the cover resist layer are symmetrical with respect to thickness, hardness, etc. The bending stress which acts on a conductor layer is relieved by taking such a structure. In addition, a manufacturer selects a material that can withstand high bending from each experience, and realizes high bending resistance as a manufactured product. Furthermore, in addition to material selection and structure selection, it is important to reduce the total thickness of the bent portion in order to obtain high bending resistance.

しかし、従来の構造で、高屈曲耐性を実現した製品は、材料が限定され、高価になりやすい。また、構造、材料を選択しても、高屈曲耐性の実現には限界がある。さらには、総厚を薄くすると、プリント配線板のハンドリング性や組み込み性(コネクタ性能)が悪化し、製造コストが増加する問題がある。   However, a product that achieves high bending resistance with a conventional structure is limited in material and is likely to be expensive. Even if the structure and material are selected, there is a limit to the realization of high bending resistance. Furthermore, when the total thickness is reduced, there is a problem that the handling property and incorporation property (connector performance) of the printed wiring board are deteriorated and the manufacturing cost is increased.

また、プリント配線板において、高屈曲が求められるのは、ヒンジ部分等、一部分(伝送線部)のみであり、他の部分は、電子部品等を表面実装される部品実装部で、特に、高屈曲性を有する必要がなく、コネクタ端子を介して他基板に接続されることが多い。   Moreover, in a printed wiring board, high bending is required only for a part (transmission line part) such as a hinge part, and the other part is a part mounting part on which electronic parts are surface-mounted. It is not necessary to have flexibility, and it is often connected to another substrate via a connector terminal.

しかし、FPCにおいて、高屈曲の材料構成をとると、プリント配線板全体が同様の材料構成となり、高屈曲用材料による部品実装部がワイヤボンディング等の実装に向いている材料であるとは限らない。   However, in the FPC, when a highly bent material configuration is adopted, the entire printed wiring board has the same material configuration, and the component mounting portion made of the highly bending material is not necessarily a material suitable for mounting such as wire bonding. .

このため、高屈曲基板は屈曲部のみの伝送用基板やフレキシブルフラットケーブル(例えば、特許文献2、3)等になることも多く、実装用基板も必要になることから、最終製品に必要な部品点数の増加を招くことになる。
伊藤 謹司 著 「プリント配線板製造入門」日刊工業新聞社出版、2001年7月16日、初版6刷、16頁〜19頁 特開2002−158445号公報 特開平7−288041号公報 特開平7−94033号公報
For this reason, a highly flexible substrate is often a transmission substrate or a flexible flat cable (for example, Patent Documents 2 and 3) with only a bent portion, and a mounting substrate is also required. This will increase the score.
Ito Junji “Introduction to Printed Wiring Board Manufacturing” published by Nikkan Kogyo Shimbun, July 16, 2001, 6th edition, pages 16-19 Japanese Patent Laid-Open No. 2002-158445 Japanese Patent Laid-Open No. 7-288041 JP 7-94033 A

この発明が解決しようとする課題は、従来の種々の問題を解決して、屈曲部となる伝送線部に高屈曲耐性を実現することである。   The problem to be solved by the present invention is to solve various conventional problems and realize high bending resistance in the transmission line portion that becomes the bent portion.

この発明によるプリント配線板は、ベース絶縁層部の少なくとも片面に部品実装用導体部を有する部品実装部と、前記部品実装用導体部と連続した伝送用の線状導体部と当該線状導体部を絶縁被覆する絶縁被覆部とによる可撓性伝送線部とを有する。   A printed wiring board according to the present invention includes a component mounting portion having a component mounting conductor portion on at least one surface of a base insulating layer portion, a transmission linear conductor portion continuous with the component mounting conductor portion, and the linear conductor portion. And a flexible transmission line portion with an insulating coating portion for insulating coating.

可撓性伝送線部の絶縁被覆部は、ポリイミド、フッ素系樹脂(フルオロ‐エチレン系樹脂)、LCP(液晶ポリマ)等、高屈曲に耐え、可撓性を有する樹脂による絶縁被覆でよい。   The insulating coating portion of the flexible transmission line portion may be an insulating coating made of a flexible resin that can withstand high bending, such as polyimide, fluororesin (fluoro-ethylene resin), and LCP (liquid crystal polymer).

