JP2006041030A - Electrode foil for capacitor and manufacturing method thereof - Google Patents

Electrode foil for capacitor and manufacturing method thereof Download PDF

Info

Publication number
JP2006041030A
JP2006041030A JP2004215911A JP2004215911A JP2006041030A JP 2006041030 A JP2006041030 A JP 2006041030A JP 2004215911 A JP2004215911 A JP 2004215911A JP 2004215911 A JP2004215911 A JP 2004215911A JP 2006041030 A JP2006041030 A JP 2006041030A
Authority
JP
Japan
Prior art keywords
fluorine
aluminum
foil
metal
capacitor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004215911A
Other languages
Japanese (ja)
Inventor
Hiromasa Shiyouji
浩雅 荘司
Tsutomu Sugiura
勉 杉浦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Steel Corp
Original Assignee
Nippon Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Steel Corp filed Critical Nippon Steel Corp
Priority to JP2004215911A priority Critical patent/JP2006041030A/en
Priority to PCT/JP2005/012520 priority patent/WO2006008970A1/en
Priority to TW94123197A priority patent/TWI282103B/en
Publication of JP2006041030A publication Critical patent/JP2006041030A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G9/00Electrolytic capacitors, rectifiers, detectors, switching devices, light-sensitive or temperature-sensitive devices; Processes of their manufacture
    • H01G9/004Details
    • H01G9/04Electrodes or formation of dielectric layers thereon
    • H01G9/042Electrodes or formation of dielectric layers thereon characterised by the material
    • H01G9/045Electrodes or formation of dielectric layers thereon characterised by the material based on aluminium

Landscapes

  • Engineering & Computer Science (AREA)
  • Power Engineering (AREA)
  • Chemical & Material Sciences (AREA)
  • Materials Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Chemical Treatment Of Metals (AREA)
  • Other Surface Treatments For Metallic Materials (AREA)
  • Electrolytic Production Of Metals (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode foil for capacitor of higher capacitance value and a method of manufacturing the same electrode foil for providing electrode foil for capacitor and the same capacitor in which higher capacitance value can be realized when the size is identical to the existing electrolytic capacitor, and reduction can be reduced when the capacitance value is identical to the existing electrolytic capacitor. <P>SOLUTION: There are provided an electrode foil for capacitor as the aluminum foil having at least a film including fluorine mainly formed of a metal oxide constituted with a valve function metal except for aluminum, and a method of manufacturing the same electrode foil. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、コンデンサ用電極箔及びその製造方法に関するものであり、特に静電容量の高容量化に関するものである。   The present invention relates to an electrode foil for a capacitor and a method for producing the same, and more particularly to an increase in capacitance.

一般に、電解コンデンサを構成するアルミニウム電極箔は、酸水溶液中でアルミニウム箔に直流電圧又は交流電圧を印加して電解エッチングし、箔表面に多数のピットを形成させて表面積を拡大させた後、化成液中で陽極酸化して箔表面に酸化アルミニウム被膜を形成させて電極材料として使用する。静電容量を増大させるには、箔の表面積の増大や誘電体である酸化被膜を薄くすること等が挙げられ、これらについては種々検討されている。さらに、酸化被膜の誘電率の増大も静電容量を増大させる方法であり、誘電率の高い酸化チタン被膜、酸化チタンと酸化アルミニウムの複合酸化被膜の形成による高容量化についても検討されているが、十分な容量増大がなされていないのが現状である。   In general, an aluminum electrode foil constituting an electrolytic capacitor is subjected to electrolytic etching by applying a DC voltage or an AC voltage to an aluminum foil in an acid aqueous solution to form a large number of pits on the foil surface to increase the surface area, and then to form a chemical. Anodized in a liquid to form an aluminum oxide film on the foil surface and used as an electrode material. In order to increase the electrostatic capacity, the surface area of the foil is increased, and the oxide film, which is a dielectric material, is thinned. Furthermore, increasing the dielectric constant of the oxide film is also a method for increasing the capacitance, and high capacity is being studied by forming a titanium oxide film with a high dielectric constant and a composite oxide film of titanium oxide and aluminum oxide. At present, the capacity has not been increased sufficiently.

後者については、例えば、特許文献1では、チタン錯イオンを含む水溶液を吸着させた後に、ホウ酸アンモニウム等の電解液中で陽極酸化することにより、酸化チタンと酸化アルミニウムの複合酸化物を形成しているが、シュウ酸チタン酸イオン、乳酸チタン酸イオン、クエン酸チタンイオン、酒石酸チタン酸イオン、サリチル酸チタン酸イオン等を用いた場合、Al箔との密着性が不十分であり、良好な酸化チタン膜が形成されていないため、その複合酸化物も脆弱であり、十分な静電容量が得られないし、漏れ電流も大きくなる。   Regarding the latter, for example, in Patent Document 1, after an aqueous solution containing a titanium complex ion is adsorbed, a composite oxide of titanium oxide and aluminum oxide is formed by anodizing in an electrolytic solution such as ammonium borate. However, when using oxalate titanate ion, lactate titanate ion, titanium citrate ion, tartrate titanate ion, salicylate titanate ion, etc., the adhesion with Al foil is insufficient and good oxidation Since the titanium film is not formed, the complex oxide is also fragile, a sufficient capacitance cannot be obtained, and the leakage current increases.

また、特許文献2では、酸化チタン被膜の形成にCVD法、スパッタリング法、ゾルゲル法、ゾルゲル電気泳動電着法等を挙げて検討しているが、CVD法やスパッタリング法ではエッチングさせたAl箔への成膜が極めて困難であるため、十分な静電容量が得られないし、漏れ電流も大きくなる。ゾルゲル法やゾルゲル電気泳動電着法では緻密な酸化物被膜の形成が困難であるため、十分な静電容量が得られないし、漏れ電流も大きくなる。それ故、特許文献3では、ゾルゲル法を改善して、高重合度のバルブ金属酸化物高分子-芳香族化合物溶媒錯体の含有について検討しているが、この場合も酸化被膜形成のための熱処理が必須であり、その際の揮発分による緻密さの低減により、十分な静電容量が得られないし、漏れ電流の改善も不十分である。特許文献4では、金属塩又は有機金属塩の塗布後、熱分解により酸化物皮膜を形成しており、上記と同様に、その際の揮発分による緻密さの低減により、十分な静電容量が得られないし、漏れ電流の改善も不十分である。   Patent Document 2 discusses the formation of a titanium oxide film by using the CVD method, sputtering method, sol-gel method, sol-gel electrophoresis electrodeposition method, etc. Since the film formation is extremely difficult, sufficient electrostatic capacity cannot be obtained, and the leakage current increases. Since it is difficult to form a dense oxide film by the sol-gel method or the sol-gel electrophoretic electrodeposition method, a sufficient electrostatic capacity cannot be obtained, and the leakage current also increases. Therefore, in Patent Document 3, the sol-gel method is improved and the inclusion of a high-degree-of-polymerization valve metal oxide polymer-aromatic compound solvent complex is studied. In this case as well, heat treatment for forming an oxide film is performed. Is essential, and due to the reduction in the density due to the volatile components, sufficient electrostatic capacity cannot be obtained, and the leakage current is not sufficiently improved. In Patent Document 4, an oxide film is formed by thermal decomposition after application of a metal salt or an organic metal salt. It cannot be obtained, and the leakage current is not improved sufficiently.

