JP2006039395A - Charging member, charging device having charging member, and image forming apparatus having charging device - Google Patents

Charging member, charging device having charging member, and image forming apparatus having charging device Download PDF

Info

Publication number
JP2006039395A
JP2006039395A JP2004222012A JP2004222012A JP2006039395A JP 2006039395 A JP2006039395 A JP 2006039395A JP 2004222012 A JP2004222012 A JP 2004222012A JP 2004222012 A JP2004222012 A JP 2004222012A JP 2006039395 A JP2006039395 A JP 2006039395A
Authority
JP
Japan
Prior art keywords
electrode
charging
potential
charging member
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004222012A
Other languages
Japanese (ja)
Other versions
JP4599108B2 (en
Inventor
Shoji Ishiwatari
正二 石渡
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ricoh Co Ltd
Original Assignee
Ricoh Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ricoh Co Ltd filed Critical Ricoh Co Ltd
Priority to JP2004222012A priority Critical patent/JP4599108B2/en
Publication of JP2006039395A publication Critical patent/JP2006039395A/en
Application granted granted Critical
Publication of JP4599108B2 publication Critical patent/JP4599108B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-contact type charging member for imparting potential by charging to the surface of a body to be charged, where excessive discharge is restrained and also the durability of a discharge surface is realized. <P>SOLUTION: The surface 4 of the non-contact type charging member is formed of an anodic oxidation coating 8 having micropores 10, and the micropore bottom part 11 of the anodic oxidation coating 8 is formed as the electrode surface of a 1st electrode through a barrier layer 12 formed between the micropore bottom part 11 and metallic base material 6 for forming the anodic oxidation coating, and further the surface of the anodic oxidation coating 8 is coated with a coating film 9 composed of metal or conductive metallic oxide so as to form a 2nd electrode. Then, voltage is applied to the metallic base material 6 for forming the anodic oxidation coating so as to set the electrode surface 11 of the 1st electrode to charging potential imparting feasible potential to the body to be charged 5, and the 2nd electrode 9 is set as a suspension electrode so as to impart the potential by charging to the body to be charged 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子写真方式の画像形成装置に使用される帯電部材、帯電部材を有する帯電装置、及び帯電装置を有する画像形成装置に関する。   The present invention relates to a charging member used in an electrophotographic image forming apparatus, a charging device having a charging member, and an image forming apparatus having a charging device.

有機感光体などの被帯電体に接触または非接触での帯電電位を付与するための帯電部材は、その部材表面からストリーマ放電のような放電路を形成して火花放電となるような過剰な放電を抑制した放電となることが要求される。また、部分的に過剰な放電とならなくとも鱗状の画像ムラを起すような放電とならないように、帯電部材を形成するゴムや樹脂等の部材の体積抵抗値を108〜109Ωcmの半導電性に、導電性カーボンやイオン性の導電物質を混入分散して調整する。 A charging member for applying a charging potential in contact or non-contact to an object to be charged such as an organic photoreceptor is an excessive discharge that forms a discharge path such as a streamer discharge from the surface of the member to generate a spark discharge. The discharge is required to be suppressed. In addition, the volume resistance value of a member such as rubber or resin that forms the charging member is reduced to a half of 10 8 to 10 9 Ωcm so that the discharge does not cause a scale-like image unevenness even if the discharge is not partially excessive. Conductivity is adjusted by mixing and dispersing conductive carbon or ionic conductive material.

しかし、設置環境の温湿度により帯電部材が膨潤し抵抗値が変化して不安定であり、被帯電体の帯電電位領域によっては安定な帯電電位を付与し難いという問題を抱え、画像形成上でのムラを発生し易く、画像ムラの発生を防止するために帯電部材に印加するDC電圧にAC電圧を強く重畳させて帯電電位を平均化させ対策を取っているが、画像形成装置で広く使われている有機感光体は、強いコロナ放電で、その表面が発生するオゾンやイオンで分解され、耐久性を低下させる問題を常に抱えている。   However, the charging member swells due to the temperature and humidity of the installation environment and the resistance value changes and is unstable, and depending on the charged potential region of the object to be charged, it is difficult to provide a stable charging potential. In order to prevent the occurrence of image unevenness and to prevent the occurrence of image unevenness, the AC voltage is strongly superimposed on the DC voltage applied to the charging member to average the charged potential, but this is widely used in image forming apparatuses. Organic photoconductors are always subject to degradation of durability due to strong corona discharge that is decomposed by ozone and ions generated on the surface.

このような問題に関する文献として、面放電素子による帯電装置において、帯電電極に微小な凹凸があってもストリーマ放電が発生せず、感光体ドラムを均一に帯電できる帯電装置とするため、表面の滑らかなガラス等の絶縁体の表面にアルミニウムを蒸着して印加電極を設け、その印加電極の表面にスパッタリングにより体積抵抗6×108Ωcmの半導電性窒化タンタル(又は酸化チタン)の帯電電極を設け、更にその帯電電極の表面にスパッタリング時の窒素ガス供給を停止して帯電電極の抵抗値より低い抵抗値のタンタルの導体からなるフロート電極を設ける帯電装置の提案がある(例えば特許文献1参照)。 As a document related to such a problem, in a charging device using a surface discharge element, even if there are minute irregularities on the charging electrode, a streamer discharge does not occur, and the charging device can uniformly charge the photosensitive drum. An electrode is provided by depositing aluminum on the surface of an insulator such as glass, and a charged electrode of semiconductive tantalum nitride (or titanium oxide) having a volume resistance of 6 × 10 8 Ωcm is provided on the surface of the applied electrode by sputtering. Furthermore, there is a proposal of a charging device in which the supply of nitrogen gas at the time of sputtering is stopped on the surface of the charging electrode to provide a float electrode made of a tantalum conductor having a resistance value lower than that of the charging electrode (see, for example, Patent Document 1). .

また、非接触式の帯電部材において、製造コストの上昇と取扱の困難性を来たすことなくオゾン量を低減し、また印加電圧の低下を実現できるようにするため、帯電部材の表面(帯電面)はアルミニウム材で形成され、そのアルミニウム材の表面には多孔質の陽極酸化皮膜が300〜5000nmの厚さで形成され、さらに陽極酸化皮膜の表面に50〜200nmの間隔で形成された無数の細孔内部のバリヤー層から二次電解して、太さ10〜50nmの放電電極としての金属ナノ細線が細孔の表面から凸状に又は凹状に形成された帯電部材の提案がある(特許文献2参照)。
特開平06−110297号公報 特開2003−295583号公報
In addition, in a non-contact type charging member, the surface of the charging member (charged surface) is used in order to reduce the amount of ozone and reduce the applied voltage without increasing the manufacturing cost and handling difficulties. Is formed of an aluminum material, and a porous anodic oxide film is formed on the surface of the aluminum material with a thickness of 300 to 5000 nm, and the infinite number of fine particles formed on the surface of the anodized film at intervals of 50 to 200 nm. There is a proposal of a charging member in which metal nanowires as discharge electrodes having a thickness of 10 to 50 nm are formed convexly or concavely from the surface of the pores by secondary electrolysis from the barrier layer inside the pores (Patent Document 2). reference).
Japanese Patent Laid-Open No. 06-110297 JP 2003-295583 A

しかしながら、上記の発明は、以下の問題を有している。   However, the above invention has the following problems.

特許文献1は、線状の放電路を形成して火花放電となるストリーマ放電を抑制することは可能となるものの、体積抵抗6×108Ωcmの半導電性電極を用いた場合、画像形成装置の被帯電体に必要とされる帯電電圧400以上(400〜800V)に対して、帯電部材に印加する放電開始印加電圧が1000Vを越え、数μA〜数10μAの放電電流が供給されることから、被帯電体への急峻な帯電電位の立ち上がりが発生し易く、斑点ないし鱗状の画像が形成される帯電ムラを形成し易い。また放電電流をほとんど伴わない電位のみを持ったフロート電極にはなりにくい。 In Patent Document 1, although it is possible to suppress a streamer discharge that is a spark discharge by forming a linear discharge path, when a semiconductive electrode having a volume resistance of 6 × 10 8 Ωcm is used, an image forming apparatus is disclosed. For a charging voltage of 400 or more (400 to 800 V) required for the object to be charged, the discharge start applied voltage applied to the charging member exceeds 1000 V, and a discharge current of several μA to several tens of μA is supplied. Therefore, a steep charge potential rises easily on the object to be charged, and it is easy to form charging unevenness on which spots or scale-like images are formed. Also, it is difficult to form a float electrode having only a potential with little discharge current.

特許文献2は、陽極酸化皮膜の表面に第二電極を持たず、金属ナノ細線が細孔の表面から凹状に形成された放電電極であるため、陽極酸化皮膜の誘電分極による皮膜表面電位が放電開始電位以上と成り易く、金属ナノ細線からの放電より皮膜表面からの放電により被帯電体を帯電させてしまい、細孔内部からの安定な放電が行なわれにくい不具合がある。   Since Patent Document 2 is a discharge electrode in which a metal nanowire is formed in a concave shape from the surface of a pore without having a second electrode on the surface of the anodized film, the film surface potential due to the dielectric polarization of the anodized film is discharged. It tends to be higher than the starting potential, and the charged object is charged by the discharge from the surface of the film rather than the discharge from the metal nanowire, so that there is a problem that the stable discharge from the inside of the pore is difficult to be performed.

そこで、本発明は、被帯電体表面に帯電電位を付与するための非接触の帯電部材において、過剰な放電が抑制されると共に放電面の耐久性が図れる帯電部材、該帯電部材を有する帯電装置、及び該帯電装置を有する画像形成装置を提供することを目的とする。   Accordingly, the present invention provides a non-contact charging member for applying a charging potential to the surface of an object to be charged, a charging member capable of suppressing excessive discharge and improving the durability of the discharge surface, and a charging device having the charging member And an image forming apparatus having the charging device.

請求項1記載の発明は、被帯電体表面に帯電電位を付与するための非接触の帯電部材において、該帯電部材の表面を、微細孔を有する陽極酸化皮膜で形成し、該陽極酸化皮膜の微細孔底部と陽極酸化皮膜形成金属母材との間に生成するバリヤー層を介して該微細孔底部を第一電極の電極面とし、さらに前記陽極酸化皮膜の表面に金属または導電性金属酸化物の皮膜を被覆して第二電極とし、前記陽極酸化皮膜形成金属母材に電圧を印加して第一電極の電極面を被帯電体への帯電電位付与可能電位とし、前記第二電極を浮遊電極として被帯電体へ帯電電位を付与することを特徴とする。   The invention according to claim 1 is a non-contact charging member for applying a charging potential to the surface of an object to be charged, wherein the surface of the charging member is formed of an anodized film having fine pores. The bottom of the fine hole is used as an electrode surface of the first electrode through a barrier layer formed between the bottom of the fine hole and the anodized film-forming metal base material, and a metal or conductive metal oxide is further formed on the surface of the anodized film. A second electrode is coated to apply a voltage to the anodized film-forming metal base material so that the electrode surface of the first electrode can be applied with a charging potential to be charged, and the second electrode is floated A charging potential is applied to an object to be charged as an electrode.

請求項2記載の発明は、被帯電体表面に帯電電位を付与するための非接触の帯電部材において、該帯電部材の表面を、微細孔を有する陽極酸化皮膜で形成すると共に該陽極酸化皮膜の微細孔底部から開口方向に放電空間を設けるよう金属を電解充填し、前記陽極酸化皮膜の微細孔底部と陽極酸化皮膜形成金属母材との間に生成するバリヤー層を介して微細孔に充填した金属表面を第一電極の電極面とし、さらに前記陽極酸化皮膜の表面に金属または導電性金属酸化物の皮膜を被覆して第二電極とし、前記陽極酸化皮膜形成金属母材に電圧を印加して第一電極の電極面を被帯電体への帯電電位付与可能電位とし、前記第二電極を浮遊電極として被帯電体へ帯電電位を付与することを特徴とする。   According to a second aspect of the present invention, there is provided a non-contact charging member for applying a charging potential to the surface of an object to be charged, wherein the surface of the charging member is formed of an anodized film having fine pores and The metal is electrolytically filled so that a discharge space is provided in the opening direction from the bottom of the fine hole, and the fine hole is filled through a barrier layer formed between the fine hole bottom of the anodized film and the anodized film-forming metal base material. The metal surface is the electrode surface of the first electrode, and the surface of the anodic oxide film is coated with a metal or conductive metal oxide film to form a second electrode, and a voltage is applied to the anodic oxide film-forming metal base material. Thus, the electrode surface of the first electrode is set to a potential capable of applying a charging potential to the member to be charged, and the charging potential is applied to the member to be charged using the second electrode as a floating electrode.

