JP2006040543A - Electrode additive used in battery or capacitor - Google Patents

Electrode additive used in battery or capacitor Download PDF

Info

Publication number
JP2006040543A
JP2006040543A JP2001039542A JP2001039542A JP2006040543A JP 2006040543 A JP2006040543 A JP 2006040543A JP 2001039542 A JP2001039542 A JP 2001039542A JP 2001039542 A JP2001039542 A JP 2001039542A JP 2006040543 A JP2006040543 A JP 2006040543A
Authority
JP
Japan
Prior art keywords
electrode
aqueous dispersion
fine particles
fluoropolymer
surfactant
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2001039542A
Other languages
Japanese (ja)
Inventor
Michio Asano
道男 浅野
Kenji Ichikawa
賢治 市川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daikin Industries Ltd
Original Assignee
Daikin Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daikin Industries Ltd filed Critical Daikin Industries Ltd
Priority to JP2001039542A priority Critical patent/JP2006040543A/en
Priority to PCT/JP2001/007636 priority patent/WO2002021618A1/en
Publication of JP2006040543A publication Critical patent/JP2006040543A/en
Pending legal-status Critical Current

Links

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L27/00Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers
    • C08L27/02Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment
    • C08L27/12Compositions of homopolymers or copolymers of compounds having one or more unsaturated aliphatic radicals, each having only one carbon-to-carbon double bond, and at least one being terminated by a halogen; Compositions of derivatives of such polymers not modified by chemical after-treatment containing fluorine atoms
    • C08L27/18Homopolymers or copolymers or tetrafluoroethene
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01GCAPACITORS; CAPACITORS, RECTIFIERS, DETECTORS, SWITCHING DEVICES, LIGHT-SENSITIVE OR TEMPERATURE-SENSITIVE DEVICES OF THE ELECTROLYTIC TYPE
    • H01G11/00Hybrid capacitors, i.e. capacitors having different positive and negative electrodes; Electric double-layer [EDL] capacitors; Processes for the manufacture thereof or of parts thereof
    • H01G11/22Electrodes
    • H01G11/30Electrodes characterised by their material
    • H01G11/32Carbon-based
    • H01G11/38Carbon pastes or blends; Binders or additives therein
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • H01M4/621Binders
    • H01M4/622Binders being polymers
    • H01M4/623Binders being polymers fluorinated polymers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Engineering & Computer Science (AREA)
  • Chemical & Material Sciences (AREA)
  • Power Engineering (AREA)
  • Microelectronics & Electronic Packaging (AREA)
  • Materials Engineering (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Polymers & Plastics (AREA)
  • Organic Chemistry (AREA)
  • Medicinal Chemistry (AREA)
  • Health & Medical Sciences (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Electric Double-Layer Capacitors Or The Like (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an electrode additive, from which a paste for electrode good in dispersing can be made without an increase in viscosity of the paste accompanying fiberization of polytetrafluoroethylene, and which helps excellent properties of batteries and capacitors. <P>SOLUTION: The electrode additive comprises an aqueous dispersion of polytetrafluoroethylene particles, where when the polytetrafluoroethylene particles are subjected to emulsion polymerization, a polymerization emulsifier is used, a dispersion stabilizer is added as necessary after the polymerization, but any of the polymerization emulsifier and the dispersion stabilizer is not a nonionic surfactant or does not include the nonionic surfactant practically. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、電池またはキャパシタの電極を作製する際に用いる電極用添加剤、より詳しくは、電極用合剤を結着するため、あるいは電極表面を撥水性にするために、電極用組成物に配合して用いる電極用添加剤に関する。
【0002】
【従来の技術】
近年の電池、たとえば、二酸化マンガン、水酸化ニッケル、水素吸蔵合金、コバルト酸リチウム、マンガン酸リチウム、ニッケル酸リチウムなどの電極用活物質、カーボン、グラファイトなどの導電剤を使用した一次、二次電池用の電極を製造する際、これら電極用合剤を結着させるための材料として、含フッ素ポリマーが広く使用されている。具体的には、ポリテトラフルオロエチレン(PTFE)やポリビニリデンフルオライド(PVdF)、ビニリデンフルオライドとヘキサフルオロプロピレンとの共重合体(VdF系共重合体)等の含フッ素ポリマーが使用されているが、中でも、PTFEは、パーフルオロ構造による良好な耐酸化性、327℃という含フッ素ポリマーの中でも最高の融点を持つことによる高耐熱性などの特性を有するため、好ましく使用されている。このPTFEは、前記耐酸化性、高耐熱性を有するだけでなく、電池特性の面においても、電極用結着剤として用いた場合には、PVdF、VdF系共重合体等の有機溶剤溶液を用いた場合と比較して、放電性能において、特に負荷特性に優れているという利点を有する。その理由は、PTFEを含む電極用組成物を用いて電極を製造する際、特に電極板を圧延する際に、PTFE独特の性質である繊維化(フィブリル化)が起こり、PTFEの繊維が三次元網目構造を形成する。そのため、電極用合剤を結着しながら、反応面である電極用活物質の表面を覆う割合が少ないためと言われている。これに対して、PVdF、VdF系共重合体等の含フッ素ポリマーの有機溶剤溶液を用いた場合、PVdFやVdF系共重合体が電極用活物質の表面を覆う割合が多くなると言われている(特開平9-139199号公報)。
また、二次電池の補助用として、活性炭電極と電解液との界面電気二重層に蓄積される電荷を利用した容量の大きなコンデンサが広く使用されており、このコンデンサは電気化学キャパシタ(以下、単にキャパシタという。)と呼ばれているが、近年、1A以上の電流の短時間バックアップ用途や電気エネルギー貯蔵デバイス用途として注目されている。このキャパシタの電極を製造する際には、電気二重層キャパシタの例で言うと、電極用結着剤として、PTFEやPVdF等の使用例が紹介されている。その電極用組成物の製法としては、乾式混合、湿式混合共に数多く紹介されているが(特開昭50-44462号公報、特開平11-283887号公報、特開平8-55761号公報、特開平11-154629号公報など)、このキャパシタの電極用結着剤としてもPTFEが好ましく使用されている。その理由は、先に説明した電池の場合と同様に、耐酸化性、高耐熱性、繊維化による効果的なバインダー力を有するためである。しかし、その使用方法としては、PTFE粒子を有機溶剤に分散させた有機溶剤分散液、すなわちPTFEオルガノゾルとして使用する形態が知られているにすぎない(特開平11-329904号公報)。
一方、テトラフルオロエチレンを水性媒質中で乳化重合することにより合成されるPTFEの微粒子の水性分散体は、ポリスチレンなどの炭化水素系ポリマーと比較して、高撥水性、高比重のために、通常の重合後の状態で放置しておくと、PTFEの微粒子が沈降しやすく、保存安定性に劣ることが知られている。そのため、これまで一般的に、乳化重合により得られるPTFEの微粒子の水性分散体をそのままの状態で市販することはなく、安定化させて市販されている。具体的には、PTFEの微粒子の水性分散体を、ポリオキシエチレンフェニルエーテルなどの非イオン系界面活性剤、たとえばC81764O(C24O)10H であるユニオンカーバイド社製トライトンX100(商標)を用いて安定化させた後、電気濃縮法や相分離法などにより、ポリマー固形分濃度を40〜65重量%に濃縮させて市販されている。この際に用いられる非イオン系界面活性剤の適正量は、ポリマー固形分重量に対して、4〜12重量%であるのが好ましいとされている。4重量%未満の場合には、保存安定性が低下することが知られている(特開平11-240993号公報参照)。
【0003】
したがって、かかる市販されているPTFEの微粒子の水性分散体をそのまま前記した電極用添加剤として用いると、本来の電池特性、特にキャパシタなどの充放電性能を繰り返し要求される電極用添加剤の用途においては、安定化させる際の界面活性剤が最終製品である電極中に残留し、内部抵抗を増大させたり、サイクル特性を劣化させたりすることにつながるため好ましいことではない。つまり、電池特性の面からは、PTFEの微粒子の水性分散体を、電極用添加剤として用いる場合には、界面活性剤を添加しない方が好ましい。しかし、前記したように、非イオン系界面活性剤で安定化されていないPTFEの微粒子の水性分散体は、分散安定性に劣ることから、市販される際の輸送時に分散した微粒子の凝集体を生成する危険性があること等を主な理由として、以前からほとんど市販されていない状況である。そして、このような水性分散体を電極用添加剤として用いることが記載された文献も、本発明者らの知る限りにおいて見当たらない。