特開2003-115420号公報JP 2003-115420 A 特開2003-224036号公報JP2003-224036 特開2003-257796号公報Japanese Patent Laid-Open No. 2003-257796 特開平5-315197号公報JP-A-5-315197

本発明は、このような状況に鑑みたものであり、その目的は、高容量のコンデンサ用電極箔及びその製造方法を提供することである。   The present invention has been made in view of such a situation, and an object thereof is to provide a high-capacitance electrode foil for a capacitor and a method for manufacturing the same.

本発明者らは、前記課題を解決する手段を鋭意検討した結果、アルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜を少なくとも有するアルミニウム箔であることを特徴とするコンデンサ用電極箔が、弁作用金属の誘電率に応じて静電容量が増大することを見出した。さらに、酸化アルミニウムを主成分とする被膜とアルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜とを少なくとも有するアルミニウム箔であるコンデンサ用電極箔や、酸化アルミニウムを主成分とする被膜と、アルミニウムとアルミニウムを除く弁作用金属の複合酸化物又は混合酸化物の一方又は両方を主成分とするフッ素を含んだ被膜と、アルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜とを少なくとも有するアルミニウム箔であるコンデンサ用電極箔が、弁作用金属の誘電率に応じて、より静電容量が増大することを見出した。   As a result of earnestly examining means for solving the above problems, the present inventors have found that the present invention is an aluminum foil having at least a fluorine-containing film composed mainly of a metal oxide composed of a valve metal excluding aluminum. It has been found that the characteristic capacitor electrode foil increases the capacitance according to the dielectric constant of the valve metal. Furthermore, an electrode foil for a capacitor, which is an aluminum foil having at least a coating film containing aluminum oxide as a main component and a coating film containing fluorine mainly containing a metal oxide composed of a valve metal excluding aluminum, and aluminum oxide A coating film containing fluorine mainly containing one or both of a composite oxide or mixed oxide of valve action metal excluding aluminum and aluminum, and a valve action metal excluding aluminum. It has been found that the capacitance of the capacitor electrode foil, which is an aluminum foil having at least a fluorine-containing coating containing a metal oxide as a main component, is further increased according to the dielectric constant of the valve metal.

本発明の趣旨とするところは、以下のとおりである。
(1) アルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜を少なくとも有するアルミニウム箔であることを特徴とするコンデンサ用電極箔。
(2) 酸化アルミニウムを主成分とする被膜と、アルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜とを少なくとも有するアルミニウム箔であることを特徴とするコンデンサ用電極箔。
(3) 酸化アルミニウムを主成分とする被膜と、アルミニウムとアルミニウムを除く弁作用金属の複合酸化物又は混合酸化物の一方又は両方を主成分とするフッ素を含んだ被膜と、アルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜とを少なくとも有するアルミニウム箔であることを特徴とするコンデンサ用電極箔。
(4) アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を主成分とする処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成してなることを特徴とするコンデンサ用電極箔。
(5) アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を主成分とする処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成後、陽極酸化処理してなることを特徴とするコンデンサ用電極箔。
(6) アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を主成分とする処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成後、陽極酸化処理及び熱処理してなることを特徴とするコンデンサ用電極箔。
(7) 前記処理液のpHが4〜7である(4)〜(6)のいずれかに記載のコンデンサ用電極箔。
(8) 前記熱処理温度が400℃以下である(6)記載のコンデンサ用電極箔。
(9) 前記弁作用金属が、チタン、タンタル、ニオブの1種以上である(1)〜(6)のいずれかに記載のコンデンサ用電極箔。
(10) 前記弁作用金属がチタンである(1)〜(6) のいずれかに記載のコンデンサ用電極箔。
(11) 前記アルミニウム箔がエッチングされたアルミニウム箔である(1)〜(6)記載のコンデンサ用電極箔。
(12) (1)〜(11)のいずれかに記載のコンデンサ用電極箔を構成部品とするコンデンサ。
(13) アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を主成分とする処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成することを特徴とするコンデンサ用電極箔の製造方法。
(14) アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を主成分とする処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成後、陽極酸化処理することを特徴とするコンデンサ用電極箔の製造方法。
(15) アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を主成分とする処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成後、陽極酸化処理し、さらに熱処理することを特徴とするコンデンサ用電極箔の製造方法。
(16) 前記処理液のpHが4〜7である(13)〜(15)のいずれかに記載のコンデンサ用電極箔の製造方法。
(17) 前記熱処理温度が400℃以下である(15)記載のコンデンサ用電極箔の製造方法。
(18) 前記弁作用金属が、チタン、タンタル、ニオブの1種以上である(13)〜(15)のいずれかに記載のコンデンサ用電極箔の製造方法。
(19) 前記弁作用金属がチタンである(13)〜(15)のいずれかに記載のコンデンサ用電極箔の製造方法。
(20) 前記アルミニウム箔がエッチングされたアルミニウム箔である(13)〜(15)記載のコンデンサ用電極箔の製造方法。
The gist of the present invention is as follows.
(1) An electrode foil for a capacitor, which is an aluminum foil having at least a coating film containing fluorine mainly composed of a metal oxide composed of a valve action metal excluding aluminum.
(2) A capacitor characterized in that it is an aluminum foil having at least a film mainly composed of aluminum oxide and a film containing fluorine mainly composed of a metal oxide composed of a valve metal excluding aluminum. Electrode foil.
(3) A film mainly composed of aluminum oxide, a valve action excluding aluminum and aluminum, a film containing fluorine mainly composed of one or both of a composite oxide or mixed oxide of metal, and a valve action excluding aluminum. An electrode foil for a capacitor, which is an aluminum foil having at least a coating film containing fluorine, the main component of which is a metal oxide composed of metal.
(4) An aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and a molar ratio of 6 times or more with respect to the valve action metal excluding aluminum and the metal An electrode for a capacitor, wherein an aluminum foil is brought into contact with a treatment solution containing as a main component one or both of an aqueous solution containing complex ions of fluorine and a metal oxide film is formed on the surface of the foil. Foil.
(5) An aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and the ion or a molar ratio of 6 times or more to the valve action metal excluding aluminum and the metal An aluminum foil is brought into contact with a treatment liquid mainly composed of one or both of an aqueous solution containing complex ions composed of fluorine, and a metal oxide film is formed on the surface of the foil, and then anodized. Capacitor electrode foil.
(6) An aqueous solution in which a valve action metal ion excluding aluminum and fluorine ions at a molar ratio of 6 times or more with respect to the ion coexists, or a valve action metal excluding aluminum and a molar ratio of 6 times or more with respect to the metal. An aluminum foil is brought into contact with a treatment liquid mainly composed of one or both of an aqueous solution containing complex ions composed of fluorine, and a metal oxide film is formed on the surface of the foil, followed by anodization and heat treatment. Capacitor electrode foil characterized by
(7) The electrode foil for a capacitor according to any one of (4) to (6), wherein the treatment solution has a pH of 4 to 7.
(8) The electrode foil for capacitors according to (6), wherein the heat treatment temperature is 400 ° C. or lower.
(9) The capacitor electrode foil according to any one of (1) to (6), wherein the valve metal is one or more of titanium, tantalum, and niobium.
(10) The capacitor electrode foil according to any one of (1) to (6), wherein the valve metal is titanium.
(11) The capacitor electrode foil according to any one of (1) to (6), wherein the aluminum foil is an etched aluminum foil.
(12) A capacitor comprising the capacitor electrode foil according to any one of (1) to (11) as a component.
(13) An aqueous solution in which a valve action metal ion excluding aluminum and fluorine ions at a molar ratio of 6 times or more with respect to the ion coexists, or a valve action metal excluding aluminum and a molar ratio of 6 times or more with respect to the metal. An electrode foil for capacitors, characterized in that an aluminum foil is brought into contact with a treatment liquid mainly comprising one or both of an aqueous solution containing complex ions composed of fluorine to form a metal oxide film on the surface of the foil. Production method.
(14) An aqueous solution in which a valve action metal ion excluding aluminum and fluorine ions at a molar ratio of 6 times or more with respect to the ion coexists, or a valve action metal excluding aluminum and a molar ratio of 6 times or more with respect to the metal An aluminum foil is brought into contact with a treatment liquid mainly composed of one or both of an aqueous solution containing complex ions composed of fluorine, and a metal oxide film is formed on the surface of the foil, and then anodized. A method for producing an electrode foil for a capacitor.
(15) An aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and the ion or a molar ratio of 6 times or more with respect to the valve action metal excluding aluminum and the metal An aluminum foil is brought into contact with a treatment solution containing as a main component one or both of an aqueous solution containing complex ions composed of fluorine, and a metal oxide film is formed on the surface of the foil, followed by anodizing and further heat treatment. A method for producing an electrode foil for capacitors.
(16) The method for producing a capacitor electrode foil according to any one of (13) to (15), wherein the pH of the treatment liquid is 4 to 7.
(17) The method for producing an electrode foil for a capacitor according to (15), wherein the heat treatment temperature is 400 ° C. or lower.
(18) The method for producing a capacitor electrode foil according to any one of (13) to (15), wherein the valve metal is one or more of titanium, tantalum, and niobium.
(19) The method for producing a capacitor electrode foil according to any one of (13) to (15), wherein the valve metal is titanium.
(20) The method for producing a capacitor electrode foil according to any one of (13) to (15), wherein the aluminum foil is an etched aluminum foil.