請求項3記載の発明は、被帯電体表面に帯電電位を付与するための非接触の帯電部材において、該帯電部材の表面を、微細孔を有する陽極酸化皮膜で形成すると共に該陽極酸化皮膜の微細孔底部と陽極酸化皮膜形成金属母材との間に生成するバリヤー層を電解増厚し、該電解増厚されたバリヤー層を介して該微細孔底部を第一電極の電極面とし、さらに前記微細孔を有する陽極酸化皮膜の表面に金属または導電性金属酸化物の皮膜を被覆して第二電極とし、前記陽極酸化皮膜形成金属母材に電圧を印加して第一電極の電極面を被帯電体への帯電電位付与可能電位とし、前記第二電極を浮遊電極として被帯電体へ帯電電位を付与することを特徴とする。   According to a third aspect of the present invention, there is provided a non-contact charging member for applying a charging potential to the surface of an object to be charged, wherein the surface of the charging member is formed of an anodic oxide film having fine pores. Electrolytically thickening a barrier layer formed between the micropore bottom and the anodized film-forming metal base material, and using the electrolytically thickened barrier layer as the electrode surface of the first electrode, The surface of the anodic oxide film having micropores is coated with a metal or conductive metal oxide film to form a second electrode, and a voltage is applied to the anodic oxide film-forming metal base material to form an electrode surface of the first electrode. The charge potential can be applied to the member to be charged, and the charge potential is applied to the member to be charged using the second electrode as a floating electrode.

請求項4記載の発明は、被帯電体表面に帯電電位を付与するための非接触の帯電部材において、該帯電部材の表面を、微細孔を有する陽極酸化皮膜で形成すると共に該陽極酸化皮膜の微細孔底部と陽極酸化皮膜形成金属母材との間に生成するバリヤー層を電解増厚し、該電解増厚されたバリヤー層を持つ微細孔底部から開口方向に放電空間を設けるよう金属を電解充填し、該電解増厚されたバリヤー層を介して微細孔底部に充填した金属表面を第一電極の電極面とし、さらに前記微細孔を有する陽極酸化皮膜の表面に金属または導電性金属酸化物の皮膜を被覆して第二電極とし、前記陽極酸化皮膜形成金属母材に電圧を印加して第一電極面を被帯電体への帯電電位付与可能電位とし、前記第二電極を浮遊電極として被帯電体へ帯電電位を付与することを特徴とする。   According to a fourth aspect of the present invention, there is provided a non-contact charging member for applying a charging potential to the surface of an object to be charged, wherein the surface of the charging member is formed of an anodic oxide film having fine pores. Electrolytically thicken the barrier layer formed between the bottom of the microhole and the metal base material with the anodic oxide film, and electrolyze the metal so that a discharge space is provided in the opening direction from the bottom of the microhole having the electrolytically thickened barrier layer. The surface of the metal filled in and filling the bottom of the fine hole through the electrolytically thickened barrier layer is used as the electrode surface of the first electrode, and the metal or conductive metal oxide is further formed on the surface of the anodic oxide film having the fine hole. A second electrode is formed by applying a voltage to the anodized film-forming metal base material so that the surface of the first electrode can be charged with a charging potential, and the second electrode is a floating electrode. Applying a charging potential to the object to be charged And wherein the Rukoto.

請求項5記載の発明は、請求項1から4のいずれか1項記載の帯電部材において、前記陽極酸化皮膜表面上に形成される金属または導電性金属酸化物の皮膜の第二電極が、前記第一電極より低電位な浮遊電極であることを特徴とする。   According to a fifth aspect of the present invention, in the charging member according to any one of the first to fourth aspects, the second electrode of the metal or conductive metal oxide film formed on the surface of the anodized film is The floating electrode is lower in potential than the first electrode.

請求項6記載の発明は、請求項1から4のいずれか1項記載の帯電部材において、前記微細孔を有する陽極酸化皮膜の第一電極の電極面への印加電圧が放電開始電圧以上の電圧になるように陽極酸化皮膜形成金属母材に電圧を印加し、被帯電体へ帯電電位を付与することを特徴とする。   According to a sixth aspect of the present invention, in the charging member according to any one of the first to fourth aspects, the voltage applied to the electrode surface of the first electrode of the anodic oxide film having the microscopic holes is equal to or higher than the discharge start voltage. A voltage is applied to the anodized film-formed metal base so that a charged potential is applied to the member to be charged.

請求項7記載の発明は、請求項1から4のいずれか1項記載の帯電部材において、前記陽極酸化皮膜表面上に形成される金属または導電性金属酸化物の皮膜が、Cu、Al、Ni、Co、Cr、Ti、Au、Pt、Rh、W、およびMoからなる金属の群から選択される少なくとも1種もしくはその合金、またはTi、Sn、およびInからなる導電性金属の酸化物の群から選択される少なくとも1種もしくはその合金の酸化物を用いて蒸着またはスパッタ法により形成されることを特徴とする。   The invention according to claim 7 is the charging member according to any one of claims 1 to 4, wherein the metal or conductive metal oxide film formed on the surface of the anodized film is Cu, Al, Ni. , Co, Cr, Ti, Au, Pt, Rh, W, and Mo selected from the group of metals or alloys thereof, or group of conductive metal oxides composed of Ti, Sn, and In It is formed by vapor deposition or sputtering using an oxide of at least one selected from the group consisting of alloys thereof.

請求項8記載の発明は、請求項2又は4記載の帯電部材において、前記微細孔底部に充填される金属が、Cu、Ni、Co、Rh、W、およびMoからなる金属の群から選択される少なくとも1種またはその合金であることを特徴とする。   According to an eighth aspect of the present invention, in the charging member according to the second or fourth aspect, the metal filled in the bottom of the fine hole is selected from the group of metals consisting of Cu, Ni, Co, Rh, W, and Mo. And at least one kind thereof or an alloy thereof.

請求項9記載の発明は、請求項2又は4記載の帯電部材において、前記微細孔底部に充填される金属が、Cu、Ni、Co、Rh、W、およびMoからなる金属の群から選択される少なくとも1種またはその合金であって、該充填金属の最表面にRhが積層されることを特徴とする。   According to a ninth aspect of the present invention, in the charging member according to the second or fourth aspect, the metal filled in the bottom of the fine hole is selected from the group of metals consisting of Cu, Ni, Co, Rh, W, and Mo. At least one kind or an alloy thereof, wherein Rh is laminated on the outermost surface of the filled metal.

請求項10記載の発明は、請求項3又は4記載の帯電部材において、前記微細孔の底部と陽極酸化皮膜形成金属母材との間のバリヤー層の増厚は、硼酸または硼酸に硼酸アンモニウムを1〜5%調合した電解液を用いて陽極酸化することを特徴とする。   According to a tenth aspect of the present invention, in the charging member according to the third or fourth aspect, the thickness of the barrier layer between the bottom of the micropore and the anodized film-forming metal base material is obtained by adding ammonium borate to boric acid or boric acid. It is characterized by anodizing using an electrolyte prepared by 1 to 5%.

請求項11記載の発明は、請求項1から4のいずれか1項記載の帯電部材において、前記陽極酸化皮膜形成金属母材がアルミニウムまたはアルミニウム合金であって、微細孔を有する陽極酸化皮膜の厚さが1〜10μmの範囲であることを特徴とする。   The invention according to claim 11 is the charging member according to any one of claims 1 to 4, wherein the anodized film-forming metal base material is aluminum or an aluminum alloy, and the thickness of the anodized film having micropores. Is in the range of 1 to 10 μm.

請求項12記載の発明は、請求項1から4のいずれか1項記載の帯電部材において、前記微細孔の底部と陽極酸化皮膜形成金属母材との間のバリヤー層の電解増厚される厚みが50〜500nmの範囲であることを特徴とする。   According to a twelfth aspect of the present invention, in the charging member according to any one of the first to fourth aspects, the thickness of the barrier layer between the bottom of the micropore and the anodized film-forming metal base is increased by electrolytic thickness. Is in the range of 50 to 500 nm.

請求項13記載の発明は、請求項7記載の帯電部材において、金属または導電性金属酸化物皮膜の膜厚が、10〜1000nmの範囲であることを特徴とする。   A thirteenth aspect of the present invention is the charging member according to the seventh aspect, wherein the metal or conductive metal oxide film has a thickness in the range of 10 to 1000 nm.

請求項14記載の発明は、被帯電体表面に帯電電位を付与するための非接触の帯電部材を有する帯電装置において、前記帯電部材が請求項1から13のいずれか1項記載の帯電部材であることを特徴とする。   A fourteenth aspect of the present invention is the charging device according to any one of the first to thirteenth aspects, wherein the charging member includes a non-contact charging member for applying a charging potential to the surface of the member to be charged. It is characterized by being.

請求項15記載の発明は、像担持体の表面を帯電する帯電装置を備えた画像形成装置において、前記帯電装置が請求項14記載帯電装置であることを特徴とする。   According to a fifteenth aspect of the present invention, in the image forming apparatus provided with the charging device for charging the surface of the image carrier, the charging device is the charging device according to the fourteenth aspect.

本発明は、帯電部材の最表面の層を電荷の供給が非常に少ない浮遊電極化し、その下層を高抵抗な陽極酸化皮膜とすることによって、帯電部材表面からの電荷(電子、イオン)の供給を少なく抑え、強いコロナ放電を抑制できる。   In the present invention, a charge electrode (electron, ion) is supplied from the surface of the charging member by forming a floating electrode on the outermost surface of the charging member as a floating electrode with very little charge supply and using a lower layer as a high resistance anodic oxide film. Can be suppressed and strong corona discharge can be suppressed.

また、本発明は、アルミニウムを陽極酸化皮膜に用いることにより、その体積抵抗が1012〜1015Ωcmと高抵抗となり、その表面に金属及び導電性金属酸化物を被覆して浮遊電極を形成すれば、陽極酸化皮膜形成金属母材への印加電圧と共に、この電極が陽極酸化皮膜の誘電分極による電位を持った浮遊電極となり、被帯電体に放電を開始する電位となっても、帯電部材表面からの電子の供給は、誘電電位差によって抑制され、高抵抗の陽極酸化皮膜を通った僅かな漏れ電流のみであって、電子なだれが発達する光を伴う強い電離を抑制するように働き、高電位に帯電する際の沿面放電による正帯電、負帯電に特有の鱗状の帯電ムラを防止できる。 Further, according to the present invention, when aluminum is used for the anodic oxide film, the volume resistance becomes as high as 10 12 to 10 15 Ωcm, and the floating electrode is formed by coating the surface with metal and conductive metal oxide. For example, together with the voltage applied to the anodized film-forming metal base material, this electrode becomes a floating electrode having a potential due to the dielectric polarization of the anodized film, and the charged member surface The supply of electrons from is suppressed by the dielectric potential difference, and only a slight leakage current through the high-resistance anodized film works to suppress strong ionization accompanied by light that develops an avalanche of electrons. It is possible to prevent scale-like charging unevenness peculiar to positive charging and negative charging due to creeping discharge during charging.

また、本発明は、最表面を金属や導電性金属酸化物の低抵抗の導電性膜で形成することにより、陽極酸化皮膜から漏れ出る電子電流の電路を、その低抵抗の導電性の膜中に拡散させ、特定の放電路からの放電による帯電模様の形成を抑制できる。   In addition, the present invention forms the outermost surface with a low-resistance conductive film of metal or conductive metal oxide, so that the electric current path leaking from the anodic oxide film is reduced in the low-resistance conductive film. It is possible to suppress the formation of a charged pattern due to discharge from a specific discharge path.