【0004】
【発明が解決しようとする課題】
本発明は、本来の電極特性、特に電池及びキャパシタなどの充放電性能を繰り返し要求される用途に適した電極用添加剤を提供することを目的とする。
【0005】
【課題を解決するための手段】
本発明者らは、かかる電極用添加剤を得るために、従来、容易に凝集するため好ましくないとされていたPTFEを乳化重合して得られた水性分散体を、濃縮や安定化させることなく、すなわち、PTFEの微粒子を含む水性分散体に添加する非イオン系界面活性剤の添加量をできる限り少なくし、好ましくは全く添加することなく、そのままの状態で電極用合剤と混合して用いると、意外にも、電極用合剤と容易に均一に混合できることを見出し、しかも得られる電極は、その特性に優れたものとなることを見出した。
【0006】
また、本発明者らは、PTFEの分散安定性が問題になるとき、従来用いられていた非イオン系界面活性剤に代えて、アニオン系界面活性剤を用いれば、問題が解決されることを見出した。
【0007】
【発明の実施の形態】
本発明において用いるテトラフルオロエチレン重合体には、テトラフルオロエチレンを水性媒質中で乳化重合してなるPTFEだけでなく、少量の他の共単量体を共重合させて変性した変性ポリテトラフルオロエチレン(変性PTFE)も包含される。この共単量体としては、ヘキサフルオロプロピレン、クロロトリフルオロエチレン、パーフルオロ(アルキルビニルエーテル)、パーフルオロ(アルコキシビニルエーテル)、トリフルオロエチレン、パーフルオロアルキルエチレンなどが挙げられる。共単量体の共重合割合はその種類によって異なるが、変性PTFEを他の粉末材料と混合したときに、変性PTFEがフィブリル化を起こす程度の量である。
本発明に係る含フッ素ポリマーの微粒子の水性分散体は、PTFE単独の水性分散体が好ましいが、本発明の効果を損なわない範囲で、他の含フッ素ポリマーの水性分散体とブレンドして用いて良い。ブレンドすることができる含フッ素ポリマーとしては、テトラフルオロエチレン/ヘキサフルオロプロピレン共重合体(FEP)、ポリビニリデンフルオライド(PVdF)、ビニリデンフルオライド/ヘキサフルオロプロピレン共重合体(P(VdFHFP))、ビニリデンフルオライド/テトラフルオロエチレン共重合体(P(VdF/TFE))、ビニリデンフルオライド/ヘキサフルオロプロピレン/テトラフルオロエチレン共重合体(P(VdF/HFP/TFE))、テトラフルオロエチレン/パーフルオロ(アルキルビニルエーテル)共重合体(PFA)、ビニリデンフルオライド/テトラフルオロエチレン/パーフルオロメチルビニルエーテル共重合体(P(VdF/TFE/PMVE))、ビニリデンフルオライド/テトラフルオロエチレン/クロロトリフルオロエチレン共重合体(P(VdF/TFE/CTFE))、ビニリデンフルオライド/テトラフルオロエチレン/パーフルオロプロピルビニルエーテル共重合体(P(VdF/TFE/PPVE))、その他公知の含フッ素セグメント化ポリマー(含フッ素エラストマー性ポリマー鎖セグメントと含フッ素非エラストマー性ポリマー鎖セグメントとをブロックまたはグラフト重合してなる含フッ素ポリマー)などが挙げられる。
ブレンドする場合のPTFE含有量は、全含フッ素ポリマーに対して、20重量%以上、好ましくは、40重量%以上であってよい。
【0008】
含フッ素ポリマーの微粒子は、フィブリル形成性で平均粒径が0.05〜1μm、好ましくは0.1〜0.5 μm、特に0.1〜0.35μmであるテトラフルオロエチレン重合体の微粒子が特に好ましい。
【0009】
本発明に係る含フッ素ポリマーの微粒子の水性分散体は、対応する含フッ素モノマーを用いて、乳化重合法により製造したものである。含フッ素ポリマーを乳化重合で製造するに際し、重合乳化剤として、含フッ素界面活性剤を、たとえば、ポリマー重量に対して0.05〜0.8重量%程度、通常、0.1〜0.6重量%程度使用することができる。乳化重合時に含フッ素界面活性剤を使用した場合には、重合後に分散安定化のために含フッ素界面活性剤を追加する必要がない場合はあるが、必要に応じて、さらに含フッ素界面活性剤を添加してもよい。
本発明に係る含フッ素ポリマーの微粒子の水性分散体に使用する界面活性剤は、通常市販されている界面活性剤であれば、単独もしくは2種類以上をブレンドして使用してもよい。
【0010】
用いることができる含フッ素界面活性剤としては、フルオロアルキル基、特にパーフルオロアルキル基、またはクロロフルオロアルキル基、特にパークロロフルオロアルキル基を有する含フッ素カルボン酸系、または、含フッ素スルホン酸系などのアニオン系界面活性剤が好ましく例示される。
【0011】
代表的な化合物としては、式(2):
X―(CF2CF2)n(CH2)m―A (2)
または式(3):
X―(CF2CFCl)n(CH2)m―A (3)
(式中、Xは水素原子、フッ素原子、または塩素原子、nは3〜10の整数、mは0または1〜4の整数、Aはカルボキシル基、スルホン酸基、またはそれらのアルカリ金属もしくはアンモニウム塩を示す。)で表される化合物を挙げることができる。
【0012】
市販品としては、例えば、パーフルオロオクタン酸アンモニウムの水溶液であるダイキン工業株式会社製のユニダインDS101(商標)を挙げることができる。
【0013】
本発明においては、含フッ素ポリマーの重合時に使用される重合乳化剤、または重合後に必要に応じて添加される分散安定剤のいずれもが、非イオン系界面活性剤でないか、または実質的に非イオン界面活性剤を含まないことが重要である。ここで、「実質的に非イオン界面活性剤を含まない」とは、非イオン系界面活性剤の水性分散体への全添加量が、含フッ素ポリマーの固形分重量に対して、1重量%未満であることを意味する。水性分散体中に含まれる含フッ素界面活性剤の量にもよるが、非イオン性界面活性剤を分散安定化に必要とされる量(4〜12重量%)未満の水性分散体を電池及びキャパシタ電極材料の結着材として添加すると、電極ペーストが増粘をはじめるもしくは凝集する傾向があるので、好ましくは、0.5重量%未満、より好ましくは0.1重量%未満とするのがよい。なお、分散安定化に必要とされる量未満で添加する場合、PTFE微粒子が凝集する傾向は、意外にも全く添加しない場合が最もよい。
【0014】
このような非イオン性界面活性剤としては、ポリオキシエチレンアルキルエーテル類、高級アルコール硫酸エステル塩、具体的には、ポリオキシエチレンアルキルフェニルエーテル(ユニオンカーバイド社製:TX−100)、ポリオキシエチレンイソトリデシルエーテル(日本油脂株式会社製:ディスパノールTOC)、ポリオキシエチレンオキシプロピレントリデシルエーテル、ポリオキシエチレノキシプロピレントリデシルエーテルなどのポリオキシエチレン脂肪酸エステル類、ソルビタン脂肪酸エステル類、グリセリンエステル類、ポリオキシエチレンポリオキシプロピレンプロックポリマー(日本油脂株式会社製:プロノン104)などがある。
【0015】
重合乳化剤または分散安定剤として使用できるアニオン界面活性剤としては、高級アルコール硫酸エステル塩、具体的には、ラウリル硫酸ナトリウムが例示でき、両性界面活性剤としては、アミンオキサイド系であるジヒドロキシエチルアルキルアミンオキシド、ジメチルアルキルアミンオキシド、ジメチルアルキルエトキシアミンオキシドがある。市販品としては、例えば、日本油脂株式会社製のジメチルラウリルエトキシアミンオキシド(ユニセーフA-LY)などがある。
【0016】
分散安定剤として、含フッ素界面活性剤を添加する場合には、非フッ素界面活性剤を併用することもできる。この場合、界面活性剤中に含まれる含フッ素界面活性剤の比率は、50重量%以上、好ましくは70重量%以上、より好ましくは90重量%以上であるのが良い。
【0017】
水性分散体に含まれる界面活性剤の全添加量は、含フッ素ポリマー重量に対して0.05〜25重量%程度、好ましくは0.1〜7重量%程度、より好ましくは0.1〜2重量%程度、特に0.1〜1重量%程度である。
【0018】
また、分散安定剤として、水溶性高分子の水性分散体を使用することもできる。合成系のものとしては、(メタ)アクリル酸重合体、ポリアクリル酸塩(ナトリウム塩、カリウム塩、アンモニウム塩など)、ポリアクリルアミド、カルボキシル化スチレンブタジエン重合体、カルボキシル化ビニル重合体、ビニルメチルエーテル/無水マレイン酸共重合体、ポリビニルアルコール(PVA)、ポリエチレンオキサイド(PEO)、その他無機系増粘剤などがある。天然系のものとしては、グアーガム、キサンガム、アルギン酸塩、カゼイン、ゼラチン及びその誘導体、セルロース系誘導体などがある。これらの中でも、セルロース系誘導体が好ましい。
【0019】
セルロース系誘導体としては、CMC(カルボキシメチルセルロースナトリウム塩、カルボキシメチルセルロースカリウム塩、カルボキシメチルセルロースアンモニウム塩)、カルボキシメチルセルロースグリコレート、セルロースガム、MC(メチルセルロース)、EC(エチルセルロース)、HEC(ヒドロキシエチルセルロース)、EMC(エチルメチルセルロース)、HEEC(ヒドロキシエチルエチルセルロース)、HEMC(ヒドロキシエチルメチルセルロース)、HEPC(ヒドロキシエチルプロピルセルロース)、HECMC(ヒドロキシエチルカルボキシメチルセルロース)、セルロースエタンスルホン酸ナトリウム塩、シアノエチルセルロース、ビンジルセルロースなどが挙げられる。
これら分散安定剤としての水溶性高分子の水性分散体への全添加量は、含フッ素ポリマーの固形分重量に対して、0.01〜25重量%、好ましくは、0.1〜7重量%、より好ましくは0.1〜2重量%である。
【0020】
なお、これら水溶性高分子は、必要に応じて、2種以上を併用しても良い。
【0021】
本発明に係る電極用添加剤は結着剤として用いることができるが、結着する電池の電極用合剤としては、たとえば、コバルト、ニッケル、マンガン、リチウムなどの酸化物もしくは水酸化物または水素吸蔵合金などの電極(正極または負極)活物質、カーボン(黒鉛、アセチレンブラックなど)等の導電剤が例示され、キャパシタの電極用合剤としては、カーボン(活性炭、アセチレンブラックなど)が例示される。
【0022】
なお、本発明に係る電極用添加剤は、電池の電極用撥水剤としても有用である。
本発明の電極用添加剤中の固形分重量は、20〜60重量%程度、好ましくは20〜40重量%である。電極用添加剤は、乳化重合で製造した含フッ素ポリマーの水性分散体(通常固形分は20〜40重量%程度)をそのままあるいは膜分離法などにより水を除去して濃縮し、必要に応じて界面活性剤を所定量添加することにより製造することができる。
【0023】
本発明に係る電極用添加剤は、激しく振とうしたり、衝撃を継続的に与えたりすると、含まれるPTFEがフィブリル化し、PTFEを含む含フッ素ポリマーの微粒子が凝集して沈殿することがある。したがって、含フッ素ポリマーの水性分散体からなる電池用添加剤を製造後に容器に充填して保存、あるいは輸送する場合、密閉容器中にできるだけ多く水性分散体を充填し、容器中の空間の割合を低く抑えるのが好ましい。空間の割合は、好ましくは5容量%以下、より好ましくは1容量%以下である。このように非充填空間の割合が少ないと、電極用添加剤である水性分散体の波立つ程度が少なくなり、振とう、あるいは衝撃を与えた場合にも、PTFEの凝集、沈殿を効果的に防止することができる。
また、電池用添加剤を密閉容器に充填する場合、電極用添加剤の水性分散体の容量に対して1容量%以上、好ましくは5〜20容量%程度の水性分散体に対し上層となる、水性分散体より比重の軽い溶剤を加えておくことで、水性分散体部分の衝撃を緩和することができる。このような溶剤としては、トルエン等の芳香族炭化水素、ヘキサン等の脂肪族炭化水素、シクロヘキサン等の脂環式炭化水素等を挙げることができる。溶剤層は使用時には除去する必要があるので、水と一定の割合で混ざる溶媒、たとえば、酢酸エチル、エーテル、ブチルアルコール、テトラヒドロフランなどの溶剤は適当でない。
かかる容器の形状や材質は特に限定されず、電極用添加剤を充填可能な公知の密閉容器が幅広く用いることができる。
【0024】
【発明の効果】
本発明は、含フッ素ポリマーを安定化させるための界面活性剤を極力低減することで、電極用組成物を製造する際にはPTFE微粒子を凝集させることなく電極用合剤と均一に分散させることができ、かつ、電極を製造する際にはPTFE微粒子がフィブリル化して電極用合剤を網目状に覆い、得られる電極には界面活性剤の残留物がほとんどない電極塗膜を作製することができるため、電池の内部抵抗の増大、サイクル特性の劣化などを起こさない良好な電池、キャパシタを作製できる。
【0025】
以下、本発明を実施例に基づいて説明するが、本発明は以下の実施例に限定されるものではない。
【0026】
【実施例】
常法に従い、6リットルステンレス製オートクレーブ中で含フッ素ポリマーの乳化重合を行い、表1に示す含フッ素ポリマーの微粒子の水性分散体を得た。PTFEはTFEの単独重合体、変性PTFEは、HFPを微量共重合したTFE共重合体、FEPは、TFE/HFP=92/8モル%の共重合体である。PTFE、変性PTFE、FEPの水性分散体は、重合乳化剤に由来する界面活性剤として、各々含フッ素ポリマーの固形分重量に対して0.3重量%もしくは2.0重量%のアニオン系界面活性剤C7F15COONH4(ダイキン工業株式会社製ユニダインDS101)を含む。
【0027】
【表1】