この発明によるプリント配線板は、好ましくは、前記可撓性伝送線部は、前記線状導体部を、複数個、互いに並行状態で有し、当該複数個の線状導体部は各々前記絶縁被覆部によって個別に被覆されている。   In the printed wiring board according to the present invention, preferably, the flexible transmission line portion includes a plurality of the linear conductor portions in parallel with each other, and each of the plurality of linear conductor portions is the insulating coating. It is individually covered by the part.

この発明によるプリント配線板は、前記部品実装部を複数個有し、前記可撓性伝送線部は前記複数個の部品実装部間にあってその複数個の部品実装部を互いに導通接続している。   The printed wiring board according to the present invention includes a plurality of the component mounting portions, and the flexible transmission line portion is interposed between the plurality of component mounting portions and electrically connects the plurality of component mounting portions to each other.

この発明によるプリント配線板の製造方法は、絶縁層の少なくとも片面に部品実装用導体部と、前記部品実装用導体部に連続する伝送用の線状導体部を形成する導体部形成工程と、前記絶縁層のうち前記部品実装用導体部の部分の絶縁層を残して前記線状導体部の部分の絶縁層を除去し、前記線状導体部を裸体状にする絶縁層除去工程と、前記線状導体部の全体を単一可撓性樹脂で絶縁被覆する絶縁被覆工程とを有する。   The printed wiring board manufacturing method according to the present invention includes: a component mounting conductor portion on at least one surface of an insulating layer; and a conductor portion forming step for forming a linear conductor portion for transmission continuous with the component mounting conductor portion; An insulating layer removing step of removing the insulating layer of the linear conductor portion while leaving the insulating layer of the component mounting conductor portion of the insulating layer, and making the linear conductor portion a naked body; And an insulating coating step for insulatingly covering the entire conductor portion with a single flexible resin.

この発明によるプリント配線板の製造方法は、好ましくは、前記絶縁被覆工程は、前記線状導体部を電極として電着塗装法により行う。   In the printed wiring board manufacturing method according to the present invention, preferably, the insulating coating step is performed by an electrodeposition coating method using the linear conductor portion as an electrode.

この発明によるプリント配線板は、屈曲部となる可撓性伝送線部の線状導体部だけをポリイミド、フッ素系樹脂、LCP等、高屈曲に耐え、可撓性を有する樹脂による絶縁被覆によって被覆することができ、部品実装部とは別に、可撓性伝送線部にのみ高屈曲耐性を付与することができる。   In the printed wiring board according to the present invention, only the linear conductor portion of the flexible transmission line portion to be a bent portion is covered with an insulating coating with a flexible resin that can withstand high bending, such as polyimide, fluororesin, and LCP. In addition to the component mounting portion, high bending resistance can be imparted only to the flexible transmission line portion.

これにより、部品実装部の部品実装性に影響を与えることなく、屈曲部となる可撓性伝送線部において良好な屈曲性が得られ、屈曲部以外の材料選定、つまり、部品実装部の材料選定は、使用用途に応じて選択が可能になるため、部品の表面実装に向いている材料を使うことができ、プリント配線板の使用領域の拡大を期待できる。   As a result, good flexibility can be obtained in the flexible transmission line portion that becomes the bent portion without affecting the component mountability of the component mounted portion, and material selection other than the bent portion, that is, the material of the component mounted portion Since selection can be made according to the intended use, materials suitable for surface mounting of components can be used, and expansion of the use area of the printed wiring board can be expected.

この発明によるプリント配線板の一つの実施形態を、図1を参照して説明する。   An embodiment of a printed wiring board according to the present invention will be described with reference to FIG.

この実施形態のプリント配線板は、二つの部品実装部A、Bと、部品実装部AとBとを相互に導通接続する可撓性伝送線部Cとを有する。   The printed wiring board of this embodiment includes two component mounting portions A and B and a flexible transmission line portion C that electrically connects the component mounting portions A and B to each other.