また、本発明は、微細孔を形成する陽極酸化皮膜を用いることにより、その陽極酸化皮膜形成金属母材を第一電極として放電電位以上の印加電圧を加えると微細孔の底部から放電し易くなり、放電に伴うオゾンが微細孔内部に封じ込まれて分解し易くなって飛散が防止され、浮遊電極が第一電極と同極性の電極であるため放電量を抑制し、被帯電体への過剰な帯電量を調整できる。   In addition, the present invention uses an anodic oxide film that forms micropores, so that it becomes easy to discharge from the bottom of the micropores when an applied voltage equal to or higher than the discharge potential is applied using the anodized film-forming metal base material as the first electrode. , Ozone accompanying the discharge is contained inside the micropores and is easily decomposed and prevented from scattering, and since the floating electrode is the same polarity as the first electrode, the amount of discharge is suppressed and excessively charged to the charged body Can adjust the charge amount.

また、本発明は、帯電部材の最表面に金属又は導電性金属酸化物を用いることにより、ゴムやフッ素系樹脂を用いた既存の帯電部材表面に比べ、静電気を蓄積し難く、画像形成時に生じる紙紛等を吸着することも少なくなり、汚れも防止できる。   Further, the present invention uses a metal or a conductive metal oxide on the outermost surface of the charging member, so that it is difficult to accumulate static electricity compared to the existing charging member surface using rubber or fluororesin, and occurs during image formation. Adsorption of paper dust and the like is reduced, and dirt can be prevented.

また、本発明は、帯電部材表面を、微細孔を有する陽極酸化皮膜で形成し、その陽極酸化皮膜の表面に金属または導電性金属酸化物皮膜を形成して絶縁すると、浮遊電極とすることにより、陽極酸化皮膜の表面が直接放電面と成らず、陽極酸化皮膜の誘電分極により形成した電位は金属または導電性金属酸化物皮膜に静電誘導電位を与え、その表面はムラの少ない同極性の電位面となり、陽極酸化皮膜の誘電分極が強く形成される微細孔底部を放電点とし、微細孔内でのコロナ放電を安定させることができる。   The present invention also provides a floating electrode by forming the surface of the charging member with an anodic oxide film having fine pores and forming a metal or conductive metal oxide film on the surface of the anodic oxide film to insulate it. The surface of the anodized film does not directly become the discharge surface, and the potential formed by the dielectric polarization of the anodized film gives an electrostatic induction potential to the metal or conductive metal oxide film, and the surface has the same polarity with little unevenness. Corona discharge in the fine hole can be stabilized by using the bottom of the fine hole where the anodized film has a strong dielectric polarization as a potential discharge point as a discharge point.

また、本発明は、放電により発生するオゾンを微細な三次元空間に封じ込め、三次元空間を形成する誘電体が陽極酸化で形成される金属酸化物であるため触媒機能があり、発生するオゾンの分解性を高めることができる。   In addition, the present invention has a catalytic function because ozone generated by electric discharge is contained in a fine three-dimensional space, and the dielectric forming the three-dimensional space is a metal oxide formed by anodization. Degradability can be improved.

また、本発明は、微細孔がナノサイズであるため、放電面は微小面となって電界を高め低電圧での放電が可能となる。   Further, in the present invention, since the micropores are nano-sized, the discharge surface becomes a micro surface, and the electric field is increased to enable discharge at a low voltage.

また、本発明は、微細孔を有する陽極酸化皮膜の表面に金属または導電性金属酸化物を被覆して絶縁し、浮遊電極とすることにより、陽極酸化皮膜の欠陥部分などの電路からの電子の供給を抑制分散するように働き、微細孔周囲の金属または導電性金属酸化物が微細孔内部からの放電量を制御する電極を形成することが可能となり、過剰な帯電を抑制することができる。   In addition, the present invention covers the surface of an anodized film having fine holes with a metal or a conductive metal oxide and insulates it to form a floating electrode, so that electrons from the electric circuit such as a defective portion of the anodized film can be obtained. It works to suppress and disperse the supply, and it becomes possible to form an electrode in which the metal or conductive metal oxide around the micropore controls the discharge amount from the inside of the micropore, so that excessive charging can be suppressed.

また、本発明によれば、微細孔の底部の厚みは陽極酸化皮膜形成時の電圧により決定し、電解電圧1V当たり約2nmの厚みで形成される。通常、陽極酸化電解電圧は10〜100Vで形成され、その厚みは20〜200nmであり、被帯電体を帯電する際の放電時のスパッタ作用により減厚するため、金属を底部から開口方向に三次元の放電空間を設けるように電解充填すれば、金属面が放電電極となって耐久性の向上できる。   Further, according to the present invention, the thickness of the bottom of the micropore is determined by the voltage at the time of forming the anodic oxide film, and is formed at a thickness of about 2 nm per 1 V of the electrolysis voltage. Usually, the anodic oxidation electrolysis voltage is formed at 10 to 100 V, the thickness is 20 to 200 nm, and the thickness is reduced by the spattering action at the time of discharging when charging the object to be charged. If electrolytic filling is performed so as to provide the original discharge space, the metal surface becomes a discharge electrode and durability can be improved.

また、本発明よれば、微細孔の底部の厚みは陽極酸化皮膜形成時の電圧により決定し、電解電圧1V当たり約2nmの厚みで形成される。通常、電解電圧は10〜100Vで形成され、その厚みは20〜200nm程度であって帯電部材とした場合に放電電流のバリヤー層として作用するが、陽極酸化皮膜を形成する母材に欠陥が有ると部分的に放電電流の過剰な点が発生し易くなる。特に陽極酸化皮膜形成時の電解電圧が10〜20Vの低電圧で形成された場合は、バリヤーとなる層が20〜40nm程度で薄く形成されるため耐久性はやや劣る。よって、バリヤー層の厚みを再度陽極酸化して増厚し、放電電極とすることで微細孔底部電極面の耐久性の向上が図れるようになり、部分的な放電電流の過剰な点の発生を防止できる。   Further, according to the present invention, the thickness of the bottom of the micropore is determined by the voltage at the time of forming the anodic oxide film, and is formed with a thickness of about 2 nm per 1 V of the electrolysis voltage. Usually, the electrolysis voltage is formed at 10 to 100 V, the thickness is about 20 to 200 nm, and when it is used as a charging member, it acts as a barrier layer for the discharge current, but the base material forming the anodized film has a defect. And it becomes easy to generate | occur | produce an excessive point of discharge current partially. In particular, when the electrolytic voltage during the formation of the anodic oxide film is formed at a low voltage of 10 to 20 V, the durability is slightly inferior because the barrier layer is thinly formed at about 20 to 40 nm. Therefore, the thickness of the barrier layer is anodized again to increase the thickness of the discharge electrode, thereby improving the durability of the electrode surface at the bottom of the microhole, and generating excessive points in the partial discharge current. Can be prevented.

また、本発明によれば、バリヤー層の厚みを再度陽極酸化して増厚し、放電電極とすることから、部分的な放電電流の過剰な点が発生し難くなり、電極面の耐久性の向上が図れるようになり、且つ、微細孔底部に金属を底部から開口方向に向かって三次元放電空間を設けるように電解充填すれば、金属面が放電電極となり、放電面耐久性が図れる。   According to the present invention, the thickness of the barrier layer is again anodized to increase the thickness of the discharge electrode, so that an excessive point of partial discharge current hardly occurs, and the durability of the electrode surface is improved. Improvement can be achieved, and if a metal is electrolytically filled at the bottom of the fine hole so as to provide a three-dimensional discharge space from the bottom toward the opening direction, the metal surface becomes a discharge electrode, and discharge surface durability can be achieved.

また、本発明によれば、陽極酸化皮膜表面上に形成された金属または導電性金属酸化物皮膜の第二電極の電圧を表面が開口したナノサイズの微細孔を有する陽極酸化皮膜を具備した第一電極より低電位にすることで、微細孔の底部より安定した放電が可能となり、また、金属または導電性金属酸化物皮膜の第二電極が制御電極的に働き、過剰な放電を抑制することができる。   Further, according to the present invention, there is provided an anodic oxide film having nano-sized micropores whose surface is open to the voltage of the second electrode of the metal or conductive metal oxide film formed on the anodic oxide film surface. By making the electric potential lower than that of one electrode, stable discharge is possible from the bottom of the micropore, and the second electrode of the metal or conductive metal oxide film works as a control electrode to suppress excessive discharge. Can do.

また、本発明によれば、第一電極を放電開始電圧以上に設定することから、表面が開口した微細孔の底部が放電電極となって放電し、放電によって発生したイオンにより被帯電体へ帯電電位を付与するため、被帯電体を200mm/Sec以上の高速度で移動しても効率良く帯電することができる。   Further, according to the present invention, since the first electrode is set to be equal to or higher than the discharge start voltage, the bottom of the fine hole whose surface is opened discharges as the discharge electrode, and the charged object is charged by the ions generated by the discharge. Since an electric potential is applied, the charged object can be charged efficiently even if it is moved at a high speed of 200 mm / Sec or more.

また、本発明によれば、陽極酸化皮膜表面上に形成される金属または導電性金属酸化物皮膜をCu、Al、Ni、Co、Cr、Ti、Au、Pt、Rh、W、Moの金属の群から選択される少なくとも1種もしくはその合金、または酸化インジウム、ITO膜等の導電性金属酸化物を用い、蒸着やスパッタコート法で被覆することから、10-4〜10-6Ωcmの範囲の低抵抗導電性の連続した薄い皮膜を陽極酸化皮膜微細孔上に形成することができる。また10〜1000nmの範囲の非常に薄い薄膜が得られ、ナノサイズの微細孔の開口部を埋めることなく、制御効果が得られるように電極を形成することができる。 According to the present invention, the metal or conductive metal oxide film formed on the surface of the anodized film is made of Cu, Al, Ni, Co, Cr, Ti, Au, Pt, Rh, W, or Mo. Since at least one selected from the group or an alloy thereof, or a conductive metal oxide such as indium oxide or ITO film, is coated by vapor deposition or sputter coating, the range of 10 −4 to 10 −6 Ωcm A continuous thin film having low resistance and conductivity can be formed on the fine pores of the anodized film. Moreover, a very thin thin film in the range of 10 to 1000 nm can be obtained, and the electrode can be formed so as to obtain a control effect without filling the opening of the nano-sized fine hole.

また、本発明によれば、微細孔底部に充填する金属をCu、Ni、Co、Rh、W、Moの金属の群から選択される少なくとも1種またはその合金とすることから、電解析出が可能となり、陽極酸化皮膜形成後に湿式処理で連続して構成することができ、形成が容易となり、放電面の耐久性を向上することができる。   Further, according to the present invention, since the metal filling the bottom of the fine hole is at least one selected from the group of metals of Cu, Ni, Co, Rh, W, and Mo, or an alloy thereof, electrolytic deposition is performed. It becomes possible, and after the formation of the anodized film, it can be continuously formed by a wet process, the formation becomes easy, and the durability of the discharge surface can be improved.

また、本発明によれば、微細孔底部に充填する金属をCu、Ni、Co、Rh、W、Moの金属の群から選択される少なくとも1種またはその合金とすることから、電解析出が可能となり、陽極酸化皮膜形成後に湿式処理で連続して構成することができ、形成が容易となり、その放電面となる表面に、さらに高融点金属Rhを積層することで、より耐久性を向上することができる。   Further, according to the present invention, since the metal filling the bottom of the fine hole is at least one selected from the group of metals of Cu, Ni, Co, Rh, W, and Mo, or an alloy thereof, electrolytic deposition is performed. Can be continuously formed by wet processing after the formation of the anodic oxide film, the formation becomes easy, and the refractory metal Rh is further laminated on the surface to be the discharge surface, thereby further improving the durability. be able to.