Figure 2006040543
【0028】
実施例1〜6及び比較例1〜4
表1に示す3種類の含フッ素ポリマーの水性分散体を用い、界面活性剤の種類や濃度の異なる水性分散体からなる電極用添加剤を用いて、電極用組成物を製造し、さらに、コイン型電池の電極を作製して電池特性を評価した。
【0029】
1%カルボキシメチルセルロース水溶液40重量部に対してコバルト酸リチウム92重量部、人造黒鉛2重量部、アセチレンブラック1重量部を添加し、均一なスラリーとし、これに表1のポリマー固形分濃度30重量%の水性分散体に必要に応じて界面活性剤を添加した後、ポリマー固形分で5重量部をスポイトで滴下させるように徐々に添加して、正極ペーストとした。添加した界面活性剤の種類と濃度、得られたペーストの状態を以下の基準にしたがって評価し、その結果を表2に示す。
【0030】
ペースト状態の評価
◎:塗工するのに適正な粘性に容易に調整可能
○:塗工するのに適正の粘性に調整可能
×:塗工できないほど高粘性になり、粘度調整できない状態
【0031】
【表2】
Figure 2006040543
【0032】
※含フッ素ポリマーの水性分散体の固形分濃度はすべて30重量%とした。
※界面活性剤の種類
DS101 アニオン性界面活性剤(ダイキン工業株式会社製ユニダイン)
SLS ラウリル硫酸ナトリウム(アニオン性の界面活性剤)
TX100 非イオン性界面活性剤(ユニオンカーバイド社製トライトン)
ディスパノールTOC 非イオン性界面活性剤(日本油脂製)
この正極ペーストをアルミニウム箔の表面にドクターブレード法により塗布し、240℃、1時間にて乾燥し、水分を除去して正極板を得た。
なお、負極には黒鉛95重量部に対して、固形分濃度を6重量%に調整したポリビニリデンフルオライドのN-メチル-2-ピロリドン(NMP)溶液を固形分で5重量部となるよう添加して負極ペーストとした。
この負極ペーストを銅箔の表面にドクターブレード法により塗布をし、負極を作製し、150℃、4時間真空乾燥を行い、溶媒を除去して負極板を得た。
【0033】
2016コイン型電池用部品を準備し、あらかじめ同コイン型電池の内径と同様の径に打ち抜いた正極板、負極板、さらにセパレータとしてポリプロピレンを用いた微多孔膜を準備した。
【0034】
電解液としては電解質を1mol・dm-3のLiPF6として、炭酸エチレン(EC)と炭酸エチルメチル(EMC)の1:2体積比混合溶媒を用いて作製した。
以上の部品を用いることにより2016コイン型電池を作製した。
【0035】
作製された電池は内部の幾何面積に対して電流密度が0.5mA・cm-2となるように電流値をセットし、電池電圧が4.2Vから3Vの間で充放電を実施した。この際、初期容量を5サイクル目の容量とし、50サイクル目の容量と比較することで容量の保持率が90%以上になるか、あるいは90%未満になるかにより、電池特性の優劣を評価した。結果を表3に示す。
【0036】
表3記載のように、実施例1〜6に記載のペーストを正極用に使用した電極塗膜の結着性,、及び電池特性は全て良好であった。これに対し、比較例1、2、3に記載のペーストはスラリー粘度が高すぎて均一な電極ができなかったため、また、比較例4に記載のペーストは、塗膜が硬く均一な膜にならなかったために、電池特性の評価は行えなかった。
【0037】
このように、界面活性剤の種類やブレンド比で、電極用ペーストの安定性が異なった理由としては、次のような理由が考えられる。含フッ素ポリマー微粒子がPTFEであるため、界面活性剤の疎水基部分がパーフルオロ基である方が、水中でのPTFE粒子安定化効果が高いためである。
【0038】
【表3】
Figure 2006040543
【0039】
実施例7
界面活性剤の種類及び濃度の異なる含フッ素ポリマー微粒子の水性分散体を結着剤に用いたキャパシタの電極の作製と評価
キャパシタの電極としては、1%カルボキシメチルセルロース40重量部、比表面積が1500m2/gの活性炭を80重量部、アセチレンブラックを10重量部、PTFE微粒子の水性分散体を固形分で10重量部となるような組成にて電極塗膜をドクターブレード法により作成した。
電池用電極の場合と同様に実施例1−6の電極用添加剤については、電極塗膜の作成が可能であり充放電特性についても良好であった。
実施例8〜11及び比較例5
乳化重合により得られたPTFE微粒子の水性分散体(ポリマー固形分30重量%)に、界面活性剤と流動パラフィンを、表4に記載の量となるように、約100ccの密閉容器(ポリビン)中で調整した。その後、振とう機にて180サイクル/分のストロークで10分間振とうさせて、分散安定性を評価した。その結果を表4に併せて示す。
表4から明らかなように、密閉容器中におけるPTFE微粒子の水性分散体の量と密閉容器上部の空間比率が1〜3容量%のもの(実施例8〜11)は、全て凝集せずに安定であった。一方、空間が30容量%のもの(比較例5)はPTFEの微粒子が凝集し、撥水化してPTFEの層と水の層とに分離した。
このように少量の界面活性剤を添加したPTFE微粒子の水性分散体でも振とうによる凝集を抑制できた理由としては、次のように考えられる。
通常、PTFE微粒子の水性分散体の密閉容器への充填量が少なく、容器上部の空間比率が大きいとき、この状態で振とうを行うと、密閉容器内で水性分散体が波立ち、容器の内壁面へのPTFE微粒子の衝突が起こり、微粒子表面に強いせん断力が生じるため、PTFE微粒子がフィブリル化し、凝集を起こす。一方、密閉容器内の空間がほとんどない状態や、水性分散体の表面に衝突を緩和させる別の液相部が存在する場合であると、前者では波立しが少ししか起こらないため容器壁面に激しい衝突が生じないし、後者では更に緩和相が存在しているため更に衝突による衝撃は起こりにくくなる。
【0040】
【表4】
Figure 2006040543
【0041】
※界面活性剤の種類
DS101 アニオン性界面活性剤(ダイキン工業株式会社製ユニダイン)
TX100 非イオン性界面活性剤(ユニオンカーバイド社製トライトン)
TOC 非イオン性界面活性剤(日本油脂株式会社製ディスパノール)
実施例12〜15 比較例6 PTFE微粒子の水性分散体の安定性試験
実施例8〜11と同様に、表1に記載のPTFE微粒子の水性分散体を用い、表5に示す水溶性高分子を添加して分散安定性を評価したところ、振とう後の水性分散体の凝集は起こらなかった。結果を表5に示す。
【0042】
【表5】
Figure 2006040543
【0043】
CMC Na塩:1%B型粘度計 25℃ 1400mPa・s
エーテル化度は0.5〜0.7
CMC NH4塩:1%B型粘度計 25℃ 350mPa・s
エーテル化度は0.5〜0.7
MC : 1%B型粘度計 25℃ 50mPa・s
PEO: 1%B型粘度計 25℃ 1000mPa・s
実施例16
実施例12〜15の水性分散体からなる電極用添加剤を用い、コイン型電池の電極を作製した。
【0044】
1%カルボキシメチルセルロース水溶液35重量部に対してコバルト酸リチウム92重量部、人造黒鉛2重量部、アセチレンブラック1重量部を添加し、均一なスラリーとし、これに実施例12〜15のポリマー固形分濃度30重量%の水性分散体を、ポリマー固形分で5重量部をスポイトで滴下させるように徐々に添加した。さらに、ペースト粘度が塗工適当な粘度になるように、1%カルボキシメチルセルロース水溶液を追加して調節し、正極ペーストが得た。
このようにして得た正極ペーストをアルミニウム箔の表面にドクターブレード法により塗布し、240℃にて、1時間乾燥し、水分を除去することにより、正極板が得られることを確認した。[0001]
BACKGROUND OF THE INVENTION
The present invention relates to an electrode additive for use in preparing a battery or capacitor electrode, more specifically, to bind an electrode mixture or to make the electrode surface water-repellent. The present invention relates to an electrode additive used by blending.
[0002]
[Prior art]
Recent batteries, for example, primary and secondary batteries using electrode active materials such as manganese dioxide, nickel hydroxide, hydrogen storage alloy, lithium cobaltate, lithium manganate, lithium nickelate, and conductive agents such as carbon and graphite Fluorine-containing polymers have been widely used as materials for binding these electrode mixtures when manufacturing electrodes for use. Specifically, fluorine-containing polymers such as polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVdF), and a copolymer of vinylidene fluoride and hexafluoropropylene (VdF copolymer) are used. However, PTFE is preferably used because it has good oxidation resistance due to the perfluoro structure and high heat resistance due to having the highest melting point among fluorinated polymers of 327 ° C. This PTFE not only has the above-mentioned oxidation resistance and high heat resistance, but also in terms of battery characteristics, when used as a binder for an electrode, an organic solvent solution such as PVdF or VdF copolymer is used. Compared to the case where it is used, the discharge performance is particularly excellent in load characteristics. The reason for this is that when an electrode is produced using an electrode composition containing PTFE, particularly when an electrode plate is rolled, fiberization (fibrillation), which is a unique property of PTFE, occurs, and PTFE fibers are three-dimensional. A network structure is formed. Therefore, it is said that the ratio of covering the surface of the active material for electrodes which is a reaction surface is small while binding the electrode mixture. In contrast, when an organic solvent solution of a fluorine-containing polymer such as PVdF or VdF copolymer is used, it is said that the ratio of PVdF or VdF copolymer covering the surface of the electrode active material increases. (Japanese Patent Laid-Open No. 9-139199).
In addition, a large-capacity capacitor using electric charges accumulated in the interface electric double layer between the activated carbon electrode and the electrolyte is widely used as an auxiliary for the secondary battery. This capacitor is an electrochemical capacitor (hereinafter simply referred to as an “electrochemical capacitor”). In recent years, it has attracted attention as a short-time backup application of an electric current of 1 A or more and an electric energy storage device application. When manufacturing the electrode of this capacitor, in the case of an electric double layer capacitor, examples of use of PTFE, PVdF, etc. as an electrode binder have been introduced. A number of methods for producing the electrode composition have been introduced for both dry mixing and wet mixing (Japanese Patent Laid-Open No. 50-44462, Japanese Patent Laid-Open No. 11-283887, Japanese Patent Laid-Open No. 8-55761, Japanese Patent Laid-Open No. No. 11-154629, etc.), and PTFE is also preferably used as a binder for this capacitor electrode. The reason is that, as in the case of the battery described above, it has oxidation resistance, high heat resistance, and an effective binder force due to fiberization. However, as its usage, only an organic solvent dispersion in which PTFE particles are dispersed in an organic solvent, that is, a form used as a PTFE organosol is known (Japanese Patent Laid-Open No. 11-329904).
On the other hand, an aqueous dispersion of PTFE fine particles synthesized by emulsion polymerization of tetrafluoroethylene in an aqueous medium usually has higher water repellency and higher specific gravity than hydrocarbon polymers such as polystyrene. It is known that if the polymer is allowed to stand in the state after the polymerization of PTFE, the PTFE fine particles are liable to settle and have poor storage stability. Therefore, in general, an aqueous dispersion of PTFE fine particles obtained by emulsion polymerization is not commercially available as it is, and is commercially available after being stabilized. Specifically, an aqueous dispersion of PTFE fine particles is mixed with a nonionic surfactant such as polyoxyethylene phenyl ether, such as C8H17C6HFourO (C2HFourO)TenAfter stabilization using Triton X100 (trademark) manufactured by Union Carbide Co., which is H 2, the polymer solid concentration is concentrated to 40 to 65% by weight by an electric concentration method or a phase separation method, and is commercially available. The appropriate amount of the nonionic surfactant used at this time is preferably 4 to 12% by weight based on the weight of the polymer solid content. When it is less than 4% by weight, it is known that the storage stability is lowered (see JP-A-11-240993).