本発明によると、従来の電解コンデンサと同じ大きさであれば、より高容量化が、また、従来の電解コンデンサと同じ容量であれば、より小型化ができるコンデンサ用電極箔とコンデンサの提供が可能となる。   According to the present invention, it is possible to provide a capacitor electrode foil and a capacitor that can have a higher capacity if the size is the same as that of a conventional electrolytic capacitor, and can be further reduced if the capacity is the same as that of a conventional electrolytic capacitor. It becomes possible.

以下に本発明を詳しく説明する。   The present invention is described in detail below.

弁作用金属とは、その金属酸化物が電流を一方向のみ流し、反対方向には非常に流しにくいものを意味し、具体的にはタンタル、ニオブ、ジルコニウム、チタン等が挙げられるが、上述の作用を有すれば、これら金属に限定されるものではない。   The valve metal means that the metal oxide allows current to flow only in one direction and is very difficult to flow in the opposite direction, and specifically includes tantalum, niobium, zirconium, titanium, etc. If it has an effect | action, it will not be limited to these metals.

アルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜や、アルミニウムとアルミニウムを除く弁作用金属の複合酸化物又は混合酸化物の一方又は両方を主成分とするフッ素を含んだ被膜や、酸化アルミニウムを主成分とする被膜については、これらの膜厚が薄ければ薄いほど大容量となる。また、これら3種類の被膜の作用を阻害しない被膜や成分をさらに含んでいてもよい。   Fluorine-containing coating composed mainly of a metal oxide composed of a valve action metal excluding aluminum, or a composite oxide or mixed oxide of a valve action metal excluding aluminum and aluminum, or both of them as a main ingredient As for the film containing fluorine or the film mainly composed of aluminum oxide, the smaller the film thickness, the larger the capacity. Further, it may further contain a coating or a component that does not inhibit the action of these three types of coating.

また、被膜中に存在するフッ素の効果発現の機構については、酸化物被膜の形成時の触媒的な働きと被膜の安定化に寄与しているのではないかと考えているが明確ではない。被膜中のフッ素含有濃度は0.1原子%〜60原子%が好ましい。0.1原子%未満では効果発現が十分ではなく、60原子%以上では漏れ電流が増大する場合がある。   In addition, the mechanism of the effect expression of fluorine present in the film is not clear, although it is thought that it contributes to the catalytic action at the time of forming the oxide film and the stabilization of the film. The fluorine-containing concentration in the coating is preferably 0.1 atomic% to 60 atomic%. If it is less than 0.1 atomic%, the effect is not sufficiently exhibited, and if it is 60 atomic% or more, the leakage current may increase.

アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液では、金属イオンと酸化物との平衡反応となる。金属イオンの濃度については、理由は定かではないが、金属イオンの種類により成膜状態や成膜量が異なる。フッ素イオンは、フッ化水素酸あるいはその塩、例えばアンモニウム塩、カリウム塩、ナトリウム塩等が挙げられ、これらに関しては制約がない。金属と該金属に対して6倍以上のモル比の含んでなる錯イオンとしては、ヘキサフルオロチタン酸、ヘキサフルオロニオブ酸、ヘキサフルオロタンタル酸、ヘキサフルオロジルコニウム酸等、あるいはこれらの塩、例えば、アンモニウム塩、カリウム塩、ナトリウム塩等を用いることができ、これらに関しては特に制約はない。さらに、金属とフッ素以外の元素が錯イオン中に含まれていてもよい。塩を用いる場合は、そのカチオン種によって飽和溶解度が異なるため、成膜濃度範囲を考慮して選定しなければならない場合がある。処理液の金属イオンとフッ素イオンのモル比が6倍未満では、健全な成膜ができているものの、十分な容量増大が確認されなかった。   From an aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and fluorine ions, or from a fluorine having a molar ratio of 6 times or more to the valve action metal excluding aluminum and the metal In an aqueous solution containing complex ions, an equilibrium reaction occurs between metal ions and oxides. Although the reason for the concentration of metal ions is not clear, the film formation state and the film formation amount differ depending on the type of metal ions. Examples of the fluorine ion include hydrofluoric acid or a salt thereof, such as an ammonium salt, a potassium salt, a sodium salt, and the like. Examples of complex ions comprising a metal and a molar ratio of 6 times or more with respect to the metal include hexafluorotitanic acid, hexafluoroniobic acid, hexafluorotantalic acid, hexafluorozirconic acid and the like, or salts thereof, for example, Ammonium salts, potassium salts, sodium salts and the like can be used, and there are no particular restrictions on these. Furthermore, elements other than metal and fluorine may be contained in the complex ions. In the case of using a salt, the saturation solubility varies depending on the cation species, and therefore it may be necessary to select the salt in consideration of the film formation concentration range. When the molar ratio between the metal ions and the fluorine ions in the treatment liquid was less than 6 times, a sound film was formed, but a sufficient increase in capacity was not confirmed.

フッ素イオン、水素イオンの消費、還元により、金属イオンが酸化物になる反応が進むと考え、処理液pHに着目し検討した。その結果、処理液pHは4〜7が好ましいことを見出した。より好ましくは5〜6である。処理液pHが4未満では、健全な成膜ができているものの、十分な容量増大が確認されなかった。この理由については明確ではない。一方、7より大きい場合は、液が不安定であり、凝集したものが析出する場合があり、より薄く成膜するには不向きである。処理液pHの調整は周知の方法でよい。本発明の析出反応のその他の条件は、特に限定されない。反応温度や反応時間は適宜設定すればよい。   Considering that the reaction of metal ions to oxides progresses due to the consumption and reduction of fluorine ions and hydrogen ions, we focused on the pH of the processing solution. As a result, it was found that the treatment solution pH is preferably 4-7. More preferably, it is 5-6. When the treatment solution pH was less than 4, although a sound film was formed, a sufficient capacity increase was not confirmed. The reason for this is not clear. On the other hand, when the ratio is larger than 7, the liquid is unstable, and agglomerated material may be deposited, which is not suitable for forming a thinner film. The treatment solution pH may be adjusted by a well-known method. Other conditions for the precipitation reaction of the present invention are not particularly limited. What is necessary is just to set reaction temperature and reaction time suitably.