部品実装部A、Bは、各々、ベース絶縁層部11と、ベース絶縁層部11の片面にパターン形成された銅箔等による部品実装用導体部12とを有し、部品実装用導体部12上に、電子部品等を表面実装される。   Each of the component mounting portions A and B includes a base insulating layer portion 11 and a component mounting conductor portion 12 made of copper foil or the like patterned on one surface of the base insulating layer portion 11. On top, electronic components etc. are surface mounted.

部品実装部A、Bのベース絶縁層部11は、ポリイミド、ガラスエポキシ、ポリアミド、アラミド等、十分な絶縁性を有するものであれば、フレキシブル材料、リジッド材料の何れにより構成されていてもよい。   The base insulating layer portion 11 of the component mounting portions A and B may be made of either a flexible material or a rigid material as long as it has sufficient insulating properties such as polyimide, glass epoxy, polyamide, and aramid.

可撓性伝送線部Cは、部品実装部A、Bの部品実装用導体部12と連続している伝送用の線状導体部21と、線状導体部21を絶縁被覆する絶縁被覆部22とにより構成されている。   The flexible transmission line portion C includes a linear conductor portion 21 for transmission that is continuous with the component mounting conductor portions 12 of the component mounting portions A and B, and an insulating covering portion 22 that insulates the linear conductor portion 21. It is comprised by.

線状導体部21は、部品実装部A、Bの部品実装用導体部12と一体で、部品実装用導体部12と同じ銅箔等により構成され、部品実装部AとBとの間に、複数個、互いに並行状態で設けられており、部品実装部Aの部品実装用導体部12と部品実装部Bの部品実装用導体部12と互いに導通接続している。   The linear conductor portion 21 is integrated with the component mounting conductor portions 12 of the component mounting portions A and B, and is composed of the same copper foil or the like as the component mounting conductor portion 12, and between the component mounting portions A and B, A plurality of components are provided in parallel with each other, and are electrically connected to the component mounting conductor portion 12 of the component mounting portion A and the component mounting conductor portion 12 of the component mounting portion B.

可撓性伝送線部Cの絶縁被覆部22は、ポリイミド、フッ素系樹脂(フルオロ‐エチレン系樹脂)、LCP(液晶ポリマ)等、高屈曲に耐え、可撓性を有する樹脂による被覆であればよく、図2に示されているように、複数個の線状導体部21を各々個別に、薄層で、全面被覆している。これにより、可撓性伝送線部Cは、単心単線の被覆電線のような形態をなしている。   If the insulation coating portion 22 of the flexible transmission line portion C is coated with a flexible resin that can withstand high bending, such as polyimide, fluororesin (fluoro-ethylene resin), LCP (liquid crystal polymer), etc. As shown in FIG. 2, a plurality of linear conductor portions 21 are individually covered with a thin layer over the entire surface. Thereby, the flexible transmission line part C has comprised the form like the coated electric wire of a single core single line.

この構造とすることにより、部品実装部A、Bとは別に、可撓性伝送線部Cにのみ高屈曲耐性を付与することができ、部品実装部A、Bの部品実装性に影響を与えることなく、屈曲部となる可撓性伝送線部Cにおいて良好な屈曲性が得られる。   By adopting this structure, a high bending resistance can be imparted only to the flexible transmission line portion C, separately from the component mounting portions A and B, and the component mounting properties of the component mounting portions A and B are affected. Without bending, good bendability can be obtained in the flexible transmission line portion C that becomes the bend portion.

このことにより、屈曲部以外の材料選定、つまり、部品実装部A、Bの材料選定は、使用用途に応じて選択が可能になり、部品の表面実装に向いている材料を使うことができる。   This makes it possible to select a material other than the bent portion, that is, the material selection of the component mounting portions A and B according to the intended use, and a material suitable for surface mounting of the component can be used.