[0003]
Therefore, when such a commercially available aqueous dispersion of PTFE fine particles is used as it is as an additive for electrodes as described above, in the use of an additive for electrodes that are repeatedly required to have original battery characteristics, particularly charge / discharge performance such as a capacitor. Is not preferable because the surfactant during stabilization remains in the final product electrode, leading to an increase in internal resistance and deterioration of cycle characteristics. That is, from the viewpoint of battery characteristics, when an aqueous dispersion of PTFE fine particles is used as an additive for electrodes, it is preferable not to add a surfactant. However, as described above, the aqueous dispersion of PTFE fine particles not stabilized with a nonionic surfactant is inferior in dispersion stability. The main reason is that there is a risk of generation, etc., and the situation is almost never commercially available. And as far as the present inventors know, there is no document describing the use of such an aqueous dispersion as an electrode additive.
[0004]
[Problems to be solved by the invention]
An object of this invention is to provide the additive for electrodes suitable for the use which is repeatedly requested | required of original electrode characteristics, especially charging / discharging performance, such as a battery and a capacitor.
[0005]
[Means for Solving the Problems]
The present inventors have obtained an aqueous dispersion obtained by emulsion polymerization of PTFE, which has conventionally been considered unfavorable because it easily aggregates in order to obtain such an electrode additive, without concentrating or stabilizing the aqueous dispersion. That is, the amount of the nonionic surfactant added to the aqueous dispersion containing the PTFE fine particles is reduced as much as possible, preferably without any addition, and mixed with the electrode mixture as it is. Surprisingly, it was found that it can be easily and uniformly mixed with the electrode mixture, and that the obtained electrode has excellent characteristics.
[0006]
In addition, when the dispersion stability of PTFE becomes a problem, the present inventors can solve the problem by using an anionic surfactant instead of a conventionally used nonionic surfactant. I found it.
[0007]
DETAILED DESCRIPTION OF THE INVENTION
The tetrafluoroethylene polymer used in the present invention includes not only PTFE obtained by emulsion polymerization of tetrafluoroethylene in an aqueous medium, but also modified polytetrafluoroethylene modified by copolymerizing a small amount of other comonomer. (Modified PTFE) is also included. Examples of the comonomer include hexafluoropropylene, chlorotrifluoroethylene, perfluoro (alkyl vinyl ether), perfluoro (alkoxy vinyl ether), trifluoroethylene, and perfluoroalkylethylene. The copolymerization ratio of the comonomer varies depending on the type, but is an amount that causes the fibrillation of the modified PTFE when the modified PTFE is mixed with another powder material.
The aqueous dispersion of fluoropolymer fine particles according to the present invention is preferably an aqueous dispersion of PTFE alone, but it is used in a blend with other fluoropolymer aqueous dispersions as long as the effects of the present invention are not impaired. good. Examples of the fluorine-containing polymer that can be blended include tetrafluoroethylene / hexafluoropropylene copolymer (FEP), polyvinylidene fluoride (PVdF), vinylidene fluoride / hexafluoropropylene copolymer (P (VdFHFP)), Vinylidene fluoride / tetrafluoroethylene copolymer (P (VdF / TFE)), vinylidene fluoride / hexafluoropropylene / tetrafluoroethylene copolymer (P (VdF / HFP / TFE)), tetrafluoroethylene / perfluoro (Alkyl vinyl ether) copolymer (PFA), vinylidene fluoride / tetrafluoroethylene / perfluoromethyl vinyl ether copolymer (P (VdF / TFE / PMVE)), vinylidene fluoride / tetrafluoroethylene / Chlorotrifluoroethylene copolymer (P (VdF / TFE / CTFE)), vinylidene fluoride / tetrafluoroethylene / perfluoropropyl vinyl ether copolymer (P (VdF / TFE / PPVE)), and other known contents Fluorine segmented polymer (fluorinated polymer obtained by block or graft polymerization of a fluorinated elastomeric polymer chain segment and a fluorinated non-elastomeric polymer chain segment) and the like.
The PTFE content in the case of blending may be 20% by weight or more, preferably 40% by weight or more based on the total fluorine-containing polymer.
[0008]
The fluoropolymer fine particles are fibril-forming and have an average particle size of 0.05 to 1 μm, preferably 0.1 to 0.5. Particular preference is given to fine particles of tetrafluoroethylene polymer which are μm, in particular 0.1 to 0.35 μm.
[0009]
The aqueous dispersion of fluoropolymer fine particles according to the present invention is produced by emulsion polymerization using a corresponding fluoromonomer. When producing a fluorine-containing polymer by emulsion polymerization, a fluorine-containing surfactant is used as a polymerization emulsifier, for example, about 0.05 to 0.8% by weight, usually 0.1 to 0.6% by weight based on the polymer weight. % Can be used. When a fluorine-containing surfactant is used during emulsion polymerization, it may not be necessary to add a fluorine-containing surfactant for dispersion stabilization after polymerization, but if necessary, further a fluorine-containing surfactant. May be added.
The surfactant used in the aqueous dispersion of the fluoropolymer fine particles according to the present invention may be a single commercially available surfactant or a blend of two or more.
[0010]
Examples of the fluorine-containing surfactant that can be used include a fluorine-containing carboxylic acid system having a fluoroalkyl group, particularly a perfluoroalkyl group, or a chlorofluoroalkyl group, particularly a perchlorofluoroalkyl group, or a fluorine-containing sulfonic acid system. The anionic surfactant is preferably exemplified.
[0011]
Representative compounds include the formula (2):
X- (CF2CF2) n (CH2) mA (2)
Or formula (3):
X- (CF2CFCl) n (CH2) mA (3)
(In the formula, X is a hydrogen atom, a fluorine atom, or a chlorine atom, n is an integer of 3 to 10, m is an integer of 0 or 1 to 4, A is a carboxyl group, a sulfonic acid group, or an alkali metal or ammonium thereof. And a compound represented by the following formula:
[0012]
Examples of commercially available products include Unidyne DS101 (trademark) manufactured by Daikin Industries, Ltd., which is an aqueous solution of ammonium perfluorooctanoate.
[0013]
In the present invention, neither the polymerization emulsifier used during the polymerization of the fluorine-containing polymer or the dispersion stabilizer added as necessary after the polymerization is a nonionic surfactant or is substantially nonionic. It is important that no surfactant be included. Here, “substantially free of nonionic surfactant” means that the total amount of the nonionic surfactant added to the aqueous dispersion is 1% by weight based on the solid content weight of the fluoropolymer. Means less than. Depending on the amount of the fluorine-containing surfactant contained in the aqueous dispersion, an aqueous dispersion having an amount less than the amount (4 to 12% by weight) required for stabilizing the dispersion of the nonionic surfactant is used for the battery and When added as a binder for a capacitor electrode material, the electrode paste tends to start to thicken or aggregate, so it is preferably less than 0.5 wt%, more preferably less than 0.1 wt%. . When added in less than the amount required for stabilizing the dispersion, the tendency of PTFE fine particles to aggregate is unexpectedly best when not added at all.
[0014]