また、本発明によれば、表面が開口した微細孔の底部と内部金属とのバリヤー層の増厚を硼酸又及び硼酸アンモニウムを1〜5%調合した電解液を用いて陽極酸化により行うことから、その処理電圧を100〜250Vと高電圧とすることが出来、そのpHが3〜5であるため、先に形成した陽極酸化皮膜を溶解することなく増厚処理することができ、微細孔の底部に再度電解可能な金属を充填する際、微細孔中に残留した硼酸または硼酸アンモニウム電解液がその電解液に混入しても、電析を不安定にする影響は非常に少ない。   Further, according to the present invention, the thickness of the barrier layer between the bottom of the fine hole having an open surface and the internal metal is increased by anodic oxidation using an electrolytic solution containing 1 to 5% boric acid or ammonium borate. The treatment voltage can be as high as 100 to 250 V, and since the pH is 3 to 5, the thickening treatment can be performed without dissolving the previously formed anodized film. Even when boric acid or ammonium borate electrolyte remaining in the micropores is mixed into the electrolyte when the bottom is filled with a metal that can be electrolyzed again, the influence of destabilizing the electrodeposition is very small.

また、本発明によれば、帯電部材の材質をアルミニウムまたはアルミニウム合金とすることから、陽極酸化処理を行なう電解液、及び、条件の幅が広がり、表面が開口した微細孔の口径、バリヤー層厚み等を広い範囲で形成することが容易となる。また、陽極酸化皮膜の厚さを1〜10μmの範囲とすれば、浮遊電極に誘電分極される電位範囲を高電位とすることができる。また、放電空間を設ける際の充填金属電解時間の調整が容易となる。   In addition, according to the present invention, since the charging member is made of aluminum or an aluminum alloy, the electrolytic solution for anodizing treatment, the range of conditions is widened, the diameter of the fine holes having an open surface, the barrier layer thickness Etc. can be easily formed in a wide range. Further, if the thickness of the anodized film is in the range of 1 to 10 μm, the potential range dielectrically polarized on the floating electrode can be made high. In addition, it is easy to adjust the filling metal electrolysis time when providing the discharge space.

また、本発明によれば、微細孔底部のバリヤー層の厚みを、再度バリヤー型の陽極酸化により50〜500nmの範囲で増厚することから、当初の陽極酸化電圧より電圧を高くして形成されるため、材料中の不純物や材料欠陥による当初の陽極酸化により形成されるバリヤー層の欠陥が補強され、欠陥からの放電電流を抑制する放電電極とすることができる。   Further, according to the present invention, the thickness of the barrier layer at the bottom of the microhole is increased again in the range of 50 to 500 nm by barrier type anodic oxidation, so that the voltage is made higher than the initial anodic oxidation voltage. Therefore, defects in the barrier layer formed by the initial anodic oxidation due to impurities in the material and material defects can be reinforced, and a discharge electrode that suppresses the discharge current from the defects can be obtained.

また、本発明によれば、陽極酸化皮膜表面上に形成される金属または導電性金属酸化物皮膜をCu、Al、Ni、Co、Cr、Ti、Au、Pt、Rh、W、Moの金属の群から選択される少なくとも1種もしくはその合金、または酸化インジウム、ITO膜等の導電性金属酸化物を、蒸着やスパッタコート法で形成し、10〜1000nmの範囲で形成することから、低抵抗の連続した非常に薄い薄膜が得られ、ナノサイズの微細孔の開口部を埋めることなく、制御効果が得られるように電極を形成することができる。   According to the present invention, the metal or conductive metal oxide film formed on the surface of the anodized film is made of Cu, Al, Ni, Co, Cr, Ti, Au, Pt, Rh, W, or Mo. Since at least one selected from the group or an alloy thereof, or a conductive metal oxide such as indium oxide or ITO film is formed by vapor deposition or sputter coating, and formed in the range of 10 to 1000 nm, it has a low resistance. An electrode can be formed so that a continuous and very thin thin film can be obtained and a control effect can be obtained without filling the openings of nano-sized micropores.

また、本発明によれば、上記本発明の帯電部材を有することから、過剰な放電が抑制されると共に放電面の耐久性が図れる帯電装置を提供することができる。   In addition, according to the present invention, since the charging member of the present invention is provided, it is possible to provide a charging device that can suppress excessive discharge and achieve durability of the discharge surface.

また、本発明によれば、上記帯電装置を備えたことから、過剰な放電が抑制されると共に放電面の耐久性が図れ、鱗状の画像ムラの生じない画像形成を行うことができる。   In addition, according to the present invention, since the charging device is provided, excessive discharge is suppressed, the durability of the discharge surface can be improved, and image formation without causing scale-like image unevenness can be performed.

以下、図面を参照して、本発明の実施形態を詳細に説明する。図1(a)は、本発明の帯電部材表面の層構成図であって、陽極酸化皮膜形成金属母材(基材)1の表面に微細孔を形成する陽極酸化処理をし、体積抵抗率1012〜1015Ωcmの誘電体であって、膜厚1〜10μmの陽極酸化皮膜2を形成する。この陽極酸化皮膜2は、50〜500nmの微細孔を有し、陽極酸化処理条件により容易にその微細孔の口径を調整でき、安定して形成できる利点を持っている。特にアルミニウムを用いての陽極酸化皮膜処理は微細孔の形成が安定し、帯電部材全面の処理においては生産性が良い。この陽極酸化皮膜の表面には金属または導電性金属酸化物皮膜3を10〜1000nm被覆形成し、帯電部材の全層構成とする。 Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings. FIG. 1A is a layer configuration diagram of the surface of a charging member of the present invention, in which anodizing treatment is performed to form micropores on the surface of an anodized film-forming metal base material (base material) 1, and volume resistivity An anodized film 2 having a thickness of 1 to 10 μm, which is a dielectric of 10 12 to 10 15 Ωcm, is formed. This anodized film 2 has fine holes of 50 to 500 nm, and has an advantage that the diameter of the fine holes can be easily adjusted according to the anodizing treatment conditions and can be stably formed. In particular, the anodized film treatment using aluminum stabilizes the formation of micropores, and the productivity on the entire surface of the charging member is good. The surface of the anodic oxide film is coated with a metal or conductive metal oxide film 3 to a thickness of 10 to 1000 nm to form the entire charging member.

図1(b)は、上記層構成の帯電部材4を、画像形成装置の有機感光体などの誘電体で構成される被帯電体5の表面に帯電電位を付与するため対向して配置した状態を示すものである。帯電部材4の陽極酸化皮膜形成金属母材(基材)を第一電極6として電源7より電圧を印加する。第一電極6に電圧を印加すると、(b)の陽極酸化皮膜8表面の金属または導電性金属酸化物皮膜9は、陽極酸化皮膜8が誘電分極される電位と共にその電位を上昇させ、電源接続がなく無接地であるため、電流供給と移動のほとんど無い浮遊電極となる。   FIG. 1B shows a state in which the charging member 4 having the above-described layer structure is disposed to face the surface of a charged body 5 made of a dielectric such as an organic photoreceptor of an image forming apparatus so as to apply a charging potential. Is shown. A voltage is applied from a power source 7 with the anodized film-forming metal base material (base material) of the charging member 4 as the first electrode 6. When a voltage is applied to the first electrode 6, the metal or conductive metal oxide film 9 on the surface of the anodized film 8 in FIG. Since it is not grounded, it becomes a floating electrode with little current supply and movement.

放電開始電圧以上に第一電極6の電位を電源7により上昇させると、陽極酸化皮膜8の微細孔10の底部11からバリヤー層12を通り抜けて電子13が放出され、微細孔10の内部は電離し、形成されるイオンが微細孔10外へ放出されるようになり、対向して配置された被帯電体5の有機感光体表面が誘電分極すると共に、帯電に有効な負イオン14が帯電ギャップ15を介して被帯電体5の表面に付着し帯電する。   When the potential of the first electrode 6 is raised by the power source 7 above the discharge start voltage, electrons 13 are emitted from the bottom 11 of the fine hole 10 of the anodic oxide film 8 through the barrier layer 12, and the inside of the fine hole 10 is ionized. As a result, the formed ions are emitted to the outside of the micropores 10, the surface of the organic photoconductor of the object 5 to be charged disposed is dielectrically polarized, and negative ions 14 effective for charging are charged in the charging gap. 15 is attached to the surface of the member 5 to be charged and charged.

また、放電開始電圧以上の電圧が第一電極6に掛かると、陽極酸化皮膜8の表面の金属または導電性金属酸化物皮膜9は、陽極酸化皮膜8の誘電分極電位により静電誘導され、陽極酸化皮膜8の膜厚に対応して第一電極6の電位よりやや低い電位が表面に形成され、放電開始電圧以上と成れば、浮遊電極であるため電流供給のほとんどない状態で電極表面近傍の空気を電離して放電するようになり、同じく負イオン14を形成し帯電に寄与するようになる。   When a voltage equal to or higher than the discharge start voltage is applied to the first electrode 6, the metal or conductive metal oxide film 9 on the surface of the anodized film 8 is electrostatically induced by the dielectric polarization potential of the anodized film 8, and the anode Corresponding to the film thickness of the oxide film 8, a potential slightly lower than the potential of the first electrode 6 is formed on the surface. The air is ionized and discharged, and negative ions 14 are formed to contribute to charging.

陽極酸化皮膜8の膜厚は1〜10μmと薄いため、及び、陽極酸化皮膜形成金属母材(基材)のアルミニウム中に不純物金属が0.3〜5%分散含有されるため、陽極酸化皮膜8の膜中にも酸化及びそのままの金属として残り、電路16を形成し、電源7から供給される電子17は、形成された電路16を移動して陽極酸化皮膜8の表面18に到達するが、表面18上に形成された金属又は導電性金属酸化物皮膜9が10-4〜10-6Ωcmの低抵抗であり連続しているため、電子17は、金属又は導電性金属酸化物皮膜9の内部に拡散してしまい、位置を特定する放電路とならず、また、誘電分極により形成された金属又は導電性金属酸化物皮膜9の電位が電子17の移動を阻止しようと働くため、電離のための、電子の供与量としては、非常に少なくなり、強い放電を起すに至らない量となる。 Since the thickness of the anodic oxide film 8 is as thin as 1 to 10 μm, and the impurity metal is dispersed and contained 0.3 to 5% in the aluminum of the anodic oxide film-forming metal base material (base material), In the film, it remains oxidized and remains as a metal, forming an electric circuit 16, and electrons 17 supplied from the power source 7 move through the formed electric circuit 16 and reach the surface 18 of the anodized film 8. Since the metal or conductive metal oxide film 9 formed on 18 has a low resistance of 10 −4 to 10 −6 Ωcm and is continuous, the electrons 17 are present inside the metal or conductive metal oxide film 9. This is not a discharge path for specifying the position, and the potential of the metal or the conductive metal oxide film 9 formed by dielectric polarization works to prevent the movement of the electrons 17. The amount of electron donation is very small. The does not reach the amount to cause a strong discharge.

図1の(c)、(d)、(e)は陽極酸化皮膜の微細孔10内に金属の充填、及びバリヤー層12を増厚し、放電の際のイオン衝撃により放電面となる表面の耐久性低下を防ぐ構成を示したもので、図1(c)は、陽極酸化皮膜形成後に二次電解を行ない、微細孔19の底部20に、電解可能な金属を開口部21に向かって放電空間22を設けるように充填し、充填された電解金属23の表面を第一電極面としたものである。この充填された電解金属23によりバリヤー層24はコロナ放電時のイオンによるスパッタ作用を直接受けることなく安定となり耐久性を増すことができる。   (C), (d), and (e) in FIG. 1 show the surface of the surface that becomes the discharge surface by ion bombardment during discharge by filling the fine holes 10 of the anodic oxide film with metal and increasing the thickness of the barrier layer 12. FIG. 1 (c) shows a configuration that prevents a decrease in durability. In FIG. 1 (c), secondary electrolysis is performed after the formation of the anodized film, and electrolyzed metal is discharged toward the opening 21 at the bottom 20 of the microhole 19. The space 22 is filled so that the surface of the filled electrolytic metal 23 is the first electrode surface. The filled electrolytic metal 23 stabilizes the barrier layer 24 without being directly subjected to the sputtering action by ions during corona discharge, and can increase the durability.