成膜については、浸漬、噴霧、吹付け等が挙げられるが、上述の処理液にアルミニウム箔が接触すれば良く、方法は限定されない。   Examples of film formation include dipping, spraying, spraying, and the like, but the method is not limited as long as the aluminum foil is in contact with the above-described treatment liquid.

陽極酸化処理用電解液としては、例えばホウ酸アンモニウム、リン酸、アジピン酸、シュウ酸、硫酸、セバシン酸またはこれらのアンモニウム塩から一つ又は二つ以上を含有する溶液を挙げることができるが、限定されない。また、陽極酸化処理条件は、公知の条件で行えばよく、特に限定されるものではない。   Examples of the electrolytic solution for anodizing treatment include a solution containing one or two or more of ammonium borate, phosphoric acid, adipic acid, oxalic acid, sulfuric acid, sebacic acid, or ammonium salts thereof. It is not limited. Moreover, the anodizing treatment conditions may be performed under known conditions, and are not particularly limited.

陽極酸化後の熱処理温度は400℃以下が好ましく、より好ましくは200〜400℃である。200℃未満では熱処理の効果が十分に確認されない場合あり、400℃を超えると静電容量低下が確認された。熱処理時の雰囲気は真空中、又は、窒素やアルゴン等の不活性ガス中が好ましい。真空するにあたり、大気から減圧しても良いし、不活性ガスで雰囲気置換した後に減圧しても良い。   The heat treatment temperature after anodization is preferably 400 ° C. or lower, more preferably 200 to 400 ° C. When the temperature is lower than 200 ° C., the effect of the heat treatment may not be sufficiently confirmed. The atmosphere during the heat treatment is preferably in a vacuum or in an inert gas such as nitrogen or argon. In evacuating, the pressure may be reduced from the atmosphere, or may be reduced after the atmosphere is replaced with an inert gas.

用いるアルミニウム箔は、例えば1N99、1N90などのコンデンサに使われる高純度アルミニウム箔が挙げられる。さらにアルミニウム焼結体でも構わない。エッチングに関しては、粗化処理の程度に依らない。   Examples of the aluminum foil used include high-purity aluminum foil used for capacitors such as 1N99 and 1N90. Further, an aluminum sintered body may be used. As for etching, it does not depend on the degree of roughening treatment.

被膜を有するアルミニウム箔を陽極として用い、コンデンサとすればよい。なお、電解質や陰極については限定されず、適宜選択して用いれば良い。   An aluminum foil having a coating may be used as an anode to form a capacitor. Note that the electrolyte and the cathode are not limited and may be appropriately selected and used.

以下、本発明を実施例により具体的に説明するが、本発明はこれらの実施例によって何ら制限されるものではない。   EXAMPLES The present invention will be specifically described below with reference to examples, but the present invention is not limited to these examples.

(実施例1)
以下の如く、各種処理液を用いて成膜後、静電容量、漏れ電流を評価した。
(Example 1)
As described below, the capacitance and leakage current were evaluated after film formation using various processing solutions.

処理液、処理条件及び結果等を表1、表2(表1のつづき)に示す。基材は、エッチング加工していない未化成のAl箔(1N99)を用いた。アノード酸化を行う場合は、12%アジピン酸アンモニウム水溶液を用いて、温度80℃、電圧50V、60分間印加して行った。   The processing solutions, processing conditions and results are shown in Tables 1 and 2 (continued in Table 1). As the substrate, an unformed Al foil (1N99) that was not etched was used. When anodic oxidation was performed, a 12% ammonium adipate aqueous solution was used and applied at a temperature of 80 ° C. and a voltage of 50 V for 60 minutes.

静電容量は、12%アジピン酸アンモニウム水溶液を用いて、LCRメーターを用いて120Hzで測定した。漏れ電流は、5Vを印加して測定した。評価は、下記の比較例である実験No.46との比較で、以下の基準によって行った。
・静電容量 ×:No. 46より低下
△:No. 46より1〜5倍増加
○:No. 46より5〜10倍増加
◎:No. 46より10倍以上増加
・漏れ電流 ×:No. 46より増加
○:No. 46と同等
◎:No. 46より低下
The capacitance was measured at 120 Hz using an LCR meter using a 12% aqueous solution of ammonium adipate. The leakage current was measured by applying 5V. Evaluation was performed according to the following criteria in comparison with Experiment No. 46, which is a comparative example described below.
・ Capacitance ×: Lower than No. 46
Δ: 1 to 5 times higher than No. 46
○: 5-10 times increase from No. 46
A: More than 10 times increase from No. 46 ・ Leakage current ×: Increase from No. 46
○: Same as No. 46
A: Lower than No. 46

[実験No.1〜6]
処理液は、チタンイオンとフッ素イオンのモル比が1:5の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 1-6]
The treatment liquid uses a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride with a molar ratio of titanium ions to fluorine ions of 1: 5, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.7〜12]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.7-12]
The treatment liquid uses a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride with a molar ratio of titanium ion to fluorine ion of 1: 6, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.13〜16]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを4、5、6、7に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化を行った。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 13-16]
The treatment solution was a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride with a molar ratio of titanium ions to fluorine ions of 1: 6, and the pH was adjusted to 4, 5, 6, 7 with hydrofluoric acid or ammonia water. . The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. Anodization was performed. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.17〜19]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを5に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、約300℃で熱処理した。熱処理雰囲気を真空中、窒素中、窒素1%未満含む真空中とした。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.17-19]
The treatment solution was a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride having a molar ratio of titanium ions to fluorine ions of 1: 6, and the pH was adjusted to 5 with hydrofluoric acid or aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. The heat treatment atmosphere was vacuum, nitrogen, and vacuum containing less than 1% nitrogen. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.20、21]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを6、7に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 20, 21]
The treatment solution was a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride having a molar ratio of titanium ions to fluorine ions of 1: 6, and the pH was adjusted to 6 and 7 with hydrofluoric acid and ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.22〜27]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを4、5、6に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中で約90℃、約450℃でそれぞれ熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.22-27]
The treatment solution was a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride having a molar ratio of titanium ions to fluorine ions of 1: 6, and the pH was adjusted to 4, 5, and 6 with hydrofluoric acid or aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 90 ° C. and about 450 ° C. in vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.28〜33]
処理液は、チタンイオンとフッ素イオンのモル比が1:12の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.28-33]
The treatment liquid uses a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride with a molar ratio of titanium ions to fluorine ions of 1:12, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.34〜39]
処理液は、0.1Mヘキサフルオロチタン酸水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.34-39]
The treatment liquid was a 0.1M hexafluorotitanic acid aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, and 8 with hydrofluoric acid or ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.40〜45]
処理液は、0.1Mヘキサフルオロチタン酸アンモニウム水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 40-45]
The treatment solution was 0.1M ammonium hexafluorotitanate aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, 8 with hydrofluoric acid or ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.46]
基材をアノード酸化後、真空中、約300℃で熱処理した。
[Experiment No.46]
The substrate was anodized and then heat treated at about 300 ° C. in vacuum.