Examples of such nonionic surfactants include polyoxyethylene alkyl ethers, higher alcohol sulfate esters, specifically, polyoxyethylene alkyl phenyl ether (manufactured by Union Carbide: TX-100), polyoxyethylene. Polyoxyethylene fatty acid esters such as isotridecyl ether (Nippon Yushi Co., Ltd .: Dispanol TOC), polyoxyethyleneoxypropylene tridecyl ether, polyoxyethyleneoxypropylene tridecyl ether, sorbitan fatty acid esters, glycerin ester And polyoxyethylene polyoxypropylene block polymer (Nippon Yushi Co., Ltd .: Pronon 104).
[0015]
Examples of anionic surfactants that can be used as polymerization emulsifiers or dispersion stabilizers include higher alcohol sulfate esters, specifically sodium lauryl sulfate, and examples of amphoteric surfactants include dihydroxyethylalkylamines that are amine oxides. There are oxides, dimethylalkylamine oxides, and dimethylalkylethoxyamine oxides. Examples of commercially available products include dimethyl lauryl ethoxyamine oxide (Unisafe A-LY) manufactured by NOF Corporation.
[0016]
When a fluorine-containing surfactant is added as a dispersion stabilizer, a non-fluorine surfactant can be used in combination. In this case, the ratio of the fluorine-containing surfactant contained in the surfactant is 50% by weight or more, preferably 70% by weight or more, more preferably 90% by weight or more.
[0017]
The total amount of the surfactant contained in the aqueous dispersion is about 0.05 to 25% by weight, preferably about 0.1 to 7% by weight, more preferably about 0.1 to 2% by weight, particularly 0.1%, based on the weight of the fluoropolymer. About 1% by weight.
[0018]
An aqueous dispersion of a water-soluble polymer can also be used as a dispersion stabilizer. Synthetic materials include (meth) acrylic acid polymer, polyacrylate (sodium salt, potassium salt, ammonium salt, etc.), polyacrylamide, carboxylated styrene butadiene polymer, carboxylated vinyl polymer, vinyl methyl ether. / Maleic anhydride copolymer, polyvinyl alcohol (PVA), polyethylene oxide (PEO), and other inorganic thickeners. Examples of natural products include guar gum, xanthan gum, alginate, casein, gelatin and derivatives thereof, and cellulose derivatives. Among these, cellulose derivatives are preferable.
[0019]
Cellulose derivatives include CMC (carboxymethylcellulose sodium salt, carboxymethylcellulose potassium salt, carboxymethylcellulose ammonium salt), carboxymethylcellulose glycolate, cellulose gum, MC (methylcellulose), EC (ethylcellulose), HEC (hydroxyethylcellulose), EMC ( Ethyl methyl cellulose), HEEC (hydroxyethyl ethyl cellulose), HEMC (hydroxyethyl methyl cellulose), HEPC (hydroxyethyl propyl cellulose), HECMC (hydroxyethyl carboxymethyl cellulose), cellulose ethanesulfonic acid sodium salt, cyanoethyl cellulose, vindi cellulose and the like It is done.
The total amount of the water-soluble polymer added to the aqueous dispersion as a dispersion stabilizer is 0.01 to 25% by weight, preferably 0.1 to 7% by weight, based on the solid content weight of the fluoropolymer. More preferably, the content is 0.1 to 2% by weight.
[0020]
In addition, these water-soluble polymers may use 2 or more types together as needed.
[0021]
The electrode additive according to the present invention can be used as a binder. Examples of the electrode mixture for a battery to be bound include oxides or hydroxides such as cobalt, nickel, manganese, and lithium, or hydrogen. Examples include electrode (positive or negative electrode) active materials such as occlusion alloys, and conductive agents such as carbon (graphite, acetylene black, etc.), and examples of capacitor electrode mixtures include carbon (activated carbon, acetylene black, etc.). .
[0022]
The electrode additive according to the present invention is also useful as a battery electrode water repellent.
The solid content in the electrode additive of the present invention is about 20 to 60% by weight, preferably 20 to 40% by weight. The electrode additive is an aqueous dispersion of a fluorine-containing polymer produced by emulsion polymerization (usually about 20 to 40% by weight of solid content) as it is or after removing water by membrane separation or the like, and concentrating as necessary. It can be produced by adding a predetermined amount of a surfactant.
[0023]
When the electrode additive according to the present invention is vigorously shaken or given an impact continuously, the contained PTFE may be fibrillated, and the fluoropolymer fine particles containing PTFE may aggregate and precipitate. Therefore, when a battery additive made of an aqueous dispersion of a fluoropolymer is filled into a container after storage, and stored or transported, the aqueous dispersion is filled as much as possible in a sealed container, and the proportion of space in the container is reduced. It is preferable to keep it low. The proportion of the space is preferably 5% by volume or less, more preferably 1% by volume or less. When the proportion of the non-filling space is small as described above, the degree of undulation of the aqueous dispersion as the electrode additive is reduced, and PTFE aggregation and precipitation can be effectively performed even when shaken or given an impact. Can be prevented.
In addition, when the battery additive is filled in a sealed container, the volume of the aqueous dispersion of the electrode additive is 1% by volume or more, preferably about 5 to 20% by volume of the aqueous dispersion. By adding a solvent having a specific gravity lower than that of the aqueous dispersion, the impact of the aqueous dispersion portion can be reduced. Examples of such a solvent include aromatic hydrocarbons such as toluene, aliphatic hydrocarbons such as hexane, and alicyclic hydrocarbons such as cyclohexane. Since the solvent layer needs to be removed at the time of use, a solvent mixed with water at a certain ratio, for example, a solvent such as ethyl acetate, ether, butyl alcohol, and tetrahydrofuran is not suitable.
The shape and material of the container are not particularly limited, and a wide variety of known sealed containers that can be filled with the electrode additive can be used.
[0024]
【The invention's effect】
In the present invention, the surfactant for stabilizing the fluorine-containing polymer is reduced as much as possible, and when the electrode composition is produced, the PTFE fine particles are uniformly dispersed with the electrode mixture without agglomerating. When the electrode is manufactured, the PTFE fine particles are fibrillated to cover the electrode mixture in a mesh form, and an electrode coating film with almost no surfactant residue can be produced on the resulting electrode. Therefore, it is possible to manufacture a good battery and capacitor that do not cause an increase in internal resistance of the battery and deterioration in cycle characteristics.
[0025]
EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited to a following example.
[0026]
【Example】
According to a conventional method, emulsion polymerization of the fluoropolymer was carried out in a 6 liter stainless steel autoclave to obtain an aqueous dispersion of fluoropolymer fine particles shown in Table 1. PTFE is a homopolymer of TFE, modified PTFE is a TFE copolymer obtained by copolymerizing a small amount of HFP, and FEP is a copolymer of TFE / HFP = 92/8 mol%. An aqueous dispersion of PTFE, modified PTFE, and FEP is a surfactant derived from a polymerization emulsifier, each containing 0.3% by weight or 2.0% by weight of an anionic surfactant based on the solid content weight of the fluoropolymer. Includes C7F15COONH4 (Unidyne DS101 manufactured by Daikin Industries, Ltd.).
[0027]
[Table 1]
Figure 2006040543
[0028]
Examples 1-6 and Comparative Examples 1-4
Using an aqueous dispersion of three types of fluoropolymers shown in Table 1, using an electrode additive comprising aqueous dispersions with different types and concentrations of surfactants, an electrode composition was produced, and coins The battery characteristics were evaluated by producing electrodes of a type battery.
[0029]
92 parts by weight of lithium cobaltate, 2 parts by weight of artificial graphite, and 1 part by weight of acetylene black are added to 40 parts by weight of a 1% carboxymethylcellulose aqueous solution to obtain a uniform slurry. A surfactant was added to the aqueous dispersion as necessary, and 5 parts by weight of the polymer solid content was gradually added dropwise with a dropper to obtain a positive electrode paste. The type and concentration of the added surfactant and the state of the obtained paste were evaluated according to the following criteria, and the results are shown in Table 2.