図1(d)は、陽極酸化皮膜形成時に生成されるバリヤー層25を増厚して強化し、増厚されたバリヤー層26を介して微細孔の底部27を第一電極とするものである。増厚の方法はバリヤー型陽極酸化皮膜形成電解液で再度電解するものであり、これにより陽極酸化皮膜形成時の薄いバリヤー層の欠陥からの異常放電が抑制され、尚且つ、放電時のイオン衝撃による耐久性を増すことができる。また、増厚されたバリヤー層26を介しての放電となるため放電電流が抑制されて過剰な放電を起さないようになる。   FIG. 1D shows an example in which the barrier layer 25 formed during the formation of the anodic oxide film is thickened and strengthened, and the bottom 27 of the micropore is made the first electrode through the thickened barrier layer 26. . The method of increasing the thickness is to re-electrolyze with a barrier type anodic oxide film forming electrolyte, thereby suppressing abnormal discharge from defects in the thin barrier layer during the formation of the anodic oxide film, and ion bombardment during discharge. Durability can be increased. In addition, since the discharge is performed through the thickened barrier layer 26, the discharge current is suppressed, so that excessive discharge does not occur.

図1(e)は、増厚されたバリヤー層28を持つ微細孔の底部29に、電解可能な金属を開口部30に向かって放電空間31を設けるように二次電解で充填し、充填された電解金属32の表面を第一電極面としたものである。これにより図1(c)及び(d)より一層耐久性を増し、安定な放電が第一電極面より可能となる。   In FIG. 1E, the bottom 29 of the micropore having the thickened barrier layer 28 is filled with a metal that can be electrolyzed by secondary electrolysis so as to provide a discharge space 31 toward the opening 30. The surface of the electrolytic metal 32 is the first electrode surface. Thereby, durability is further increased as compared with FIGS. 1C and 1D, and stable discharge is possible from the first electrode surface.

図2(a)は、図1の層構成の帯電部材表面を電子顕微鏡で観察したものである。図2(b)は、その帯電部材を被帯電体である有機感光体に帯電ギャップを形成し対向して取付けて、帯電電位の付与量を測定する装置の構成を示すものである。図2(a)の電子顕微鏡観察は、陽極酸化皮膜を形成する陽極酸化皮膜形成金属母材(基材)33をアルミまたはアルミ合金とし、電子顕微鏡観察可能な外径10mm高さ7mmとし、電位測定接続面34を形成し、被帯電体への帯電電位付与表面となる基体表面35を0.1μm以下の粗さの鏡面加工を行ない、洗浄後、微細孔を形成する硫酸、蓚酸、燐酸等の電解液で陽極酸化処理を行なう。   FIG. 2A shows the surface of the charging member having the layer structure shown in FIG. 1 observed with an electron microscope. FIG. 2 (b) shows the configuration of an apparatus for measuring the amount of charge potential applied by attaching the charging member to an organic photoreceptor, which is the object to be charged, with a charging gap formed therebetween. In the electron microscope observation of FIG. 2A, the anodized film-forming metal base material (base material) 33 for forming the anodized film is made of aluminum or an aluminum alloy, the outer diameter is 10 mm, the height is 7 mm, and the potential is observed. A measurement connection surface 34 is formed, and the substrate surface 35 which is a surface to which a charged potential is applied to an object to be charged is mirror-finished with a roughness of 0.1 μm or less, and after washing, sulfuric acid, oxalic acid, phosphoric acid, etc. that form micropores Anodizing with electrolyte.

例えば、燐酸を用いる場合は、その濃度を燐酸100g/l、液温20〜25℃、電解電流1.0〜2.0A/dm2、電解時間3〜30分とし、陽極酸化皮膜の膜厚1〜10μmを形成する。陽極酸化皮膜形成後に微細孔中の処理液を除去洗浄するため純水超音波洗浄し、メタノールまたはエタノールで置換し減圧乾燥する。 For example, when phosphoric acid is used, its concentration is 100 g / l phosphoric acid, the liquid temperature is 20-25 ° C., the electrolysis current is 1.0-2.0 A / dm 2 , the electrolysis time is 3-30 minutes, and the film thickness of the anodized film is 1-10 μm. Form. After the formation of the anodic oxide film, pure water is subjected to ultrasonic cleaning in order to remove and clean the processing liquid in the micropores, and is replaced with methanol or ethanol and dried under reduced pressure.

乾燥後、陽極酸化皮膜の表面に、Al、Cu、Ni、Co、Cr、Ti、Au、Pt、Rh、W、Moのうちの少なくとも1種、もしくはその合金、または導電性金属酸化物の酸化インジウムやITO膜を蒸着またはスパッタリング等のコーティング方法を用いて10〜1000nmの範囲の膜厚で被覆形成する。   After drying, the surface of the anodized film is oxidized with at least one of Al, Cu, Ni, Co, Cr, Ti, Au, Pt, Rh, W, and Mo, or an alloy thereof, or a conductive metal oxide. An indium or ITO film is formed to a thickness of 10 to 1000 nm by using a coating method such as vapor deposition or sputtering.

電子顕微鏡にて表面構造を観察する場合は、Auを10〜40nmの厚みでコーティングし、帯電電位付与表面36を形成する。帯電電位付与表面36の周囲の誘電分極電位を測定するために電位測定接続面34にも同時にAuをコーティングして電位測定接続面37を形成し、浮遊電極をもつ帯電部材38が形成される。   When observing the surface structure with an electron microscope, Au is coated with a thickness of 10 to 40 nm to form a charged potential applying surface 36. In order to measure the dielectric polarization potential around the charged potential applying surface 36, the potential measuring connecting surface 34 is simultaneously coated with Au to form a potential measuring connecting surface 37, and a charging member 38 having a floating electrode is formed.

この帯電部材38を電子顕微鏡にて観察すると、5万倍以上にて50〜200nmの微細孔39を持つ表面が観察される。微細孔39は、その口径が10〜20nm程度のバラツキを持つが、非常に均一に分散した状態で形成されており、材質のアルミニウムに由来し安定に形成することができる。   When the charging member 38 is observed with an electron microscope, a surface having a fine hole 39 of 50 to 200 nm is observed at 50,000 times or more. The fine holes 39 have a variation in diameter of about 10 to 20 nm, but are formed in a very uniformly dispersed state, and can be stably formed from the material aluminum.

実施例1と同様に陽極酸化皮膜を形成する陽極酸化皮膜形成金属母材(基材)をアルミまたはアルミ合金とし、電位測定接続面を形成し、被帯電体への帯電電位付与表面となる基体表面35を、0.1μm以下の粗さの鏡面加工を行ない、洗浄後、微細孔を形成する硫酸、蓚酸、燐酸等の電解液で陽極酸化処理を行なう。   As in Example 1, an anodic oxide film-forming metal base material (base material) for forming an anodic oxide film is made of aluminum or an aluminum alloy, a potential measurement connecting surface is formed, and a substrate serving as a charged potential imparting surface to an object to be charged The surface 35 is mirror-finished with a roughness of 0.1 μm or less, and after cleaning, anodizing is performed with an electrolyte such as sulfuric acid, oxalic acid, phosphoric acid or the like that forms micropores.

陽極酸化皮膜形成後に微細孔中の処理液を除去洗浄するため、純水超音波洗浄したあと、電解析出可能な金属またはその合金として、Cu、Ni、Co、Rh、W、Moのうちの少なくとも1種もしくはその合金の電解液を用いて微細孔底部へ、またはCu、Ni、Co等を先に電解した後、さらに、最表面に1960℃の高融点を持つロジウム(Rh)を電析すると、より耐久性のある表面となる。   In order to remove and clean the treatment liquid in the micropores after the formation of the anodized film, after pure water ultrasonic cleaning, as a metal that can be electrolytically deposited or an alloy thereof, Cu, Ni, Co, Rh, W, Mo After electrolyzing Cu, Ni, Co, etc. to the bottom of the micropores using an electrolyte of at least one kind or alloy thereof, rhodium (Rh) having a high melting point of 1960 ° C. is further electrodeposited on the outermost surface. This results in a more durable surface.

燐酸を用いて陽極酸化皮膜6μmを形成した場合の微細孔底部へ金属電析条件は、電解液として硫酸ニッケル250g/l、液温40℃、電解電流0.1A/dm2では微細孔底部〜開口部までの充填時間は8分程度であり、放電空間図1(c)の22、図1(e)の31を設ける為には2〜3分を目安として電析することで、図1(c)、図1(e)の形態に充填した電解金属23、32の電極を形成することができる。 The metal electrodeposition conditions on the bottom of the micropore when phosphoric acid is used to form an anodized film of 6 μm are as follows: nickel sulfate 250 g / l as the electrolyte, liquid temperature 40 ° C., and electrolysis current 0.1 A / dm 2. The filling time up to about 8 minutes is about 8 minutes, and in order to provide the discharge space 22 in FIG. 1 (c) and 31 in FIG. c) Electrodes of the electrolytic metals 23 and 32 filled in the form shown in FIG. 1E can be formed.

金属を電解形成した後、微細孔中の処理液を除去洗浄するため純水超音波洗浄し、メタノールまたはエタノールで置換し減圧乾燥する。乾燥後、陽極酸化皮膜の表面に、Al、Cu、Ni、Co、Cr、Ti、Au、Pt、Rh、W、Moのうちの少なくとも1種もしくはその合金、または導電性金属酸化物のインジウムやITO膜を蒸着またはスパッタリング等のコーティング方法を用いて10〜1000nmの範囲の膜厚を被覆形成することで電極面を形成する。   After electrolytic formation of the metal, pure water ultrasonic cleaning is performed to remove and clean the processing liquid in the micropores, and replacement with methanol or ethanol is performed under reduced pressure. After drying, on the surface of the anodized film, at least one of Al, Cu, Ni, Co, Cr, Ti, Au, Pt, Rh, W, and Mo, or an alloy thereof, or indium of a conductive metal oxide or The electrode surface is formed by coating the ITO film with a film thickness in the range of 10 to 1000 nm using a coating method such as vapor deposition or sputtering.

電子顕微鏡にて表面構造を観察する場合は、Auを10〜40nmの厚みでコーティングし、同じく、帯電電位付与表面36を形成し、浮遊電極をもつ帯電部材38が形成される。   In the case of observing the surface structure with an electron microscope, Au is coated with a thickness of 10 to 40 nm, and similarly, a charging potential applying surface 36 is formed, and a charging member 38 having a floating electrode is formed.

実施例1と同様に陽極酸化皮膜形成金属母材(基材)をアルミまたはアルミ合金とし、電位測定接続面を形成し、被帯電体への帯電電位付与表面となる基体表面35を、0.1μm以下の粗さの鏡面加工を行ない、洗浄後、微細孔を形成する硫酸、蓚酸、燐酸等の電解液で陽極酸化処理を行なう。   In the same manner as in Example 1, the metal base material (base material) for forming the anodic oxide film is made of aluminum or an aluminum alloy, the potential measurement connecting surface is formed, and the substrate surface 35 serving as the charged potential applying surface to the object to be charged is 0.1 μm. A mirror finish with the following roughness is performed, and after cleaning, anodization is performed with an electrolyte such as sulfuric acid, oxalic acid, phosphoric acid or the like that forms micropores.

例えば、燐酸を用いる場合は、その濃度を燐酸100g/l、液温20〜25℃、電解電流1.0〜2.0A/dm2、電解時間3〜30分とし、陽極酸化皮膜の膜厚1〜10μmを形成する。 For example, when phosphoric acid is used, its concentration is 100 g / l phosphoric acid, the liquid temperature is 20-25 ° C., the electrolysis current is 1.0-2.0 A / dm 2 , the electrolysis time is 3-30 minutes, and the film thickness of the anodized film is 1-10 μm. Form.