また、可撓性伝送線部Cの絶縁被覆部22は、線状導体部21を中心にして屈曲方向に対して対称な構造となり、高屈曲を実現できる。また、絶縁被覆部22を構成する樹脂皮膜は、電着樹脂を選択することができる。このことにより、極薄のレジスト被覆が可能になり、従来の基板よりも、高屈曲に耐え得ることを期待できる。   In addition, the insulating covering portion 22 of the flexible transmission line portion C has a symmetric structure with respect to the bending direction with the linear conductor portion 21 as the center, and can realize high bending. In addition, an electrodeposition resin can be selected as the resin film constituting the insulating coating portion 22. This enables an extremely thin resist coating, and can be expected to withstand higher bending than conventional substrates.

また、絶縁被覆部22が線状導体部21それぞれ独立して個別に形成されていることにより、可撓性伝送線部Cは、単線の被覆ケーブルの状態となり、高屈曲性に加えて捩じれを含む曲げ、つまり、捻回性も向上する。   In addition, since the insulating covering portion 22 is formed independently of each other, the flexible transmission line portion C becomes a single-wire covering cable, and twists in addition to high flexibility. Bending, that is, twistability is also improved.

また、可撓性伝送線部Cの絶縁被覆部22は、境界部(界面)、貼合部を含むことなく線状導体部21を絶縁被覆、つまり、単一樹脂被覆するので、優れた絶縁性が得られ、併せて、マイグレーション性も向上する。   Moreover, since the insulation coating part 22 of the flexible transmission line part C does not include a boundary part (interface) and a bonding part, the linear conductor part 21 is insulation-coated, that is, a single resin is coated. In addition, the migration is improved.

次に、この発明によるプリント配線板の製造方法の一つの実施形態を、図3、図4を参照して説明する。   Next, one embodiment of a method for producing a printed wiring board according to the present invention will be described with reference to FIGS.

図3(a)に示されているように、ポリイミド(PI)によるベース絶縁樹脂層51とCu導体層52から成る片面CCL50を出発材として、フォトリソーサブトラクティブ法によって、すなわち、Cu導体層52をエッチングし、A部、B部の部品実装用導体パターン53、54と、C部の伝送用の線状導体部55を形成する。このエッチング工程が導体部形成工程である。線状導体部55は、この実施形態では、4本あり、各々所定の導体ピッチをおいて、互いに平行に形成されている。   As shown in FIG. 3 (a), a single-sided CCL50 composed of a base insulating resin layer 51 made of polyimide (PI) and a Cu conductor layer 52 is used as a starting material by a photolitho subtractive method, that is, a Cu conductor layer 52. Are etched to form component mounting conductor patterns 53 and 54 for the A and B portions and a linear conductor portion 55 for transmission of the C portion. This etching process is a conductor part forming process. In this embodiment, there are four linear conductor portions 55, which are formed in parallel to each other with a predetermined conductor pitch.

つぎに、図3(c)に示されているように、A部、B部の各々の両面に、耐ポリイミドエッチング性を有するマスク部56、57、58、59を被覆形成する。   Next, as shown in FIG. 3C, mask portions 56, 57, 58, 59 having polyimide etching resistance are formed on both surfaces of the A portion and the B portion.

つぎに、図3(d)に示されているように、ポリイミドエッチングを行い、マスクされていない部分、すなわち、C部のベース絶縁樹脂層51を除去する。これにより、C部の線状導体部55は、Cu単体の裸線状になる。A部、B部のベース絶縁樹脂層51、つまり、部品実装用導体パターン53、54の部分のベース絶縁樹脂層51は、残存し、A部、B部の各々において互いに分離した部品実装部(A部、B部)のベース絶縁層部60、61をなす。C部のベース絶縁樹脂層51の除去は、レーザ加工等によっても行うことができる。   Next, as shown in FIG. 3D, polyimide etching is performed to remove the unmasked portion, that is, the C insulating base resin layer 51 in the C portion. Thereby, the linear conductor part 55 of the C part becomes a bare single wire form of Cu alone. The base insulating resin layers 51 of the A part and the B part, that is, the base insulating resin layers 51 of the part mounting conductor patterns 53 and 54 remain, and are separated from each other in the A part and the B part. The base insulating layer portions 60 and 61 of A portion and B portion) are formed. The removal of the base insulating resin layer 51 in the portion C can also be performed by laser processing or the like.

つぎに、図4(e)に示されているように、C部の裸線状の線状導体部55を電極として電着塗装法によって線状導体部55を電着レジスト(EDレジスト)62により絶縁被覆する。この電着塗装は、線状導体部55と導通状態にあるB部の部品実装用導体パターン54の端部54Aが外部に露呈する導体開口部をマスク部58に設けておき、その導体開口部から電圧を印加しておこなうことができる。   Next, as shown in FIG. 4E, the linear conductor portion 55 is formed into an electrodeposition resist (ED resist) 62 by an electrodeposition coating method using the bare linear conductor portion 55 of the C portion as an electrode. Insulate with. In this electrodeposition coating, a mask opening 58 is provided with a conductor opening that exposes the end 54A of the B component mounting conductor pattern 54 in conduction with the linear conductor 55, and the conductor opening The voltage can be applied from

線状導体部55の絶縁被覆が電着レジスト62であることにより、極薄のレジスト被覆を各線状導体部55の外表面全体に一様な被覆層厚さをもって良好に行うことができる。   Since the insulating coating of the linear conductor portion 55 is the electrodeposition resist 62, an extremely thin resist coating can be satisfactorily performed with a uniform coating layer thickness on the entire outer surface of each linear conductor portion 55.

また、電着レジスト62による線状導体部55の絶縁被覆は、各線状導体部55毎に個別に互いに独立した形態の絶縁被覆とすることができる。   Further, the insulation coating of the linear conductor portion 55 by the electrodeposition resist 62 can be an insulation coating in a form independent of each other for each linear conductor portion 55.

なお、レジスト樹脂形成は、電着法以外にも、浸漬法による塗布等も考えられる。   In addition to the electrodeposition method, the resist resin can be formed by dipping or the like.

つぎに、図4(f)に示されているように、A部、B部のマスク部56、57、58、59を除去する。   Next, as shown in FIG. 4 (f), the mask portions 56, 57, 58, 59 of the A portion and the B portion are removed.

これにより、ベース絶縁層部60と部品実装用導体パターン53による部品実装部(A部)と、ベース絶縁層部61と部品実装用導体パターン54による部品実装部(B部)と、電着レジスト62により全体に一様に絶縁被覆された屈曲対応の可撓性伝送線部(C部)によるプリント配線板100が完成する。   Thus, a component mounting portion (A portion) composed of the base insulating layer portion 60 and the component mounting conductor pattern 53, a component mounting portion (B portion) composed of the base insulating layer portion 61 and the component mounting conductor pattern 54, and the electrodeposition resist. The printed wiring board 100 by the flexible transmission line part (C part) corresponding to the bending, which is uniformly insulated by 62, is completed.

部品実装のA部、B部については、液状レジストを塗布し、露光・現像工程により実装部の開口を形成することで、高精度のレジスト開口を持つIC・SMT実装可能で、且つ、高屈曲に耐える部分を持つプリント配線板100を得ることができる。   For parts A and B of component mounting, liquid resist is applied and the opening of the mounting part is formed by the exposure / development process, so that IC / SMT mounting with a high-precision resist opening is possible and high bending The printed wiring board 100 having a portion that can withstand the load can be obtained.

なお、この実施形態では、ベース絶縁樹脂層51をベース樹脂をポリイミドとしたが、ガラスエポキシ基板を用いてもよい。その場合、屈曲部分(C部)の樹脂除去を絶縁材料に応じた方法とする必要がある。   In this embodiment, the base insulating resin layer 51 is made of polyimide as the base resin, but a glass epoxy substrate may be used. In that case, it is necessary to remove the resin at the bent portion (C portion) by a method corresponding to the insulating material.

上述したように、屈曲部(C部)の線状導体部55を、一旦、裸線構造にすることで、屈曲部(C部)は単一材料の絶縁皮膜を形成することが可能になり、薄型・対称構造で、従来よりも高屈曲耐性が高まる。また、屈曲部(C部)において、導体線(線状導体部55)が各線毎に独立するため、屈曲性に加え、捻回性も飛躍的に上昇する。   As described above, once the linear conductor portion 55 of the bent portion (C portion) has a bare wire structure, the bent portion (C portion) can form an insulating film of a single material. The thin and symmetrical structure increases the bending resistance. Further, in the bent portion (C portion), since the conductor wire (linear conductor portion 55) is independent for each line, the twistability is dramatically increased in addition to the bendability.

さらに、屈曲部(C部)以外の材料選定、つまり、ベース絶縁樹脂層51の材料選定は、使用用途に応じて選択が可能になるため、ICやSMT部品の実装に向いている材料を使うことで基板の一体化が可能になる。これらのことにより、プリント配線板の使用領域の拡大も期待できる。
Furthermore, since materials other than the bent portion (C portion), that is, the material selection of the base insulating resin layer 51 can be selected according to the intended use, a material suitable for mounting ICs and SMT components is used. This makes it possible to integrate the substrates. By these things, expansion of the use area of a printed wiring board can also be expected.

この発明によるプリント配線板の一つの実施形態を示す斜視図である。It is a perspective view which shows one Embodiment of the printed wiring board by this invention. 図1の線II−IIに沿った断面図である。It is sectional drawing along line II-II of FIG. (a)〜(d)は、この発明によるプリント配線板の製造方法の一つの実施形態を示す工程図である。(A)-(d) is process drawing which shows one Embodiment of the manufacturing method of the printed wiring board by this invention. (e)、(f)は、この発明によるプリント配線板の製造方法の一つの実施形態を示す工程図である。(E), (f) is process drawing which shows one Embodiment of the manufacturing method of the printed wiring board by this invention.

符号の説明Explanation of symbols

A、B 部品実装部
C 可撓性伝送線部
11 ベース絶縁層部
12 部品実装用導体部
21 線状導体部
22 絶縁被覆部
50 片面CCL
51 ベース絶縁樹脂層
52 Cu導体層
53、54 部品実装用導体パターン
55 線状導体部
56、57、58、59 マスク部
60、61 ベース絶縁層部
62 電着レジスト
100 プリント配線板
A, B Component mounting portion C Flexible transmission line portion 11 Base insulating layer portion 12 Component mounting conductor portion 21 Linear conductor portion 22 Insulation covering portion 50 Single-sided CCL
51 Base insulating resin layer 52 Cu conductor layer 53, 54 Component mounting conductor pattern 55 Linear conductor portion 56, 57, 58, 59 Mask portion 60, 61 Base insulating layer portion 62 Electrodeposition resist 100 Printed wiring board

Claims (5)

ベース絶縁層部の少なくとも片面に部品実装用導体部を有する部品実装部と、
前記部品実装用導体部と連続した伝送用の線状導体部と、当該線状導体部の全体を単一可撓性樹脂で絶縁被覆する絶縁被覆部とによる可撓性伝送線部と、
を有するプリント配線板。
A component mounting portion having a component mounting conductor on at least one side of the base insulating layer;
A flexible transmission line portion composed of a linear conductor portion for transmission that is continuous with the component mounting conductor portion, and an insulating covering portion that insulates the entire linear conductor portion with a single flexible resin;
A printed wiring board having:
前記可撓性伝送線部は、前記線状導体部を、複数個、互いに並行状態で有し、当該複数個の線状導体部は各々前記絶縁被覆部によって個別に被覆されている請求項1記載のプリント配線板。   The flexible transmission line portion includes a plurality of the linear conductor portions in parallel with each other, and the plurality of linear conductor portions are individually covered with the insulating coating portion. The printed wiring board as described. 前記部品実装部を複数個有し、前記可撓性伝送線部は前記複数個の部品実装部間にあってその複数個の部品実装部を互いに導通接続している請求項1または2記載のプリント配線板。   The printed wiring according to claim 1, further comprising: a plurality of the component mounting portions, wherein the flexible transmission line portion is between the plurality of component mounting portions and is electrically connected to each other. Board. 絶縁層の少なくとも片面に部品実装用導体部と、前記部品実装用導体部に連続する伝送用の線状導体部を形成する導体部形成工程と、
前記絶縁層のうち前記部品実装用導体部の部分の絶縁層を残して前記線状導体部の部分の絶縁層を除去し、前記線状導体部を裸体状にする絶縁層除去工程と、
前記線状導体部の全体を単一可撓性樹脂で絶縁被覆する絶縁被覆工程と、
を有するプリント配線板の製造方法。
A conductor part forming step for forming a conductor part for component mounting on at least one surface of the insulating layer, and a linear conductor part for transmission continuous with the conductor part for component mounting;
An insulating layer removing step of removing the insulating layer of the linear conductor part leaving the insulating layer of the part mounting conductor part of the insulating layer, and making the linear conductor part a naked body;
An insulation coating step of insulatingly covering the entire linear conductor portion with a single flexible resin;
The manufacturing method of the printed wiring board which has this.
前記絶縁被覆工程は、前記線状導体部を電極として電着塗装法により行う請求項4記載のプリント配線板の製造方法。
The printed wiring board manufacturing method according to claim 4, wherein the insulating coating step is performed by an electrodeposition coating method using the linear conductor portion as an electrode.
JP2004217322A 2004-07-26 2004-07-26 Printed wiring board and its manufacturing method Pending JP2006041102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004217322A JP2006041102A (en) 2004-07-26 2004-07-26 Printed wiring board and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004217322A JP2006041102A (en) 2004-07-26 2004-07-26 Printed wiring board and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2006041102A true JP2006041102A (en) 2006-02-09

Family

ID=35905793

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004217322A Pending JP2006041102A (en) 2004-07-26 2004-07-26 Printed wiring board and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2006041102A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152827A1 (en) * 2007-06-12 2008-12-18 Nippon Mektron, Ltd. Printed-wiring board and method for manufacturing the same
JP2010088668A (en) * 2008-10-08 2010-04-22 Sophia Co Ltd Game machine
JP2010192903A (en) * 2010-02-23 2010-09-02 Toshiba Corp Electronic apparatus

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2008152827A1 (en) * 2007-06-12 2008-12-18 Nippon Mektron, Ltd. Printed-wiring board and method for manufacturing the same
JP2010088668A (en) * 2008-10-08 2010-04-22 Sophia Co Ltd Game machine
JP2010192903A (en) * 2010-02-23 2010-09-02 Toshiba Corp Electronic apparatus

Similar Documents

Publication Publication Date Title
JP4414365B2 (en) High-speed transmission board
JP4790558B2 (en) Method for manufacturing printed circuit board
JP2007165707A (en) Flexible wiring circuit board
JP2006324406A (en) Flexible/rigid multilayer printed circuit board
JP4757079B2 (en) Wiring circuit board and manufacturing method thereof
US7772501B2 (en) Flexible printed circuit board
JP4886603B2 (en) Printed wiring board
CN103338590B (en) Flexible circuit board and manufacture method thereof
JP2009182228A (en) Wiring circuit board and its manufacturing method
JP2008294351A (en) Wiring circuit board
JP2000196205A (en) Flexible printed board
JP5041379B2 (en) Multilayer circuit board and manufacturing method thereof
JP2006041102A (en) Printed wiring board and its manufacturing method
JP2004356568A (en) Flexible circuit board
JP2008166496A (en) Flexible wiring board
JP4907328B2 (en) Printed wiring board, manufacturing method thereof, and electronic device
JP2009099837A (en) Flexible wiring board
US7277006B2 (en) Chip resistor
JP2007250815A (en) Flexible printed board and electronic component mounting circuit using it
JP2005243968A (en) Flexible rigid substrate
JPH10335759A (en) Flexible printed wiring board
JP2004235455A (en) Flexible wiring board and liquid crystal display device
JP2011040405A (en) Cable assembly with wiring board
JP2007179940A (en) Connection cable
JP2005142425A (en) Flexible wiring board and electronic equipment employing it