[0030]
Evaluation of paste state
A: Easy to adjust to the proper viscosity for coating
○: Adjustable to appropriate viscosity for coating
×: The viscosity becomes so high that it cannot be applied, and the viscosity cannot be adjusted.
[0031]
[Table 2]
Figure 2006040543
[0032]
* The solid content concentration of the aqueous dispersion of fluoropolymer was 30% by weight.
* Type of surfactant
DS101 Anionic surfactant (Unidyne manufactured by Daikin Industries, Ltd.)
SLS sodium lauryl sulfate (anionic surfactant)
TX100 Nonionic surfactant (Triton made by Union Carbide)
Dispanol TOC Nonionic surfactant (Nippon Yushi Co., Ltd.)
This positive electrode paste was applied to the surface of an aluminum foil by a doctor blade method, dried at 240 ° C. for 1 hour, and water was removed to obtain a positive electrode plate.
In addition, an N-methyl-2-pyrrolidone (NMP) solution of polyvinylidene fluoride adjusted to a solid content concentration of 6% by weight with respect to 95 parts by weight of graphite was added to the negative electrode so that the solid content was 5 parts by weight. Thus, a negative electrode paste was obtained.
The negative electrode paste was applied to the surface of the copper foil by a doctor blade method to produce a negative electrode, vacuum dried at 150 ° C. for 4 hours, and the solvent was removed to obtain a negative electrode plate.
[0033]
A 2016 coin-type battery component was prepared, and a positive electrode plate and a negative electrode plate previously punched to the same diameter as that of the coin-type battery, and a microporous film using polypropylene as a separator were prepared.
[0034]
The electrolyte is 1 mol · dm of electrolyte.-3LiPF6As described above, a 1: 2 volume ratio mixed solvent of ethylene carbonate (EC) and ethyl methyl carbonate (EMC) was used.
By using the above components, a 2016 coin type battery was produced.
[0035]
The fabricated battery has a current density of 0.5 mA · cm relative to the internal geometric area.-2The current value was set such that the battery voltage was between 4.2V and 3V. At this time, the initial capacity is set to the capacity of the fifth cycle, and the superiority or inferiority of the battery characteristics is evaluated depending on whether the capacity retention rate is 90% or more or less than 90% by comparing with the capacity of the 50th cycle. did. The results are shown in Table 3.
[0036]
As shown in Table 3, the binding properties and battery characteristics of the electrode coating film using the pastes described in Examples 1 to 6 for the positive electrode were all good. On the other hand, the pastes described in Comparative Examples 1, 2, and 3 were too high in slurry viscosity to form a uniform electrode, and the paste described in Comparative Example 4 had a hard and uniform film. Therefore, the battery characteristics could not be evaluated.
[0037]
As described above, the reason why the stability of the electrode paste differs depending on the type of surfactant and the blend ratio is as follows. This is because the fluoropolymer fine particles are PTFE, and the effect of stabilizing the PTFE particles in water is higher when the hydrophobic group portion of the surfactant is a perfluoro group.
[0038]
[Table 3]
Figure 2006040543
[0039]
Example 7
Preparation and evaluation of capacitor electrodes using aqueous dispersions of fluoropolymer fine particles with different types and concentrations of surfactants as binders
The capacitor electrode is 40 parts by weight of 1% carboxymethylcellulose, with a specific surface area of 1500 m.2An electrode coating film was prepared by a doctor blade method with a composition such that 80 parts by weight of activated carbon / g, 10 parts by weight of acetylene black, and 10 parts by weight of an aqueous dispersion of PTFE fine particles.
Similarly to the case of the battery electrode, for the electrode additive of Example 1-6, it was possible to produce an electrode coating film and the charge / discharge characteristics were also good.
Examples 8-11 and Comparative Example 5
A surfactant and liquid paraffin are added to an aqueous dispersion of PTFE fine particles (polymer solid content of 30% by weight) obtained by emulsion polymerization in an approximately 100 cc sealed container (polybin) so as to have the amounts shown in Table 4. Adjusted. Then, it was made to shake for 10 minutes with the stroke of 180 cycles / min with the shaker, and the dispersion stability was evaluated. The results are also shown in Table 4.
As is apparent from Table 4, all of the aqueous dispersions of PTFE fine particles in the closed container and the space ratio of the upper part of the closed container of 1 to 3% by volume (Examples 8 to 11) are stable without agglomeration. Met. On the other hand, in the case where the space was 30% by volume (Comparative Example 5), the PTFE fine particles were aggregated to be water repellent and separated into a PTFE layer and a water layer.
The reason why the aqueous dispersion of PTFE fine particles to which a small amount of a surfactant is added as described above can suppress aggregation due to shaking is considered as follows.
Normally, when the amount of PTFE fine particle aqueous dispersion filled in the sealed container is small and the space ratio in the upper part of the container is large, shaking in this state causes the aqueous dispersion to swell and the inner wall surface of the container Since the PTFE fine particles collide with each other and a strong shearing force is generated on the surface of the fine particles, the PTFE fine particles are fibrillated to cause aggregation. On the other hand, if there is almost no space in the sealed container, or if there is another liquid phase part that mitigates the collision on the surface of the aqueous dispersion, the former will cause a slight undulation, and the container wall will be intense. Collisions do not occur, and in the latter, there is a further relaxation phase, so that impacts due to collisions are less likely to occur.
[0040]
[Table 4]
Figure 2006040543
[0041]
* Type of surfactant
DS101 Anionic surfactant (Unidyne manufactured by Daikin Industries, Ltd.)
TX100 Nonionic surfactant (Triton made by Union Carbide)
TOC Nonionic surfactant (Dispanol manufactured by NOF Corporation)
Examples 12 to 15 Comparative Example 6 Stability test of aqueous dispersion of PTFE fine particles
In the same manner as in Examples 8 to 11, the aqueous dispersion of PTFE fine particles shown in Table 1 was used, and the water-soluble polymer shown in Table 5 was added to evaluate the dispersion stability. Aggregation did not occur. The results are shown in Table 5.
[0042]
[Table 5]
Figure 2006040543
[0043]
CMC Na salt: 1% B-type viscometer 25 ° C 1400 mPa · s
The degree of etherification is 0.5 to 0.7
CMC NH4 salt: 1% B-type viscometer 25 ° C 350 mPa · s
The degree of etherification is 0.5 to 0.7
MC: 1% B-type viscometer 25 ° C. 50 mPa · s
PEO: 1% B-type viscometer 25 ° C 1000mPa · s
Example 16
Using the electrode additive comprising the aqueous dispersions of Examples 12 to 15, coin type battery electrodes were prepared.
[0044]
92 parts by weight of lithium cobaltate, 2 parts by weight of artificial graphite, and 1 part by weight of acetylene black are added to 35 parts by weight of a 1% carboxymethylcellulose aqueous solution to form a uniform slurry. 30% by weight of the aqueous dispersion was gradually added so that 5 parts by weight of the polymer solid was dropped with a dropper. Furthermore, a 1% carboxymethylcellulose aqueous solution was added and adjusted so that the paste viscosity became a coating suitable viscosity, and a positive electrode paste was obtained.
The positive electrode paste thus obtained was applied to the surface of an aluminum foil by a doctor blade method, dried at 240 ° C. for 1 hour, and water was removed, thereby confirming that a positive electrode plate was obtained.