バリヤー層の増厚は硼酸または硼酸に硼酸アンモニウムを1〜5%混合した電解液100g/l、液温20〜25℃とし、電解電圧は陽極酸化皮膜を形成する最終電圧の1.5〜2倍とし、電解電流が0になるまで処理する。燐酸を電解液とした陽極酸化の最終電圧が約70Vであるので100〜150Vを印加して処理する。通常、微細孔を形成しないバリヤー型の陽極酸化では電圧1V当たり2nm程度の酸化皮膜が生成され、図1(d)のバリヤー層26、図1(e)のバリヤー層28は、150〜200nmに増厚された形態となる。   The thickness of the barrier layer is 100 g / l of an electrolytic solution of boric acid or 1 to 5% ammonium borate mixed with boric acid, the liquid temperature is 20 to 25 ° C., and the electrolytic voltage is 1.5 to 2 times the final voltage for forming the anodized film. Process until the electrolysis current reaches zero. Since the final voltage of the anodic oxidation using phosphoric acid as the electrolyte is about 70V, the treatment is performed by applying 100 to 150V. Usually, barrier type anodic oxidation that does not form micropores produces an oxide film of about 2 nm per 1 V of voltage, and the barrier layer 26 in FIG. 1D and the barrier layer 28 in FIG. Increased thickness.

バリヤー型の陽極酸化では先に形成した陽極酸化皮膜はほとんど溶解することなく、微細孔底部を強化するように働き、微小な材料欠陥部分、及び、陽極酸化皮膜形成時に発生する皮膜のヒビ割れ等の修復も可能となる。   In barrier type anodic oxidation, the previously formed anodic oxide film hardly dissolves and works to reinforce the bottom of the micropores, minute material defects, and cracking of the film that occurs during anodic oxide film formation, etc. Can be repaired.

実施例1と同様に陽極酸化皮膜形成金属母材(基材)をアルミ及びアルミ合金とし、電位測定接続面を形成し、被帯電体への帯電電位付与表面となる基体表面を、0.1μm以下の粗さの鏡面加工を行ない、洗浄後、微細孔を形成する硫酸、蓚酸、燐酸等の電解液で陽極酸化処理を行なう。   As in Example 1, the metal base material (base material) for forming the anodic oxide film is made of aluminum and aluminum alloy, the potential measurement connection surface is formed, and the surface of the substrate that becomes the charged potential applying surface to the body to be charged is 0.1 μm or less. The surface is mirror-finished, and after cleaning, anodization is performed with an electrolytic solution such as sulfuric acid, oxalic acid, or phosphoric acid that forms micropores.

例えば、燐酸を用いる場合は、その濃度を燐酸100g/l、液温20〜25℃、電解電流1.0〜2.0A/dm2、電解時間3〜30分とし、陽極酸化皮膜の膜厚1〜10μmを形成する。 For example, when phosphoric acid is used, its concentration is 100 g / l phosphoric acid, the liquid temperature is 20-25 ° C., the electrolysis current is 1.0-2.0 A / dm 2 , the electrolysis time is 3-30 minutes, and the film thickness of the anodized film is 1-10 μm. Form.

バリヤー層の増厚は硼酸または硼酸に硼酸アンモニウム1〜5%を混合した電解液100g/l、液温20〜25℃とし、電解電圧は陽極酸化皮膜を形成する最終電圧の1.5〜3倍とし、電解電流が0になるまで処理する。燐酸を電解液とした上記の場合には最終電圧が70V程度であるので100〜150Vを印加して処理する。通常、微細孔を形成しないバリヤー型の陽極酸化では電圧1V当たり2nm程度の皮膜が生成されるため、バリヤー層膜厚を300nm上限として150Vの電圧印加とする。これ以上の印加電圧でバリヤー層を増厚すると、次工程の微細孔底部への金属電析電圧が高くなり過ぎて水素ガスが過大に発生し金属充填が困難となる。   The thickness of the barrier layer is 100g / l of electrolytic solution of boric acid or boric acid mixed with ammonium borate 1-5%, liquid temperature 20-25 ° C, and the electrolysis voltage is 1.5-3 times the final voltage to form the anodized film. Process until the electrolysis current reaches zero. In the above case where phosphoric acid is used as the electrolytic solution, the final voltage is about 70V, so that treatment is performed by applying 100 to 150V. Usually, barrier type anodic oxidation without forming micropores produces a film of about 2 nm per 1 V of voltage, and therefore, a voltage of 150 V is applied with the barrier layer thickness being 300 nm as the upper limit. If the barrier layer is thickened with an applied voltage higher than this, the metal electrodeposition voltage on the bottom of the fine holes in the next process becomes too high, and hydrogen gas is excessively generated, making it difficult to fill the metal.

バリヤー層の皮膜増厚形成後に微細孔中の処理液を除去洗浄するため純水超音波洗浄したあと、電解析出可能な金属またはその合金として、Cu、Ni、Co、Rh、W、Moのうちの少なくとも1種もしくはその合金の電解液を用いて微細孔底部へ、またはCu、Ni、Co等を先に電解した後、さらに、最表面に1960℃の高融点を持つロジウム(Rh)を電析するとより耐久性のある表面となる。   After removing the treatment liquid in the micropores after the thickening of the barrier layer, the pure water is subjected to ultrasonic cleaning, and then, as a metal that can be electrolytically deposited or an alloy thereof, Cu, Ni, Co, Rh, W, Mo After electrolyzing Cu, Ni, Co, etc. to the bottom of the micropores using an electrolytic solution of at least one of them or an alloy thereof, rhodium (Rh) having a high melting point of 1960 ° C. is further added to the outermost surface. Electrodeposition results in a more durable surface.

燐酸を用いて陽極酸化皮膜6μmを形成した場合の微細孔底部へ電析条件は、電解液として硫酸ニッケル250g/l、液温40℃、電解電流0.1A/dm2では、微細孔底部〜開口部までの金属充填時間は8分程度であり、放電空間、図1(c)の22、図1(e)の31を設ける為には2〜3分を目安として電析することで、図1(c)、図1(e)の形態の電解金属23、32を形成することができる。 Electrodeposition conditions on the bottom of the fine pores when anodized film of 6 μm was formed using phosphoric acid were as follows: the bottom of the fine pores to the opening at 250 g / l of nickel sulfate as the electrolyte, 40 ° C., and 0.1 A / dm 2 of electrolysis current The metal filling time is about 8 minutes, and in order to provide the discharge space, 22 in FIG. 1 (c), 31 in FIG. 1 (e), electrodeposition is performed with 2 to 3 minutes as a guideline. Electrolytic metals 23 and 32 in the form of 1 (c) and FIG. 1 (e) can be formed.

金属を電解形成した後、微細孔中の処理液を除去洗浄するため純水超音波洗浄し、メタノールまたはエタノールで置換し減圧乾燥する。   After electrolytic formation of the metal, pure water ultrasonic cleaning is performed to remove and clean the processing liquid in the micropores, and replacement with methanol or ethanol is performed under reduced pressure.

乾燥後、陽極酸化皮膜の表面に、Al、Cu、Ni、Co、Cr、Ti、Au、Pt、Rh、W、Moのうちの少なくとも1種もしくはその合金、または導電性金属酸化物のインジウムやITO膜を蒸着またはスパッタリング等のコーティング方法を用いて10〜1000nmの範囲の膜厚を被覆形成する。   After drying, on the surface of the anodized film, at least one of Al, Cu, Ni, Co, Cr, Ti, Au, Pt, Rh, W, and Mo, or an alloy thereof, or indium of a conductive metal oxide or An ITO film is formed to a thickness of 10 to 1000 nm by using a coating method such as vapor deposition or sputtering.

電子顕微鏡にて表面構造を観察する場合は、Auを10〜40nmの厚みでコーティングし、同じく、帯電電位付与表面36を形成することで、浮遊電極をもつ帯電部材38が形成される。   When observing the surface structure with an electron microscope, Au is coated with a thickness of 10 to 40 nm, and similarly, the charging member 38 having floating electrodes is formed by forming the charging potential applying surface 36.

図2の(b)は、その浮遊電極をもつ帯電部材38の帯電量測定装置の構成図で、被帯電体である有機感光体40に、上記帯電部材(38)を、ローラー41、42により三点支持にて接触させて配置し、帯電ギャップ43を約50μm形成する。   FIG. 2B is a configuration diagram of a charge amount measuring device for the charging member 38 having the floating electrode. The charging member (38) is attached to the organic photoreceptor 40 as a charged body by rollers 41 and 42. The charging gap 43 is formed to have a thickness of about 50 μm.

誘電分極電位を測定するために電位測定接続面37にリード線44を配し、電位測定器45に接続可能にする。通常はスイッチ46により開放しておく。   In order to measure the dielectric polarization potential, a lead wire 44 is arranged on the potential measurement connection surface 37 so that the potential measurement device 45 can be connected. Normally, the switch 46 is opened.

帯電部材(38)の中心に電圧印加用軸47を取り付け、リード線48により、1〜3KVの高圧電源49(FLUKE415B)を接続して電圧を印加できるようにする。   A voltage application shaft 47 is attached to the center of the charging member (38), and a high voltage power supply 49 (FLUKE415B) of 1 to 3 KV is connected by a lead wire 48 so that a voltage can be applied.

有機感光体40の帯電電位は、表面電位計50(TREK344)のプローブ51の測定間隔52を約1mmに設定して測定し、記録計53(GRAPHTEC SERVO150)に記録する。   The charged potential of the organic photoconductor 40 is measured by setting the measurement interval 52 of the probe 51 of the surface electrometer 50 (TREK344) to about 1 mm, and is recorded on the recorder 53 (GRAPHTEC SERVO150).

有機感光体40上に帯電された電位は、導電性ブラシ54を介して全量接地除電する。有機感光体40を毎分250mmで回転させ、高圧電源49より陽極酸化皮膜形成金属部材に電圧を100Vから印加していくと、図3(c)の帯電電位グラフが記録計チャートに表示され、印加電圧が-900Vから-2000Vに対し、帯電電位が直線的に増加する様子が計測される。   The electric potential charged on the organic photoconductor 40 is completely grounded through the conductive brush 54. When the organophotoreceptor 40 is rotated at 250 mm per minute and a voltage is applied from 100 V to the anodized film-forming metal member from the high voltage power source 49, the charged potential graph of FIG. A state in which the charging potential increases linearly with respect to the applied voltage from −900 V to −2000 V is measured.

帯電電位の直線的増加に際し、印加電圧1700V付近で目視確認できる光を発するコロナ放電55が観測されるが、急峻な帯電電位とならないのは、電源49から供給される電子が陽極酸化皮膜を通ったとしても、その量は光を発するコロナ放電に強く寄与するほど多くはないことが証明され、陽極酸化皮膜による高抵抗な誘電体上に、金属または導電性金属酸化物による浮遊電極を形成し、誘電分極電位により被帯電体に帯電電位を付与するようにすれば、画像形成装置で使用される400〜1000V範囲に対し、安定した帯電が行なえる帯電部材となることが分る。
[比較例1]
When the charging potential increases linearly, a corona discharge 55 that emits light that can be visually confirmed is observed near the applied voltage of 1700 V. However, the steep charging potential is not caused by electrons supplied from the power source 49 passing through the anodized film. Even so, it is proved that the amount is not so large as to contribute strongly to the corona discharge that emits light, and a floating electrode made of metal or conductive metal oxide is formed on a high-resistance dielectric made of an anodized film. If the charged potential is applied to the member to be charged by the dielectric polarization potential, the charging member can be stably charged with respect to the range of 400 to 1000 V used in the image forming apparatus.
[Comparative Example 1]

現在画像形成装置に使用されているゴム製の帯電部材を、同じく帯電ギャップ約50μmに調整して帯電電位を測定した。この帯電部材の帯電電位付与表面の材質は、エピクロルヒドリンゴムにカーボンブラックを分散させ、厚み1〜1.5mmであって、体積固有抵抗が108〜109Ωcmを持ち、ゴムの表面粗さ3μm以下に研削加工されたものである。画像形成装置ではデジタルカラーコピー用に使用されている接触式、又は非接触式の帯電部材であって、有機感光体への帯電に際し、鱗状画像ムラ形成の少ない帯電部材である。帯電電位の測定グラフを図3(a)に示す。
[比較例2]
The charging potential was measured by adjusting the charging member made of rubber currently used in the image forming apparatus to a charging gap of about 50 μm. The material of the charging potential applying surface of this charging member is a carbon black dispersed in epichlorohydrin rubber, having a thickness of 1 to 1.5 mm, a volume resistivity of 10 8 to 10 9 Ωcm, and a rubber surface roughness of 3 μm or less It has been ground. In the image forming apparatus, it is a contact type or non-contact type charging member used for digital color copying, and is a charging member with little scale-like image unevenness when charging the organic photoreceptor. A measurement graph of the charging potential is shown in FIG.
[Comparative Example 2]

アルミまたはアルミ合金を、燐酸100g/l、液温20〜25℃、電解電流1A/dm2、電解時間10分とし、100〜150nmの微細孔を持つ陽極酸化皮膜5μmを形成し、陽極酸化皮膜の表面には金属及び導電性金属酸化物を被覆形成せずに帯電電位を測定した。帯電電位の測定グラフを図3(b)に示す。 Aluminum or aluminum alloy, phosphoric acid 100g / l, liquid temperature 20-25 ° C, electrolysis current 1A / dm 2 , electrolysis time 10 minutes, anodized film 5μm with fine pores of 100-150nm is formed, anodized film The charging potential was measured without forming a metal or conductive metal oxide coating on the surface. A measurement graph of the charging potential is shown in FIG.