Figure 2006041030
Figure 2006041030

Figure 2006041030
Figure 2006041030

(実施例2)
以下の如く、各種処理液を用いて成膜後、静電容量、漏れ電流を評価した。
(Example 2)
As described below, the capacitance and leakage current were evaluated after film formation using various processing solutions.

処理液、処理条件及び結果等を表3、表4(表3のつづき)に示す。基材は、塩酸を主成分とするエッチング液で、約20倍の表面積になるように直流でエッチングした未化成のAl箔(1N99)を用いた。アノード酸化を行う場合は、12%アジピン酸アンモニウム水溶液を用いて、温度80℃、電圧50V、60分間印加して行った。   The processing solutions, processing conditions and results are shown in Tables 3 and 4 (continued in Table 3). The base material was an unformed Al foil (1N99) etched with a direct current so as to have a surface area about 20 times as large as an etching solution mainly composed of hydrochloric acid. When anodic oxidation was performed, a 12% ammonium adipate aqueous solution was used and applied at a temperature of 80 ° C. and a voltage of 50 V for 60 minutes.

静電容量は、12%アジピン酸アンモニウム水溶液を用いて、LCRメーターを用いて120Hzで測定した。漏れ電流は、5Vを印加して測定した。評価は、下記の比較例である実験No.92との比較で、以下の基準によって行った。
・静電容量 ×:No. 92より低下
△:No. 92より1〜5倍増加
○:No. 92より5〜10倍増加
◎:No. 92より10倍以上増加
・漏れ電流 ×:No. 92より増加
○:No. 92と同等
◎:No. 92より低下
The capacitance was measured at 120 Hz using an LCR meter using a 12% aqueous solution of ammonium adipate. The leakage current was measured by applying 5V. Evaluation was performed according to the following criteria in comparison with Experiment No. 92, which is a comparative example described below.
・ Capacitance ×: Lower than No. 92
△: 1-5 times increase from No. 92
○: 5 to 10 times higher than No. 92
A: More than 10 times increase from No. 92 ・ Leakage current ×: Increase from No. 92
○: Same as No. 92
A: Lower than No. 92

[実験No.47〜52]
処理液は、チタンイオンとフッ素イオンのモル比が1:5の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 47-52]
The treatment liquid uses a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride with a molar ratio of titanium ions to fluorine ions of 1: 5, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.53〜58]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.53-58]
The treatment liquid uses a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride with a molar ratio of titanium ion to fluorine ion of 1: 6, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.59〜62]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを4、5、6、7に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化を行った。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.59-62]
The treatment solution was a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride with a molar ratio of titanium ions to fluorine ions of 1: 6, and the pH was adjusted to 4, 5, 6, 7 with hydrofluoric acid or ammonia water. . The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. Anodization was performed. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.63〜65]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを5に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、約300℃で熱処理した。熱処理雰囲気を真空中、窒素中、窒素1%未満含む真空中とした。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 63-65]
The treatment solution was a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride having a molar ratio of titanium ions to fluorine ions of 1: 6, and the pH was adjusted to 5 with hydrofluoric acid or aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. The heat treatment atmosphere was vacuum, nitrogen, and vacuum containing less than 1% nitrogen. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.66、67]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを6、7に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 66, 67]
The treatment solution was a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride having a molar ratio of titanium ions to fluorine ions of 1: 6, and the pH was adjusted to 6 and 7 with hydrofluoric acid and ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.68〜73]
処理液は、チタンイオンとフッ素イオンのモル比が1:6の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを4、5、6に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中で約90℃、約450℃でそれぞれ熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.68-73]
The treatment solution was a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride having a molar ratio of titanium ions to fluorine ions of 1: 6, and the pH was adjusted to 4, 5, and 6 with hydrofluoric acid or aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 90 ° C. and about 450 ° C. in vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.74〜79]
処理液は、チタンイオンとフッ素イオンのモル比が1:9の0.1M塩化チタンとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 74-79]
The treatment liquid uses a mixed aqueous solution of 0.1M titanium chloride and ammonium hydrogen fluoride with a molar ratio of titanium ion to fluorine ion of 1: 9, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.80〜85]
処理液は、0.1Mヘキサフルオロチタン酸水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 80-85]
The treatment liquid was a 0.1M hexafluorotitanic acid aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, and 8 with hydrofluoric acid or ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.86〜91]
処理液は、0.1Mヘキサフルオロチタン酸アンモニウム水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.86-91]
The treatment solution was 0.1M ammonium hexafluorotitanate aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, 8 with hydrofluoric acid or ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験例No.92]
基材をアノード酸化後、真空中、約300℃で熱処理した。
[Experiment No.92]
The substrate was anodized and then heat treated at about 300 ° C. in vacuum.

Figure 2006041030
Figure 2006041030

Figure 2006041030
Figure 2006041030

(実施例3)
以下の如く、各種処理液を用いて成膜後、静電容量、漏れ電流を評価した。
(Example 3)
As described below, the capacitance and leakage current were evaluated after film formation using various processing solutions.

処理液、処理条件及び結果等を表5、表6(表5のつづき)に示す。基材は、塩酸を主成分とするエッチング液で、約20倍の表面積になるように直流でエッチングした未化成のAl箔(1N99)を用いた。アノード酸化を行う場合は、12%アジピン酸アンモニウム水溶液を用いて、温度80℃、電圧50V、60分間印加して行った。   The processing solutions, processing conditions and results are shown in Tables 5 and 6 (continued in Table 5). The base material was an unformed Al foil (1N99) etched with a direct current so as to have a surface area about 20 times as large as an etching solution mainly composed of hydrochloric acid. When anodic oxidation was performed, a 12% ammonium adipate aqueous solution was used and applied at a temperature of 80 ° C. and a voltage of 50 V for 60 minutes.

静電容量は、12%アジピン酸アンモニウム水溶液を用いて、LCRメーターを用いて120Hzで測定した。漏れ電流は、5Vを印加して測定した。評価は、下記の比較例である実験No.92との比較で、以下の基準によって行った。
・静電容量 ×:No. 92より低下
△:No. 92より1〜3倍増加
○:No. 92より3〜6倍増加
◎:No. 92より6倍以上増加
・漏れ電流 ×:No. 92より増加
○:No. 92と同等
◎:No. 92より低下
The capacitance was measured at 120 Hz using an LCR meter using a 12% aqueous solution of ammonium adipate. The leakage current was measured by applying 5V. Evaluation was performed according to the following criteria in comparison with Experiment No. 92, which is a comparative example described below.
・ Capacitance ×: Lower than No. 92
△: 1 to 3 times increase from No. 92
○: 3-6 times higher than No. 92
◎: More than 6 times increase from No. 92 ・ Leakage current ×: Increase from No. 92
○: Same as No. 92
A: Lower than No. 92

[実験No.93〜98]
処理液は、タンタルイオンとフッ素イオンのモル比が1:5の0.1M塩化タンタルとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 93-98]
The treatment liquid uses a mixed aqueous solution of 0.1M tantalum chloride and ammonium hydrogen fluoride with a molar ratio of tantalum ion to fluorine ion of 1: 5, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.99〜104]
処理液は、タンタルイオンとフッ素イオンのモル比が1:6の0.1M塩化タンタルとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.99-104]
The treatment liquid uses a mixed aqueous solution of 0.1M tantalum chloride and ammonium hydrogen fluoride with a molar ratio of tantalum ion to fluorine ion of 1: 6, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.105〜108]
処理液は、タンタルイオンとフッ素イオンのモル比が1:6の0.1M塩化タンタルとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを4、5、6、7に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化を行った。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.105-108]
The treatment solution used was a mixed aqueous solution of 0.1M tantalum chloride and ammonium hydrogen fluoride with a molar ratio of tantalum ion to fluorine ion of 1: 6, and the pH was adjusted to 4, 5, 6, 7 with hydrofluoric acid or ammonia water. . The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. Anodization was performed. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.109〜111]
処理液は、タンタルイオンとフッ素イオンのモル比が1:6の0.1M塩化タンタルとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを5に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、約300℃で熱処理した。熱処理雰囲気を真空中、窒素中、窒素1%未満含む真空中とした。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 109-111]
The treatment solution was a mixed aqueous solution of 0.1M tantalum chloride and ammonium hydrogen fluoride having a molar ratio of tantalum ions to fluorine ions of 1: 6, and the pH was adjusted to 5 with hydrofluoric acid or aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. The heat treatment atmosphere was vacuum, nitrogen, and vacuum containing less than 1% nitrogen. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.112、113]
処理液は、タンタルイオンとフッ素イオンのモル比が1:6の0.1M塩化タンタルとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを6、7に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.112, 113]
The treatment solution was a mixed aqueous solution of 0.1M tantalum chloride and ammonium hydrogen fluoride having a molar ratio of tantalum ions to fluorine ions of 1: 6, and the pH was adjusted to 6 or 7 with hydrofluoric acid or aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.114〜119]
処理液は、タンタルイオンとフッ素イオンのモル比が1:6の0.1M塩化タンタルとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを4、5、6に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中で約90℃、約450℃でそれぞれ熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 114-119]
The treatment liquid was a mixed aqueous solution of 0.1M tantalum chloride and ammonium hydrogen fluoride having a molar ratio of tantalum ions to fluorine ions of 1: 6, and the pH was adjusted to 4, 5, and 6 with hydrofluoric acid and aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 90 ° C. and about 450 ° C. in vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.120〜125]
処理液は、タンタルイオンとフッ素イオンのモル比が1:7の0.1M塩化タンタルとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.120-125]
The treatment liquid uses a mixed aqueous solution of 0.1M tantalum chloride and ammonium hydrogen fluoride with a molar ratio of tantalum ion to fluorine ion of 1: 7, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.126〜131]
処理液は、0.1Mヘキサフルオロタンタル酸水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 126-131]
The treatment liquid was a 0.1 M hexafluorotantalic acid aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, 8 with hydrofluoric acid or ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.132〜137]
処理液は、0.1Mヘキサフルオロタンタル酸カリウム水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment Nos. 132-137]
The treatment liquid used was a 0.1M potassium hexafluorotantalate aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, 8 with hydrofluoric acid or ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

Figure 2006041030
Figure 2006041030

Figure 2006041030
Figure 2006041030

(実施例4)
以下の如く、各種処理液を用いて成膜後、静電容量、漏れ電流を評価した。
(Example 4)
As described below, the capacitance and leakage current were evaluated after film formation using various processing solutions.

処理液、処理条件及び結果等を表7、表8(表7のつづき)に示す。基材は、塩酸を主成分とするエッチング液で、約20倍の表面積になるように直流でエッチングした未化成のAl箔(1N99)を用いた。アノード酸化を行う場合は、12%アジピン酸アンモニウム水溶液を用いて、温度80℃、電圧50V、60分間印加して行った。   The processing solutions, processing conditions and results are shown in Tables 7 and 8 (continued in Table 7). The base material was an unformed Al foil (1N99) etched with a direct current so as to have a surface area about 20 times as large as an etching solution mainly composed of hydrochloric acid. When anodic oxidation was performed, a 12% ammonium adipate aqueous solution was used and applied at a temperature of 80 ° C. and a voltage of 50 V for 60 minutes.

静電容量は、12%アジピン酸アンモニウム水溶液を用いて、LCRメーターを用いて120Hzで測定した。漏れ電流は、5Vを印加して測定した。評価は、下記の比較例である実験No.92との比較で、以下の基準によって行った。
・静電容量 ×:No. 92より低下
△:No. 92より1〜3倍増加
○:No. 92より3〜6倍増加
◎:No. 92より6倍以上増加
・漏れ電流 ×:No. 92より増加
○:No. 92と同等
◎:No. 92より低下
The capacitance was measured at 120 Hz using an LCR meter using a 12% aqueous solution of ammonium adipate. The leakage current was measured by applying 5V. Evaluation was performed according to the following criteria in comparison with Experiment No. 92, which is a comparative example described below.
・ Capacitance ×: Lower than No. 92
△: 1 to 3 times increase from No. 92
○: 3-6 times higher than No. 92
◎: More than 6 times increase from No. 92 ・ Leakage current ×: Increase from No. 92
○: Same as No. 92
A: Lower than No. 92

[実験No.138〜143]
処理液は、ニオブイオンとフッ素イオンのモル比が1:5の0.1M塩化ニオブとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.138 ~ 143]
The treatment solution uses a mixed aqueous solution of 0.1M niobium chloride and ammonium hydrogen fluoride with a molar ratio of niobium ions to fluoride ions of 1: 5, and pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.144〜149]
処理液は、ニオブイオンとフッ素イオンのモル比が1:6の0.1M塩化ニオブとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No. 144-149]
The treatment solution uses a mixed aqueous solution of 0.1M niobium chloride and ammonium hydrogen fluoride with a molar ratio of niobium ions to fluoride ions of 1: 6, and the pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.150〜153]
処理液は、ニオブイオンとフッ素イオンのモル比が1:6の0.1M塩化ニオブとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを4、5、6、7に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化を行った。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.150-153]
The treatment solution was a mixed aqueous solution of 0.1M niobium chloride and ammonium hydrogen fluoride with a molar ratio of niobium ions to fluoride ions of 1: 6, and the pH was adjusted to 4, 5, 6, 7 with hydrofluoric acid or aqueous ammonia. . The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. Anodization was performed. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.154〜156]
処理液は、ニオブイオンとフッ素イオンのモル比が1:6の0.1M塩化ニオブとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを5に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、約300℃で熱処理した。熱処理雰囲気を真空中、窒素中、窒素1%未満含む真空中とした。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.154-156]
The treatment solution was a mixed aqueous solution of 0.1M niobium chloride and ammonium hydrogen fluoride having a molar ratio of niobium ions to fluoride ions of 1: 6, and the pH was adjusted to 5 with hydrofluoric acid or aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. The heat treatment atmosphere was vacuum, nitrogen, and vacuum containing less than 1% nitrogen. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.157、158]
処理液は、ニオブイオンとフッ素イオンのモル比が1:6の0.1M塩化ニオブとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを6、7に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.157, 158]
The treatment solution was a mixed aqueous solution of 0.1M niobium chloride and ammonium hydrogen fluoride having a molar ratio of niobium ions to fluoride ions of 1: 6, and the pH was adjusted to 6 and 7 with hydrofluoric acid and aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.159〜164]
処理液は、ニオブイオンとフッ素イオンのモル比が1:6の0.1M塩化ニオブとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを4、5、6に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中で約90℃、約450℃でそれぞれ熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.159 ~ 164]
The treatment solution was a mixed aqueous solution of 0.1M niobium chloride and ammonium hydrogen fluoride having a molar ratio of niobium ions to fluoride ions of 1: 6, and the pH was adjusted to 4, 5, and 6 with hydrofluoric acid or aqueous ammonia. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 90 ° C. and about 450 ° C. in vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.165〜170]
処理液は、ニオブイオンとフッ素イオンのモル比が1:7の0.1M塩化ニオブとフッ化水素アンモニウムの混合水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.165-170]
The treatment solution uses a mixed aqueous solution of 0.1M niobium chloride and ammonium hydrogen fluoride with a molar ratio of niobium ions to fluoride ions of 1: 7, and the pH is 3, 4, 5, 6, 7, with hydrofluoric acid or ammonia water. Adjusted to 8. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.171〜176]
処理液は、0.1Mヘキサフルオロニオブ酸水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment Nos. 171-176]
The treatment solution was a 0.1 M hexafluoroniobic acid aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, and 8 with hydrofluoric acid or ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

[実験No.177〜182]
処理液は、0.1Mヘキサフルオロニオブ酸カリウム水溶液を用い、フッ酸やアンモニア水でpHを3、4、5、6、7、8に調整した。成膜は、室温で5分間浸漬することで行い、成膜後、水洗し、風乾した。アノード酸化後、真空中、約300℃で熱処理した。被膜中のフッ素量についてはX線光電子分光法により測定し、0.1〜60原子%であることを確認した。
[Experiment No.177 ~ 182]
The treatment liquid used was a 0.1M potassium hexafluoroniobate aqueous solution, and the pH was adjusted to 3, 4, 5, 6, 7, and 8 with hydrofluoric acid or ammonia water. The film formation was performed by immersing for 5 minutes at room temperature. After film formation, the film was washed with water and air-dried. After the anodic oxidation, heat treatment was performed at about 300 ° C. in a vacuum. The amount of fluorine in the coating was measured by X-ray photoelectron spectroscopy and confirmed to be 0.1 to 60 atomic%.

Figure 2006041030
Figure 2006041030

Figure 2006041030
Figure 2006041030

いずれの場合でも、本発明の電極箔は、比較材に比して優れた特性を示し、その効果が確認された。   In any case, the electrode foil of the present invention showed excellent characteristics as compared with the comparative material, and the effect was confirmed.

Claims (20)

アルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜を少なくとも有するアルミニウム箔であることを特徴とするコンデンサ用電極箔。   An electrode foil for a capacitor, which is an aluminum foil having at least a fluorine-containing film mainly composed of a metal oxide composed of a valve metal excluding aluminum. 酸化アルミニウムを主成分とする被膜と、アルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜とを少なくとも有するアルミニウム箔であることを特徴とするコンデンサ用電極箔。   An electrode foil for a capacitor comprising an aluminum foil having at least a film mainly composed of aluminum oxide and a film containing fluorine mainly composed of a metal oxide composed of a valve action metal excluding aluminum. . 酸化アルミニウムを主成分とする被膜と、アルミニウムとアルミニウムを除く弁作用金属の複合酸化物又は混合酸化物の一方又は両方を主成分とするフッ素を含んだ被膜と、アルミニウムを除く弁作用金属で構成される金属酸化物を主成分とするフッ素を含んだ被膜とを少なくとも有するアルミニウム箔であることを特徴とするコンデンサ用電極箔。   Consists of a film mainly composed of aluminum oxide, a film containing fluorine mainly composed of one or both of a composite oxide or mixed oxide of valve action metal excluding aluminum and aluminum, and a valve action metal excluding aluminum. An electrode foil for capacitors, characterized in that it is an aluminum foil having at least a coating film containing fluorine and containing a metal oxide as a main component. アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を含む処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成してなることを特徴とするコンデンサ用電極箔。   From an aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and fluorine ions, or from a fluorine having a molar ratio of 6 times or more to the valve action metal excluding aluminum and the metal An electrode foil for a capacitor, wherein an aluminum foil is brought into contact with a treatment solution containing one or both of an aqueous solution containing complex ions to form a metal oxide film on the surface of the foil. アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を含む処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成後、陽極酸化処理してなることを特徴とするコンデンサ用電極箔。   From an aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and fluorine ions, or from a fluorine having a molar ratio of 6 times or more to the valve action metal excluding aluminum and the metal An electrode foil for a capacitor, wherein an aluminum foil is brought into contact with a treatment solution containing one or both of an aqueous solution containing complex ions to form a metal oxide film on the surface of the foil, and then anodized. . アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を含む処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成後、陽極酸化処理及び熱処理してなることを特徴とするコンデンサ用電極箔。   From an aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and fluorine ions, or from a fluorine having a molar ratio of 6 times or more to the valve action metal excluding aluminum and the metal An aluminum foil is brought into contact with a treatment solution containing one or both of an aqueous solution containing complex ions, a metal oxide film is formed on the surface of the foil, and then anodized and heat-treated. Electrode foil. 前記処理液のpHが4〜7である請求項4〜6のいずれかに記載のコンデンサ用電極箔。   The capacitor electrode foil according to any one of claims 4 to 6, wherein the pH of the treatment liquid is 4 to 7. 前記熱処理温度が400℃以下である請求項6記載のコンデンサ用電極箔。   7. The capacitor electrode foil according to claim 6, wherein the heat treatment temperature is 400 ° C. or lower. 前記弁作用金属が、チタン、タンタル、ニオブの1種以上である請求項1〜6のいずれかに記載のコンデンサ用電極箔。   7. The capacitor electrode foil according to claim 1, wherein the valve metal is one or more of titanium, tantalum, and niobium. 前記弁作用金属がチタンであることを特徴とする請求項1〜6のいずれかに記載のコンデンサ用電極箔。   The capacitor electrode foil according to claim 1, wherein the valve metal is titanium. 前記アルミニウム箔がエッチングされたアルミニウム箔である請求項1〜6のいずれかに記載のコンデンサ用電極箔。   The capacitor electrode foil according to claim 1, wherein the aluminum foil is an etched aluminum foil. 請求項1〜11のいずれかに記載のコンデンサ用電極箔を構成部品とするコンデンサ。   The capacitor | condenser which uses the electrode foil for capacitors in any one of Claims 1-11 as a component. アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を主成分とする処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成することを特徴とするコンデンサ用電極箔の製造方法。   From an aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and fluorine ions, or from a fluorine having a molar ratio of 6 times or more to the valve action metal excluding aluminum and the metal A method for producing an electrode foil for a capacitor, comprising: contacting an aluminum foil with a treatment liquid mainly comprising one or both of an aqueous solution containing complex ions to form a metal oxide film on the surface of the foil. アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を主成分とする処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成後、陽極酸化処理することを特徴とするコンデンサ用電極箔の製造方法。   From an aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and fluorine ions, or from a fluorine having a molar ratio of 6 times or more to the valve action metal excluding aluminum and the metal An electrode for a capacitor, characterized in that an aluminum foil is brought into contact with a treatment liquid mainly comprising one or both of an aqueous solution containing complex ions, and a metal oxide film is formed on the surface of the foil and then anodized. Foil manufacturing method. アルミニウムを除く弁作用金属イオンと該イオンに対して6倍以上のモル比のフッ素イオンが共存する水溶液、又は、アルミニウムを除く弁作用金属と該金属に対して6倍以上のモル比のフッ素からなる錯イオンを含む水溶液の一方又は両方を主成分とする処理液に、アルミニウム箔を接触させて、該箔表面に金属酸化物被膜を形成後、陽極酸化処理し、さらに熱処理することを特徴とするコンデンサ用電極箔の製造方法。   From an aqueous solution in which a fluorine ion having a molar ratio of 6 times or more with respect to the valve action metal ion excluding aluminum and fluorine ions, or from a fluorine having a molar ratio of 6 times or more to the valve action metal excluding aluminum and the metal An aluminum foil is brought into contact with a treatment liquid mainly comprising one or both of an aqueous solution containing complex ions, and a metal oxide film is formed on the surface of the foil, followed by anodization and further heat treatment. A method of manufacturing a capacitor electrode foil. 前記処理液のpHが4〜7である請求項13〜15のいずれかに記載のコンデンサ用電極箔の製造方法。   The method for producing an electrode foil for a capacitor according to any one of claims 13 to 15, wherein the pH of the treatment liquid is 4 to 7. 前記熱処理温度が400℃以下である請求項15記載のコンデンサ用電極箔の製造方法。   16. The method for producing a capacitor electrode foil according to claim 15, wherein the heat treatment temperature is 400 ° C. or lower. 前記弁作用金属が、チタン、タンタル、ニオブの1種以上である請求項13〜15のいずれかに記載のコンデンサ用電極箔の製造方法。   16. The method for producing a capacitor electrode foil according to claim 13, wherein the valve metal is at least one of titanium, tantalum, and niobium. 前記弁作用金属がチタンである請求項13〜15のいずれかに記載のコンデンサ用電極箔の製造方法。   16. The method for producing a capacitor electrode foil according to claim 13, wherein the valve metal is titanium. 前記アルミニウム箔がエッチングされたアルミニウム箔である請求項13〜15のいずれかに記載のコンデンサ用電極箔の製造方法。   16. The method for producing a capacitor electrode foil according to claim 13, wherein the aluminum foil is an etched aluminum foil.
JP2004215911A 2004-07-23 2004-07-23 Electrode foil for capacitor and manufacturing method thereof Pending JP2006041030A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2004215911A JP2006041030A (en) 2004-07-23 2004-07-23 Electrode foil for capacitor and manufacturing method thereof
PCT/JP2005/012520 WO2006008970A1 (en) 2004-07-23 2005-06-30 Electrode foil for capacitor and method for producing same
TW94123197A TWI282103B (en) 2004-07-23 2005-07-08 An electrode foil used in condenser and a method of producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004215911A JP2006041030A (en) 2004-07-23 2004-07-23 Electrode foil for capacitor and manufacturing method thereof

Publications (1)

Publication Number Publication Date
JP2006041030A true JP2006041030A (en) 2006-02-09

Family

ID=35785089

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004215911A Pending JP2006041030A (en) 2004-07-23 2004-07-23 Electrode foil for capacitor and manufacturing method thereof

Country Status (3)

Country Link
JP (1) JP2006041030A (en)
TW (1) TWI282103B (en)
WO (1) WO2006008970A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008034566A (en) * 2006-07-27 2008-02-14 Sanyo Electric Co Ltd Method for manufacturing electrolytic capacitor
JP2008172186A (en) * 2006-03-29 2008-07-24 Matsushita Electric Ind Co Ltd Manufacturing method of electrode foil
JP2008172185A (en) * 2006-03-29 2008-07-24 Matsushita Electric Ind Co Ltd Electrolytic capacitor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6981348B2 (en) * 2018-04-13 2021-12-15 トヨタ自動車株式会社 Manufacturing method of positive electrode, non-aqueous electrolyte secondary battery, and positive electrode
CN114446667B (en) * 2022-01-17 2023-09-08 南通海星电子股份有限公司 Preparation method of high dielectric constant electrode foil

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055796A (en) * 2001-08-09 2003-02-26 Showa Denko Kk Aluminum material, production method therefor, photosensitive body for electrophotography and aluminum material for electrolytic capacitor electrode
JP2003257796A (en) * 2002-03-06 2003-09-12 Japan Carlit Co Ltd:The Aluminum anode foil for electrolytic capacitor

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3352798B2 (en) * 1993-12-15 2002-12-03 三菱アルミニウム株式会社 Aluminum electrolytic capacitor anode foil

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003055796A (en) * 2001-08-09 2003-02-26 Showa Denko Kk Aluminum material, production method therefor, photosensitive body for electrophotography and aluminum material for electrolytic capacitor electrode
JP2003257796A (en) * 2002-03-06 2003-09-12 Japan Carlit Co Ltd:The Aluminum anode foil for electrolytic capacitor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008172186A (en) * 2006-03-29 2008-07-24 Matsushita Electric Ind Co Ltd Manufacturing method of electrode foil
JP2008172185A (en) * 2006-03-29 2008-07-24 Matsushita Electric Ind Co Ltd Electrolytic capacitor
JP2008034566A (en) * 2006-07-27 2008-02-14 Sanyo Electric Co Ltd Method for manufacturing electrolytic capacitor

Also Published As

Publication number Publication date
TWI282103B (en) 2007-06-01
TW200606971A (en) 2006-02-16
WO2006008970A1 (en) 2006-01-26

Similar Documents

Publication Publication Date Title
JP4275187B2 (en) Electrolytic capacitor
US20060076243A1 (en) Electrode foil for electrolytic capacitor and method for manufacturing the same
RU2660793C2 (en) Method for producing surface-treated metal titanium material or titanium alloy material and surface-treated material
CN101191224A (en) Manufacturing method of anode foil for aluminum electrolytic capacitor
JP2745875B2 (en) Cathode materials for electrolytic capacitors
JP4879040B2 (en) Solid electrolytic capacitor
CN107354498A (en) A kind of manufacture method of the electrode foil for aluminum electrolytic capacitors of high pressure high power capacity
JP5816794B2 (en) Manufacturing method of electrode foil
WO2006008970A1 (en) Electrode foil for capacitor and method for producing same
US7144768B2 (en) Fabrication of titanium and titanium alloy anode for dielectric and insulated films
JP3106559B2 (en) Method for producing base material having metal oxide on surface
JP2015115475A (en) Electrode foil, electrolytic capacitor and manufacturing method of electrode foil
JP4844973B2 (en) Manufacturing method of electrode foil
JPH04206619A (en) Electrode foil for aluminum electrolytic capacitor and manufacture thereof
JP4454526B2 (en) Solid electrolytic capacitor and manufacturing method thereof
JP2006310493A (en) Electrode foil for capacitor
JP2007059499A (en) Manufacturing method of aluminum electrode foil for electrolytic capacitor
JP4835488B2 (en) Electrolytic capacitor and electrolytic capacitor manufacturing method
JP3976534B2 (en) Anode foil for aluminum electrolytic capacitor and chemical conversion method thereof
JP2008112877A (en) Manufacturing method of electrode foil for electrolytic capacitor
JP2007305776A (en) Capacitor and electrode foil therefor
JP4867462B2 (en) Aluminum electrolytic capacitor and cathode foil for aluminum electrolytic capacitor
JP2004146805A (en) Electrolytic capacitor and manufacturing method therefor
JP2006310494A (en) Electrode foil for capacitor
JP4753809B2 (en) Electrolytic capacitor manufacturing method

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Effective date: 20061019

Free format text: JAPANESE INTERMEDIATE CODE: A712

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070618

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070725

A131 Notification of reasons for refusal

Effective date: 20100309

Free format text: JAPANESE INTERMEDIATE CODE: A131

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100706