Claims (14)

テトラフルオロエチレンを水性媒質中で乳化重合してなる含フッ素ポリマーの微粒子の水性分散体を含む電極用添加剤であって、重合する際に添加する重合乳化剤及び必要に応じて重合後に添加する分散安定剤のいずれもが、非イオン系界面活性剤でないか、または実質的に非イオン系界面活性剤を含まないことを特徴とする電極用添加剤。  Electrode additive comprising an aqueous dispersion of fine particles of a fluoropolymer obtained by emulsion polymerization of tetrafluoroethylene in an aqueous medium, a polymerization emulsifier added during polymerization, and a dispersion added after polymerization if necessary An additive for an electrode, characterized in that none of the stabilizers is a nonionic surfactant or substantially free of a nonionic surfactant. 非イオン系界面活性剤の水性分散体への全添加量が、含フッ素ポリマーの固形分重量に対して、1重量%未満である請求項1に記載の電極用添加剤。  The electrode additive according to claim 1, wherein the total amount of the nonionic surfactant added to the aqueous dispersion is less than 1% by weight based on the solid content weight of the fluoropolymer. 含フッ素ポリマーの微粒子が、フィブリル形成性で平均粒径が0.05〜1μmであるテトラフルオロエチレン重合体の微粒子である請求項1または2に記載の電極用組成物。  The electrode composition according to claim 1 or 2, wherein the fluoropolymer fine particles are fine particles of a tetrafluoroethylene polymer having a fibril-forming property and an average particle diameter of 0.05 to 1 µm. 重合乳化剤または分散安定剤として、アニオン系界面活性剤を使用する請求項1〜3のいずれかに記載の電極用添加剤。  The electrode additive according to any one of claims 1 to 3, wherein an anionic surfactant is used as the polymerization emulsifier or the dispersion stabilizer. 前記アニオン系界面活性剤が、パーフルオロアルキル基、またはパークロロフルオロアルキル基を含有するアニオン系含フッ素界面活性剤である請求項4に記載の電極用添加剤。  The electrode additive according to claim 4, wherein the anionic surfactant is an anionic fluorinated surfactant containing a perfluoroalkyl group or a perchlorofluoroalkyl group. 界面活性剤の水性分散体への全添加量が、含フッ素ポリマーの固形分重量に対して、0.05〜25重量%である請求項1〜5のいずれかに記載の電極用添加剤。  The electrode additive according to any one of claims 1 to 5, wherein the total amount of the surfactant added to the aqueous dispersion is 0.05 to 25% by weight based on the solid content weight of the fluoropolymer. 分散安定剤として、水溶性高分子を使用する請求項1〜6のいずれかに記載の電極用添加剤。  The additive for electrodes according to any one of claims 1 to 6, wherein a water-soluble polymer is used as the dispersion stabilizer. 前記水溶性高分子の水性分散体への全添加量が、含フッ素ポリマーの固形分重量に対して、0.01〜25重量%である請求項7に記載の電極用添加剤。  The electrode additive according to claim 7, wherein the total amount of the water-soluble polymer added to the aqueous dispersion is 0.01 to 25% by weight based on the solid content weight of the fluoropolymer. 前記水溶性高分子が、セルロース系誘導体である請求項7または8に記載の電極用添加剤。  The electrode additive according to claim 7 or 8, wherein the water-soluble polymer is a cellulose derivative. 含フッ素ポリマーの微粒子の水性分散体を充填する密閉容器内の空間が5容量%以下になるように充填した請求項1〜9に記載の電極用添加剤を充填した容器。  The container filled with the electrode additive according to claim 1, which is filled so that a space in the sealed container filled with the aqueous dispersion of fluoropolymer fine particles is 5% by volume or less. 含フッ素ポリマーの微粒子の水性分散体を充填した密閉容器内に、該水性分散体の全容量に対して少なくとも1容量%以上の溶剤層が該水性分散体の表面を覆うように非水性溶剤を充填した請求項1〜9に記載の電極用添加剤を充填した容器。  In a closed container filled with an aqueous dispersion of fluoropolymer fine particles, a non-aqueous solvent is added so that at least 1% by volume or more of the solvent layer covers the surface of the aqueous dispersion with respect to the total volume of the aqueous dispersion. The container filled with the additive for electrodes of Claims 1-9 filled. 含フッ素ポリマーの微粒子の水性分散体を充填する密閉容器内の空間が5容量%以下になるように充填した請求項1〜9のいずれかに記載の水性分散体の貯蔵・運搬方法。  The method for storing and transporting an aqueous dispersion according to any one of claims 1 to 9, wherein the space in the sealed container filled with the aqueous dispersion of fluoropolymer fine particles is filled to 5% by volume or less. 電極が、電池またはキャパシタの電極である請求項1〜9のいずれかに記載の電極用添加剤。  The electrode additive according to any one of claims 1 to 9, wherein the electrode is an electrode of a battery or a capacitor. 電極用合剤と導電剤に請求項1〜9のいずれかに記載の電極用添加剤を混合する電極用組成物の製造方法。  The manufacturing method of the composition for electrodes which mixes the additive for electrodes in any one of Claims 1-9 with the mixture for electrodes, and a electrically conductive agent.
JP2001039542A 2000-09-04 2001-02-16 Electrode additive used in battery or capacitor Pending JP2006040543A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2001039542A JP2006040543A (en) 2000-09-04 2001-02-16 Electrode additive used in battery or capacitor
PCT/JP2001/007636 WO2002021618A1 (en) 2000-09-04 2001-09-04 Additive for electrode for use in battery or capacitor