図3(a)のゴム製帯電部材の帯電電位特性は、有機感光体への帯電電位が-400Vを越えると急速な電位立上部56が有り、ゴム製帯電部材の印加電圧が-1200Vで-600Vに帯電し、帯電電位-600V〜-850Vまでほぼ直線的に安定して帯電し、印加電圧-1600〜-1700V付近で光を発するコロナ放電が目視観測され、やや急な電位立上部57を持つ帯電特性となる。   The charging potential characteristic of the rubber charging member in FIG. 3A is that when the charging potential to the organic photoreceptor exceeds −400V, there is a rapid potential rise 56, and the applied voltage of the rubber charging member is −1200V− Charged to 600V, charged in a straight line and stably from -600V to -850V, corona discharge emitting light in the vicinity of applied voltage -1600 to -1700V was visually observed, and a slightly steep potential rise 57 It has the charging characteristics.

図3(b)の陽極酸化皮膜単独での帯電部材の帯電電位特性は、有機感光体への帯電電位が-400V付近まで帯電電位58の振れ幅が大きく、帯電電位-400Vを越えると急速な電位立上部59が有り、印加電圧1100V付近60で、目視確認される光を発するコロナ放電が観測されるようになると電位の振れ幅を小さくし、帯電電位1000V付近まで安定に帯電するようになる。   The charging potential characteristic of the charging member with only the anodic oxide film in FIG. 3B shows that the fluctuation of the charging potential 58 is large until the charging potential to the organic photoconductor is near -400V, and it is rapid when the charging potential exceeds -400V. When a corona discharge emitting light that can be visually confirmed is observed near the applied voltage 1100V 60, the potential fluctuation is reduced and the charging potential is stable up to 1000V. .

ゴム製帯電部材(a)及び陽極酸化皮膜単独の帯電部材(b)では、-600V以下に有機感光体を帯電しようとすると帯電電位の急速な立ち上がりがあり、印加電圧を設定し難いことが判断され、浮遊電極を形成した図3(c)の本発明の帯電部材より、画像形成での帯電装置として使用し難いこと、及び、画像形成装置の設置環境により帯電部材の抵抗値が低下したりする場合に鱗状の画像ムラを形成し易くなることがわかる。   In the charging member made of rubber (a) and the charging member (b) having only an anodic oxide film, it is judged that there is a rapid rise in the charging potential when it is attempted to charge the organic photoreceptor to −600 V or less, and it is difficult to set the applied voltage. The charging member of FIG. 3C in which a floating electrode is formed is difficult to use as a charging device in image formation, and the resistance value of the charging member is lowered depending on the installation environment of the image forming device. It can be seen that it is easy to form scale-like image unevenness in this case.

上記測定における測定条件は以下のとおりである。
「被帯電体」基体材質 :Al(A5056)t=1
有機感光体:機能分離型有機感光体
電荷輸送層:30μm(樹脂PC、スチルベン系)
電荷発生層:0.5μm(削除)
下引き層 :3μm(メラミンアルキド、酸化Ti)
誘電率 :3〜4 (電荷輸送層樹脂PC材)
帯電ギャップ :50μm
被帯電体移動速度 :250mm/Sec
放電環境条件 :室温20〜25℃、湿度40〜60%、大気中
The measurement conditions in the above measurement are as follows.
“Subject” substrate material: Al (A5056) t = 1
Organic photoconductor: Function-separated organic photoconductor
Charge transport layer: 30μm (resin PC, stilbene)
Charge generation layer: 0.5μm (deleted)
Undercoat layer: 3 μm (melamine alkyd, oxidized Ti)
Dielectric constant: 3 to 4 (Charge transport layer resin PC material)
Charging gap: 50 μm
Charged object moving speed: 250mm / Sec
Discharge environmental conditions: Room temperature 20-25 ° C, humidity 40-60%, in the atmosphere

(a)は、本発明の帯電部材の表面の層構成図、(b)は、(a)の帯電部材の表面を被帯電体の表面に帯電電位を付与するために対向して配置した状態を示す図、(c)、(d)、(e)は、陽極酸化皮膜の微細孔内に金属を充填、またはバリヤー層を増厚し、放電の際のイオン衝撃による表面の耐久性の低下を防ぐ構成を示した図である。(A) is a layer configuration diagram of the surface of the charging member of the present invention, and (b) is a state in which the surface of the charging member of (a) is arranged to face the surface of the body to be charged so as to apply a charging potential. Figures (c), (d), and (e) show a decrease in surface durability due to ion bombardment during discharge by filling a metal in the fine pores of the anodized film or increasing the thickness of the barrier layer. It is the figure which showed the structure which prevents. (a)は、本発明の帯電部材の表面を電子顕微鏡観察するときの試料の作製と電顕写真を示す。(b)は該帯電部材の帯電量測定装置の構成図である。(A) shows sample preparation and electron micrographs when the surface of the charging member of the present invention is observed with an electron microscope. (B) is a block diagram of a charging amount measuring device for the charging member. (a)は従来のゴム製帯電部材、(b)は陽極酸化皮膜単独の帯電部材、(c)は本発明の帯電部材で、下のグラフは、それらに対応する帯電電位の測定グラフである。(A) is a conventional rubber charging member, (b) is a charging member of an anodic oxide film alone, (c) is a charging member of the present invention, and the lower graph is a measurement graph of the corresponding charging potential. .

符号の説明Explanation of symbols

1 陽極酸化皮膜形成金属母材
2 陽極酸化皮膜
3 金属または導電性金属酸化物皮膜
4 帯電部材
5 被帯電体
6 陽極酸化皮膜形成金属母材(第一電極)
8 陽極酸化皮膜
9 金属または導電性金属酸化物皮膜
10 微細孔
11 微細孔の底部(第一電極の電極面)
12 バリヤー層
15 帯電ギャップ
19 微細孔
20 微細孔の底部
21 開口部
22 放電空間
23 電解金属
24 バリヤー層
25 バリヤー層
26 増厚されたバリヤー層
28 増厚されたバリヤー層
30 開口部
31 放電空間
32 電解金属
33 陽極酸化皮膜形成金属母材
34 電位測定接続面
35 基体表面
36 帯電電位付与表面
38 帯電部材
39 微細孔
40 有機感光体
41、42 ローラ
43 帯電ギャップ
45 電位測定器
47 電圧印加用軸
50 表面電位計
55 目視確認できる光を発するコロナ放電
56、59 急速な電位の立ち上がり部
57 やや急な電位の立ち上がり部
58 振れ幅が大きい帯電電位
60 目視確認される光を発するコロナ放電
DESCRIPTION OF SYMBOLS 1 Anodized film forming metal base material 2 Anodized film 3 Metal or conductive metal oxide film 4 Charging member 5 Charged object 6 Anodized film forming metal base material (first electrode)
8 Anodized film 9 Metal or conductive metal oxide film 10 Micropore 11 Bottom of micropore (electrode surface of first electrode)
DESCRIPTION OF SYMBOLS 12 Barrier layer 15 Charging gap 19 Microhole 20 Bottom of micropore 21 Opening 22 Discharge space 23 Electrolytic metal 24 Barrier layer 25 Barrier layer 26 Thickened barrier layer 28 Thickened barrier layer 30 Opening 31 Discharge space 32 Electrolytic metal 33 Anodized film forming metal matrix 34 Potential measurement connection surface 35 Substrate surface 36 Charging potential applying surface 38 Charging member 39 Micropore 40 Organic photoreceptor 41, 42 Roller 43 Charging gap 45 Potential measuring device 47 Voltage application shaft 50 Surface potential meter 55 Corona discharge emitting light that can be visually confirmed 56, 59 Rapid potential rising portion 57 Slight potential rising portion 58 Charging potential with large fluctuation 60 Corona discharge emitting light that can be visually confirmed

Claims (15)