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2000267625 2000-09-04
JP2001039542A JP2006040543A (en) 2000-09-04 2001-02-16 Electrode additive used in battery or capacitor

Publications (1)

Publication Number Publication Date
JP2006040543A true JP2006040543A (en) 2006-02-09

Family

ID=26599206

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2001039542A Pending JP2006040543A (en) 2000-09-04 2001-02-16 Electrode additive used in battery or capacitor

Country Status (2)

Country Link
JP (1) JP2006040543A (en)
WO (1) WO2002021618A1 (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310522A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolytic solution battery
JP2008041793A (en) * 2006-08-03 2008-02-21 Mitsubishi Electric Corp Electric double layer capacitor, and manufacturing method of its electrode
JP2008308666A (en) * 2007-05-11 2008-12-25 Canon Inc Aqueous ink, inkjet-recording method, ink cartridge, recording unit, and ink-jet recording apparatus
JP2009088271A (en) * 2007-09-28 2009-04-23 Nippon Chemicon Corp Electrode for electric double-layer capacitor, its manufacturing method, and electric double-layer capacitor
JP2009130329A (en) * 2007-11-28 2009-06-11 Elna Co Ltd Electrode for electrochemical device and manufacturing method thereof, and electric double-layer capacitor as electrochemical device
JP2009295405A (en) * 2008-06-04 2009-12-17 Asahi Glass Co Ltd Method for manufacturing aqueous paste for forming power storage element electrode
WO2010067771A1 (en) * 2008-12-08 2010-06-17 ダイキン工業株式会社 Electric double layer capacitor
WO2016076369A1 (en) * 2014-11-13 2016-05-19 旭硝子株式会社 Binder composition for power storage device, and manufacturing method for same
WO2024004871A1 (en) * 2022-06-30 2024-01-04 ダイキン工業株式会社 Method for producing sheet for solid-state secondary batteries, binder for solid-state secondary battery electrodes, composition for forming electrode, electrode mixture, and electrode
WO2024128263A1 (en) * 2022-12-16 2024-06-20 Agc株式会社 Aqueous dispersion

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106024411B (en) * 2016-07-26 2018-02-23 锦州凯美能源有限公司 A kind of preparation method of electrode material and electrode plates and ultracapacitor

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3467812B2 (en) * 1993-12-01 2003-11-17 宇部興産株式会社 Chemical battery
JP2829706B2 (en) * 1994-07-11 1998-12-02 三井・デュポンフロロケミカル株式会社 Aqueous fluoropolymer emulsion and method for producing the same
EP0735093B1 (en) * 1994-10-19 2001-03-21 Daikin Industries, Ltd. Binder for cell and composition for electrode and cell prepared therefrom
JP3346090B2 (en) * 1995-03-31 2002-11-18 ダイキン工業株式会社 Polytetrafluoroethylene aqueous dispersion composition and use thereof
JPH08321298A (en) * 1995-05-23 1996-12-03 Kazuo Tagawa Paste for applying to electrode and non-aqueous type secondary battery electrode
JPH1053682A (en) * 1996-08-09 1998-02-24 Daikin Ind Ltd Production of aqueous dispersion or organosol of fluorine-containing polymer and electric cell produced by using the aqueous dispersion or organosol
JPH1173967A (en) * 1997-08-29 1999-03-16 Nippon Zeon Co Ltd Alkaline secondary battery
JP3552525B2 (en) * 1998-02-24 2004-08-11 旭硝子株式会社 Polytetrafluoroethylene aqueous dispersion composition

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005310522A (en) * 2004-04-21 2005-11-04 Matsushita Electric Ind Co Ltd Manufacturing method of nonaqueous electrolytic solution battery
JP2008041793A (en) * 2006-08-03 2008-02-21 Mitsubishi Electric Corp Electric double layer capacitor, and manufacturing method of its electrode
JP2008308666A (en) * 2007-05-11 2008-12-25 Canon Inc Aqueous ink, inkjet-recording method, ink cartridge, recording unit, and ink-jet recording apparatus
JP2009088271A (en) * 2007-09-28 2009-04-23 Nippon Chemicon Corp Electrode for electric double-layer capacitor, its manufacturing method, and electric double-layer capacitor
JP2009130329A (en) * 2007-11-28 2009-06-11 Elna Co Ltd Electrode for electrochemical device and manufacturing method thereof, and electric double-layer capacitor as electrochemical device
JP2009295405A (en) * 2008-06-04 2009-12-17 Asahi Glass Co Ltd Method for manufacturing aqueous paste for forming power storage element electrode
WO2010067771A1 (en) * 2008-12-08 2010-06-17 ダイキン工業株式会社 Electric double layer capacitor
JP5343977B2 (en) * 2008-12-08 2013-11-13 ダイキン工業株式会社 Electric double layer capacitor
WO2016076369A1 (en) * 2014-11-13 2016-05-19 旭硝子株式会社 Binder composition for power storage device, and manufacturing method for same
WO2024004871A1 (en) * 2022-06-30 2024-01-04 ダイキン工業株式会社 Method for producing sheet for solid-state secondary batteries, binder for solid-state secondary battery electrodes, composition for forming electrode, electrode mixture, and electrode
JP7486006B2 (en) 2022-06-30 2024-05-17 ダイキン工業株式会社 Manufacturing method of sheet for solid secondary battery, binder for electrode of solid secondary battery, composition for producing electrode, electrode mixture, and electrode
WO2024128263A1 (en) * 2022-12-16 2024-06-20 Agc株式会社 Aqueous dispersion

Also Published As

Publication number Publication date
WO2002021618A1 (en) 2002-03-14

Similar Documents

Publication Publication Date Title
JP6456689B2 (en) Aqueous fluoropolymer composition
JP3295939B2 (en) Battery binder, electrode composition and battery using the same
KR100337421B1 (en) Water repellent and battery
US9444103B2 (en) Electrode mixture
US9444104B2 (en) Electrode mixture
JP2014081996A (en) Binder composition for positive electrode
EP3407410B1 (en) Binder composition, binder dispersion liquid, electrode mixture, electrode, nonaqueous electrolyte secondary battery, and method for producing binder composition
JP7353267B2 (en) Method for stabilizing aqueous dispersions of fluoropolymers
KR20190074320A (en) Core shell-type particles and their use and manufacturing method
JP2006040543A (en) Electrode additive used in battery or capacitor
US7112383B2 (en) Binder for electrodes
JP7525809B2 (en) Positive electrode binder, electrode mixture, electrode and secondary battery
US12054605B2 (en) Vinylidene fluoride-based polymer composition obtained using non-fluorinated surfactant and production method therefor
JP7090076B2 (en) Binder composition for power storage device active material layer, slurry for power storage device electrode, power storage device electrode and power storage device
WO2024090324A1 (en) Binder for positive electrodes, electrode mixture, electrode and secondary battery
KR20220122695A (en) Coated Electrodes With Polymer Binder For Lithium Ion Batteries
JP2024102039A (en) Tetrafluoroethylene-based polymer composition, binder for electrochemical device, electrode mixture, electrode, and secondary battery
JP2023528873A (en) Method for manufacturing battery electrode with improved properties
JP2013030288A (en) Binder composition for electrode
KR20240004687A (en) Fluoropolymer binder