被帯電体表面に帯電電位を付与するための非接触の帯電部材において、
該帯電部材の表面を微細孔を有する陽極酸化皮膜で形成し、
該陽極酸化皮膜の微細孔底部と陽極酸化皮膜形成金属母材との間に生成するバリヤー層を介して該微細孔底部を第一電極の電極面とし、さらに前記陽極酸化皮膜の表面に金属または導電性金属酸化物の皮膜を被覆して第二電極とし、前記陽極酸化皮膜形成金属母材に電圧を印加して前記第一電極の電極面を前記被帯電体への帯電電位付与可能電位とし、前記第二電極を浮遊電極として前記被帯電体へ帯電電位を付与することを特徴とする帯電部材。
In a non-contact charging member for applying a charging potential to the surface of the charged body,
Forming the surface of the charging member with an anodized film having fine pores;
The bottom of the fine hole is used as an electrode surface of the first electrode through a barrier layer formed between the bottom of the fine hole of the anodic oxide film and the metal base material for forming the anodic oxide film. A conductive metal oxide film is coated to form a second electrode, and a voltage is applied to the anodized film-forming metal base material to make the electrode surface of the first electrode a potential capable of applying a charging potential to the object to be charged. A charging member that applies a charging potential to the member to be charged using the second electrode as a floating electrode.
被帯電体表面に帯電電位を付与するための非接触の帯電部材において、
該帯電部材の表面を微細孔を有する陽極酸化皮膜で形成すると共に該陽極酸化皮膜の微細孔底部から開口方向に放電空間を設けるよう金属を電解充填し、
前記陽極酸化皮膜の微細孔底部と陽極酸化皮膜形成金属母材との間に生成するバリヤー層を介して微細孔に充填した金属表面を第一電極の電極面とし、さらに前記陽極酸化皮膜の表面に金属または導電性金属酸化物の皮膜を被覆して第二電極とし、前記陽極酸化皮膜形成金属母材に電圧を印加して前記第一電極の電極面を前記被帯電体への帯電電位付与可能電位とし、前記第二電極を浮遊電極として前記被帯電体へ帯電電位を付与することを特徴とする帯電部材。
In a non-contact charging member for applying a charging potential to the surface of the charged body,
Forming the surface of the charging member with an anodic oxide film having micropores and electrolytically filling a metal so as to provide a discharge space from the bottom of the micropores of the anodic oxide film in the opening direction;
A metal surface filled in the micropores through a barrier layer generated between the bottom of the micropores of the anodized film and the metal base material for forming the anodized film is used as the electrode surface of the first electrode, and further the surface of the anodized film A metal or conductive metal oxide film is coated on the electrode to form a second electrode, and a voltage is applied to the metal base material for forming the anodic oxide film to apply a charging potential to the charged body on the electrode surface of the first electrode. A charging member having a potential potential and applying a charging potential to the member to be charged using the second electrode as a floating electrode.
被帯電体表面に帯電電位を付与するための非接触の帯電部材において、
該帯電部材の表面を微細孔を有する陽極酸化皮膜で形成すると共に該陽極酸化皮膜の微細孔底部と陽極酸化皮膜形成金属母材との間に生成するバリヤー層を電解増厚し、
該電解増厚されたバリヤー層を介して該微細孔底部を第一電極の電極面とし、さらに前記微細孔を有する陽極酸化皮膜の表面に金属または導電性金属酸化物の皮膜を被覆して第二電極とし、前記陽極酸化皮膜形成金属母材に電圧を印加して前記第一電極の電極面を前記被帯電体への帯電電位付与可能電位とし、前記第二電極を浮遊電極として前記被帯電体へ帯電電位を付与することを特徴とする帯電部材。
In a non-contact charging member for applying a charging potential to the surface of an object to be charged,
The surface of the charging member is formed with an anodized film having micropores, and a barrier layer formed between the bottom of the micropores of the anodized film and the anodized film-forming metal base material is electrolytically thickened.
The bottom of the fine hole is made the electrode surface of the first electrode through the barrier layer that has been electrolytically thickened, and the surface of the anodized film having the fine hole is coated with a metal or conductive metal oxide film. Two electrodes, a voltage is applied to the anodized film-forming metal base material so that the electrode surface of the first electrode can be applied with a charging potential to the object to be charged, and the second electrode is a floating electrode and the object to be charged A charging member for applying a charging potential to a body.
被帯電体表面に帯電電位を付与するための非接触の帯電部材において、
該帯電部材の表面を微細孔を有する陽極酸化皮膜で形成すると共に該陽極酸化皮膜の微細孔底部と陽極酸化皮膜形成金属母材との間に生成するバリヤー層を電解増厚し、
該電解増厚されたバリヤー層を持つ微細孔底部から開口方向に放電空間を設けるよう金属を電解充填し、
該電解増厚されたバリヤー層を介して微細孔底部に充填した金属表面を第一電極の電極面とし、さらに前記微細孔を有する陽極酸化皮膜の表面に金属または導電性金属酸化物の皮膜を被覆して第二電極とし、前記陽極酸化皮膜形成金属母材に電圧を印加して前記第一電極面を前記被帯電体への帯電電位付与可能電位とし、前記第二電極を浮遊電極として前記被帯電体へ帯電電位を付与することを特徴とする帯電部材。
In a non-contact charging member for applying a charging potential to the surface of an object to be charged,
The surface of the charging member is formed with an anodized film having micropores, and a barrier layer formed between the bottom of the micropores of the anodized film and the anodized film-forming metal base material is electrolytically thickened.
Electrolytically filling a metal so as to provide a discharge space in the opening direction from the bottom of the fine hole having the barrier layer that has been electrolytically thickened,
The surface of the metal filled in the bottom of the fine hole through the electrolytically thickened barrier layer is used as the electrode surface of the first electrode, and a metal or conductive metal oxide film is further formed on the surface of the anodic oxide film having the fine hole. The second electrode is coated, a voltage is applied to the anodic oxide film-forming metal base material to make the first electrode surface a potential that can be applied to the charged body, and the second electrode as a floating electrode. A charging member that applies a charging potential to an object to be charged.
前記陽極酸化皮膜表面上に形成される金属または導電性金属酸化物の皮膜の前記第二電極が、前記第一電極より低電位な浮遊電極であることを特徴とする請求項1から4のいずれか1項記載の帯電部材。   The second electrode of the metal or conductive metal oxide film formed on the surface of the anodized film is a floating electrode having a lower potential than the first electrode. The charging member according to claim 1. 前記微細孔を有する陽極酸化皮膜の第一電極の電極面への印加電圧が放電開始電圧以上の電圧になるように陽極酸化皮膜形成金属母材に電圧を印加し、
被帯電体へ帯電電位を付与することを特徴とする請求項1から4のいずれか1項記載の帯電部材。
Applying a voltage to the anodic oxide film-forming metal base material so that the applied voltage to the electrode surface of the first electrode of the anodic oxide film having the micropores is equal to or higher than the discharge start voltage,
5. The charging member according to claim 1, wherein a charging potential is applied to the member to be charged.
前記陽極酸化皮膜表面上に形成される金属または導電性金属酸化物の皮膜が、Cu、Al、Ni、Co、Cr、Ti、Au、Pt、Rh、W、およびMoからなる金属の群から選択される少なくとも1種もしくはその合金、又はTi、Sn、およびInからなる導電性金属の酸化物の群から選択される少なくとも1種もしくはその合金の酸化物を用いて蒸着またはスパッタ法により形成されることを特徴とする請求項1から4のいずれか1項記載の帯電部材。   The metal or conductive metal oxide film formed on the surface of the anodized film is selected from the group of metals consisting of Cu, Al, Ni, Co, Cr, Ti, Au, Pt, Rh, W, and Mo. Or an alloy thereof, or an oxide of at least one alloy selected from the group of conductive metal oxides made of Ti, Sn, and In or an alloy thereof. The charging member according to claim 1, wherein: 前記微細孔底部に充填される金属が、Cu、Ni、Co、Rh、W、およびMoからなる金属の群から選択される少なくとも1種またはその合金であることを特徴とする請求項2又は4記載の帯電部材。   5. The metal filled in the bottom of the fine hole is at least one selected from the group of metals consisting of Cu, Ni, Co, Rh, W, and Mo or an alloy thereof. The charging member described. 前記微細孔底部に充填される金属が、Cu、Ni、Co、Rh、W、およびMoからなる金属の群から選択される少なくとも1種またはその合金であって、該充填金属の最表面にRhを積層することを特徴とする請求項2又は4記載の帯電部材。   The metal filled in the bottom of the fine hole is at least one selected from the group of metals consisting of Cu, Ni, Co, Rh, W, and Mo or an alloy thereof, and Rh is formed on the outermost surface of the filled metal. The charging member according to claim 2, wherein the charging members are laminated. 前記微細孔の底部と陽極酸化皮膜形成金属母材との間のバリヤー層の増厚は、硼酸または硼酸に硼酸アンモニウムを1〜5%調合した電解液を用いて陽極酸化することを特徴とする請求項3又は4記載の帯電部材。   Thickening of the barrier layer between the bottom of the micropores and the anodized film-forming metal base material is characterized by anodizing using boric acid or an electrolytic solution prepared by mixing 1 to 5% ammonium borate with boric acid. The charging member according to claim 3 or 4. 前記陽極酸化皮膜形成金属母材がアルミニウムまたはアルミニウム合金であって、微細孔を有する陽極酸化皮膜の厚さが1〜10μmの範囲であることを特徴とする請求項1から4のいずれか1項記載の帯電部材。   5. The anodic oxide film-forming metal base material is aluminum or an aluminum alloy, and the thickness of the anodic oxide film having micropores is in the range of 1 to 10 μm. 6. The charging member described. 前記微細孔の底部と陽極酸化皮膜形成金属母材との間のバリヤー層の電解増厚される厚みが50〜500nmの範囲であることを特徴とする請求項1から4のいずれか1項記載の帯電部材。   5. The thickness of the barrier layer between the bottom of the micropores and the anodized film-forming metal base material that is electrolytically increased is in the range of 50 to 500 nm. Charging member. 金属または導電性金属酸化物皮膜の膜厚は10〜100nmの範囲であることを特徴とする請求項7記載の帯電部材。   8. The charging member according to claim 7, wherein the thickness of the metal or conductive metal oxide film is in the range of 10 to 100 nm. 被帯電体表面に帯電電位を付与するための非接触の帯電部材を有する帯電装置において、
前記帯電部材が請求項1から13のいずれか1項記載の帯電部材であることを特徴とする帯電装置。
In a charging device having a non-contact charging member for applying a charging potential to the surface of an object to be charged,
The charging device according to claim 1, wherein the charging member is a charging member according to claim 1.
像担持体の表面を帯電する帯電装置を備えた画像形成装置において、
前記帯電装置が請求項14記載の帯電装置であることを特徴とする画像形成装置。
In an image forming apparatus provided with a charging device for charging the surface of an image carrier,
An image forming apparatus, wherein the charging device is the charging device according to claim 14.
JP2004222012A 2004-07-29 2004-07-29 Charging member, charging device having the charging member, and image forming apparatus having the charging device Expired - Fee Related JP4599108B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222012A JP4599108B2 (en) 2004-07-29 2004-07-29 Charging member, charging device having the charging member, and image forming apparatus having the charging device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222012A JP4599108B2 (en) 2004-07-29 2004-07-29 Charging member, charging device having the charging member, and image forming apparatus having the charging device

Publications (2)

Publication Number Publication Date
JP2006039395A true JP2006039395A (en) 2006-02-09
JP4599108B2 JP4599108B2 (en) 2010-12-15

Family

ID=35904432

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222012A Expired - Fee Related JP4599108B2 (en) 2004-07-29 2004-07-29 Charging member, charging device having the charging member, and image forming apparatus having the charging device

Country Status (1)

Country Link
JP (1) JP4599108B2 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635299A (en) * 1992-07-22 1994-02-10 Brother Ind Ltd Electrostatic charging device
JPH06110297A (en) * 1992-09-28 1994-04-22 Brother Ind Ltd Electrostatic charger
JPH08132668A (en) * 1994-11-02 1996-05-28 Graphtec Corp Ion-radiating apparatus
JP2002279885A (en) * 2001-03-21 2002-09-27 Ricoh Co Ltd Electron emission apparatus, charging device and image forming apparatus
JP2003295583A (en) * 2002-04-05 2003-10-15 Ricoh Co Ltd Electrostatic charging member, method for forming surface of electrostatic charging member, electrostatic charging device, and image forming apparatus

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0635299A (en) * 1992-07-22 1994-02-10 Brother Ind Ltd Electrostatic charging device
JPH06110297A (en) * 1992-09-28 1994-04-22 Brother Ind Ltd Electrostatic charger
JPH08132668A (en) * 1994-11-02 1996-05-28 Graphtec Corp Ion-radiating apparatus
JP2002279885A (en) * 2001-03-21 2002-09-27 Ricoh Co Ltd Electron emission apparatus, charging device and image forming apparatus
JP2003295583A (en) * 2002-04-05 2003-10-15 Ricoh Co Ltd Electrostatic charging member, method for forming surface of electrostatic charging member, electrostatic charging device, and image forming apparatus

Also Published As

Publication number Publication date
JP4599108B2 (en) 2010-12-15

Similar Documents

Publication Publication Date Title
US7995952B2 (en) High performance materials and processes for manufacture of nanostructures for use in electron emitter ion and direct charging devices
CA1087241A (en) Self-healing electrode for uniform negative corona
US20200227756A1 (en) Aluminum member and method for producing aluminum member
JP4599108B2 (en) Charging member, charging device having the charging member, and image forming apparatus having the charging device
US6254976B1 (en) Electrophotographic charging member
JP4554293B2 (en) Discharge control electrode integrated charging member
JP4890906B2 (en) Charge applying device and image forming apparatus using the same
De Boer et al. Electro‐Deposition of a thin layer of powdered substances
JP6605553B2 (en) Electron emitting device, method for manufacturing the same, and method for manufacturing the electronic device
JP2003295583A (en) Electrostatic charging member, method for forming surface of electrostatic charging member, electrostatic charging device, and image forming apparatus
JP2000166065A (en) Gas-insulated switchgear
Andrade et al. Adhesion of Colloidal Hematite onto Metallic Surfaces: I. Capacitive and Counting Measurements on Silver and Mercury
JP2010002867A (en) Electrification controller, electrifying device and image forming apparatus
JPH04199153A (en) Image recording medium
JP7391661B2 (en) AC etching method
JP6685341B2 (en) Electron-emitting device and manufacturing method thereof
JP6853749B2 (en) Electron emitting element
JPH0635299A (en) Electrostatic charging device
KR100317891B1 (en) Field emmision device using vitreous carbon and manufacturing method thereof
JPH04159572A (en) High frequency corona discharging device
JPH06222649A (en) Electrostatic charging device
JPS62222097A (en) Oxide film coated tungsten wire and its production
WO2018212166A1 (en) Electron emission element and method for same
JPH03101763A (en) Fine wire for discharge electrode
JP2005055854A (en) Image forming apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070625

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20070702

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100219

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100225

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100426

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100916

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100927

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131001

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees