JP2006037083A - Thermosetting resin composition containing modified polyimide resin - Google Patents

Thermosetting resin composition containing modified polyimide resin Download PDF

Info

Publication number
JP2006037083A
JP2006037083A JP2005181261A JP2005181261A JP2006037083A JP 2006037083 A JP2006037083 A JP 2006037083A JP 2005181261 A JP2005181261 A JP 2005181261A JP 2005181261 A JP2005181261 A JP 2005181261A JP 2006037083 A JP2006037083 A JP 2006037083A
Authority
JP
Japan
Prior art keywords
layer
thermosetting resin
resin composition
resin
film
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2005181261A
Other languages
Japanese (ja)
Other versions
JP4929623B2 (en
Inventor
Akitoshi Suzuki
昭寿 鈴木
Hiroshi Orikabe
宏 織壁
Tadahiko Yokota
忠彦 横田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ajinomoto Co Inc
Original Assignee
Ajinomoto Co Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ajinomoto Co Inc filed Critical Ajinomoto Co Inc
Priority to JP2005181261A priority Critical patent/JP4929623B2/en
Publication of JP2006037083A publication Critical patent/JP2006037083A/en
Application granted granted Critical
Publication of JP4929623B2 publication Critical patent/JP4929623B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Abstract

<P>PROBLEM TO BE SOLVED: To provide a thermosetting resin composition, useful for an insulating material for use in flexible circuit boards, capable of readily forming a conductor layer superior in adhesive strength by plating. <P>SOLUTION: This thermosetting resin composition comprises (A) a linear modified polyimide resin obtained by reacting a polybutadiene of difunctional terminal hydroxy groups, a diisocyanate compound and a tetrabasic acid anhydride, and (B) one or more thermosetting resins selected from the group consisting of an epoxy resin, a bismaleimide resin, a cyanate ester resin, a bisallylnadide resin, a vinyl benzil ether resin, a benzoxazine resin, and a polymer of a bismaleimide and a diamine. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、フレキシブル回路基板に好適な熱硬化性樹脂組成物、並びに該熱硬化性樹脂組成物により製造されるフレキシブル回路基板、接着フィルム及びフレキシブル回路基板用フィルムに関する。本発明は更に、これら熱硬化性樹脂組成物、接着フィルム及びフレキシブル回路基板用フィルムを用いて製造されるフレキシブル回路基板等にも関する。   The present invention relates to a thermosetting resin composition suitable for a flexible circuit board, and a flexible circuit board, an adhesive film, and a flexible circuit board film manufactured using the thermosetting resin composition. The present invention further relates to a flexible circuit board and the like produced using these thermosetting resin compositions, adhesive films, and flexible circuit board films.

近年、より薄型かつ軽量で実装密度の高い半導体部品への要求が高まり、フレキシブル回路基板を半導体部品に用いるサブストレート基板として利用することが注目されている。フレキシブル回路基板は、リジッド回路基板と比べて薄くかつ軽量にすることができ、更に柔軟で変形可能であるという特徴があるため折り曲げて実装することが可能である。従って、フレキシブル回路基板は、ICの高密度実装、モジュールのコンパクト化に有利であり、TCP(Tape Carrier Package)やCOF(Chip On FlexibleまたはFilm)等に利用され、各種メディア機器の小型化には必要不可欠なものとなっている。   In recent years, the demand for thinner, lighter and higher mounting density semiconductor components has increased, and the use of flexible circuit boards as substrate substrates for semiconductor components has attracted attention. A flexible circuit board can be made thinner and lighter than a rigid circuit board, and can be bent and mounted because it is flexible and deformable. Therefore, the flexible circuit board is advantageous for high-density IC mounting and compact module, and is used for TCP (Tape Carrier Package), COF (Chip On Flexible or Film), etc. It is indispensable.

フレキシブル回路基板は、一般には、ポリイミドフィルム、銅箔及び接着剤よりなる3層フィルム又はポリイミドフィルム及び導体層よりなる2層フィルムを作製し、サブトラクティブ法に従って導体層をエッチングして回路を形成することにより製造されている。フィルムとしては、比較的安価に作製できる3層フィルムが多く使用されてきたが、接着剤の耐熱性や電気絶縁性の問題により、高密度配線を有する回路基板では2層フィルムが使用されるようになってきている。   In general, a flexible circuit board is a three-layer film made of a polyimide film, copper foil and an adhesive, or a two-layer film made of a polyimide film and a conductor layer, and the conductor layer is etched according to a subtractive method to form a circuit. It is manufactured by. As a film, a three-layer film that can be produced at a relatively low cost has been used in many cases. However, a two-layer film seems to be used for a circuit board having high-density wiring due to problems of heat resistance and electrical insulation of an adhesive. It is becoming.

2層フィルムは、その製造方法によりスパッタタイプ、キャストタイプ、ラミネートタイプの3種類に分類することができる。キャストタイプは、圧延または電解銅箔にポリアミック酸ワニスをコートし、これを熱イミド化させることで製造される。ラミネートタイプは、熱可塑性ポリイミドを介して銅箔とポリイミドフィルムを接着させることで製造される(例えば、特許文献1、特許文献2参照)。スパッタタイプは、まず、ポリイミドフィルム上にスパッタを行って導体層を薄く形成し、続いてこのスパッタ層に電気メッキを行って導体層を厚くしていくことで製造される(例えば、特許文献3参照)。   Two-layer films can be classified into three types, that is, a sputter type, a cast type, and a laminate type, depending on the manufacturing method. The cast type is manufactured by coating a polyamic acid varnish on a rolled or electrolytic copper foil and thermally imidizing it. The laminate type is manufactured by bonding a copper foil and a polyimide film via a thermoplastic polyimide (see, for example, Patent Document 1 and Patent Document 2). The sputter type is manufactured by first performing sputtering on a polyimide film to form a thin conductor layer, and subsequently performing electroplating on the sputter layer to increase the thickness of the conductor layer (for example, Patent Document 3). reference).

銅箔により導体層を形成する場合、通常サブトラクティブ法により回路形成を行なうが、ファインピッチな配線を形成するためには、導体層を薄くすることが重要である。しかし、銅箔を用いて製造される3層フィルム、キャストタイプ2層フィルム、ラミネートタイプ2層フィルムでは、製造工程におけるハンドリングの問題から、極薄銅箔(例えば、厚みが12μm未満)を使用することは難しい。銅箔のハンドリングの問題を解消するため、剥離性支持フィルム付きの極薄銅箔を用いる方法や、厚みの厚い銅箔を用いて3層、あるいは2層フィルムを製造した後、導体層をハーフエッチングして薄くする方法なども行われているが、これら方法ではコストが高くなり、必ずしも好適な方法とはいえない。   When the conductor layer is formed of copper foil, the circuit is usually formed by a subtractive method. However, in order to form a fine pitch wiring, it is important to make the conductor layer thin. However, in a three-layer film, a cast type two-layer film, and a laminate type two-layer film manufactured using copper foil, an ultrathin copper foil (for example, a thickness of less than 12 μm) is used due to handling problems in the manufacturing process. It ’s difficult. In order to solve the problem of copper foil handling, a method using an ultra-thin copper foil with a peelable support film, or a three-layer or two-layer film using a thick copper foil, and then a half of the conductor layer Etching and thinning methods are also performed, but these methods are expensive and are not necessarily suitable methods.

電気メッキを用いるスパッタタイプ2層フィルムは、比較的容易に導体層を薄くすることができ、ファインピッチな配線を形成するのに適している。しかし、スパッタの実施には、高価で精密な真空装置を必要とするため、コスト及び生産性に問題がある。   A sputter type two-layer film using electroplating can make the conductor layer relatively thin and is suitable for forming fine pitch wiring. However, since sputtering requires an expensive and precise vacuum device, there are problems in cost and productivity.

ところで、リジッド回路基板においては、絶縁層を化学的に粗化し無電解および電解メッキを行って導体層を形成する方法が広く用いられている。この方法は生産性が高く、フレキシブル回路基板で用いられるポリイミド等の絶縁材料に応用できれば、ファインピッチ配線を有するフレキシブル回路基板をより容易に製造することが可能になると考えられる。   By the way, in a rigid circuit board, a method of chemically roughening an insulating layer and performing electroless and electrolytic plating to form a conductor layer is widely used. If this method is highly productive and can be applied to an insulating material such as polyimide used in a flexible circuit board, a flexible circuit board having fine pitch wiring can be more easily manufactured.

また、両面又は多層のフレキシブル回路基板を製造する場合、層間の導通を図るためにスルーホールが形成され、スルーホールの形成方法としてはレーザーを用いる方法が汎用されているが、銅箔により導体層を導入する場合、レーザー加工する部分の導体層を予めエッチングにて除去しておく必要があり、複雑な工程をとることとなる。しかし無電解及び電解メッキにより導体層を形成できれば、レーザー加工後に導体層を形成することで工程がより簡便となると考えられる。   In addition, when manufacturing a double-sided or multilayer flexible circuit board, a through hole is formed in order to achieve conduction between layers, and a method using a laser is widely used as a method for forming the through hole. In the case of introducing the conductive layer, it is necessary to previously remove the conductor layer to be laser processed by etching, which requires a complicated process. However, if the conductor layer can be formed by electroless and electrolytic plating, it is considered that the process becomes simpler by forming the conductor layer after laser processing.

しかし、従来、ポリイミド等のフレキシブル回路基板用の絶縁材料においては、化学的粗化を経て、メッキにより、十分な密着強度を有する導体層を絶縁層上に形成させることが難しく、多層化も困難であった。従って、メッキにより密着強度に優れる導体層が簡便に形成可能なフレキシブル回路基板用の絶縁材料の開発が望まれていた。   However, conventional insulating materials for flexible circuit boards such as polyimide have been difficult to form a conductor layer having sufficient adhesion strength on the insulating layer by chemical roughening and plating by plating. Met. Accordingly, it has been desired to develop an insulating material for a flexible circuit board that can easily form a conductor layer having excellent adhesion strength by plating.

他方、このように簡便な方法によりメッキ可能で、かつ柔軟性を有する材料は、リジッド回路基板が使用される半導体部品にも有用である。半導体部品は、サブストレート基板と半導体を接続させて成るものであるが、基板と半導体は熱膨張係数が大きく違うため、その接続部に熱により応力が加わり、それが原因で接続不良等の問題が起こりやすい。そこで、半導体とサブストレート基板間に柔軟性の高い絶縁材料を応力緩和材として用いることが注目されている。現在使用されている半導体部品の応力緩和材としては、シリコンゴム系材料(特許文献4参照)やフッ素樹脂多孔質体系のシート材料などが挙げられる。しかし、これらの材料は化学的粗化を経て、無電解および電解メッキにより、十分な密着強度を有する導体層を形成させることが難しかった。   On the other hand, such a material that can be plated by a simple method and has flexibility is also useful for a semiconductor component in which a rigid circuit board is used. Semiconductor components are made by connecting a substrate and a semiconductor. However, since the coefficients of thermal expansion of the substrate and the semiconductor are very different, stress is applied to the connecting part due to heat, causing problems such as poor connections. Is likely to occur. Therefore, attention has been paid to using a highly flexible insulating material as a stress relaxation material between the semiconductor and the substrate substrate. Examples of stress relieving materials for semiconductor components currently used include silicon rubber-based materials (see Patent Document 4) and fluororesin porous sheet materials. However, these materials have been difficult to form a conductor layer having sufficient adhesion strength by electroless and electrolytic plating after chemical roughening.

特許文献5には、ポリブタジエン骨格を有するポリイミド樹脂が開示されており、該ポリイミド樹脂とポリブタジエンポリオール及びポリブロックイソシアネートを配合した樹脂組成物をフレキシブル回路のオーバーコート剤として使用した例が開示されている。   Patent Document 5 discloses a polyimide resin having a polybutadiene skeleton, and discloses an example in which a resin composition containing the polyimide resin, a polybutadiene polyol and a polyblock isocyanate is used as an overcoat agent for a flexible circuit. .

特許文献6には、ポリブタジエン骨格及びポリシロキサン骨格を有するポリアミドイミド樹脂とエポキシ樹脂を配合した樹脂が開示されており、該樹脂が電子部品用オーバーコート材、液状封止材、エナメル線用ワニス、電気絶縁用含浸ワニス、注型ワニス、マイカ、ガラスクロス等の基材と組み合わせたシート用ワニス、MCL積層板用ワニス、摩擦材料用ワニス、プリント基板分野などにおける層間絶縁膜、表面保護膜、ソルダレジスト層、接着層などや、半導体素子などの電子部品に好適に用いられることが記載されている。しかしながら該ポリアミドイミド樹脂の原料として用いられるポリシロキサン樹脂は一般に低分子の揮発性の高いシロキサン成分を含むため、乾燥や熱硬化工程において該成分が揮発し、プリント配線板等の表面を汚染し、封止樹脂等の接着不良等の不具合を引き起こしやすい。また、原料にカルボン酸末端のポリブタジンエン化合物を使用しているため、高温での反応が必要であり、ブタジエン骨格の酸化により分子内架橋を引き起こし、樹脂がゲル化する可能性があるため、より高度な反応制御が要求される。   Patent Document 6 discloses a resin in which a polyamidoimide resin having a polybutadiene skeleton and a polysiloxane skeleton and an epoxy resin are blended, and the resin is an overcoat material for electronic parts, a liquid sealing material, a varnish for enameled wire, Interlayer insulation film, surface protective film, solder in the field of electric insulation impregnating varnish, casting varnish, mica, sheet varnish combined with glass cloth, MCL laminated plate varnish, friction material varnish, printed circuit board It is described that it is suitably used for electronic parts such as a resist layer, an adhesive layer, and a semiconductor element. However, since the polysiloxane resin used as a raw material for the polyamide-imide resin generally contains a low-molecular volatile component having high volatility, the component volatilizes in a drying or thermosetting process, and contaminates the surface of a printed wiring board or the like. It tends to cause problems such as poor adhesion of sealing resin. In addition, the use of carboxylic acid-terminated polybutadiene compound as a raw material requires a reaction at high temperatures, which may cause intramolecular crosslinking due to oxidation of the butadiene skeleton, resulting in gelation of the resin. Reaction control is required.

特許文献7には、プリント配線基板の層間絶縁材料、ビルドアップ材料、半導体の絶縁材料、耐熱性接着剤等の分野に有用な熱硬化性樹脂組成物として、ポリブタジエン骨格を有するポリイミド樹脂とエポキシ樹脂を配合した樹脂組成物が開示されている。特許文献7記載尾のポリイミド樹脂は分子骨格中にイソシアヌレート環を有しており、枝分かれ構造となるため、その硬化物は架橋点が多くなり、低弾性の硬化物を得るのが困難である。更に、ポリイミド中のポリブタジエン構造の含有量が低いため、硬化物の弾性率が高くなる傾向にあり、柔軟性の観点から必ずしも十分ではなく、また実施例から分かるように、該ポリイミド樹脂硬化物の破断伸度は15%以下であり、耐折り曲げ性の観点からも必ずしも十分なものとは言えなかった。 Patent Document 7 discloses a polyimide resin and an epoxy resin having a polybutadiene skeleton as thermosetting resin compositions useful in fields such as an interlayer insulating material, a build-up material, a semiconductor insulating material, and a heat-resistant adhesive for printed wiring boards. The resin composition which mix | blended is disclosed. Since the tail polyimide resin described in Patent Document 7 has an isocyanurate ring in the molecular skeleton and has a branched structure, the cured product has many crosslinking points and it is difficult to obtain a cured product with low elasticity. . Furthermore, since the content of the polybutadiene structure in the polyimide is low, the elastic modulus of the cured product tends to be high, which is not always sufficient from the viewpoint of flexibility, and as can be seen from the examples, the polyimide resin cured product The elongation at break was 15% or less, which was not necessarily sufficient from the viewpoint of bending resistance.

特開平4−33847号公報JP-A-4-33847 特開平4−33848号公報JP-A-4-33848 特開平2−98994号公報Japanese Patent Laid-Open No. 2-98994 特開2000−336271号公報JP 2000-336271 A 特開平11−199669号公報JP-A-11-199669 特開平11−246760号公報JP 11-246760 A 特開2003−292575号公報JP 2003-292575 A

本発明は、柔軟性および耐折り曲げ性に優れ、更にメッキにより密着強度に優れる導体層が簡便に形成可能な、フレキシブル回路基板及び半導体装置の絶縁材料として有用な熱硬化性樹脂組成物を提供することを目的とする。 The present invention provides a thermosetting resin composition useful as an insulating material for a flexible circuit board and a semiconductor device, in which a conductor layer having excellent flexibility and bending resistance and further having excellent adhesion strength by plating can be easily formed. For the purpose.

本発明者らは、上記課題を解決するため鋭意検討した結果、2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸二無水物の3成分を反応させて得られる特定の線状変性ポリイミド樹脂と、特定の熱硬化性樹脂とを含有する熱硬化性樹脂組成物が、柔軟性、機械強度、誘電特性に優れ、フレキシブル回路基板等の絶縁層形成に好適であり、かつ熱硬化して得られる硬化物表面にメッキにより容易に密着力に優れる導体層が形成可能であることを見出した。このような知見に基づき本発明者らは、本発明を完成させた。   As a result of intensive studies to solve the above problems, the present inventors have developed a specific linear modified polyimide resin obtained by reacting three components of a bifunctional hydroxyl group-terminated polybutadiene, a diisocyanate compound and a tetrabasic acid dianhydride. And a specific thermosetting resin are excellent in flexibility, mechanical strength and dielectric properties, suitable for forming an insulating layer of a flexible circuit board, etc., and obtained by thermosetting. It has been found that a conductor layer having excellent adhesion can be easily formed on the surface of the cured product by plating. Based on such knowledge, the present inventors have completed the present invention.

すなわち、本発明は以下の内容を含むものである。
「1]
(A)2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状変性ポリイミド樹脂、及び(B)エポキシ樹脂、ビスマレイミド樹脂、シアネートエステル樹脂、ビスアリルナジイミド樹脂、ビニルベンジルエーテル樹脂、ベンゾオキサジン樹脂及びビスマレイミドとジアミンの重合物から選択される1種以上の熱硬化性樹脂を含有する熱硬化性樹脂組成物。
[2]
成分(A)の線状変性ポリイミド樹脂が、2官能性ヒドロキシル基末端ポリブタジエンとジイソシアネート化合物を、2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基に対するジイソシアネート化合物のイソシアネート基の官能基当量比が1を超える比率で反応させて得られるポリブタジンエンジイソシアネート組成物に、四塩基酸二無水物を反応させて得られる線状変性ポリイミド樹脂である、上記[1]に記載の熱硬化性樹脂組成物。
[3]
成分(A)の線状変性ポリイミド樹脂が、2官能性ヒドロキシル基末端ポリブタジエンとジイソシアネート化合物を、2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基とジイソシアネート化合物のイソシアネート基の官能基当量比が1:1.5〜1:2.5となる比率で反応させて得られるポリブタジンエンジイソシアネート組成物に、四塩基酸二無水物を反応させて得られる線状変性ポリイミド樹脂である、上記[1]に記載の熱硬化性樹脂組成物。
[4]
成分(A)の線状変性ポリイミド樹脂が、2官能性ヒドロキシル基末端ポリブタジエンとジイソシアネート化合物を、2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基とジイソシアネート化合物のイソシアネート基の官能基当量比が1:1.5〜1:2.5となる比率で反応させて得られるポリブタジンエンジイソシアネート組成物に、四塩基酸二無水物を、原料であるジイソシアネート化合物のイソシアネート基の官能基当量X、原料である2官能ヒドロキシル末端ポリブタジエンのヒドロキシル基の官能基当量W及び四塩基酸二無水物の酸無水物基の官能基当量Yが、Y>X−W≧Y/5(W>0、X>0、Y>0)の関係を満たす比率で反応させて得られる線状変性ポリイミド樹脂である、上記[1]に記載の熱硬化性樹脂組成物。
[5]
成分(A)の線状変性ポリイミド樹脂が、上記[1]〜[4]のいずれかに記載の線状変性ポリイミド樹脂に、更に新たなイソシアネート化合物を、原料であるジイソシアネート化合物のイソシアネート官能基当量X、原料である2官能ヒドロキシル末端ポリブタジエンのヒドロキシル基官能基当量W、四塩基酸二無水物の酸無水物の官能基当量Y及び新たに反応させるイソシアネート化合物のイソシアネート官能基当量Zが、Y−(X−W)>Z≧0(W>0、X>0、Y>0、Z>0)の関係を満たす比率で反応させて得られる線状変性ポリイミド樹脂である、上記[1]〜[4]のいずれかに記載の熱硬化性樹脂組成物。
[6]
(A)分子内に下式(1-a):
[式中、R1は2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示し、R2は四塩基酸二無水物の酸無水物基を除いた残基を示し、R3はジイソシアネート化合物のイソシアネート基を除いた残基を示す。]
で表されるポリブタジエン構造及び式(1-b)で表されるポリイミド構造を有する線状変性ポリイミド樹脂、及び(B)エポキシ樹脂、ビスマレイミド樹脂、シアネートエステル樹脂、ビスアリルナジド樹脂、ビニルベンジルエーテル樹脂、ベンゾオキサジン樹脂及びビスマレイミドとジアミンの重合物から選択される1種以上の熱硬化性樹脂を含有する熱硬化性樹脂組成物。
[7]
成分(A)の線状変性ポリイミド樹脂中のポリブタジエン構造の含有率が45質量%以上である、上記[1]〜[6]のいずれかに記載の熱硬化性樹脂組成物。
[8]
成分(A)の線状変性ポリイミド樹脂中のポリブタジエン構造の含有率が60質量%以上である、上記[1]〜[6]のいずれか1項に記載の熱硬化性樹脂組成物。
[9]
R1が、数平均分子量800〜10000である2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示す、上記[1]〜[8]のいずれかに記載の熱硬化性樹脂組成物。
[10]
熱硬化性樹脂組成物の硬化物の弾性率が100MPa以下であり、破断伸度が20%以上である、上記[1]〜[9]のいずれかに記載の熱硬化性樹脂組成物。
[11]
成分(A)と成分(B)の配合割合が質量比で100:1〜1:1であり、熱硬化樹脂組成物中の成分(A)及び成分(B)の合計含量が70質量%以上である、上記[1]〜[10]のいずれかに記載の熱硬化性樹脂組成物。
[12]
更に充填材を含有する上記[1]〜[11]のいずれかに記載の熱硬化性樹脂組成物。
[13]
成分(B)の熱硬化性樹脂がエポキシ樹脂である上記[1]〜[12]のいずれかに記載の熱硬化性樹脂組成物。
[14]
更にエポキシ硬化剤を含有する上記[13]記載の熱硬化性樹脂組成物。
[15]
上記[1]〜[14]記載の熱硬化性樹脂組成物からなる熱硬化性樹脂組成物層(A層)が、支持体フィルム(B層)上に形成されている接着フィルム。
[16]
上記[1]〜[14]記載の熱硬化性樹脂組成物からなる熱硬化性樹脂組成物層(A層)が、離型処理が施された支持体フィルム(B層)の離型処理面上に形成されている接着フィルム。
[17]
上記[1]〜[14]のいずれかに記載の熱硬化性樹脂組成物の硬化物上に回路が形成されているフレキシブル回路基板回路基板。
[18]
下記工程(1)〜(9);
(1)上記[15]又は[16]記載の接着フィルムをフレキシブル回路基板の片面又は両面にラミネートする工程、
(2)B層を除去するか又はしない工程、
(3)A層を熱硬化し絶縁層を形成する工程、
(4)工程(2)でB層を除去しない場合に、B層を除去するか又はしない工程、
(5)フレキシブル回路基板に穴開けする工程、
(6)工程(2)及び(4)でB層を除去しない場合に、B層を除去する工程、
(7)絶縁層を表面処理する工程、
(8)絶縁層にメッキにより導体層を形成する工程、及び
(9)絶縁層上に導体層を回路形成する工程、
の工程を経て得られる多層フレキシブル回路基板。
[19]
上記[1]〜[14]のいずれかに記載の熱硬化性樹脂組成物の硬化物からなる絶縁層(A’層)が耐熱樹脂層(C層)上に形成されたフレキシブル回路基板用フィルム。
[20]
上記[19]のフレキシブル回路基板用フィルムのA’層を表面処理し、絶縁層上にメッキにより導体層を形成し、該導体層を回路形成して得られる片面フレキシブル回路基板。
[21]
上記[1]〜[14]のいずれかに記載の熱硬化性樹脂組成物の硬化物からなる絶縁層(A’層)、耐熱樹脂層(C層)及び銅箔(D層)からなり、A’層、C層及びD層の順の層構成を有するフレキシブル回路基板用フィルム。
[22]
上記[21]記載のフレキシブル回路基板用フィルムに穴開けし、更にA’層を表面処理し、A’層表面にメッキにより導体層を形成し、該導体層及びD層を回路形成して得られる両面フレキシブル回路基板。
[23]
上記[1]〜[14]のいずれか1項に記載の熱硬化性樹脂組成物の硬化物からなる絶縁層(A’層)及び耐熱樹脂層(C層)からなり、A’層、C層及びA’層の順の層構成を有するフレキシブル回路基板用フィルム。
[24]
上記[23]記載のフレキシブル回路基板用フィルムに穴開けし、更にA’層を表面処理し、A’層表面にメッキにより導体層を形成し、該導体層を回路形成して得られる両面フレキシブル回路基板。
[25]
半導体とサブストレート基板が上記[1]〜[14]のいずれか1項に記載の熱硬化性樹脂組成物の硬化物を介して接着されている半導体装置。
That is, the present invention includes the following contents.
“1”
(A) Linearly modified polyimide resin obtained by reacting bifunctional hydroxyl group-terminated polybutadiene, diisocyanate compound and tetrabasic acid anhydride, and (B) epoxy resin, bismaleimide resin, cyanate ester resin, bisallyl nadiimide A thermosetting resin composition comprising at least one thermosetting resin selected from a resin, a vinyl benzyl ether resin, a benzoxazine resin, and a polymer of bismaleimide and diamine.
[2]
The linear modified polyimide resin of component (A) is a ratio in which the functional group equivalent ratio of the isocyanate group of the diisocyanate compound to the hydroxyl group of the bifunctional hydroxyl group-terminated polybutadiene exceeds 1 The thermosetting resin composition according to the above [1], which is a linear modified polyimide resin obtained by reacting a tetrabasic acid dianhydride with a polybutazine ene diisocyanate composition obtained by reacting in step 1.
[3]
The linear modified polyimide resin of component (A) has a bifunctional hydroxyl group-terminated polybutadiene and diisocyanate compound, and the functional group equivalent ratio of the hydroxyl group of the bifunctional hydroxyl group-terminated polybutadiene and the isocyanate group of the diisocyanate compound is 1: 1. The above-mentioned [1], which is a linear modified polyimide resin obtained by reacting a tetrabasic acid dianhydride with a polybutadiene diisocyanate composition obtained by reacting at a ratio of 5 to 1: 2.5. The thermosetting resin composition as described.
[4]
The linear modified polyimide resin of component (A) has a bifunctional hydroxyl group-terminated polybutadiene and diisocyanate compound, and the functional group equivalent ratio of the hydroxyl group of the bifunctional hydroxyl group-terminated polybutadiene and the isocyanate group of the diisocyanate compound is 1: 1. The polybutazine ene diisocyanate composition obtained by reacting at a ratio of 5 to 1: 2.5, tetrabasic acid dianhydride, the functional group equivalent X of the isocyanate group of the diisocyanate compound as the raw material, and the raw material The functional group equivalent W of the hydroxyl group of the bifunctional hydroxyl-terminated polybutadiene and the functional group equivalent Y of the acid anhydride group of the tetrabasic dianhydride are Y> X−W ≧ Y / 5 (W> 0, X> 0, Y> 0), which is a linearly modified polyimide resin obtained by reacting at a ratio satisfying the relationship of Y> 0). Composition.
[5]
The linear modified polyimide resin of component (A) is an isocyanate functional group equivalent of a diisocyanate compound as a raw material, in addition to the linear modified polyimide resin according to any one of [1] to [4] above. X, the hydroxyl group functional group equivalent W of the bifunctional hydroxyl-terminated polybutadiene as the raw material, the functional group equivalent Y of the acid anhydride of the tetrabasic acid dianhydride, and the isocyanate functional group equivalent Z of the isocyanate compound to be newly reacted are Y- (X-W)> Z ≧ 0 (W> 0, X> 0, Y> 0, Z> 0), which is a linear modified polyimide resin obtained by reacting at a ratio satisfying the relationship [1] to [4] The thermosetting resin composition according to any one of the above.
[6]
(A) In the molecule, the following formula (1-a):
[Wherein R1 represents a residue from which the hydroxyl group of the polyfunctional hydroxyl group-terminated polybutadiene has been removed, R2 represents a residue from which the acid anhydride group of the tetrabasic acid dianhydride has been removed, and R3 represents a diisocyanate compound. The residue except an isocyanate group is shown. ]
A linear modified polyimide resin having a polybutadiene structure represented by formula (1) and a polyimide structure represented by formula (1-b), and (B) an epoxy resin, a bismaleimide resin, a cyanate ester resin, a bisallyl nazide resin, a vinyl benzyl ether resin, A thermosetting resin composition containing at least one thermosetting resin selected from a benzoxazine resin and a polymer of bismaleimide and diamine.
[7]
The thermosetting resin composition according to any one of the above [1] to [6], wherein the content of the polybutadiene structure in the linear modified polyimide resin of the component (A) is 45% by mass or more.
[8]
The thermosetting resin composition according to any one of the above [1] to [6], wherein the content of the polybutadiene structure in the linear modified polyimide resin of the component (A) is 60% by mass or more.
[9]
The thermosetting resin composition according to any one of the above [1] to [8], wherein R1 represents a residue excluding a hydroxyl group of a bifunctional hydroxyl group-terminated polybutadiene having a number average molecular weight of 800 to 10,000.
[10]
The thermosetting resin composition according to any one of the above [1] to [9], wherein the cured product of the thermosetting resin composition has an elastic modulus of 100 MPa or less and an elongation at break of 20% or more.
[11]
The mixing ratio of the component (A) and the component (B) is 100: 1 to 1: 1 by mass ratio, and the total content of the component (A) and the component (B) in the thermosetting resin composition is 70% by mass or more. The thermosetting resin composition according to any one of the above [1] to [10].
[12]
Furthermore, the thermosetting resin composition in any one of said [1]-[11] containing a filler.
[13]
The thermosetting resin composition according to any one of [1] to [12], wherein the thermosetting resin of the component (B) is an epoxy resin.
[14]
The thermosetting resin composition according to the above [13], further comprising an epoxy curing agent.
[15]
The adhesive film in which the thermosetting resin composition layer (A layer) which consists of a thermosetting resin composition of said [1]-[14] description is formed on the support body film (B layer).
[16]
The release treatment surface of the support film (B layer) on which the thermosetting resin composition layer (A layer) comprising the thermosetting resin composition according to the above [1] to [14] is subjected to a release treatment. An adhesive film formed on top.
[17]
The flexible circuit board circuit board in which the circuit is formed on the hardened | cured material of the thermosetting resin composition in any one of said [1]-[14].
[18]
The following steps (1) to (9);
(1) Laminating the adhesive film according to [15] or [16] on one or both sides of a flexible circuit board,
(2) a step of removing or not removing the B layer;
(3) a step of thermosetting the A layer to form an insulating layer;
(4) If the B layer is not removed in step (2), the step of removing or not removing the B layer;
(5) a step of making a hole in the flexible circuit board;
(6) A step of removing the B layer when the B layer is not removed in the steps (2) and (4),
(7) surface-treating the insulating layer;
(8) a step of forming a conductor layer by plating on the insulating layer; and (9) a step of forming a circuit of the conductor layer on the insulating layer;
A multilayer flexible circuit board obtained through the above process.
[19]
Film for flexible circuit board in which an insulating layer (A ′ layer) made of a cured product of the thermosetting resin composition according to any one of [1] to [14] is formed on a heat resistant resin layer (C layer) .
[20]
A single-sided flexible circuit board obtained by surface-treating the A ′ layer of the flexible circuit board film of [19] above, forming a conductor layer on the insulating layer by plating, and forming the conductor layer as a circuit.
[21]
It consists of an insulating layer (A ′ layer) made of a cured product of the thermosetting resin composition according to any one of [1] to [14], a heat resistant resin layer (C layer), and a copper foil (D layer). A film for a flexible circuit board having a layer configuration in the order of an A ′ layer, a C layer, and a D layer.
[22]
It is obtained by punching a film for a flexible circuit board as described in [21] above, further subjecting the A ′ layer to surface treatment, forming a conductor layer on the surface of the A ′ layer by plating, and forming the conductor layer and the D layer as a circuit. Double-sided flexible circuit board.
[23]
It consists of an insulating layer (A ′ layer) and a heat resistant resin layer (C layer) made of a cured product of the thermosetting resin composition according to any one of [1] to [14]. A film for a flexible circuit board having a layer structure in the order of a layer and an A ′ layer.
[24]
Double-sided flexible obtained by punching a film for a flexible circuit board according to the above [23], further surface-treating the A ′ layer, forming a conductor layer on the surface of the A ′ layer by plating, and forming the conductor layer with a circuit. Circuit board.
[25]
The semiconductor device with which the semiconductor and the substrate board | substrate were adhere | attached through the hardened | cured material of the thermosetting resin composition of any one of said [1]-[14].

本発明の熱硬化性樹脂組成物の硬化物は柔軟性、機械強度及び誘電特性に優れ、また硬化物表面にメッキにより、簡便に、密着性に優れる導体層が形成可能である。   The cured product of the thermosetting resin composition of the present invention is excellent in flexibility, mechanical strength, and dielectric properties, and a conductive layer excellent in adhesion can be easily formed by plating on the surface of the cured product.

以下、本発明を詳細に説明する。   Hereinafter, the present invention will be described in detail.

本発明における成分(A)の線状変性ポリイミド樹脂は、
[a]2官能性ヒドロキシル基末端ポリブタジエン、
[b]ジイソシアネート化合物、及び
[c]四塩基酸二無水物
の3成分を反応して得られる線状変性ポリイミド樹脂である。線状変性ポリイミド樹脂は、その分子内に下式(1-a)で表されるポリブタジエン構造と、式(1-b)で表されるポリイミド構造の双方を含む。線状変性ポリイミド樹脂中のポリブタジエン構造の含有率は45質量%以上であるのが好ましく、さらには60質量%以上であるのが好ましい。線状変性ポリイミド樹脂中のポリブタジエン構造の含有率が45質量%未満の場合、本発明の熱硬化性樹脂組成物の硬化物が柔軟性に欠ける傾向にある。線状変性ポリイミド樹脂中のポリブタジエン構造部分の含有率[質量%]は、反応に用いる上記[a]〜[c]の3成分の質量の合計値に対する2官能性ヒドロキシル基末端ポリブタジエン[a]の質量割合として定義することができる。
The linear modified polyimide resin of the component (A) in the present invention is
[A] a bifunctional hydroxyl group-terminated polybutadiene,
[B] A linear modified polyimide resin obtained by reacting three components of a diisocyanate compound and [c] tetrabasic acid dianhydride. The linear modified polyimide resin contains both a polybutadiene structure represented by the following formula (1-a) and a polyimide structure represented by the formula (1-b) in the molecule. The content of the polybutadiene structure in the linear modified polyimide resin is preferably 45% by mass or more, and more preferably 60% by mass or more. When the content of the polybutadiene structure in the linear modified polyimide resin is less than 45% by mass, the cured product of the thermosetting resin composition of the present invention tends to lack flexibility. The content [% by mass] of the polybutadiene structure portion in the linear modified polyimide resin is that of the bifunctional hydroxyl group-terminated polybutadiene [a] with respect to the total mass of the three components [a] to [c] used in the reaction. It can be defined as a mass percentage.

式中、R1は2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示し、R2は四塩基酸二無水物の酸無水物基を除いた残基を示し、R3はジイソシアネート化合物のイソシアネート基を除いた残基を示す。2官能性ヒドロキシル基末端ポリブタジエンとしては、数平均分子量が800〜10000である2官能性ヒドロキシル基末端ポリブタジエンが好ましい。また式(1-a)のポリブタジエン構造としては、式中のR1が、数平均分子量が800〜10000の2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示す場合が好ましい。2官能性ヒドロキシル基末端ポリブタジエンの数平均分子量が800以下の場合、変性ポリイミド樹脂が柔軟性に欠ける傾向にあり、10000以上の場合、変性ポリイミド樹脂の熱硬化性樹脂との相溶性に欠ける傾向があり、また耐熱性にも欠ける傾向にある。なお本発明において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定した値である。GPC法による数平均分子量は、具体的には、測定装置として(株)島津製作所製LC−9A/RID−6Aを、カラムとして昭和電工(株)社製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルムを用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。   In the formula, R1 represents a residue obtained by removing a hydroxyl group of a difunctional hydroxyl group-terminated polybutadiene, R2 represents a residue obtained by removing an acid anhydride group of a tetrabasic acid dianhydride, and R3 represents an isocyanate of a diisocyanate compound. The residue without a group is shown. As the bifunctional hydroxyl group-terminated polybutadiene, a bifunctional hydroxyl group-terminated polybutadiene having a number average molecular weight of 800 to 10,000 is preferable. Moreover, as a polybutadiene structure of a formula (1-a), the case where R1 in a formula shows the residue remove | excluding the hydroxyl group of the bifunctional hydroxyl group terminal polybutadiene whose number average molecular weight is 800-10000 is preferable. When the number average molecular weight of the bifunctional hydroxyl group-terminated polybutadiene is 800 or less, the modified polyimide resin tends to lack flexibility, and when it is 10,000 or more, the modified polyimide resin tends to lack compatibility with the thermosetting resin. There is also a tendency to lack heat resistance. In the present invention, the number average molecular weight is a value measured by a gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the number average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured using chloroform as a mobile phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.

線状変性ポリイミド樹脂における、1分子当たりのポリブタジエン構造(1-a)の存在数は、通常1〜10,000、好ましくは1〜100であり、ポリイミド構造(1-b)の存在数は、通常1〜100、好ましくは1〜10である。   In the linear modified polyimide resin, the number of polybutadiene structures (1-a) per molecule is usually 1 to 10,000, preferably 1 to 100, and the number of polyimide structures (1-b) is Usually, it is 1-100, Preferably it is 1-10.

線状変性ポリイミド樹脂の数平均分子量は特に限定されないが、通常5000〜200000、好ましくは10000〜100000とすることができる。   The number average molecular weight of the linear modified polyimide resin is not particularly limited, but is usually 5,000 to 200,000, preferably 10,000 to 100,000.

また線状変性ポリイミド樹脂の原料となる各成分[a]〜[c]は、順に以下の各式(a)〜(c)で表すことができる。
各式中の記号は前記と同義である。線状変性ポリイミド樹脂は上記2官能性モノマーのみから合成されるため、線状構造の変性ポリイミド樹脂となる。すなわち本発明における線状変性ポリイミド樹脂とは、2官能性モノマーを原料として製造される線状構造の変性ポリイミド樹脂を意味する。このように本発明における変性ポリイミドが線状構造となることにより、より柔軟性に優れた熱硬化性樹脂組成物を得ることができる。
Moreover, each component [a]-[c] used as the raw material of a linear modified polyimide resin can be represented by each following formula (a)-(c) in order.
The symbols in each formula are as defined above. Since the linear modified polyimide resin is synthesized from only the bifunctional monomer, it becomes a modified polyimide resin having a linear structure. That is, the linear modified polyimide resin in the present invention means a modified polyimide resin having a linear structure produced from a bifunctional monomer as a raw material. Thus, when the modified polyimide in the present invention has a linear structure, a thermosetting resin composition having more flexibility can be obtained.

本発明における線状変性ポリイミド樹脂を効率的に得るには以下の手順に依るのが好ましい。   In order to efficiently obtain the linear modified polyimide resin in the present invention, it is preferable to follow the following procedure.

まず成分[a]のポリブタジエンと成分[b]のジイソシアネート化合物を該ポリブタジエンのヒドロキシル基に対するジイソシアネート化合物のイソシアネート基の官能基当量が1を超える比率で反応させポリブタジエンジイソシアネートを含有する組成物を得る。該ポリブタジエンジイソシアネートは下記式(a-b)で表すことができる。
First, the polybutadiene of component [a] and the diisocyanate compound of component [b] are reacted at a ratio of the functional group equivalent of the isocyanate group of the diisocyanate compound to the hydroxyl group of the polybutadiene exceeding 1, thereby obtaining a composition containing polybutadiene diisocyanate. The polybutadiene diisocyanate can be represented by the following formula (ab).

式中、R1は2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示し、R3はジイソシアネート化合物のイソシアネート基を除いた残基を示し、nは1以上100以下(1≦n≦100)の整数を示す。nは好ましくは1以上10以下(1≦n≦10)の整数を示す。式(a-b)で表されるポリブタジエンイソシアネートにおいては、式中のR1が、800〜10000の2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示す場合が好ましい。   In the formula, R1 represents a residue obtained by removing the hydroxyl group of the difunctional hydroxyl group-terminated polybutadiene, R3 represents a residue obtained by removing the isocyanate group of the diisocyanate compound, and n is 1 or more and 100 or less (1 ≦ n ≦ 100). ). n preferably represents an integer of 1 or more and 10 or less (1 ≦ n ≦ 10). In the polybutadiene isocyanate represented by the formula (a-b), it is preferable that R1 in the formula represents a residue excluding the hydroxyl group of the bifunctional hydroxyl group-terminated polybutadiene having a molecular weight of 800 to 10,000.

ポリブタジエンとジイソシアネート化合物の反応割合は、該ポリブタジエンのヒドロキシル基に対するジイソシアネート化合物のイソシアネート基の官能基当量比が1:1.5〜1:2.5となる比率で反応させるのが好ましい。   The reaction ratio of the polybutadiene and the diisocyanate compound is preferably such that the functional group equivalent ratio of the isocyanate group of the diisocyanate compound to the hydroxyl group of the polybutadiene is 1: 1.5 to 1: 2.5.

次に、該ポリブタジエンジイソシアネート組成物に四塩基酸二無水物を反応させる。四塩基酸二無水物の反応割合は特に限定されないが、組成物中にイソシアネート基を極力残さないようにするのが好ましく、原料であるジイソシアネート化合物のイソシアネート基の官能基当量をX、原料である2官能ヒドロキシル末端ポリブタジエンのヒドロキシル基の官能基当量をW、四塩基酸二無水物の酸無水物基の官能基当量をYとすると、Y>X−W≧Y/5(W>0、X>0、Y>0)の関係を満たす比率で反応させるのが好ましい。   Next, tetrabasic acid dianhydride is reacted with the polybutadiene diisocyanate composition. The reaction ratio of the tetrabasic acid dianhydride is not particularly limited, but it is preferable not to leave the isocyanate group in the composition as much as possible. The functional group equivalent of the isocyanate group of the diisocyanate compound that is the raw material is X, and the raw material is When the functional group equivalent of the hydroxyl group of the bifunctional hydroxyl-terminated polybutadiene is W and the functional group equivalent of the acid anhydride group of the tetrabasic acid dianhydride is Y, Y> X−W ≧ Y / 5 (W> 0, X > 0, Y> 0) It is preferable to react at a ratio satisfying the relationship.

このようにして得られる線状変性ポリイミド樹脂は、前述したように、その分子内に式(1-a)で表されるポリブタジエン構造と、式(1-b)で表されるイミド構造の双方を含むものである。また本発明における線状変性ポリイミド樹脂は、下式(a-b-c)で表される構造を含む線状変性ポリイミドを主成分とするものが好ましい。
式中、R1は2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示し、R2は四塩基酸二無水物の酸無水物基を除いた残基を示し、R3はジイソシアネート化合物のイソシアネート基を除いた残基を示し、n及びmは1以上100以下(1≦n≦100)の整数を示す。n及びmは好ましくは1以上10以下(1≦n≦10)の整数を示す。式(a-b-c)で表されるポリブタジエンイソシアネートにおいては、式中のR1が、800〜10000の2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示す場合が好ましい。
As described above, the linear modified polyimide resin thus obtained has both a polybutadiene structure represented by the formula (1-a) and an imide structure represented by the formula (1-b) in the molecule. Is included. Further, the linear modified polyimide resin in the present invention is preferably composed mainly of a linear modified polyimide containing a structure represented by the following formula (abc).
In the formula, R1 represents a residue obtained by removing the hydroxyl group of the difunctional hydroxyl group-terminated polybutadiene, R2 represents a residue obtained by removing the acid anhydride group of a tetrabasic acid dianhydride, and R3 represents an isocyanate of a diisocyanate compound. The residue except a group is shown, n and m show the integer of 1-100 (1 <= n <= 100). n and m are preferably integers of 1 or more and 10 or less (1 ≦ n ≦ 10). In the polybutadiene isocyanate represented by the formula (abc), it is preferable that R1 in the formula represents a residue excluding the hydroxyl group of the bifunctional hydroxyl group-terminated polybutadiene having a molecular weight of 800 to 10,000.

組成物中のイソシアネート基を極力残さないようにするために、反応中において、FT−IR等でイソシアネート基の消失を確認するのが好ましい。このようにして得られる変性ポリイミド樹脂の末端基は下式(1-c)又は下式(1-d)で表すことができる。
各式中の記号は前記と同義である。
In order not to leave the isocyanate group in the composition as much as possible, it is preferable to confirm the disappearance of the isocyanate group by FT-IR or the like during the reaction. The terminal group of the modified polyimide resin thus obtained can be represented by the following formula (1-c) or the following formula (1-d).
The symbols in each formula are as defined above.

線状変性ポリイミド樹脂の製造において、ポリブタジエンジイソシアネート組成物と四塩基酸二無水物を反応させた後、更にジイソシアネート化合物と反応させることにより、より高分子量の線状変性ポリイミド樹脂を含有する組成物を得ることができる。この場合のイソシアネート化合物の反応割合は特に限定されないが、原料であるジイソシアネート化合物のイソシアネート官能基当量をX、原料である2官能ヒドロキシル末端ポリブタジエンのヒドロキシル基官能基当量をW、四塩基酸二無水物の酸無水物の官能基当量をY、新たに反応させるイソシアネート化合物のイソシアネート官能基当量をZとすると、Y−(X−W)>Z≧0(W>0、X>0、Y>0、Z>0)の関係を満たす比率で反応させるのが好ましい。   In the production of the linear modified polyimide resin, after reacting the polybutadiene diisocyanate composition and the tetrabasic acid dianhydride, further reacting with the diisocyanate compound, a composition containing a higher molecular weight linear modified polyimide resin is obtained. Obtainable. The reaction ratio of the isocyanate compound in this case is not particularly limited, but the isocyanate functional group equivalent of the diisocyanate compound as the raw material is X, the hydroxyl group functional group equivalent of the bifunctional hydroxyl-terminated polybutadiene as the raw material is W, tetrabasic acid dianhydride Y- (X-W)> Z ≧ 0 (W> 0, X> 0, Y> 0) where Y is the functional group equivalent of the acid anhydride and Z is the isocyanate functional group equivalent of the isocyanate compound to be newly reacted. , Z> 0) is preferably reacted at a ratio satisfying the relationship.

本発明における変性ポリイミド樹脂は、上記式(1-a)で表されるポリブタジエン構造及び上記式(1-b)で表されるポリイミド構造の2つの化学構造単位を含む。通常、樹脂組成物に柔軟性を付与するためには、ポリブタジエン樹脂のようなゴム系樹脂を樹脂組成物に直接混合することが一般的であるが、非極性のゴム系樹脂は、極性の高い熱硬化性樹脂組成物中で相分離を起こしやすく、特にゴム系樹脂の含有割合が高い場合は、安定した組成物を得ることが難しい。また、ゴム系樹脂を含有する樹脂組成物は、十分な耐熱性が得られないことが多い。一方、ポリイミド樹脂は耐熱性を有しているとともに、極性が高いために熱硬化性樹脂組成物との相溶性が比較的良好である。本発明の線状変性ポリイミド樹脂は、このポリイミド構造と柔軟性を付与するポリブタジエン構造の双方をひとつの分子内に有するため、柔軟性と耐熱性の両方の特性に優れた材料となり、さらに熱硬化性樹脂との相溶性も良好なため、安定した熱硬化性樹脂組成物を得るのに適した材料となる。   The modified polyimide resin in the present invention includes two chemical structural units of a polybutadiene structure represented by the above formula (1-a) and a polyimide structure represented by the above formula (1-b). Usually, in order to impart flexibility to the resin composition, it is common to directly mix a rubber-based resin such as polybutadiene resin into the resin composition, but nonpolar rubber-based resins are highly polar. Phase separation is likely to occur in the thermosetting resin composition, and it is difficult to obtain a stable composition particularly when the content of the rubber-based resin is high. In addition, a resin composition containing a rubber-based resin often cannot obtain sufficient heat resistance. On the other hand, the polyimide resin has heat resistance and has a relatively high compatibility with the thermosetting resin composition because of its high polarity. Since the linear modified polyimide resin of the present invention has both the polyimide structure and the polybutadiene structure imparting flexibility in one molecule, it becomes a material excellent in both flexibility and heat resistance, and further thermosetting. Since the compatibility with the curable resin is also good, the material is suitable for obtaining a stable thermosetting resin composition.

本発明における変性ポリイミド樹脂中の、ポリブタジエン構造とポリイミド構造の構成比は、原料の反応比率を調整することにより、変化させることができる。ポリブタジエン構造の割合が多い場合は、本発明の熱硬化性樹脂組成物は、より柔軟性に優れた材料となり、ポリイミド構造の割合が多い場合は、より耐熱性に優れた材料となる。なお上述したように、線状変性ポリイミド樹脂中のポリブタジエン構造の含有率が45質量%未満の場合、線状変性ポリイミド樹脂の柔軟性が低下する傾向にあるため、フレキシブル回路基板用等、柔軟性が求められる用途へ使用する場合、ポリブタジエン構造の含有率が45質量%以上とするのが好ましい。またポリブタジエン構造、またはポリイミド構造を有する化合物は誘電率及び誘電正接が低い値を示す傾向にあることが知られており、本発明における線状変性ポリイミド樹脂は両骨格を有するため、本発明の熱硬化性樹脂組成物は誘電特性にも優れた絶縁材料となる。特に線状変性ポリイミド樹脂中のポリブタジエン構造の割合が多い場合は、より誘電特性に優れた材料となる 。   The composition ratio of the polybutadiene structure to the polyimide structure in the modified polyimide resin in the present invention can be changed by adjusting the reaction ratio of the raw materials. When the proportion of the polybutadiene structure is large, the thermosetting resin composition of the present invention is a material with more flexibility, and when the proportion of the polyimide structure is large, the material is more excellent in heat resistance. As described above, when the content of the polybutadiene structure in the linear modified polyimide resin is less than 45% by mass, the flexibility of the linear modified polyimide resin tends to decrease. When it is used for applications in which it is required, the content of the polybutadiene structure is preferably 45% by mass or more. In addition, it is known that a compound having a polybutadiene structure or a polyimide structure tends to have low values of dielectric constant and dielectric loss tangent, and the linear modified polyimide resin in the present invention has both skeletons. The curable resin composition becomes an insulating material having excellent dielectric characteristics. In particular, when the proportion of the polybutadiene structure in the linear modified polyimide resin is large, the material is more excellent in dielectric characteristics.

本発明における変性ポリイミド樹脂の原料となる成分[a]2官能性ヒドロキシル基末端ポリブタジエンにおける2官能性ヒドロキシル基末端とは、ポリブタジエンの両末端がヒドロキシル基であることを意味する。該ポリブタジエンとしては、分子内の不飽和結合が水素化されたものでもよい。2官能性ヒドロキシル基末端ポリブタジエンの具体例としては、例えば、G−1000、G−3000、GI−1000、GI−3000(以上、日本曹達(株)社製)、R−45EPI(出光石油化学(株)社製)などが挙げられる。   Component [a] Bifunctional hydroxyl group-terminated polybutadiene in the raw material of the modified polyimide resin in the present invention means that both ends of the polybutadiene are hydroxyl groups. The polybutadiene may be one in which unsaturated bonds in the molecule are hydrogenated. Specific examples of the bifunctional hydroxyl group-terminated polybutadiene include, for example, G-1000, G-3000, GI-1000, GI-3000 (manufactured by Nippon Soda Co., Ltd.), R-45EPI (Idemitsu Petrochemical ( Etc.).

なお本発明において、数平均分子量は、ゲルパーミエーションクロマトグラフィー(GPC)法(ポリスチレン換算)で測定した値である。GPC法による数平均分子量は、具体的には、測定装置として(株)島津製作所製LC−9A/RID−6Aを、カラムとして昭和電工(株)社製Shodex K−800P/K−804L/K−804Lを、移動相としてクロロホルムを用いて、カラム温度40℃にて測定し、標準ポリスチレンの検量線を用いて算出することができる。   In the present invention, the number average molecular weight is a value measured by a gel permeation chromatography (GPC) method (polystyrene conversion). Specifically, the number average molecular weight by the GPC method is LC-9A / RID-6A manufactured by Shimadzu Corporation as a measuring device, and Shodex K-800P / K-804L / K manufactured by Showa Denko KK as a column. -804L can be measured using chloroform as a mobile phase at a column temperature of 40 ° C. and calculated using a standard polystyrene calibration curve.

本発明における変性ポリイミド樹脂の原料となる成分[b]ジイソシアネート化合物としては、トルエン−2,4−ジイソシアネート、トルエン−2,6−ジイソシアネート、ヘキサメチレンジイソシアネート、キシリレンジイソシアネート、ジフェニルメタンジイソシアネート、イソホロンジイソシアネートなどのジイソシアネートなどが挙げられる。   Examples of the component [b] diisocyanate compound used as a raw material for the modified polyimide resin in the present invention include toluene-2,4-diisocyanate, toluene-2,6-diisocyanate, hexamethylene diisocyanate, xylylene diisocyanate, diphenylmethane diisocyanate, isophorone diisocyanate, and the like. And diisocyanate.

本発明における変性ポリイミド樹脂の原料となる成分[c]四塩基酸二無水物の具体例としては、ピロメリット酸二無水物、ベンソフェノンテトラカルボン酸二無水物、ビフェニルテトラカルボン酸二無水物、ナフタレンテトラカルボン酸二無水物、5−(2,5−ジオキソテトラヒドロフリル)−3−メチル−シクロヘキセン−1,2−ジカルボン酸無水物、3,3’−4,4’−ジフェニルスルホンテトラカルボン酸二無水物、1,3,3a,4,5,9b−ヘキサヒドロ−5−(テトラヒドロ−2,5−ジオキソ−3−フラニル)−ナフト[1,2−C]フラン−1,3−ジオンなどが挙げられる。   Specific examples of the component [c] tetrabasic acid dianhydride used as the raw material of the modified polyimide resin in the present invention include pyromellitic dianhydride, benzophenone tetracarboxylic dianhydride, and biphenyltetracarboxylic dianhydride. , Naphthalenetetracarboxylic dianhydride, 5- (2,5-dioxotetrahydrofuryl) -3-methyl-cyclohexene-1,2-dicarboxylic anhydride, 3,3′-4,4′-diphenylsulfonetetra Carboxylic dianhydride, 1,3,3a, 4,5,9b-hexahydro-5- (tetrahydro-2,5-dioxo-3-furanyl) -naphtho [1,2-C] furan-1,3- Examples include dione.

本発明における変性ポリイミド樹脂の製造において、2官能性ヒドロキシル基末端ポリブタジエンとジイソシアネート化合物の反応は、有機溶媒中、反応温度が80℃以下、反応時間が通常1〜8時間の条件で行うことができる。また必要により触媒存在下に行ってもよい。ポリブタジエンジイソシアネート組成物と四塩基酸二無水物の反応は、上記反応後に得られるポリブタジエンジイソシアネート組成物を含む溶液を室温まで冷却した後、これに四塩基酸二無水物を添加し、反応温度120〜180℃、反応時間2〜24時間の条件で反応を行うことができる。反応は通常触媒存在下に行われる。また有機溶媒を更に添加して行ってもよい。得られた反応溶液は、必要により不溶物を除くため濾過を行ってもよい。このようにして、本発明における線状変性イミド樹脂組成物をワニス状で得ることができる。ワニス中の溶媒量は、反応時の溶媒量を調整する、又は反応後に溶媒を添加するなどして適宜調整することができる。また、ポリブタジエンジイソシアネート組成物と四塩基酸二無水物の反応の後、更にジイソシアネートを反応させて、より高分子量体である線状変性ポリイミド樹脂を得ることもできる。この場合ポリブタジエンジイソシアネート組成物と四塩基酸二無水物の反応物にジイソシアネート化合物を滴下により添加し、反応温度120〜180℃、反応時間2〜24時間の条件で反応を行うことができる 。   In the production of the modified polyimide resin in the present invention, the reaction between the bifunctional hydroxyl group-terminated polybutadiene and the diisocyanate compound can be carried out in an organic solvent under a reaction temperature of 80 ° C. or lower and a reaction time of usually 1 to 8 hours. . Moreover, you may carry out in catalyst presence if needed. The reaction of the polybutadiene diisocyanate composition and the tetrabasic acid dianhydride is carried out by cooling the solution containing the polybutadiene diisocyanate composition obtained after the above reaction to room temperature, and then adding the tetrabasic acid dianhydride thereto, and the reaction temperature of 120 to The reaction can be carried out under conditions of 180 ° C. and reaction time of 2 to 24 hours. The reaction is usually performed in the presence of a catalyst. Moreover, you may carry out by adding an organic solvent further. The obtained reaction solution may be filtered in order to remove insoluble matters as necessary. Thus, the linear modified imide resin composition in the present invention can be obtained in a varnish form. The amount of solvent in the varnish can be appropriately adjusted by adjusting the amount of solvent during the reaction or adding a solvent after the reaction. Further, after the reaction of the polybutadiene diisocyanate composition and the tetrabasic acid dianhydride, diisocyanate can be further reacted to obtain a linear modified polyimide resin having a higher molecular weight. In this case, the diisocyanate compound is added dropwise to the reaction product of the polybutadiene diisocyanate composition and the tetrabasic acid dianhydride, and the reaction can be carried out under conditions of a reaction temperature of 120 to 180 ° C. and a reaction time of 2 to 24 hours.

上記各反応に使用される有機溶媒としては、例えば、N,N’−ジメチルホルムアミド、N,N’−ジエチルホルムアミド、N,N’−ジメチルアセトアミド、N,N’−ジエチルアセトアミド、ジメチルスルホキシド、ジエチルスルホキシド、N−メチル−2−ピロリドン、テトラメチルウレア、γ−ブチロラクトン、シクロヘキサノン、ジグライム、トリグライム、カルビトールアセテート、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテートなどの極性溶媒を挙げることができる。これらの溶媒は2種以上を混合して用いてもよい。また、必要により芳香族炭化水素などの非極性溶媒を適宜混合して用いることもできる。   Examples of the organic solvent used in the above reactions include N, N′-dimethylformamide, N, N′-diethylformamide, N, N′-dimethylacetamide, N, N′-diethylacetamide, dimethylsulfoxide, diethyl Examples include polar solvents such as sulfoxide, N-methyl-2-pyrrolidone, tetramethylurea, γ-butyrolactone, cyclohexanone, diglyme, triglyme, carbitol acetate, propylene glycol monomethyl ether acetate, and propylene glycol monoethyl ether acetate. These solvents may be used as a mixture of two or more. Further, if necessary, a nonpolar solvent such as an aromatic hydrocarbon can be appropriately mixed and used.

上記各反応に使用される触媒としては、例えば、テトラメチルブタンジアミン、ベンジルジメチルアミン、トリエタノールアミン、トリエチルアミン、N,N’−ジメチルピペリジン、α−メチルベンジルジメチルアミン、N−メチルモルホリン、トリエチレンジアミン等の三級アミンや、ジブチル錫ラウレート、ジメチル錫ジクロライド、ナフテン酸コバルト、ナフテン酸亜鉛等の有機金属触媒などを挙げることができる。これらの触媒は2種以上を混合して用いてもよい。触媒としては、特に、トリエチレンジアミンを使用するのが最も好ましい。   Examples of the catalyst used in each of the above reactions include tetramethylbutanediamine, benzyldimethylamine, triethanolamine, triethylamine, N, N′-dimethylpiperidine, α-methylbenzyldimethylamine, N-methylmorpholine, triethylenediamine. And organic metal catalysts such as dibutyltin laurate, dimethyltin dichloride, cobalt naphthenate, and zinc naphthenate. These catalysts may be used in combination of two or more. In particular, it is most preferable to use triethylenediamine as the catalyst.

本発明の熱硬化性樹脂組成物は、前述した成分(A)変性ポリイミド樹脂と成分(B)エポキシ樹脂、ビスマレイミド樹脂、シアネートエステル樹脂、ビスアリルナジド樹脂、ビニルベンジルエーテル樹脂、ベンゾオキサジン樹脂及びビスマレイミドとジアミンの重合物から選択される1種以上の熱硬化性樹脂を主成分とするものである。特に、最も低温で硬化が可能なエポキシ樹脂が好ましい。熱硬化性樹脂は2種以上を混合して用いてもよい。   The thermosetting resin composition of the present invention comprises the aforementioned component (A) modified polyimide resin and component (B) epoxy resin, bismaleimide resin, cyanate ester resin, bisallyl nazide resin, vinyl benzyl ether resin, benzoxazine resin and bismaleimide. And one or more thermosetting resins selected from polymers of diamine and diamine. In particular, an epoxy resin that can be cured at the lowest temperature is preferable. Two or more thermosetting resins may be mixed and used.

エポキシ樹脂としては、例えば、ビスフェノールA型エポキシ樹脂、ビスフェノールF型エポキシ樹脂、フェノールノボラック型エポキシ樹脂、ビスフェノールS型エポキシ樹脂、アルキルフェノールノボラック型エポキシ樹脂、ビフェノール型エポキシ樹脂、ナフタレン型エポキシ樹脂、ジシクロペンタジエン型エポキシ樹脂、フェノールとフェノール性ヒドロキシル基を有する芳香族アルデヒドとの縮合物のエポキシ化物、トリグリシジルイソシアヌレート、脂環式エポキシ樹脂等などの1分子中に2つ以上の官能基を有するエポキシ樹脂を挙げることができる。これらのエポキシ樹脂は2種以上を混合して用いてもよい 。   Examples of the epoxy resin include bisphenol A type epoxy resin, bisphenol F type epoxy resin, phenol novolac type epoxy resin, bisphenol S type epoxy resin, alkylphenol novolac type epoxy resin, biphenol type epoxy resin, naphthalene type epoxy resin, dicyclopentadiene. Epoxy resin having two or more functional groups in one molecule such as epoxy resin, epoxidized product of condensation product of phenol and aromatic aldehyde having phenolic hydroxyl group, triglycidyl isocyanurate, alicyclic epoxy resin, etc. Can be mentioned. Two or more of these epoxy resins may be mixed and used.

エポキシ樹脂を使用する場合には通常エポキシ硬化剤が必要となる。エポキシ硬化剤としては、例えば、アミン系硬化剤、グアニジン系硬化剤、イミダゾール系硬化剤、フェノール系硬化剤、酸無水物系硬化剤、又はこれらのエポキシアダクトやマイクロカプセル化したもの等を挙げることができる。特に樹脂組成物をワニスにしたときの粘度安定性などの観点からアミン系硬化剤およびイミダゾール系硬化剤が好ましい。エポキシ硬化剤は2種以上を混合して用いてもよい。また、トリフェニルホスフィン、ホスホニウムボレート、3−(3,4−ジクロロフェニル)−1,1−ジメチルウレア等の硬化促進剤を併用して用いてもよい。   When using an epoxy resin, an epoxy curing agent is usually required. Examples of the epoxy curing agent include an amine curing agent, a guanidine curing agent, an imidazole curing agent, a phenol curing agent, an acid anhydride curing agent, or an epoxy adduct or a microencapsulated one thereof. Can do. In particular, an amine curing agent and an imidazole curing agent are preferable from the viewpoint of viscosity stability when the resin composition is made into a varnish. Two or more epoxy curing agents may be mixed and used. Further, a curing accelerator such as triphenylphosphine, phosphonium borate, 3- (3,4-dichlorophenyl) -1,1-dimethylurea may be used in combination.

エポキシ硬化剤の具体例としては、例えば、アミン系硬化剤としてジシアンジアミド、イミダゾール系硬化剤として2−フェニル−4−メチル−5−ヒドロキシメチルイミダゾール、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕−エチル−s−トリアジンイソシアヌル酸付加物、フェノール系硬化剤としてトリアジン構造含有フェノールノボラック樹脂(例えば、フェノライト7050シリーズ:大日本インキ化学工業(株)社製)などを挙げることができる。   Specific examples of the epoxy curing agent include, for example, dicyandiamide as an amine curing agent, 2-phenyl-4-methyl-5-hydroxymethylimidazole, 2,4-diamino-6- [2′-methyl as an imidazole curing agent, and the like. Imidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct, a phenol novolak resin containing a triazine structure as a phenolic curing agent (for example, Phenolite 7050 series: manufactured by Dainippon Ink & Chemicals, Inc.) Can be mentioned.

ビスマレイミド樹脂としては、4,4’−フェニルメタンビスマレイミドである「BMI−S」(三井化学(株)社製)、ポリフェニルメタンマレイミドである「BMI−M−20」(三井化学(株)社製)などが挙げられる。   As bismaleimide resins, 4,4′-phenylmethane bismaleimide “BMI-S” (manufactured by Mitsui Chemicals, Inc.) and polyphenylmethane maleimide “BMI-M-20” (Mitsui Chemicals, Inc.) )).

シアネートエステル樹脂としては、ビスフェノール型シアネートエステル樹脂である「プリマセット(Primaset) BA200」(ロンザ(株)社製)、「プリマセット(Primaset) BA230S」(ロンザ(株)社製)、ビスフェノールH型シアネートエステルである「プリマセット(Primaset) LECY」(ロンザ(株)社製)、「アロシー(Arocy)L10」(バンティコ(株)社製)、ノボラック型シアネートエステルである「プリマセット(Primaset) PT30」(ロンザ(株)社製)、「アロシー(Arocy)XU371」(バンティコ(株)社製)、ジシクロペンタジエン型シアネートエステルである「アロシー(Arocy)XP71787.02L」(バンティコ(株)社製)などが挙げられる。   Examples of the cyanate ester resin include “Primaset BA200” (Lonza Co., Ltd.), “Primaset BA230S” (Lonza Co., Ltd.), and bisphenol H type, which are bisphenol-type cyanate ester resins. “Primaset LECY” which is a cyanate ester (manufactured by Lonza), “Arocy L10” (manufactured by Bantico), “Primaset” PT30 which is a novolak cyanate ester "Lonza Co., Ltd.", "Arocy XU371" (Bantico Co., Ltd.), dicyclopentadiene-type cyanate ester "Arocy XP71787.02L" (Bantico Co., Ltd.) And the like.

ビスアリルナジド樹脂としては、ジフェニルメタン−4,4’−ビスアリルナジックイミドである「BANI−M」(丸善石油化学(株)社製)などが挙げられる。   Examples of the bisallylnazide resin include “BANI-M” (manufactured by Maruzen Petrochemical Co., Ltd.), which is diphenylmethane-4,4′-bisallylnadicimide.

ビニルベンジルエーテル樹脂としては、V−1000X(昭和高分子(株)社製)、米国特許第4116936号明細書、米国特許第4170711号明細書、米国特許4278708号明細書、特開平9−31006号公報、特開2001−181383号公報、特開2001−253992号公報、特開2003−277440号公報、特開2003−283076号公報、国際公開第02/083610号パンフレット記載のビニルベンジルエーテル樹脂等が挙げられる。   Examples of vinyl benzyl ether resins include V-1000X (manufactured by Showa Polymer Co., Ltd.), US Pat. No. 4,116,936, US Pat. No. 4,170,711, US Pat. No. 4,278,708, and JP-A-9-31006. No. 2001-181383, JP-A No. 2001-253992, JP-A No. 2003-277440, JP-A No. 2003-283076, and the vinyl benzyl ether resin described in WO 02/083610 pamphlet. Can be mentioned.

ベンゾオキサジン樹脂としては、四国化成(株)社製「B−a型ベンゾオキサジン」、「B−m型ベンゾオキサジン」などが挙げられる。   Examples of the benzoxazine resin include “Ba type benzoxazine” and “Bm type benzoxazine” manufactured by Shikoku Kasei Co., Ltd.

熱硬化性樹脂であるビスマレイミド化合物とジアミン化合物の重合物としては、例えば、(株)プリンテック社製の「テクマイトE2020」などが挙げられる。   Examples of the polymer of the bismaleimide compound and the diamine compound that are thermosetting resins include “Techmite E2020” manufactured by Printec Co., Ltd.

本発明の熱硬化性樹脂組成物において、成分(A)と成分(B)の割合が質量比で(A):(B)=100:1〜1:1の範囲であるものが好ましい。また熱硬化樹脂組成物中の成分(A)と成分(B)の合計含量が全樹脂中の70質量%以上であるものが好ましい。これらの範囲外であると、本発明の効果が十分に得られない場合がある。   In the thermosetting resin composition of the present invention, the ratio of the component (A) to the component (B) is preferably in the range of (A) :( B) = 100: 1 to 1: 1 by mass ratio. Moreover, the thing whose sum total content of the component (A) and component (B) in a thermosetting resin composition is 70 mass% or more in all the resins is preferable. If it is out of these ranges, the effects of the present invention may not be sufficiently obtained.

本発明の熱硬化性樹脂組成物は、必要により、更に充填材を含有していてもよい。充填材は有機充填材および無機充填材のいずれでもよい。充填材は2種以上を混合して用いることもできる。無機充填材の配合量は特に限定されないが、好ましくは、熱硬化性樹脂組成物中、50質量%以内の範囲で添加することができる。50質量%を超えると、レーザー加工性が悪くなるばかりでなく、更に硬化物の弾性率も高くなり、硬く脆い材料となるため、フレキシブル回路基板用として好ましくない。   The thermosetting resin composition of the present invention may further contain a filler as necessary. The filler may be either an organic filler or an inorganic filler. Two or more kinds of fillers can be mixed and used. Although the compounding quantity of an inorganic filler is not specifically limited, Preferably, it can add in the range within 50 mass% in a thermosetting resin composition. When it exceeds 50% by mass, not only the laser processability is deteriorated, but also the elastic modulus of the cured product is increased, resulting in a hard and brittle material, which is not preferable for a flexible circuit board.

無機充填材としては、シリカ、アルミナ、硫酸バリウム、タルク、クレー、雲母粉、水酸化アルミニウム、水酸化マグネシウム、炭酸カルシウム、炭酸マグネシウム、酸化マグネシウム、窒化ホウ素、ホウ酸アルミニウム、チタン酸バリウム、チタン酸ストロンチウム、チタン酸カルシウム、チタン酸マグネシウム、チタン酸ビスマス、酸化チタン、ジルコン酸バリウム、ジルコン酸カルシウムなどが挙げられる。特にシリカが好ましい。無機充填材は平均粒径が5μm以下のものが好ましい。有機充填材としては、アクリルゴム粒子、シリコン粒子などが挙げられる。有機充填材も平均粒径が5μm以下のものが好ましい。なお平均粒径は、株式会社 堀場製作所製のレーザー回折/散乱式粒度分布測定装置LA−500により測定することができる。   Inorganic fillers include silica, alumina, barium sulfate, talc, clay, mica powder, aluminum hydroxide, magnesium hydroxide, calcium carbonate, magnesium carbonate, magnesium oxide, boron nitride, aluminum borate, barium titanate, titanate Examples include strontium, calcium titanate, magnesium titanate, bismuth titanate, titanium oxide, barium zirconate, and calcium zirconate. Silica is particularly preferable. The inorganic filler preferably has an average particle size of 5 μm or less. Examples of the organic filler include acrylic rubber particles and silicon particles. The organic filler preferably has an average particle size of 5 μm or less. The average particle diameter can be measured with a laser diffraction / scattering particle size distribution analyzer LA-500 manufactured by Horiba, Ltd.

本発明の熱硬化性樹脂組成物には本発明の効果が発揮される範囲において、各種樹脂添加剤や成分(A)及び(B)以外の樹脂成分等を配合することができる。樹脂添加剤の例としては、オルベン、ベントン等の増粘剤、シリコン系、フッ素系又はアクリル系の消泡剤、レベリング剤、イミダゾール系、チアゾール系、トリアゾール系等の密着付与剤、シランカップリング剤等の表面処理剤、フタロシアニン・ブルー、フタロシアニン・グリーン、アイオジン・グリーン、ジスアゾイエロー、カーボンブラック等の着色剤、リン含有化合物、臭素含有化合物、水酸化アルミニウム、水酸化マグネシウム等難燃剤、リン系酸化防止剤、フェノール系酸化防止剤等の酸化防止剤を挙げることができる。   Various resin additives and resin components other than the components (A) and (B) can be blended in the thermosetting resin composition of the present invention within the range where the effects of the present invention are exhibited. Examples of resin additives include thickeners such as olben and benton, silicone, fluorine or acrylic antifoaming agents, leveling agents, imidazole, thiazole and triazole adhesion promoters, silane couplings Surface treatment agents such as phthalocyanine, phthalocyanine blue, phthalocyanine green, iodin green, disazo yellow, carbon black and other colorants, phosphorus containing compounds, bromine containing compounds, flame retardants such as aluminum hydroxide and magnesium hydroxide, phosphorus Antioxidants such as antioxidants and phenolic antioxidants can be mentioned.

本発明の熱硬化性樹脂組成物は、フレキシブル回路基板の製造用として好適な形態である、熱硬化性樹脂組成物層(A層)及び支持体フィルム(B層)からなる接着フィルムの形態で使用することができる。   The thermosetting resin composition of the present invention is in the form of an adhesive film composed of a thermosetting resin composition layer (A layer) and a support film (B layer), which is a suitable form for manufacturing a flexible circuit board. Can be used.

接着フィルムは、当業者に公知の方法に従って、例えば、本発明の熱硬化性樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、支持体フィルムにこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させて熱硬化性樹脂組成物層を形成させることにより製造することができる。   For the adhesive film, according to a method known to those skilled in the art, for example, a resin varnish prepared by dissolving the thermosetting resin composition of the present invention in an organic solvent is prepared, this resin varnish is applied to a support film, and heated or blown with hot air. It can be produced by drying the organic solvent by attaching or the like to form a thermosetting resin composition layer.

支持体フィルム(B層)は、接着フィルムを製造する際の支持体となるものであり、フレキシブル回路基板の製造において、最終的には剥離または除去されるものである。支持体フィルムとしては、例えば、ポリエチレン、ポリ塩化ビニル等のポリオレフィン、ポリエチレンテレフタレート(以下、「PET」と略称することがある。)、ポリエチレンナフタレート等のポリエステル、ポリカーボネート、更には離型紙や銅箔等の金属箔などを挙げることができる。ポリイミド、ポリアミド、ポリアミドイミド、液晶ポリマー等の耐熱樹脂も使用することができる。なお、銅箔を支持体フィルムとして使用する場合は、塩化第二鉄、塩化第二銅等のエッチング液でエッチングすることにより除去することができる。支持フィルムはマット(mat)処理、コロナ処理の他、離型処理を施してあってもよいが、剥離性を考慮すると離型処理が施されている方がより好ましい。支持フィルムの厚さは特に限定されないが、通常10〜150μmであり、好ましくは25〜50μmの範囲で用いられる。   The support film (B layer) serves as a support when the adhesive film is produced, and is finally peeled off or removed in the production of the flexible circuit board. Examples of the support film include polyolefins such as polyethylene and polyvinyl chloride, polyethylene terephthalate (hereinafter sometimes abbreviated as “PET”), polyesters such as polyethylene naphthalate, polycarbonate, and release paper and copper foil. The metal foil etc. can be mentioned. Heat-resistant resins such as polyimide, polyamide, polyamideimide, and liquid crystal polymer can also be used. In addition, when using copper foil as a support body film, it can remove by etching with etching liquid, such as ferric chloride and cupric chloride. The support film may be subjected to a release treatment in addition to a mat treatment and a corona treatment, but it is more preferable that the release treatment is performed in consideration of releasability. Although the thickness of a support film is not specifically limited, Usually, it is 10-150 micrometers, Preferably it is used in 25-50 micrometers.

ワニスを調製するための有機溶剤としては、例えば、アセトン、メチルエチルケトン、シクロヘキサノン等のケトン類、酢酸エチル、酢酸ブチル、セロソルブアセテート、プロピレングリコールモノメチルエーテルアセテート、カルビトールアセテート等の酢酸エステル類、セロソルブ、ブチルカルビトール等のカルビトール類、トルエン、キシレン等の芳香族炭化水素類、ジメチルホルムアミド、ジメチルアセトアミド、N−メチルピロリドン等を挙げることができる。有機溶剤は2種以上を組み合わせて用いてもよい。   Organic solvents for preparing the varnish include, for example, ketones such as acetone, methyl ethyl ketone, cyclohexanone, acetates such as ethyl acetate, butyl acetate, cellosolve acetate, propylene glycol monomethyl ether acetate, carbitol acetate, cellosolve, butyl Examples thereof include carbitols such as carbitol, aromatic hydrocarbons such as toluene and xylene, dimethylformamide, dimethylacetamide, and N-methylpyrrolidone. Two or more organic solvents may be used in combination.

乾燥条件は特に限定されないが、接着フィルムの接着能力を保持するため、乾燥時に熱硬化性樹脂組成物の硬化をできる限り進行させないことが重要となる。また、接着フィルム内に有機溶剤が多く残留すると、硬化後に膨れが発生する原因となるため、熱硬化性樹脂組成物中への有機溶剤の含有割合が通常5質量%以下、好ましくは3質量%以下となるように乾燥させる。具体的な乾燥条件は、熱硬化性樹脂組成物の硬化性やワニス中の有機溶媒量によっても異なるが、例えば30〜60質量%の有機溶剤を含むワニスにおいては、通常80〜120℃で3〜13分程度乾燥させることができる。当業者は、簡単な実験により適宜、好適な乾燥条件を設定することができる。   The drying conditions are not particularly limited, but in order to maintain the adhesive ability of the adhesive film, it is important not to allow the thermosetting resin composition to cure as much as possible during drying. In addition, if a large amount of organic solvent remains in the adhesive film, it may cause swelling after curing. Therefore, the content of the organic solvent in the thermosetting resin composition is usually 5% by mass or less, preferably 3% by mass. Dry to: The specific drying conditions vary depending on the curability of the thermosetting resin composition and the amount of the organic solvent in the varnish. For example, in a varnish containing 30 to 60% by mass of an organic solvent, it is usually 3 at 80 to 120 ° C. It can be dried for about 13 minutes. Those skilled in the art can appropriately set suitable drying conditions by simple experiments.

熱硬化性樹脂組成物層(A層)に用いられる熱硬化性樹脂組成物については前記に説明した通りである。熱硬化性樹脂組成物層(A層)の厚さは通常5〜500μmの範囲とすることができる。A層の厚さの好ましい範囲は接着フィルムの用途により異なり、ビルドアップ工法により多層フレキシブル回路基板の製造に用いる場合は、回路を形成する導体層の厚みが通常5〜70μmであるので、層間絶縁層に相当するA層の厚さは10〜100μmの範囲であるのが好ましい。   The thermosetting resin composition used for the thermosetting resin composition layer (A layer) is as described above. The thickness of the thermosetting resin composition layer (A layer) can usually be in the range of 5 to 500 μm. The preferred range of the thickness of the A layer varies depending on the use of the adhesive film, and when used for manufacturing a multilayer flexible circuit board by the build-up method, the thickness of the conductor layer forming the circuit is usually 5 to 70 μm. The thickness of the A layer corresponding to the layer is preferably in the range of 10 to 100 μm.

A層は保護フィルムで保護されていてもよい。保護フィルムで保護することにより、樹脂組成物層表面へのゴミ等の付着やキズを防止することができる。保護フィルムはラミネートの際に剥離される。保護フィルムとしては支持フィルムと同様の材料を用いることができる。保護フィルムの厚さは特に限定されないが、好ましくは1〜40μmの範囲である。   The A layer may be protected with a protective film. By protecting with a protective film, it is possible to prevent dust and the like from being attached to the surface of the resin composition layer and scratches. The protective film is peeled off during lamination. As the protective film, the same material as the support film can be used. Although the thickness of a protective film is not specifically limited, Preferably it is the range of 1-40 micrometers.

本発明の接着フィルムは特に多層フレキシブル回路基板の製造に好適に使用することができる。以下に、多層フレキシブル回路基板を製造する方法について説明する。本発明の接着フィルムは真空ラミネーターにより好適にフレキシブル回路基板にラミネートすることができる。ここで使用するフレキシブル回路基板は、主として、ポリエステル基板、ポリイミド基板、ポリアミドイミド基板、液晶ポリマー基板等の基板の片面又は両面にパターン加工された導体層(回路)はもちろん、回路と絶縁層が交互に層形成され、片面又は両面が回路形成されている多層フレキシブル回路基板を更に多層化するために使用することもできる。なお回路表面は過酸化水素/硫酸、メックエッチボンド(メック(株)社製)等の表面処理剤により予め粗化処理が施されていた方が絶縁層の回路基板への密着性の観点から好ましい。   Especially the adhesive film of this invention can be used conveniently for manufacture of a multilayer flexible circuit board. Below, the method to manufacture a multilayer flexible circuit board is demonstrated. The adhesive film of the present invention can be suitably laminated on a flexible circuit board with a vacuum laminator. The flexible circuit board used here is mainly composed of a conductive layer (circuit) patterned on one or both sides of a substrate such as a polyester substrate, a polyimide substrate, a polyamideimide substrate, or a liquid crystal polymer substrate, as well as alternating circuits and insulating layers. It is also possible to use a multilayer flexible circuit board that is layered and has a circuit formed on one or both sides for further multilayering. In addition, from the viewpoint of adhesion of the insulating layer to the circuit board, the surface of the circuit should have been previously roughened with a surface treatment agent such as hydrogen peroxide / sulfuric acid or MEC Etch Bond (MEC Co., Ltd.). preferable.

市販されている真空ラミネーターとしては、例えば、ニチゴー・モートン(株)製 バキュームアップリケーター、(株)名機製作所製 真空加圧式ラミネーター、日立テクノエンジニアリング(株)製 ロール式ドライコータ、日立エーアイーシー(株)製真空ラミネーター等を挙げることができる。   Commercially available vacuum laminators include, for example, a vacuum applicator manufactured by Nichigo Morton, a vacuum pressurizing laminator manufactured by Meiki Seisakusho, a roll dry coater manufactured by Hitachi Techno Engineering Co., Ltd., Hitachi AIC ( A vacuum laminator manufactured by Co., Ltd. can be mentioned.

ラミネートにおいて、接着フィルムが保護フィルムを有している場合には該保護フィルムを除去した後、接着フィルムを加圧及び加熱しながら回路基板に圧着する。ラミネートの条件は、接着フィルム及び回路基板を必要によりプレヒートし、圧着温度を好ましくは70〜140℃、圧着圧力を好ましくは1〜11kgf/cmとし、空気圧20mmHg以下の減圧下でラミネートするのが好ましい。また、ラミネートの方法はバッチ式であってもロールでの連続式であってもよい。 In the lamination, when the adhesive film has a protective film, the protective film is removed, and then the adhesive film is pressure-bonded to the circuit board while being pressurized and heated. The laminating conditions include pre-heating the adhesive film and the circuit board as required, laminating at a pressure of preferably 70 to 140 ° C., a pressure of pressure of preferably 1 to 11 kgf / cm 2 and laminating under a reduced pressure of an air pressure of 20 mmHg or less. preferable. The laminating method may be a batch method or a continuous method using a roll.

接着フィルムを回路基板にラミネートした後、室温付近に冷却し支持体フィルムを剥離する。次いで、回路基板にラミネートされた熱硬化性樹脂組成物を加熱硬化させる。加熱硬化の条件は通常150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分の範囲で選択される。なお支持体フィルムが離型処理やシリコン等の剥離層を有する場合は、熱硬化性樹脂組成物の加熱硬化後あるいは加熱硬化及び穴開け後に支持体フィルムを剥離することもできる。   After laminating the adhesive film on the circuit board, it is cooled to around room temperature and the support film is peeled off. Next, the thermosetting resin composition laminated on the circuit board is cured by heating. The conditions for heat curing are usually selected in the range of 150 to 220 ° C. for 20 to 180 minutes, more preferably in the range of 160 to 200 ° C. for 30 to 120 minutes. When the support film has a release layer or a release layer such as silicon, the support film can be peeled after the thermosetting resin composition is heat-cured or after heat-curing and punching.

熱硬化性樹脂組成物の硬化物である絶縁層が形成された後、必要に応じて回路基板にドリル、レーザー、プラズマ、又はこれらの組み合わせ等の方法により穴開けを行いビアホールやスルーホールを形成してもよい。特に炭酸ガスレーザーやYAGレーザー等のレーザーによる穴開けが一般的に用いられる。   After the insulating layer, which is a cured product of the thermosetting resin composition, is formed, the via holes and through holes are formed by drilling the circuit board as necessary using a method such as drilling, laser, plasma, or a combination thereof. May be. In particular, drilling with a laser such as a carbon dioxide laser or a YAG laser is generally used.

次いで絶縁層(熱硬化性樹脂組成物の硬化物)の表面処理を行う。表面処理はデスミアプロセスで用いられる方法を採用することができ、デスミアプロセスを兼ねた形で行うことができる。デスミアプロセスに用いられる薬品としては酸化剤が一般的である。酸化剤としては、例えば、過マンガン酸塩(過マンガン酸カリウム、過マンガン酸ナトリウム等)、重クロム酸塩、オゾン、過酸化水素/硫酸、硝酸等が挙げられる。好ましくはビルドアップ工法による多層プリント配線板の製造における絶縁層の粗化に汎用されている酸化剤である、アルカリ性過マンガン酸溶液(例えば過マンガン酸カリウム、過マンガン酸ナトリウムの水酸化ナトリウム水溶液)を用いて処理を行うのが好ましい。酸化剤で処理する前に、膨潤剤による処理を行うこともできる。また酸化剤による処理の後は、通常、還元剤による中和処理が行われる。   Next, surface treatment of the insulating layer (cured product of the thermosetting resin composition) is performed. The surface treatment can employ a method used in a desmear process, and can be performed in a form that also serves as a desmear process. As a chemical used in the desmear process, an oxidizing agent is generally used. Examples of the oxidizing agent include permanganate (potassium permanganate, sodium permanganate, etc.), dichromate, ozone, hydrogen peroxide / sulfuric acid, nitric acid, and the like. Preferably, an alkaline permanganate solution (for example, potassium permanganate, sodium hydroxide aqueous solution of sodium permanganate), which is an oxidizer widely used for roughening the insulating layer in the production of multilayer printed wiring boards by the build-up method. It is preferable to carry out the treatment using A treatment with a swelling agent can also be performed before the treatment with the oxidizing agent. Further, after the treatment with an oxidizing agent, neutralization treatment with a reducing agent is usually performed.

上記のようなデスミアプロセスは、メッキにより形成される導体層のピール強度を上げるため、絶縁層表面を粗化し凹凸を設ける目的を兼ねることがある。通常、絶縁層上にメッキにより高いピール強度を有する導体層を形成するには、凹凸面の形成が必要であるが、該凹凸面は回路形成する際の導体パターンの精度に影響し、ピール強度を大きくするため凹凸度合いを大きくした場合、ファインパターンの形成が困難になるという問題がある。本発明の熱硬化性樹脂組成物は、充填材を実質的に含まない場合、上記酸化剤による表面処理を行っても、硬化物表面に凹凸が形成されない。しかしながら、本発明の熱硬化性樹脂組成物は、そのような平滑な硬化物表面にメッキにより導体層を形成した場合でも、該導体層は高いピール強度を有し、密着性に優れるファインパターンの回路形成が可能となる。本発明の熱硬化性樹脂組成物が充填材を実質的に含まない場合、絶縁層の表面粗度(Ra値)を、500nm以下、更には400nm以下、更には300nm以下とすることが可能である。なお、Ra値は全測定領域に渡って計算された高さの平均値であり、具体的には測定領域内で変化する高さの絶対値を平均ラインである表面から測定して算術平均したものであり、下式(1)で表すことができる。ここで、MとNはアレイのそれぞれの方向にあるデータ個数である。
表面粗度は、具体的には、非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)で測定することができる。
The desmear process as described above may also serve the purpose of roughening the surface of the insulating layer and providing irregularities in order to increase the peel strength of the conductor layer formed by plating. Usually, in order to form a conductor layer having high peel strength by plating on an insulating layer, it is necessary to form an uneven surface, but this uneven surface affects the accuracy of the conductor pattern when forming a circuit, and peel strength When the degree of unevenness is increased to increase the thickness, there is a problem that it becomes difficult to form a fine pattern. When the thermosetting resin composition of the present invention does not substantially contain a filler, no irregularities are formed on the surface of the cured product even when the surface treatment with the oxidizing agent is performed. However, the thermosetting resin composition of the present invention has a fine pattern having a high peel strength and excellent adhesion even when a conductor layer is formed by plating on the surface of such a smooth cured product. Circuit formation is possible. When the thermosetting resin composition of the present invention does not substantially contain a filler, the surface roughness (Ra value) of the insulating layer can be 500 nm or less, further 400 nm or less, and further 300 nm or less. is there. In addition, Ra value is the average value of the height calculated over the whole measurement area | region, and specifically, the absolute value of the height which changes within a measurement area | region was measured from the surface which is an average line, and was arithmetically averaged. It can be expressed by the following formula (1). Here, M and N are the number of data in each direction of the array.
Specifically, the surface roughness can be measured with a non-contact type surface roughness meter (WYKO NT3300, manufactured by Beec Instruments).

表面処理を行った後、絶縁層表面にメッキにより導体層を形成する。導体層形成は無電解メッキと電解メッキを組み合わせた方法で実施することができる。また導体層とは逆パターンのメッキレジストを形成し、無電解メッキのみで導体層を形成することもできる。導体層形成後、150〜200℃で20〜90分アニール(anneal)処理することにより、導体層のピール強度をさらに向上、安定化させることができる。   After the surface treatment, a conductor layer is formed by plating on the surface of the insulating layer. The conductor layer can be formed by a method combining electroless plating and electrolytic plating. Alternatively, a plating resist having a pattern opposite to that of the conductor layer can be formed, and the conductor layer can be formed only by electroless plating. After the conductor layer is formed, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.

導体層をパターン加工し回路形成する方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。サブトラクティブ法の場合、無電解銅メッキ層の厚みは0.1乃至3μm、好ましくは0.3乃至2μmである。その上に電気メッキ層(パネルメッキ層)を3乃至35μm、好ましくは5乃至20μmの厚みで形成した後、エッチングレジストを形成し、塩化第二鉄、塩化第二銅等のエッチング液でエッチングすることにより導体パターンを形成した後、エッチングレジストを剥離することにより、回路基板を得ることが出来る。また、セミアディティブ法の場合には、無電解銅メッキ層の厚みを0.1乃至3μm、好ましくは0.3乃至2μmで無電解銅メッキ層を形成後、パターンレジストを形成し、次いで電気銅メッキ後に剥離することにより、回路基板を得ることができる。   As a method for forming a circuit by patterning the conductor layer, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used. In the case of the subtractive method, the thickness of the electroless copper plating layer is 0.1 to 3 μm, preferably 0.3 to 2 μm. An electroplating layer (panel plating layer) is formed thereon with a thickness of 3 to 35 μm, preferably 5 to 20 μm, an etching resist is formed, and etching is performed with an etching solution such as ferric chloride or cupric chloride. After forming a conductor pattern by this, a circuit board can be obtained by peeling an etching resist. In the case of the semi-additive method, after forming the electroless copper plating layer with an electroless copper plating layer thickness of 0.1 to 3 μm, preferably 0.3 to 2 μm, a pattern resist is formed, and then the electrolytic copper A circuit board can be obtained by peeling after plating.

支持体フィルムを耐熱樹脂層(耐熱樹脂フィルム)で置き換えた形態のフィルム、すなわち、熱硬化性樹脂組成物層(A層)及び耐熱樹脂層(C層)からなるフィルムは、フレキシブル回路基板用のベースフィルムとして使用できる。また熱硬化性樹脂組成物層(A層)、耐熱樹脂層(C層)及び銅箔(D層)からなるフィルムも同様にフレキシブル回路基板のベースフィルムとして使用できる。この場合ベースフィルムはA層、C層、D層の順の層構成を有する。以上のようなベースフィルムでは、耐熱樹脂層は剥離されずに、フレキシブル回路基板の一部を構成することとなる。   A film in which the support film is replaced with a heat-resistant resin layer (heat-resistant resin film), that is, a film composed of a thermosetting resin composition layer (A layer) and a heat-resistant resin layer (C layer) is used for a flexible circuit board. Can be used as a base film. A film made of a thermosetting resin composition layer (A layer), a heat resistant resin layer (C layer) and a copper foil (D layer) can also be used as a base film of a flexible circuit board. In this case, the base film has a layer structure in the order of A layer, C layer, and D layer. In the base film as described above, the heat-resistant resin layer is not peeled off and constitutes a part of the flexible circuit board.

本発明の熱硬化性樹脂組成物の硬化物からなる絶縁層(A’層)が耐熱樹脂層(C層)上に形成されたフィルムは片面フレキシブル回路基板用のベースフィルムとして使用できる。また、A’層、C層及びA’層の順の層構成を有するフィルム、及びA’層、C層及び銅箔(D層)からなり、A’層、C層及びD層の順の層構成を有するフィルムも同様に両面フレキシブル回路基板用のベースフィルムとして使用できる。   A film in which an insulating layer (A ′ layer) made of a cured product of the thermosetting resin composition of the present invention is formed on a heat-resistant resin layer (C layer) can be used as a base film for a single-sided flexible circuit board. Moreover, it consists of the film which has a layer structure of the order of A 'layer, C layer, and A' layer, and A 'layer, C layer, and copper foil (D layer), A' layer, the order of C layer, and D layer Similarly, a film having a layer structure can be used as a base film for a double-sided flexible circuit board.

耐熱樹脂層に用いられる耐熱樹脂は、ポリイミド樹脂、アラミド樹脂、ポリアミドイミド樹脂、液晶ポリマーなどを挙げることができる。特に、ポリイミド樹脂及びポリアミドイミド樹脂が好ましい。またフレキシブル回路基板に用いる特性上、破断強度が100MPa以上、破断伸度が5%以上、20〜150℃間の熱膨張係数が40ppm以下、およびガラス転移温度が200℃以上又は分解温度が300℃以上である耐熱樹脂を用いるのが好ましい。   Examples of the heat-resistant resin used for the heat-resistant resin layer include a polyimide resin, an aramid resin, a polyamideimide resin, and a liquid crystal polymer. In particular, a polyimide resin and a polyamideimide resin are preferable. Moreover, on the characteristic used for a flexible circuit board, the breaking strength is 100 MPa or more, the breaking elongation is 5% or more, the thermal expansion coefficient between 20 and 150 ° C. is 40 ppm or less, and the glass transition temperature is 200 ° C. or more or the decomposition temperature is 300 ° C. It is preferable to use the above heat resistant resin.

このような特性を満たす耐熱樹脂としては、フィルム状で市販されている耐熱樹脂を好適に用いることができ、例えば、宇部興産(株)製ポリイミドフィルム「ユーピ レックス−S」、東レ・デュポン(株)製ポリイミドフィルム「カプトン」、鐘淵化学工業(株)製ポリイミドフィルム「アピカル」、帝人アドバンストフィルム(株)製「アラミカ」、(株)クラレ製液晶ポリマーフィルム「ベクスター」、住友ベークライト(株)製ポリエーテルエーテルケトンフィルム「スミライトFS−1100C」等が知られている。   As the heat-resistant resin satisfying such characteristics, a heat-resistant resin that is commercially available in the form of a film can be suitably used. For example, a polyimide film “Upilex-S” manufactured by Ube Industries, Ltd., Toray DuPont Co., Ltd. ) Polyimide film "Kapton", Kaneka Chemical Co., Ltd. polyimide film "Apical", Teijin Advanced Films Ltd. "Aramika", Kuraray Co., Ltd. liquid crystal polymer film "Bexstar", Sumitomo Bakelite Co., Ltd. A polyether ether ketone film “Sumilite FS-1100C” and the like are known.

引張り破断強度、破断伸度及び弾性率は、JIS(日本工業規格) K 7127に記載の方法に従って決定される。熱膨張係数及びガラス転移温度は、JIS K 7197に記載の方法に従って決定される。なお、ガラス転移温度が分解温度よりも高く、実質ガラス転移温度が観測されない場合も本発明に言う「ガラス転移温度が200℃以上である」の定義内に含まれる。なお、分解温度とは、JIS K 7120に記載の方法に従って測定したときの質量減少率が5%となる温度で定義される。   The tensile breaking strength, breaking elongation, and elastic modulus are determined according to the method described in JIS (Japanese Industrial Standard) K7127. The thermal expansion coefficient and glass transition temperature are determined according to the method described in JIS K 7197. The case where the glass transition temperature is higher than the decomposition temperature and no substantial glass transition temperature is observed is also included in the definition of “the glass transition temperature is 200 ° C. or higher” in the present invention. The decomposition temperature is defined as the temperature at which the mass reduction rate is 5% when measured according to the method described in JIS K 7120.

耐熱樹脂層の厚さは、通常2〜150μmであり、好ましくは10〜50μmの範囲とするのがよい。耐熱樹脂層(C層)は表面処理を施したものを用いてもよい。表面処理としては、マット(mat)処理、コロナ放電処理、プラズマ処理等の乾式処理、溶剤処理、酸処理、アルカリ処理等の化学処理、サンドブラスト処理、機械研磨処理などが挙げられる。特にA層との密着性の観点から、プラズマ処理が施されているのが好ましい。   The thickness of the heat-resistant resin layer is usually 2 to 150 μm, preferably 10 to 50 μm. As the heat-resistant resin layer (C layer), a surface-treated layer may be used. Examples of the surface treatment include dry treatment such as mat treatment, corona discharge treatment and plasma treatment, chemical treatment such as solvent treatment, acid treatment and alkali treatment, sand blast treatment and mechanical polishing treatment. In particular, from the viewpoint of adhesion to the A layer, it is preferable that plasma treatment is performed.

絶縁層(A’)と耐熱樹脂層(C)からなる片面フレキシブル回路基板用のベースフィルムは以下のようにして製造することができる。まず、前述した接着フィルムと同様に、本発明の熱硬化性樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、耐熱樹脂フィルム上にこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させて熱硬化性樹脂組成物層を形成させる。有機溶剤、乾燥条件等の条件は前記接着フィルムの場合と同様である。熱硬化性樹脂組成物層の厚さは5〜15μmの範囲とするのが好ましい 。   A base film for a single-sided flexible circuit board comprising an insulating layer (A ′) and a heat-resistant resin layer (C) can be produced as follows. First, similarly to the adhesive film described above, a resin varnish prepared by dissolving the thermosetting resin composition of the present invention in an organic solvent is prepared, and this resin varnish is applied on a heat-resistant resin film, and heated or blown with hot air or the like. The organic solvent is dried to form a thermosetting resin composition layer. Conditions such as the organic solvent and drying conditions are the same as those for the adhesive film. The thickness of the thermosetting resin composition layer is preferably in the range of 5 to 15 μm.

次に熱硬化性樹脂組成物層を加熱硬化させ、熱硬化性樹脂組成物の硬化物である絶縁層を形成させる。加熱硬化の条件は通常150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分の範囲で選択される。   Next, the thermosetting resin composition layer is cured by heating to form an insulating layer that is a cured product of the thermosetting resin composition. The conditions for heat curing are usually selected in the range of 150 to 220 ° C. for 20 to 180 minutes, more preferably in the range of 160 to 200 ° C. for 30 to 120 minutes.

絶縁層(A’層)、耐熱樹脂層(C)層及び銅箔(D層)の3層からなる両面フレキシブル回路基板用フィルムのベースフィルムの製造は、耐熱樹脂層(C層)と銅箔(D層)よりなる銅張積層フィルム上に熱硬化性樹脂組成物を層形成し、上記と同様にして製造すればよい。銅張積層フィルムとしては、キャスト法2層CCL(Copper-clad laminate)、スパッタ法2層CCL、ラミネート法2層CCL、3層CCLなどが挙げられる。銅箔の厚さは12μm、18μmのものが好適に使用される。   The production of a base film of a double-sided flexible circuit board film comprising three layers of an insulating layer (A ′ layer), a heat resistant resin layer (C) layer and a copper foil (D layer) A thermosetting resin composition may be formed on a copper-clad laminate film made of (D layer) and manufactured in the same manner as described above. Examples of the copper clad laminated film include a cast method two-layer CCL (Copper-clad laminate), a sputtering method two-layer CCL, a laminate method two-layer CCL, and a three-layer CCL. The thickness of the copper foil is preferably 12 μm or 18 μm.

市販されている2層CCLとしては、エスパネックスSC(新日鐵化学社製)、ネオフレックスI<CM>、ネオフレックスI<LM>(三井化学社製)、S’PERFLEX(住友金属鉱山社製)等が挙げられ、また市販されている3層CCLとしては、ニカフレックスF−50VC1(ニッカン工業社製)等が挙げられる。   Commercially available two-layer CCL includes Espanex SC (manufactured by Nippon Steel Chemical Co., Ltd.), Neoprex I <CM>, Neoprex I <LM> (Mitsui Chemicals), S'PERFLEX (Sumitomo Metal Mining Co., Ltd.) Nikaflex F-50VC1 (manufactured by Nikkan Kogyo Co., Ltd.) and the like are mentioned as the commercially available three-layer CCL.

絶縁層(A’層)、耐熱樹脂層(C層)及び絶縁層(A’層)の3層からなる両面フレキシブル回路基板用フィルムのベースフィルムの製造は以下のようにして行うことができる。まず前述した接着フィルムと同様に、本発明の熱硬化性樹脂組成物を有機溶剤に溶解した樹脂ワニスを調製し、支持体フィルム上にこの樹脂ワニスを塗布し、加熱又は熱風吹きつけ等により有機溶剤を乾燥させて熱硬化性樹脂組成物層を形成させる。有機溶剤、乾燥条件等の条件は前記接着フィルムの場合と同様である。熱硬化性樹脂組成物層の厚さは5〜15μmの範囲とするのが好ましい。   The production of a base film for a double-sided flexible circuit board film comprising three layers of an insulating layer (A ′ layer), a heat resistant resin layer (C layer) and an insulating layer (A ′ layer) can be carried out as follows. First, in the same manner as the adhesive film described above, a resin varnish prepared by dissolving the thermosetting resin composition of the present invention in an organic solvent is prepared, and this resin varnish is applied onto a support film, and organic by heating or hot air blowing, etc. The solvent is dried to form a thermosetting resin composition layer. Conditions such as the organic solvent and drying conditions are the same as those for the adhesive film. The thickness of the thermosetting resin composition layer is preferably in the range of 5 to 15 μm.

次に、この接着フィルムを耐熱樹脂フィルムの両面にラミネートする。ラミネートの条件は前記と同様である。また耐熱フィルムの片面に予め熱硬化性樹脂組成物層が設けられていれば、ラミネートは片面のみでよい。次に熱硬化性樹脂組成物層を加熱硬化させ、熱硬化性樹脂組成物の硬化物である絶縁層を形成させる。加熱硬化の条件は通常150℃〜220℃で20分〜180分の範囲で選択され、より好ましくは160℃〜200℃で30〜120分の範囲で選択される。   Next, this adhesive film is laminated on both surfaces of the heat resistant resin film. Lamination conditions are the same as described above. Moreover, if the thermosetting resin composition layer is previously provided on one side of the heat-resistant film, the lamination may be only on one side. Next, the thermosetting resin composition layer is cured by heating to form an insulating layer that is a cured product of the thermosetting resin composition. The conditions for heat curing are usually selected in the range of 150 to 220 ° C. for 20 to 180 minutes, more preferably in the range of 160 to 200 ° C. for 30 to 120 minutes.

フレキシブル回路基板用のベースフィルムからフレキシブル回路基板を製造する方法について説明する。A’層、C層及びA’層からなるベースフィルムの場合は、まず加熱硬化後、回路基板にドリル、レーザー、プラズマ等の方法により穴開けし、両面の導通のためのスルーホールを形成する。A’層、C層及びD層からなるベースフィルムの場合は、同様の方法により穴開けし、ビアホールを形成する。特に炭酸ガスレーザーやYAGレーザー等のレーザーによる穴開けが一般的に用いられる。   A method for producing a flexible circuit board from the base film for the flexible circuit board will be described. In the case of a base film comprising an A ′ layer, a C layer, and an A ′ layer, first, after heat-curing, a circuit board is drilled by a method such as drilling, laser, or plasma to form a through hole for conduction on both sides. . In the case of a base film composed of an A ′ layer, a C layer, and a D layer, a hole is formed by the same method to form a via hole. In particular, drilling with a laser such as a carbon dioxide laser or a YAG laser is generally used.

次いで絶縁層(熱硬化性樹脂組成物の硬化物)の表面処理を行う。表面処理については、前述した接着フィルムの場合と同様である。表面処理を行った後、絶縁層表面にメッキにより導体層を形成する。メッキによる導体層形成については、前述した接着フィルムの場合と同様である。導体層形成後、150〜200℃で20〜90分アニール処理することにより、導体層のピール強度をさらに向上、安定化させることができる。   Next, surface treatment of the insulating layer (cured product of the thermosetting resin composition) is performed. About surface treatment, it is the same as that of the case of the adhesive film mentioned above. After the surface treatment, a conductor layer is formed by plating on the surface of the insulating layer. The formation of the conductor layer by plating is the same as in the case of the adhesive film described above. After the conductor layer is formed, the peel strength of the conductor layer can be further improved and stabilized by annealing at 150 to 200 ° C. for 20 to 90 minutes.

次に、導体層をパターン加工し回路形成しフレキシブル回路基板とする。A層、C層及びD層からなるベースフィルムを使用した場合は、D層である銅箔にも回路形成を行う。回路形成の方法としては、例えば当業者に公知のサブトラクティブ法、セミアディディブ法などを用いることができる。詳細は前述の接着フィルムの場合と同様である。   Next, the conductor layer is patterned to form a circuit to obtain a flexible circuit board. When a base film composed of an A layer, a C layer, and a D layer is used, a circuit is also formed on the copper foil that is the D layer. As a circuit formation method, for example, a subtractive method or a semi-additive method known to those skilled in the art can be used. Details are the same as in the case of the adhesive film described above.

このようにして得られた片面又は両面フレキシブル回路基板は、例えば、前述したように、本発明の接着フィルムを用いて多層化することで、多層フレキシブル回路基板を製造することができる。   The single-sided or double-sided flexible circuit board obtained in this way can be produced as a multilayer flexible circuit board by using the adhesive film of the present invention, for example, as described above.

また、本発明の熱硬化性樹脂組成物は半導体とサブストレート基板間の応力緩和層を形成するための材料としても有用である(特許文献4参照)。例えば、前記と同様にして、本発明の接着フィルムによりサブストレート基板の最も上部の絶縁層の全部または一部を形成し、半導体を接続することにより、該熱硬化性樹脂組成物の硬化物を介して半導体とサブストレート基板が接着された半導体装置を製造することができる。この場合、接着フィルムの熱硬化性樹脂組成物層の厚みは10〜1000μmの範囲で適宜選択される。本発明の熱硬化性樹脂組成物はメッキにより導体層の形成が可能であり、サブストレート基板上に設けた応力緩和用の絶縁層上にも簡便にメッキにより導体層を形成し回路パターンを作製することも可能である。   The thermosetting resin composition of the present invention is also useful as a material for forming a stress relaxation layer between a semiconductor and a substrate substrate (see Patent Document 4). For example, in the same manner as described above, all or part of the uppermost insulating layer of the substrate substrate is formed by the adhesive film of the present invention, and a cured product of the thermosetting resin composition is obtained by connecting a semiconductor. A semiconductor device in which the semiconductor and the substrate substrate are bonded to each other can be manufactured. In this case, the thickness of the thermosetting resin composition layer of the adhesive film is appropriately selected within a range of 10 to 1000 μm. With the thermosetting resin composition of the present invention, a conductor layer can be formed by plating, and a circuit pattern is produced by simply forming a conductor layer on the insulating layer for stress relaxation provided on the substrate substrate. It is also possible to do.

以下、実施例を示して本発明を具体的に説明するが、本発明はこれに限定されるものではない。なお、実施例中、部は質量部を意味する。   EXAMPLES Hereinafter, although an Example is shown and this invention is demonstrated concretely, this invention is not limited to this. In addition, in an Example, a part means a mass part.

[製造例1]
<線状変性ポリイミド樹脂の製造(線状変性ポリイミド樹脂ワニスA)>
反応容器にG−3000(2官能性ヒドロキシル基末端ポリブタジエン、数平均分子量 =5047(GPC法)、ヒドロキシル基当量=1798g/eq.、固形分100w%:日本曹達(株)製)50gと、イプゾール150(芳香族炭化水素系混合溶媒:出光石油化学(株)製)23.5g、ジブチル錫ラウレート0.005gを混合し均一に溶解させた。均一になったところで50℃に昇温し、更に撹拌しながら、トルエン−2,4−ジイソシアネート(イソシアネート基当量=87.08g/eq.)4.8gを添加し約3時間反応を行った。次いで、この反応物を室温まで冷却してから、これにベンゾフェノンテトラカルボン酸二無水物(酸無水物当量=161.1g/eq.)8.96gと、トリエチレンジアミン0.07gと、エチルジグリコールアセテート(ダイセル化学工業(株)社製)40.4gを添加し、攪拌しながら130℃まで昇温し、約4時間反応を行った。FT−IRより2250cm−1のNCOピークの消失の確認を行った。NCOピーク消失の確認をもって反応の終点とみなし、反応物を室温まで降温してから100メッシュの濾布で濾過して線状変性ポリイミド樹脂(線状変性ポリイミド樹脂ワニスA)を得た。
線状変性ポリイミド樹脂ワニスAの性状:粘度=7.5Pa・s(25℃、E型粘度計)
酸価=16.9mgKOH/g
固形分=50w%
数平均分子量=13723
ポリブタジエン構造部分の含有率=50*100/(50+4.8+8.96)
=78.4質量%
[Production Example 1]
<Production of linear modified polyimide resin (linear modified polyimide resin varnish A)>
In a reaction vessel, 50 g of G-3000 (bifunctional hydroxyl group-terminated polybutadiene, number average molecular weight = 5047 (GPC method), hydroxyl group equivalent = 1798 g / eq., Solid content: 100 w%: Nippon Soda Co., Ltd.) 23.5 g of 150 (aromatic hydrocarbon-based mixed solvent: manufactured by Idemitsu Petrochemical Co., Ltd.) and 0.005 g of dibutyltin laurate were mixed and dissolved uniformly. When the temperature became uniform, the temperature was raised to 50 ° C., and while further stirring, 4.8 g of toluene-2,4-diisocyanate (isocyanate group equivalent = 87.08 g / eq.) Was added and the reaction was carried out for about 3 hours. The reaction was then cooled to room temperature before 8.96 g benzophenonetetracarboxylic dianhydride (acid anhydride equivalent = 161.1 g / eq.), 0.07 g triethylenediamine, and ethyl diglycol. 40.4 g of acetate (manufactured by Daicel Chemical Industries, Ltd.) was added, the temperature was raised to 130 ° C. with stirring, and the reaction was carried out for about 4 hours. The disappearance of the NCO peak at 2250 cm −1 was confirmed by FT-IR. The confirmation of the disappearance of the NCO peak was regarded as the end point of the reaction, and the reaction product was cooled to room temperature and then filtered through a 100 mesh filter cloth to obtain a linear modified polyimide resin (linear modified polyimide resin varnish A).
Properties of linear modified polyimide resin varnish A: Viscosity = 7.5 Pa · s (25 ° C., E-type viscometer)
Acid value = 16.9 mgKOH / g
Solid content = 50w%
Number average molecular weight = 13723
Content of polybutadiene structure portion = 50 * 100 / (50 + 4.8 + 8.96)
= 78.4% by mass

[製造例2]
<線状変性ポリイミド樹脂の製造(線状変性ポリイミド樹脂ワニスB)>
反応容器にG−3000(2官能性ヒドロキシル基末端ポリブタジエン、数平均分子量=5047(GPC法)、ヒドロキシル基当量=1798g/eq.、固形分100w%:日本曹達(株)製)50gと、イプゾール150(芳香族炭化水素系混合溶媒:出光石油化学(株)製)23.5g、ジブチル錫ラウレート0.007gを混合し、均一に溶解させた。均一になったところで50℃に昇温し、更に撹拌しながら、トルエン−2,4−ジイソシアネート(イソシアネート基当量=87.08g/eq.)4.8gを添加し約3時間反応を行った。次いで、この反応物を室温まで冷却してから、これにベンゾフェノンテトラカルボン酸二無水物(酸無水物当量=161.1g/eq.)8.83gと、トリエチレンジアミン0.07gと、エチルジグリコールアセテート(ダイセル化学工業(株)社製)74.09gを添加し、攪拌しながら130℃まで昇温、約4時間反応を行った。FT−IRより2250cm−1のNCOピークの消失が確認された時点でさらに、トルエン−2,4−ジイソシアネート(イソシアネート基当量=87.08g/eq.)1.43gを添加し、再び130℃で2〜6時間攪拌反応を行いながらFT−IRによりNCOピーク消失の確認を行った。NCOピーク消失の確認をもって反応の終点とみなし、これを室温まで降温してから100メッシュの濾布で濾過し、変性ポリイミド樹脂(線状変性ポリイミド樹脂ワニスB)を得た。
線状変性ポリイミド樹脂ワニスBの性状:粘度=7.0Pa・s(25℃、E型粘度計)
酸価=6.9mgKOH/g
固形分=40w%
数平均分子量=19890
ポリブタジエン構造部分の含有率=50*100/(50+4.8+8.83+1.43)
=76.9質量%
[Production Example 2]
<Production of linear modified polyimide resin (linear modified polyimide resin varnish B)>
In a reaction vessel, 50 g of G-3000 (bifunctional hydroxyl group-terminated polybutadiene, number average molecular weight = 5047 (GPC method), hydroxyl group equivalent = 1798 g / eq., Solid content: 100 w%, manufactured by Nippon Soda Co., Ltd.), ipzol 23.5 g of 150 (aromatic hydrocarbon-based mixed solvent: manufactured by Idemitsu Petrochemical Co., Ltd.) and 0.007 g of dibutyltin laurate were mixed and dissolved uniformly. When the temperature became uniform, the temperature was raised to 50 ° C., and while further stirring, 4.8 g of toluene-2,4-diisocyanate (isocyanate group equivalent = 87.08 g / eq.) Was added and the reaction was carried out for about 3 hours. The reaction was then allowed to cool to room temperature, after which 8.83 g of benzophenone tetracarboxylic dianhydride (acid anhydride equivalent = 161.1 g / eq.), 0.07 g of triethylenediamine, ethyl diglycol 74.09 g of acetate (manufactured by Daicel Chemical Industries, Ltd.) was added, the temperature was raised to 130 ° C. with stirring, and the reaction was performed for about 4 hours. When the disappearance of the NCO peak at 2250 cm −1 was confirmed by FT-IR, 1.42 g of toluene-2,4-diisocyanate (isocyanate group equivalent = 87.08 g / eq.) Was added, and again at 130 ° C. While stirring for 2 to 6 hours, the disappearance of the NCO peak was confirmed by FT-IR. The confirmation of the disappearance of the NCO peak was regarded as the end point of the reaction, and this was cooled to room temperature and filtered through a 100 mesh filter cloth to obtain a modified polyimide resin (linear modified polyimide resin varnish B).
Properties of linear modified polyimide resin varnish B: Viscosity = 7.0 Pa · s (25 ° C., E-type viscometer)
Acid value = 6.9 mgKOH / g
Solid content = 40w%
Number average molecular weight = 19890
Content ratio of polybutadiene structure portion = 50 * 100 / (50 + 4.8 + 8.83 + 1.43)
= 76.9% by mass

成分(A)として製造例1で得られた線状変性ポリイミド樹脂ワニスA40部、成分(B)としてビスフェノールA型エポキシ樹脂(エポキシ当量185、ジャパンエポキシレジン(株)製「エピコート828」)8部、トリアジン構造含有フェノールノボラック樹脂のメチルエチルケトン(以下、MEKと記す)ワニス(大日本インキ化学工業(株)製「フェノライトLA−7054」)6.5部を添加してワニス状の熱硬化性樹脂組成物を調製した。次に離型処理ポリエチレンテレフタレート(厚さ38μm、以下PETと略す)上に、その熱硬化性樹脂組成物を、乾燥後の樹脂厚みが70μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥し熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成し接着フィルムを製造した。次いで熱硬化性樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリット(slit)し、これより507×336mmサイズのシート状の接着フィルムを得た。   40 parts of linear modified polyimide resin varnish A obtained in Production Example 1 as component (A), 8 parts of bisphenol A type epoxy resin (epoxy equivalent 185, “Epicoat 828” manufactured by Japan Epoxy Resins Co., Ltd.) as component (B) , Varnish-like thermosetting resin by adding 6.5 parts of methyl ethyl ketone (hereinafter referred to as MEK) varnish (“Phenolite LA-7054” manufactured by Dainippon Ink & Chemicals, Inc.) of triazine structure-containing phenol novolac resin A composition was prepared. Next, the thermosetting resin composition is applied onto a release-treated polyethylene terephthalate (thickness: 38 μm, hereinafter abbreviated as PET) with a die coater so that the resin thickness after drying becomes 70 μm, and 80 to 120 An adhesive film was produced by drying at 6 ° C. (average 100 ° C.) for 6 minutes to form a thermosetting resin composition layer (residual solvent amount of about 1% by mass). Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of the thermosetting resin composition layer. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.

成分(A)として製造例1で得られた線状変性ポリイミド樹脂ワニスA40部、成分(B)としてビスフェノールA型エポキシ樹脂(エポキシ当量185、ジャパンエポキシレジン(株)製「エピコート828」)3部、ビフェニル型エポキシ樹脂(エポキシ当量290、日本化薬(株)製「NC−3000−H」)9.1部、トリアジン構造含有フェノールノボラック樹脂のMEKワニス(大日本インキ化学工業(株)製「フェノライトLA−7054」)6.5部、さらにMEK3.9部を添加してワニス状の熱硬化性樹脂組成物を調製した。次に実施例1と同様に離型処理PET上に、その熱硬化性樹脂組成物を、乾燥後の樹脂厚みが70μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥して熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成し接着フィルム得た。次いで熱硬化性樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、これより507×336mmサイズのシート状の接着フィルムを得た。   40 parts of linear modified polyimide resin varnish A obtained in Production Example 1 as component (A), 3 parts of bisphenol A type epoxy resin (epoxy equivalent 185, “Epicoat 828” manufactured by Japan Epoxy Resins Co., Ltd.) as component (B) , 9.1 parts of biphenyl type epoxy resin (epoxy equivalent 290, “NC-3000-H” manufactured by Nippon Kayaku Co., Ltd.), MEK varnish of triazine structure-containing phenol novolac resin (manufactured by Dainippon Ink & Chemicals, Inc.) Phenolite LA-7054 ") 6.5 parts and further 3.9 parts of MEK were added to prepare a varnish-like thermosetting resin composition. Next, in the same manner as in Example 1, the thermosetting resin composition was applied on a release-treated PET with a die coater so that the resin thickness after drying was 70 μm, and was 80 to 120 ° C. (average 100 ° C. ) For 6 minutes to form a thermosetting resin composition layer (residual solvent amount of about 1% by mass) to obtain an adhesive film. Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of the thermosetting resin composition layer. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.

成分(A)として製造例1で得られた線状変性ポリイミド樹脂ワニスA40部、成分(B)としてビスフェノールA型エポキシ樹脂(エポキシ当量185、ジャパンエポキシレジン(株)製「エピコート828」)4部、テトラメチルタイプのビフェノール型エポキシ樹脂(エポキシ当量190、ジャパンエポキシレジン(株)製「YX−4000」)4.5部、トリアジン構造含有フェノールノボラック樹脂のMEKワニス(大日本インキ化学工業(株)製「フェノライトLA−7054」)6.5部を添加してワニス状の熱硬化性樹脂組成物を調製した。次に実施例1と同様に離型処理PET上に、その熱硬化性樹脂組成物を、乾燥後の樹脂厚みが70μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥して熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成し接着フィルムを得た。次いで熱硬化性樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、これより507×336mmサイズのシート状の接着フィルムを得た。   40 parts of linear modified polyimide resin varnish A obtained in Production Example 1 as component (A), 4 parts of bisphenol A type epoxy resin (epoxy equivalent 185, “Epicoat 828” manufactured by Japan Epoxy Resins Co., Ltd.) as component (B) , 4.5 parts of tetramethyl type biphenol type epoxy resin (epoxy equivalent 190, “YX-4000” manufactured by Japan Epoxy Resin Co., Ltd.), MEK varnish of triazine structure-containing phenol novolac resin (Dainippon Ink and Chemicals, Inc.) A varnish-like thermosetting resin composition was prepared by adding 6.5 parts of "Phenolite LA-7054". Next, in the same manner as in Example 1, the thermosetting resin composition was applied on a release-treated PET with a die coater so that the resin thickness after drying was 70 μm, and was 80 to 120 ° C. (average 100 ° C. ) For 6 minutes to form a thermosetting resin composition layer (residual solvent amount of about 1% by mass) to obtain an adhesive film. Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of a thermosetting resin composition. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.

成分(A)として製造例1で得られた線状変性ポリイミド樹脂ワニスA40部、成分(B)としてビスフェノールA型エポキシ樹脂(エポキシ当量185、ジャパンエポキシレジン(株)製「エピコート828」)4部、トリフェニルメタン型多官能エポキシ樹脂(エポキシ当量170、日本化薬(株)製「EPPN−502H」)4部、トリアジン構造含有フェノールノボラック樹脂のMEKワニス(大日本インキ化学工業(株)製「フェノライトLA−7054」)6.5部、さらにMEK1部を添加して熱硬化性樹脂組成物を調製した。次に実施例1と同様に離型処理PET上に、その熱硬化性樹脂組成物を、乾燥後の樹脂厚みが70μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥して熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成し接着フィルムを得た。次いで熱硬化性樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、これより507×336mmサイズのシート状の接着フィルムを得た。   40 parts of linear modified polyimide resin varnish A obtained in Production Example 1 as component (A), 4 parts of bisphenol A type epoxy resin (epoxy equivalent 185, “Epicoat 828” manufactured by Japan Epoxy Resins Co., Ltd.) as component (B) , 4 parts of triphenylmethane type polyfunctional epoxy resin (epoxy equivalent 170, “EPPN-502H” manufactured by Nippon Kayaku Co., Ltd.), MEK varnish of triazine structure-containing phenol novolac resin (manufactured by Dainippon Ink & Chemicals, Inc.) Phenolite LA-7054 ") 6.5 parts and further 1 part of MEK were added to prepare a thermosetting resin composition. Next, in the same manner as in Example 1, the thermosetting resin composition was applied on a release-treated PET with a die coater so that the resin thickness after drying was 70 μm, and was 80 to 120 ° C. (average 100 ° C. ) For 6 minutes to form a thermosetting resin composition layer (residual solvent amount of about 1% by mass) to obtain an adhesive film. Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of a thermosetting resin composition. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.

成分(A)として製造例1で得られた線状変性ポリイミド樹脂ワニスA40部、成分(B)としてビスフェノールA型エポキシ樹脂(エポキシ当量185、ジャパンエポキシレジン(株)製「エピコート828」)8部、トリアジン構造含有フェノールノボラック樹脂のMEKワニス(大日本インキ化学工業(株)製「フェノライトLA−7054」)6.5部、さらに球形シリカ(平均粒径1.1μm)8部、イプゾール150(芳香族炭化水素系混合溶媒:出光石油化学(株)製)4部を添加して熱硬化性樹脂組成物を調製した。次に実施例1と同様に離型処理PET上に、その熱硬化性樹脂組成物を、乾燥後の樹脂厚みが70μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥して熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成し接着フィルムを得た。次いで熱硬化性樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、これより507×336mmサイズのシート状の接着フィルムを得た。   40 parts of linear modified polyimide resin varnish A obtained in Production Example 1 as component (A), 8 parts of bisphenol A type epoxy resin (epoxy equivalent 185, “Epicoat 828” manufactured by Japan Epoxy Resins Co., Ltd.) as component (B) , 6.5 parts of triazine structure-containing phenol novolak resin MEK varnish ("Phenolite LA-7054" manufactured by Dainippon Ink & Chemicals, Inc.), 8 parts of spherical silica (average particle size 1.1 µm), Ipsol 150 ( A thermosetting resin composition was prepared by adding 4 parts of an aromatic hydrocarbon-based mixed solvent (produced by Idemitsu Petrochemical Co., Ltd.). Next, in the same manner as in Example 1, the thermosetting resin composition was applied on a release-treated PET with a die coater so that the resin thickness after drying was 70 μm, and was 80 to 120 ° C. (average 100 ° C. ) For 6 minutes to form a thermosetting resin composition layer (residual solvent amount of about 1% by mass) to obtain an adhesive film. Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of a thermosetting resin composition. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.

成分(A)として製造例1で得られた線状変性ポリイミド樹脂ワニスA40部、成分(B)としてビスフェノールA型エポキシ樹脂(エポキシ当量185、ジャパンエポキシレジン(株)製「エピコート828」)8部、イミダゾール系硬化剤(四国化成工業(株)製、2,4−ジアミノ−6−〔2’−メチルイミダゾリル−(1’)〕−エチル−s−トリアジンイソシアヌル酸付加物「キュアゾール2MA−OK」)0.5部、さらに球形シリカ(平均粒径1.1μm)10部、「イプゾール150」(芳香族炭化水素系混合溶媒:出光石油化学(株)製)4部を添加して熱硬化性樹脂組成物を調製した。次に実施例1と同様に離型処理PET上に、その熱硬化性樹脂組成物を、乾燥後の樹脂厚みが70μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥して熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成し接着フィルムを得た。次いで熱硬化性樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、これより507×336mmサイズのシート状の接着フィルムを得た。   40 parts of linear modified polyimide resin varnish A obtained in Production Example 1 as component (A), 8 parts of bisphenol A type epoxy resin (epoxy equivalent 185, “Epicoat 828” manufactured by Japan Epoxy Resins Co., Ltd.) as component (B) Imidazole-based curing agent (manufactured by Shikoku Kasei Kogyo Co., Ltd., 2,4-diamino-6- [2′-methylimidazolyl- (1 ′)]-ethyl-s-triazine isocyanuric acid adduct “Cureazole 2MA-OK” ) 0.5 part, 10 parts of spherical silica (average particle size 1.1 μm), 4 parts of “Ipsol 150” (aromatic hydrocarbon-based mixed solvent: manufactured by Idemitsu Petrochemical Co., Ltd.) A resin composition was prepared. Next, in the same manner as in Example 1, the thermosetting resin composition was applied on a release-treated PET with a die coater so that the resin thickness after drying was 70 μm, and was 80 to 120 ° C. (average 100 ° C. ) For 6 minutes to form a thermosetting resin composition layer (residual solvent amount of about 1% by mass) to obtain an adhesive film. Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of a thermosetting resin composition. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.

成分(A)として製造例1で得られた線状変性ポリイミド樹脂ワニスA40部、成分(B)としてビスフェノールA型エポキシ樹脂(エポキシ当量185、ジャパンエポキシレジン(株)製「エピコート828」)8部、ジシアンジアミド(ジャパンエポキシレジン(株)製「エピキュアDICY7」)0.5部、さらに球形シリカ(平均粒径1.1μm)10部、イプゾール150(芳香族炭化水素系混合溶媒:出光石油化学(株)製)4部を添加して熱硬化性樹脂組成物を調製した。次に実施例1と同様に離型処理PET上に、その熱硬化性樹脂組成物を、乾燥後の樹脂厚みが70μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥して熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成し接着フィルムを得た。次いで熱硬化性樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、これより507×336mmサイズのシート状の接着フィルムを得た。   40 parts of linear modified polyimide resin varnish A obtained in Production Example 1 as component (A), 8 parts of bisphenol A type epoxy resin (epoxy equivalent 185, “Epicoat 828” manufactured by Japan Epoxy Resins Co., Ltd.) as component (B) , 0.5 parts of dicyandiamide ("Epicure DICY7" manufactured by Japan Epoxy Resin Co., Ltd.), 10 parts of spherical silica (average particle size: 1.1 μm), Ipsol 150 (aromatic hydrocarbon-based mixed solvent: Idemitsu Petrochemical Co., Ltd.) 4) 4 parts was added to prepare a thermosetting resin composition. Next, in the same manner as in Example 1, the thermosetting resin composition was applied on a release-treated PET with a die coater so that the resin thickness after drying was 70 μm, and was 80 to 120 ° C. (average 100 ° C. ) For 6 minutes to form a thermosetting resin composition layer (residual solvent amount of about 1% by mass) to obtain an adhesive film. Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of a thermosetting resin composition. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom.

<比較例1>
実施例1〜7で得られた接着フィルムを180℃で90分加熱硬化した。各熱硬化性樹脂組成物の硬化物の特性を表1に示す。なお、引張り破断強度測定は日本工業規格(JIS)K7127に準拠して行った。また、誘電特性は空洞共振摂動法(アジレント・テクノロジー(株)社製E8362B)で評価した。また比較例1として、エポキシ樹脂製の層間絶縁材料(味の素ファインテクノ(株)社製ABF−SHcode9K)を170℃で90分加熱硬化させた硬化物の特性値を合わせて表1に示す。
<Comparative Example 1>
The adhesive films obtained in Examples 1 to 7 were heat-cured at 180 ° C. for 90 minutes. Table 1 shows the properties of the cured product of each thermosetting resin composition. The tensile strength at break was measured in accordance with Japanese Industrial Standard (JIS) K7127. The dielectric characteristics were evaluated by a cavity resonance perturbation method (E8362B manufactured by Agilent Technologies). In addition, as Comparative Example 1, the characteristic values of a cured product obtained by heating and curing an epoxy resin interlayer insulating material (ABF-SHcode9K manufactured by Ajinomoto Fine Techno Co., Ltd.) at 170 ° C. for 90 minutes are shown in Table 1.

多層フレキシブル回路基板の製造(その1)
銅箔12μm、ポリイミドフィルム25μmよりなる両面2層CCLを回路形成し回路基板を調製した(径0.2mmのスルーホールあり)。実施例1で得られた接着フィルムからポリプロピレンフィルムを剥離した後、熱硬化性樹脂組成物層を回路面にして(株)名機製作所製真空ラミネーターにより、温度130℃、圧力7kgf/cm、気圧5mmHg以下の条件で両面にラミネートした。次いで離型処理PETフィルムを剥離し、180℃で30分加熱硬化させ絶縁層を形成した後、レーザーにより穴開けを行いビアホールを形成させた。デスミアプロセスを兼ねた絶縁層の表面処理プロセスは、アトテックジャパン社製の以下の薬液を使用した。
酸化剤「コンセントレイト・コンパクト CP(Concentrate Compact CP)」(過マンガン酸アルカリ溶液)
還元剤「リダクション・ソルーション・セキュリガンス(Reduction solution Securiganth P-500)」
絶縁層を温度80℃で10分間酸化剤溶液により表面処理を行った。次いで、温度40℃で5分間還元剤溶液により中和処理行った。次に絶縁層表面に無電界銅メッキの触媒付与を行なった後、無電界銅メッキ液に32℃で30分浸漬して、1.5μmの無電界銅メッキ皮膜を形成させた。これを、150℃30分で乾燥後、酸洗浄し、含リン銅板をアノードとし、陰極電流密度2.0A/dmで12分間電気銅メッキを行ない、銅メッキ皮膜を形成させた。その後、更に180℃で30分アニール処理を行った。得られた導体層のピール強度は1.2kgf/cmであった。またピール強度測定はJIS C6481に準じて評価し、導体メッキ厚は約30μmとした。
Manufacture of multilayer flexible circuit boards (Part 1)
A circuit board was prepared by forming a double-sided two-layer CCL made of 12 μm copper foil and 25 μm polyimide film (with a through hole having a diameter of 0.2 mm). After peeling the polypropylene film from the adhesive film obtained in Example 1, the thermosetting resin composition layer was used as a circuit surface and a vacuum laminator manufactured by Meiki Seisakusho Co., Ltd., at a temperature of 130 ° C., a pressure of 7 kgf / cm 2 , Lamination was performed on both surfaces under a pressure of 5 mmHg or less. Next, the release-treated PET film was peeled off and heated and cured at 180 ° C. for 30 minutes to form an insulating layer, and then a hole was formed by laser to form a via hole. The following chemical solution manufactured by Atotech Japan was used for the surface treatment process of the insulating layer that also served as the desmear process.
Oxidant “Concentrate Compact CP” (alkaline permanganate solution)
Reducing agent `` Reduction solution Securiganth P-500 ''
The insulating layer was surface treated with an oxidant solution at a temperature of 80 ° C. for 10 minutes. Next, neutralization was performed with a reducing agent solution at a temperature of 40 ° C. for 5 minutes. Next, an electroless copper plating catalyst was applied to the surface of the insulating layer, and then immersed in an electroless copper plating solution at 32 ° C. for 30 minutes to form a 1.5 μm electroless copper plating film. This was dried at 150 ° C. for 30 minutes, washed with acid, and a phosphorous copper plate was used as an anode, and electroplating was performed at a cathode current density of 2.0 A / dm 2 for 12 minutes to form a copper plating film. Thereafter, an annealing treatment was further performed at 180 ° C. for 30 minutes. The peel strength of the obtained conductor layer was 1.2 kgf / cm. The peel strength measurement was evaluated according to JIS C6481, and the conductor plating thickness was about 30 μm.

多層フレキシブル回路基板の製造(その2)
実施例5で得られた接着フィルムを用いて実施例8と同様にして4層プリント配線板を得た。また得られた導体層のピール強度は0.8kgf/cmであった。
Manufacture of multilayer flexible circuit boards (Part 2)
Using the adhesive film obtained in Example 5, a 4-layer printed wiring board was obtained in the same manner as in Example 8. The peel strength of the obtained conductor layer was 0.8 kgf / cm.

多層フレキシブル回路基板の製造(その3)
実施例6で得られた接着フィルムを用いて実施例8と同様にして4層プリント配線板を得た。また得られた導体層のピール強度は1.0kgf/cmであった。
Manufacture of multilayer flexible circuit boards (Part 3)
Using the adhesive film obtained in Example 6, a 4-layer printed wiring board was obtained in the same manner as in Example 8. The peel strength of the obtained conductor layer was 1.0 kgf / cm.

多層フレキシブル回路基板の製造(その4)
実施例7で得られた接着フィルムを用いて実施例8と同様にして4層プリント配線板を得た。また得られた導体層のピール強度は0.9kgf/cmであった。
Production of multilayer flexible circuit boards (Part 4)
Using the adhesive film obtained in Example 7, a 4-layer printed wiring board was obtained in the same manner as in Example 8. The peel strength of the obtained conductor layer was 0.9 kgf / cm.

片面フレキシブル回路基板の製造
実施例5記載の熱硬化性樹脂組成物ワニスを、ポリイミドフィルム(25μm)上に乾燥後の樹脂厚みが10μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥し熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成しベースフィルムを得た。次いで熱硬化性樹脂組成物層の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状のベースフィルムを幅507mmにスリットし、これより507×336mmサイズのシート状のベースフィルムを得た。続いて、ベースフィルムからポリプロピレンフィルムを剥離した後、180℃で30分加熱硬化させフレキシブル回路基板用フィルムを得た。その後、実施例8と同様の条件で樹脂層を表面処理し、無電解及び電解メッキを行って、片面フレキシブル回路基板を得た。その後、さらに180℃で30分アニール処理を行った。得られた導体層のピール強度は0.8kgf/cmであった。なお、ピール強度測定はJIS C6481に準じて評価し、導体メッキ厚は約30μmとした。
Manufacture of a single-sided flexible circuit board The thermosetting resin composition varnish described in Example 5 was applied onto a polyimide film (25 μm) with a die coater so that the resin thickness after drying was 10 μm. A base film was obtained by drying for 6 minutes at an average of 100 ° C. to form a thermosetting resin composition layer (residual solvent amount of about 1% by mass). Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of the thermosetting resin composition layer. A roll-shaped base film was slit to a width of 507 mm, and a sheet-like base film having a size of 507 × 336 mm was obtained therefrom. Subsequently, the polypropylene film was peeled off from the base film, and then heated and cured at 180 ° C. for 30 minutes to obtain a flexible circuit board film. Thereafter, the resin layer was surface-treated under the same conditions as in Example 8, electrolessly and electroplated, and a single-sided flexible circuit board was obtained. Thereafter, an annealing treatment was further performed at 180 ° C. for 30 minutes. The peel strength of the obtained conductor layer was 0.8 kgf / cm. The peel strength measurement was evaluated according to JIS C6481, and the conductor plating thickness was about 30 μm.

両面フレキシブル回路基板の製造(その1)
実施例5記載の熱硬化性樹脂組成物ワニスを、銅箔12μm、ポリイミドフィルム25μmよりなる片面2層CCLのポリイミド面側に、乾燥後の樹脂厚みが10μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥し熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成した。次いで熱硬化性樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状のベースフィルムを幅507mmにスリットし、これより507×336mmサイズのシート状フィルムを得た。続いて、シート状フィルムからポリプロピレンフィルムを剥離した後、180℃で30分加熱硬化させフレキシブル回路基板用フィルムを得た。その後、実施例8と同様の条件で樹脂層を表面処理し、無電解及び電解メッキを行って両面フレキシブル回路基板を得た。その後、さらに180℃で30分アニール処理を行った。得られた導体層のピール強度は0.8kgf/cmであった。なお、ピール強度測定はJIS C6481に準じて評価し、導体メッキ厚は約30μmとした。
Manufacture of double-sided flexible circuit board (Part 1)
The thermosetting resin composition varnish described in Example 5 was applied to the polyimide surface side of a single-sided two-layer CCL made of copper foil 12 μm and polyimide film 25 μm with a die coater so that the resin thickness after drying was 10 μm. And dried at 80 to 120 ° C. (average 100 ° C.) for 6 minutes to form a thermosetting resin composition layer (residual solvent amount of about 1% by mass). Subsequently, it wound up in roll shape, bonding the 15-micrometer-thick polypropylene film on the surface of a thermosetting resin composition. A roll-shaped base film was slit to a width of 507 mm, and a sheet-like film having a size of 507 × 336 mm was obtained therefrom. Then, after peeling a polypropylene film from a sheet-like film, it heat-cured for 30 minutes at 180 degreeC, and obtained the film for flexible circuit boards. Thereafter, the resin layer was surface-treated under the same conditions as in Example 8, and electroless and electrolytic plating were performed to obtain a double-sided flexible circuit board. Thereafter, an annealing treatment was further performed at 180 ° C. for 30 minutes. The peel strength of the obtained conductor layer was 0.8 kgf / cm. The peel strength measurement was evaluated according to JIS C6481, and the conductor plating thickness was about 30 μm.

両面フレキシブル回路基板の製造(その2)
実施例5記載の熱硬化性樹脂組成物ワニスを、離型処理PET上に乾燥後の樹脂厚みが10μmとなるようにダイコーターにて塗布し、80〜120℃(平均100℃)で6分間乾燥し熱硬化性樹脂組成物層(残留溶媒量約1質量%)を形成し接着フィルムを得た。次いで樹脂組成物の表面に厚さ15μmのポリプロピレンフィルムを貼り合せながらロール状に巻き取った。ロール状の接着フィルムを幅507mmにスリットし、これより507×336mmサイズのシート状の接着フィルムを得た。続いて、得られた接着フィルムのポリプロピレンフィルムを剥離した後、ポリイミドフィルム25μmに、(株)名機製作所製真空ラミネーターにより、温度130℃、圧力7kgf/cm、気圧5mmHg以下の条件で両面にラミネートした。次いで離型処理PETフィルムを剥離し、180℃で30分加熱硬化させフレキシブル回路基板用フィルムを得た。その後、過マンガン酸塩のアルカリ性酸化剤で硬化した樹脂層表面を粗化処理し、無電解及び電解メッキを行って両面フレキシブル回路基板を得た。その後、さらに180℃で30分アニール処理を行った。得られた導体層のピール強度は0.8kgf/cmであった。なお、ピール強度測定はJIS C6481に準じて評価し、導体メッキ厚は約30μmとした。
Manufacture of double-sided flexible circuit board (Part 2)
The thermosetting resin composition varnish described in Example 5 was coated on a release-treated PET with a die coater so that the resin thickness after drying was 10 μm, and the temperature was 80 to 120 ° C. (average 100 ° C.) for 6 minutes. It dried and formed the thermosetting resin composition layer (residual solvent amount about 1 mass%), and obtained the adhesive film. Subsequently, it wound up in roll shape, bonding a 15-micrometer-thick polypropylene film on the surface of a resin composition. The roll-like adhesive film was slit to a width of 507 mm, and a sheet-like adhesive film having a size of 507 × 336 mm was obtained therefrom. Subsequently, after the polypropylene film of the obtained adhesive film was peeled off, the polyimide film 25 μm was coated on both surfaces under a condition of a temperature of 130 ° C., a pressure of 7 kgf / cm 2 , and an atmospheric pressure of 5 mmHg or less by a vacuum laminator manufactured by Meiki Seisakusho. Laminated. Next, the release-treated PET film was peeled off and cured by heating at 180 ° C. for 30 minutes to obtain a flexible circuit board film. Thereafter, the surface of the resin layer cured with an alkaline oxidizer of permanganate was roughened, and electroless and electrolytic plating were performed to obtain a double-sided flexible circuit board. Thereafter, an annealing treatment was further performed at 180 ° C. for 30 minutes. The peel strength of the obtained conductor layer was 0.8 kgf / cm. The peel strength measurement was evaluated according to JIS C6481, and the conductor plating thickness was about 30 μm.

<比較例2>
エポキシ樹脂製の層間絶縁材料(味の素ファインテクノ(株)社製ABF−SHcode9K)を用いて実施例8と同様にして4層プリント配線板を得た。デスミアプロセスを兼ねた絶縁層の表面処理プロセスは、アトテックジャパン社製の以下の薬液を使用した。膨潤剤「スウェリング・ディップ・セキュリガンス P(Swelling Dip Securiganth P)」、酸化剤「コンセントレイト・コンパクト CP(Concentrate Compact CP)」(過マンガン酸アルカリ溶液)、
還元剤「リダクション・ソルーション・セキュリガンス(Reduction solution Securiganth P-500)」
温度80℃で5分間膨潤剤溶液で表面処理し、次いで温度80℃で10分間酸化剤で表面処理し、最後に40℃で5分間還元剤溶液で中和処理を行った。また得られた導体層のピール強度は1.0kgf/cmであった。
<Comparative example 2>
A 4-layer printed wiring board was obtained in the same manner as in Example 8 using an epoxy resin interlayer insulating material (ABF-SHcode 9K manufactured by Ajinomoto Fine Techno Co., Ltd.). The following chemical solution manufactured by Atotech Japan was used for the surface treatment process of the insulating layer that also served as the desmear process. Swelling agent “Swelling Dip Securiganth P”, oxidizing agent “Concentrate Compact CP” (alkaline permanganate solution),
Reducing agent `` Reduction solution Securiganth P-500 ''
Surface treatment was performed with a swelling agent solution at a temperature of 80 ° C. for 5 minutes, followed by surface treatment with an oxidizing agent at a temperature of 80 ° C. for 10 minutes, and finally a neutralization treatment was performed with a reducing agent solution at 40 ° C. for 5 minutes. The peel strength of the obtained conductor layer was 1.0 kgf / cm.

<絶縁層表面の評価>
実施例8、9、10、11及び比較例2において酸化剤による表面処理後の絶縁層表面をSEM観察した。SEM写真の観察結果から、実施例8では平滑な表面に、実施例9、10、11及び比較例2では粗化された表面にメッキにより導体層が形成されたことが分かる。非接触型表面粗さ計(ビーコインスツルメンツ社製WYKO NT3300)で、各絶縁層の酸化剤による表面処理後の表面粗度(Ra値)を測定した結果を表2に示す。
<Evaluation of insulating layer surface>
In Examples 8, 9, 10, 11 and Comparative Example 2, the surface of the insulating layer after the surface treatment with the oxidizing agent was observed with an SEM. From the observation result of the SEM photograph, it can be seen that the conductor layer was formed by plating on the smooth surface in Example 8 and the roughened surface in Examples 9, 10, 11 and Comparative Example 2. Table 2 shows the results of measuring the surface roughness (Ra value) of each insulating layer after the surface treatment with an oxidizing agent with a non-contact type surface roughness meter (WYKO NT3300, manufactured by Beec Instruments).

本発明の熱硬化性樹脂組成物の硬化物は柔軟性、機械強度及び誘電特性に優れ、また硬化物表面にメッキにより、簡便に、密着性に優れる導体層が形成可能であり、フレキシブル回路基板、特に多層フレキシブル回路基板の絶縁材料として好適に使用することができる。また、該硬化物表面に凹凸面が形成されなくとも高いピール強度を有する導体層形成が可能であるため、特にファインパターンの回路形成が必要なフレキシブル回路基板に好適に用いることができる。   The cured product of the thermosetting resin composition of the present invention is excellent in flexibility, mechanical strength and dielectric properties, and a conductive layer having excellent adhesion can be easily formed by plating on the surface of the cured product. In particular, it can be suitably used as an insulating material for a multilayer flexible circuit board. Further, since a conductor layer having a high peel strength can be formed even if an uneven surface is not formed on the surface of the cured product, it can be suitably used for a flexible circuit board particularly requiring fine pattern circuit formation.

実施例8の表面処理後の絶縁層表面のSEM写真である(1000倍)。It is a SEM photograph of the insulating layer surface after the surface treatment of Example 8 (1000 times). 実施例9の表面処理後の絶縁層表面のSEM写真である(1000倍)。It is a SEM photograph of the insulating layer surface after the surface treatment of Example 9 (1000 times). 実施例10の表面処理後の絶縁層表面のSEM写真である(1000倍)。It is a SEM photograph of the insulating layer surface after the surface treatment of Example 10 (1000 times). 実施例11の表面処理後の絶縁層表面のSEM写真である(1000倍)。It is a SEM photograph of the insulating layer surface after the surface treatment of Example 11 (1000 times). 比較例2の表面処理後の絶縁層表面のSEM写真である(1000倍)。It is a SEM photograph of the insulating layer surface after the surface treatment of Comparative Example 2 (1000 times).

Claims (25)

(A)2官能性ヒドロキシル基末端ポリブタジエン、ジイソシアネート化合物及び四塩基酸無水物を反応させて得られる線状変性ポリイミド樹脂、及び(B)エポキシ樹脂、ビスマレイミド樹脂、シアネートエステル樹脂、ビスアリルナジイミド樹脂、ビニルベンジルエーテル樹脂、ベンゾオキサジン樹脂及びビスマレイミドとジアミンの重合物から選択される1種以上の熱硬化性樹脂を含有する熱硬化性樹脂組成物。 (A) Linearly modified polyimide resin obtained by reacting bifunctional hydroxyl group-terminated polybutadiene, diisocyanate compound and tetrabasic acid anhydride, and (B) epoxy resin, bismaleimide resin, cyanate ester resin, bisallyl nadiimide A thermosetting resin composition comprising at least one thermosetting resin selected from a resin, a vinyl benzyl ether resin, a benzoxazine resin, and a polymer of bismaleimide and diamine. 成分(A)の線状変性ポリイミド樹脂が、2官能性ヒドロキシル基末端ポリブタジエンとジイソシアネート化合物を、2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基に対するジイソシアネート化合物のイソシアネート基の官能基当量比が1を超える比率で反応させて得られるポリブタジンエンジイソシアネート組成物に、四塩基酸二無水物を反応させて得られる線状変性ポリイミド樹脂である、請求項1に記載の熱硬化性樹脂組成物。   The linear modified polyimide resin of component (A) is a ratio in which the functional group equivalent ratio of the isocyanate group of the diisocyanate compound to the hydroxyl group of the bifunctional hydroxyl group-terminated polybutadiene exceeds 1 The thermosetting resin composition according to claim 1, which is a linear modified polyimide resin obtained by reacting a tetrabasic acid dianhydride with a polybutazine ene diisocyanate composition obtained by reacting with a polybutadiene. 成分(A)の線状変性ポリイミド樹脂が、2官能性ヒドロキシル基末端ポリブタジエンとジイソシアネート化合物を、2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基とジイソシアネート化合物のイソシアネート基の官能基当量比が1:1.5〜1:2.5となる比率で反応させて得られるポリブタジンエンジイソシアネート組成物に、四塩基酸二無水物を反応させて得られる線状変性ポリイミド樹脂である、請求項1に記載の熱硬化性樹脂組成物。   The linear modified polyimide resin of component (A) has a bifunctional hydroxyl group-terminated polybutadiene and diisocyanate compound, and the functional group equivalent ratio of the hydroxyl group of the bifunctional hydroxyl group-terminated polybutadiene and the isocyanate group of the diisocyanate compound is 1: 1. The linear modified polyimide resin obtained by reacting a tetrabasic acid dianhydride with a polybutadiene diisocyanate composition obtained by reacting at a ratio of 5 to 1: 2.5. Thermosetting resin composition. 成分(A)の線状変性ポリイミド樹脂が、2官能性ヒドロキシル基末端ポリブタジエンとジイソシアネート化合物を、2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基とジイソシアネート化合物のイソシアネート基の官能基当量比が1:1.5〜1:2.5となる比率で反応させて得られるポリブタジンエンジイソシアネート組成物に、四塩基酸二無水物を、原料であるジイソシアネート化合物のイソシアネート基の官能基当量X、原料である2官能ヒドロキシル末端ポリブタジエンのヒドロキシル基の官能基当量W及び四塩基酸二無水物の酸無水物基の官能基当量Yが、Y>X−W≧Y/5(W>0、X>0、Y>0)の関係を満たす比率で反応させて得られる線状変性ポリイミド樹脂である、請求項1に記載の熱硬化性樹脂組成物。   The linear modified polyimide resin of component (A) has a bifunctional hydroxyl group-terminated polybutadiene and diisocyanate compound, and the functional group equivalent ratio of the hydroxyl group of the bifunctional hydroxyl group-terminated polybutadiene and the isocyanate group of the diisocyanate compound is 1: 1. The polybutazine ene diisocyanate composition obtained by reacting at a ratio of 5 to 1: 2.5, tetrabasic acid dianhydride, the functional group equivalent X of the isocyanate group of the diisocyanate compound as the raw material, and the raw material The functional group equivalent W of the hydroxyl group of the bifunctional hydroxyl-terminated polybutadiene and the functional group equivalent Y of the acid anhydride group of the tetrabasic dianhydride are Y> X−W ≧ Y / 5 (W> 0, X> 0, The thermosetting resin according to claim 1, which is a linear modified polyimide resin obtained by reacting at a ratio satisfying a relationship of Y> 0). Narubutsu. 成分(A)の線状変性ポリイミド樹脂が、請求項1〜4のいずれか1項に記載の線状変性ポリイミド樹脂に、更に新たなイソシアネート化合物を、原料であるジイソシアネート化合物のイソシアネート官能基当量X、原料である2官能ヒドロキシル末端ポリブタジエンのヒドロキシル基官能基当量W、四塩基酸二無水物の酸無水物の官能基当量Y及び新たに反応させるイソシアネート化合物のイソシアネート官能基当量Zが、Y−(X−W)>Z≧0(W>0、X>0、Y>0、Z>0)の関係を満たす比率で反応させて得られる線状変性ポリイミド樹脂である、請求項1〜4のいずれか1項に記載の熱硬化性樹脂組成物。   The linear functionalized polyimide resin of the component (A) is added to the linear modified polyimide resin according to any one of claims 1 to 4 with a new isocyanate compound, the isocyanate functional group equivalent X of the diisocyanate compound as a raw material. The hydroxyl group functional group equivalent W of the raw material bifunctional hydroxyl-terminated polybutadiene, the functional group equivalent Y of the tetrabasic acid dianhydride acid anhydride, and the isocyanate functional group equivalent Z of the isocyanate compound to be newly reacted are Y- ( X-W)> Z ≧ 0 (W> 0, X> 0, Y> 0, Z> 0), which is a linear modified polyimide resin obtained by reacting at a ratio satisfying the relationship. The thermosetting resin composition according to any one of the above. (A)分子内に下式(1-a):
[式中、R1は2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示し、R2は四塩基酸二無水物の酸無水物基を除いた残基を示し、R3はジイソシアネート化合物のイソシアネート基を除いた残基を示す。]
で表されるポリブタジエン構造及び式(1-b)で表されるポリイミド構造を有する線状変性ポリイミド樹脂、及び(B)エポキシ樹脂、ビスマレイミド樹脂、シアネートエステル樹脂、ビスアリルナジド樹脂、ビニルベンジルエーテル樹脂、ベンゾオキサジン樹脂及びビスマレイミドとジアミンの重合物から選択される1種以上の熱硬化性樹脂を含有する熱硬化性樹脂組成物。
(A) In the molecule, the following formula (1-a):
[Wherein R1 represents a residue from which the hydroxyl group of the polyfunctional hydroxyl group-terminated polybutadiene has been removed, R2 represents a residue from which the acid anhydride group of the tetrabasic acid dianhydride has been removed, and R3 represents a diisocyanate compound. The residue except an isocyanate group is shown. ]
A linear modified polyimide resin having a polybutadiene structure represented by formula (1) and a polyimide structure represented by formula (1-b), and (B) an epoxy resin, a bismaleimide resin, a cyanate ester resin, a bisallyl nazide resin, a vinyl benzyl ether resin, A thermosetting resin composition containing at least one thermosetting resin selected from a benzoxazine resin and a polymer of bismaleimide and diamine.
成分(A)の線状変性ポリイミド樹脂中のポリブタジエン構造の含有率が45質量%以上である、請求項1〜6のいずれか1項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition of any one of Claims 1-6 whose content rate of the polybutadiene structure in the linear modified polyimide resin of a component (A) is 45 mass% or more. 成分(A)の線状変性ポリイミド樹脂中のポリブタジエン構造の含有率が60質量%以上である、請求項1〜6のいずれか1項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition of any one of Claims 1-6 whose content rate of the polybutadiene structure in the linear modified polyimide resin of a component (A) is 60 mass% or more. R1が、数平均分子量800〜10000である2官能性ヒドロキシル基末端ポリブタジエンのヒドロキシル基を除いた残基を示す、請求項1〜8のいずれか1項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 1 to 8, wherein R1 represents a residue excluding a hydroxyl group of a bifunctional hydroxyl group-terminated polybutadiene having a number average molecular weight of 800 to 10,000. 熱硬化性樹脂組成物の硬化物の弾性率が100MPa以下であり、破断伸度が20%以上である、請求項の1〜9のいずれか1項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 1 to 9, wherein the cured product of the thermosetting resin composition has an elastic modulus of 100 MPa or less and an elongation at break of 20% or more. 成分(A)と成分(B)の配合割合が質量比で100:1〜1:1であり、熱硬化樹脂組成物中の成分(A)及び成分(B)の合計含量が70質量%以上である、請求項1〜10のいずれか1項に記載の熱硬化性樹脂組成物。   The mixing ratio of the component (A) and the component (B) is 100: 1 to 1: 1 by mass ratio, and the total content of the component (A) and the component (B) in the thermosetting resin composition is 70% by mass or more. The thermosetting resin composition according to any one of claims 1 to 10, wherein 更に充填材を含有する請求項1〜11のいずれか1項に記載の熱硬化性樹脂組成物。   Furthermore, the thermosetting resin composition of any one of Claims 1-11 containing a filler. 成分(B)の熱硬化性樹脂がエポキシ樹脂である請求項1〜12のいずれか1項に記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to any one of claims 1 to 12, wherein the thermosetting resin of the component (B) is an epoxy resin. 更にエポキシ硬化剤を含有する請求項13記載の熱硬化性樹脂組成物。   The thermosetting resin composition according to claim 13, further comprising an epoxy curing agent. 請求項1〜14記載の熱硬化性樹脂組成物からなる熱硬化性樹脂組成物層(A層)が、支持体フィルム(B層)上に形成されている接着フィルム。   The adhesive film in which the thermosetting resin composition layer (A layer) which consists of a thermosetting resin composition of Claims 1-14 is formed on the support body film (B layer). 請求項1〜14記載の熱硬化性樹脂組成物からなる熱硬化性樹脂組成物層(A層)が、離型処理が施された支持体フィルム(B層)の離型処理面上に形成されている接着フィルム。   The thermosetting resin composition layer (A layer) which consists of a thermosetting resin composition of Claims 1-14 is formed on the mold release process surface of the support body film (B layer) in which the mold release process was performed. Adhesive film. 請求項1〜14のいずれか1項に記載の熱硬化性樹脂組成物の硬化物上に回路が形成されているフレキシブル回路基板回路基板。   The flexible circuit board circuit board in which the circuit is formed on the hardened | cured material of the thermosetting resin composition of any one of Claims 1-14. 下記工程(1)〜(9);
(1)請求項15又は16記載の接着フィルムをフレキシブル回路基板の片面又は両面にラミネートする工程、
(2)B層を除去するか又はしない工程、
(3)A層を熱硬化し絶縁層を形成する工程、
(4)工程(2)でB層を除去しない場合に、B層を除去するか又はしない工程、
(5)フレキシブル回路基板に穴開けする工程、
(6)工程(2)及び(4)でB層を除去しない場合に、B層を除去する工程、
(7)絶縁層を表面処理する工程、
(8)絶縁層にメッキにより導体層を形成する工程、及び
(9)絶縁層上に導体層を回路形成する工程、
の工程を経て得られる多層フレキシブル回路基板。
The following steps (1) to (9);
(1) The step of laminating the adhesive film according to claim 15 or 16 on one side or both sides of a flexible circuit board,
(2) a step of removing or not removing the B layer;
(3) a step of thermosetting the A layer to form an insulating layer;
(4) If the B layer is not removed in step (2), the step of removing or not removing the B layer;
(5) a step of making a hole in the flexible circuit board;
(6) A step of removing the B layer when the B layer is not removed in the steps (2) and (4),
(7) surface-treating the insulating layer;
(8) a step of forming a conductor layer by plating on the insulating layer; and (9) a step of forming a circuit of the conductor layer on the insulating layer;
A multilayer flexible circuit board obtained through the above process.
請求項1〜14のいずれか1項に記載の熱硬化性樹脂組成物の硬化物からなる絶縁層(A’層)が耐熱樹脂層(C層)上に形成されたフレキシブル回路基板用フィルム。   The film for flexible circuit boards in which the insulating layer (A 'layer) which consists of a hardened | cured material of the thermosetting resin composition of any one of Claims 1-14 was formed on the heat resistant resin layer (C layer). 請求項19記載のフレキシブル回路基板用フィルムのA’層を表面処理し、絶縁層上にメッキにより導体層を形成し、該導体層を回路形成して得られる片面フレキシブル回路基板。   A single-sided flexible circuit board obtained by surface-treating the A 'layer of the film for a flexible circuit board according to claim 19, forming a conductor layer on the insulating layer by plating, and forming the conductor layer as a circuit. 請求項1〜14のいずれか1項に記載の熱硬化性樹脂組成物の硬化物からなる絶縁層(A’層)、耐熱樹脂層(C層)及び銅箔(D層)からなり、A’層、C層及びD層の順の層構成を有するフレキシブル回路基板用フィルム。   It consists of an insulating layer (A 'layer) which consists of hardened | cured material of the thermosetting resin composition of any one of Claims 1-14, a heat resistant resin layer (C layer), and copper foil (D layer), A A film for a flexible circuit board having a layer structure in the order of 'layer, C layer and D layer. 請求項21記載のフレキシブル回路基板用フィルムに穴開けし、更にA’層を表面処理し、A’層表面にメッキにより導体層を形成し、該導体層及びD層を回路形成して得られる両面フレキシブル回路基板。   It is obtained by punching a film for a flexible circuit board according to claim 21, further subjecting the A 'layer to surface treatment, forming a conductor layer on the surface of the A' layer by plating, and forming the conductor layer and the D layer as a circuit. Double-sided flexible circuit board. 請求項1〜14のいずれか1項に記載の熱硬化性樹脂組成物の硬化物からなる絶縁層(A’層)及び耐熱樹脂層(C層)からなり、A’層、C層及びA’層の順の層構成を有するフレキシブル回路基板用フィルム。   It consists of an insulating layer (A 'layer) and a heat-resistant resin layer (C layer) which consist of hardened | cured material of the thermosetting resin composition of any one of Claims 1-14, A' layer, C layer, and A 'Film for flexible circuit board having a layer structure in the order of layers. 請求項23記載のフレキシブル回路基板用フィルムに穴開けし、更にA’層を表面処理し、A’層表面にメッキにより導体層を形成し、該導体層を回路形成して得られる両面フレキシブル回路基板。   24. A double-sided flexible circuit obtained by punching a film for a flexible circuit board according to claim 23, further surface-treating the A ′ layer, forming a conductor layer on the surface of the A ′ layer by plating, and forming the conductor layer as a circuit. substrate. 半導体とサブストレート基板が請求項1〜14のいずれか1項に記載の熱硬化性樹脂組成物の硬化物を介して接着されている半導体装置。   The semiconductor device with which the semiconductor and the substrate board | substrate were adhere | attached through the hardened | cured material of the thermosetting resin composition of any one of Claims 1-14.
JP2005181261A 2004-06-21 2005-06-21 Thermosetting resin composition containing modified polyimide resin Active JP4929623B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005181261A JP4929623B2 (en) 2004-06-21 2005-06-21 Thermosetting resin composition containing modified polyimide resin

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004183139 2004-06-21
JP2004183139 2004-06-21
JP2005181261A JP4929623B2 (en) 2004-06-21 2005-06-21 Thermosetting resin composition containing modified polyimide resin

Publications (2)

Publication Number Publication Date
JP2006037083A true JP2006037083A (en) 2006-02-09
JP4929623B2 JP4929623B2 (en) 2012-05-09

Family

ID=35902412

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005181261A Active JP4929623B2 (en) 2004-06-21 2005-06-21 Thermosetting resin composition containing modified polyimide resin

Country Status (1)

Country Link
JP (1) JP4929623B2 (en)

Cited By (38)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137943A (en) * 2004-10-15 2006-06-01 Ajinomoto Co Inc Resin composition
JP2008133423A (en) * 2006-10-24 2008-06-12 Toray Ind Inc Adhesive composition for semiconductor, semiconductor device using the same and method for producing the semiconductor device
WO2008153208A1 (en) * 2007-06-14 2008-12-18 Ajinomoto Co., Inc. Resin composition for interlayer insulation of multilayer printed wiring board
JP2009079535A (en) * 2007-09-26 2009-04-16 Toyota Motor Corp Piston
JPWO2008108315A1 (en) * 2007-03-05 2010-06-17 住友ベークライト株式会社 Resin composition for heat resistant substrate, prepreg and heat resistant substrate
JP2010245064A (en) * 2009-03-31 2010-10-28 Nippon Zeon Co Ltd Method for manufacturing circuit board
JP2011184548A (en) * 2010-03-08 2011-09-22 Ube Industries Ltd Interlayer adhesive
JP2012144741A (en) * 2012-04-20 2012-08-02 Ube Industries Ltd Modified polyimide resin composition
WO2013005847A1 (en) * 2011-07-07 2013-01-10 日立化成工業株式会社 Adhesive film, multilayer printed wiring board using adhesive film, and method for manufacturing multilayer printed wiring board
US8357443B2 (en) 2007-03-01 2013-01-22 Ajinomoto Co., Inc. Laminate including water soluble release layer for producing circuit board and method of producing circuit board
JP2013035930A (en) * 2011-08-05 2013-02-21 Hitachi Chemical Co Ltd Adhesive film, multilayer printed wiring board using the same and method for producing the multilayer printed wiring board
JP2013129770A (en) * 2011-12-22 2013-07-04 Nitta Corp Polyimide resin
US8533942B2 (en) 2007-11-22 2013-09-17 Ajinomoto Co., Inc. Production method of multilayer printed wiring board and multilayer printed wiring board
JP2013227441A (en) * 2012-04-26 2013-11-07 Toagosei Co Ltd Adhesive composition, and coverlay film and adhesive sheet using the same
US8584352B2 (en) 2008-02-27 2013-11-19 Ajinomoto Co., Inc. Process for producing multilayer printed wiring board
KR20140061245A (en) 2012-11-12 2014-05-21 아지노모토 가부시키가이샤 Insulating resin material
JP2016027097A (en) * 2014-06-30 2016-02-18 味の素株式会社 Resin composition
JP2016104868A (en) * 2015-12-21 2016-06-09 日立化成株式会社 Adhesive film, multilayer printed board using the adhesive film and manufacturing method of multilayer printed board
JP2017076814A (en) * 2016-12-26 2017-04-20 味の素株式会社 Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device
JP2017075221A (en) * 2015-10-14 2017-04-20 味の素株式会社 Method for producing resin composition, adhesive film and coreless substrate
WO2017145874A1 (en) 2016-02-24 2017-08-31 日産自動車株式会社 Electrode for lithium ion secondary battery and production method therefor
JP2017160443A (en) * 2017-04-05 2017-09-14 味の素株式会社 Insulation resin material
JP2018012748A (en) * 2016-07-19 2018-01-25 日立化成株式会社 Resin film for forming semiconductor redistribution line layer, composite film for forming semiconductor redistribution line layer, semiconductor device using the same, and method for manufacturing semiconductor device
KR20180018429A (en) 2016-08-10 2018-02-21 아지노모토 가부시키가이샤 Resin compositions
KR20180035164A (en) 2016-09-28 2018-04-05 아지노모토 가부시키가이샤 Resin compositions
KR20180037125A (en) * 2016-10-03 2018-04-11 아지노모토 가부시키가이샤 Resin composition
WO2018127964A1 (en) * 2017-01-06 2018-07-12 ヤマハ株式会社 Board material for stringed instrument, acoustic stringed instrument, and method for manufacturing board material for stringed instrument
JP2018141158A (en) * 2018-04-05 2018-09-13 味の素株式会社 Insulation resin material
JP2018207132A (en) * 2018-10-04 2018-12-27 味の素株式会社 Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device
JP2019151857A (en) * 2019-06-10 2019-09-12 味の素株式会社 Insulation resin material
WO2020075745A1 (en) 2018-10-10 2020-04-16 味の素株式会社 Magnetic paste
KR20200047391A (en) 2018-10-25 2020-05-07 아지노모토 가부시키가이샤 Resin composition
CN112048247A (en) * 2020-09-14 2020-12-08 黑龙江省科学院石油化学研究院 Bismaleimide/cyanate ester foamed adhesive film, and preparation method and application thereof
KR20210012935A (en) 2019-07-24 2021-02-03 아지노모토 가부시키가이샤 Resin composition
KR20220025674A (en) 2020-08-24 2022-03-03 아지노모토 가부시키가이샤 Resin composition
CN114206989A (en) * 2019-08-01 2022-03-18 积水化学工业株式会社 Resin material and multilayer printed wiring board
WO2023068032A1 (en) 2021-10-19 2023-04-27 味の素株式会社 Resin composition
KR20240023049A (en) 2021-06-22 2024-02-20 아지노모토 가부시키가이샤 Resin compositions, cured products, resin sheets, circuit boards and semiconductor chip packages

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7042691B2 (en) * 2018-05-29 2022-03-28 エア・ウォーター株式会社 Vinyl benzyl ether resin, method for producing the vinyl benzyl ether resin, curable resin composition, cured product of the curable resin composition, and shield member.

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199669A (en) * 1998-01-14 1999-07-27 Ajinomoto Co Inc Modified polyimide resin and thermoset resin composition containing the same
JPH11246760A (en) * 1998-03-04 1999-09-14 Hitachi Chem Co Ltd Polyamideimide resin paste and film-forming material containing sane
JPH11261242A (en) * 1998-03-13 1999-09-24 Hitachi Chem Co Ltd Multi-layer printed wiring board and manufacture thereof
JP2000277571A (en) * 1999-03-25 2000-10-06 Sumitomo Bakelite Co Ltd Semiconductor device mounting substrate
JP2002012845A (en) * 2000-06-28 2002-01-15 Hitachi Chem Co Ltd Adhesive film and semiconductor device
WO2003009655A1 (en) * 2001-07-18 2003-01-30 Ajinomoto Co., Inc. Film for circuit board

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11199669A (en) * 1998-01-14 1999-07-27 Ajinomoto Co Inc Modified polyimide resin and thermoset resin composition containing the same
JPH11246760A (en) * 1998-03-04 1999-09-14 Hitachi Chem Co Ltd Polyamideimide resin paste and film-forming material containing sane
JPH11261242A (en) * 1998-03-13 1999-09-24 Hitachi Chem Co Ltd Multi-layer printed wiring board and manufacture thereof
JP2000277571A (en) * 1999-03-25 2000-10-06 Sumitomo Bakelite Co Ltd Semiconductor device mounting substrate
JP2002012845A (en) * 2000-06-28 2002-01-15 Hitachi Chem Co Ltd Adhesive film and semiconductor device
WO2003009655A1 (en) * 2001-07-18 2003-01-30 Ajinomoto Co., Inc. Film for circuit board

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006137943A (en) * 2004-10-15 2006-06-01 Ajinomoto Co Inc Resin composition
JP2008133423A (en) * 2006-10-24 2008-06-12 Toray Ind Inc Adhesive composition for semiconductor, semiconductor device using the same and method for producing the semiconductor device
US8357443B2 (en) 2007-03-01 2013-01-22 Ajinomoto Co., Inc. Laminate including water soluble release layer for producing circuit board and method of producing circuit board
JPWO2008108315A1 (en) * 2007-03-05 2010-06-17 住友ベークライト株式会社 Resin composition for heat resistant substrate, prepreg and heat resistant substrate
JP5360413B2 (en) * 2007-03-05 2013-12-04 住友ベークライト株式会社 Resin composition for heat resistant substrate, prepreg and heat resistant substrate
WO2008153208A1 (en) * 2007-06-14 2008-12-18 Ajinomoto Co., Inc. Resin composition for interlayer insulation of multilayer printed wiring board
KR101419281B1 (en) * 2007-06-14 2014-07-15 아지노모토 가부시키가이샤 Resin composition for interlayer insulation of multilayer printed wiring board
JP2009079535A (en) * 2007-09-26 2009-04-16 Toyota Motor Corp Piston
US8533942B2 (en) 2007-11-22 2013-09-17 Ajinomoto Co., Inc. Production method of multilayer printed wiring board and multilayer printed wiring board
US9060456B2 (en) 2007-11-22 2015-06-16 Ajinomoto Co., Inc. Production method of multilayer printed wiring board and multilayer printed wiring board
US8584352B2 (en) 2008-02-27 2013-11-19 Ajinomoto Co., Inc. Process for producing multilayer printed wiring board
JP2010245064A (en) * 2009-03-31 2010-10-28 Nippon Zeon Co Ltd Method for manufacturing circuit board
JP2011184548A (en) * 2010-03-08 2011-09-22 Ube Industries Ltd Interlayer adhesive
WO2013005847A1 (en) * 2011-07-07 2013-01-10 日立化成工業株式会社 Adhesive film, multilayer printed wiring board using adhesive film, and method for manufacturing multilayer printed wiring board
US10645804B2 (en) 2011-07-07 2020-05-05 Hitachi Chemical Company, Ltd. Adhesive film, multilayer printed wiring board using adhesive film, and method for manufacturing multilayer printed wiring board
JP2013035930A (en) * 2011-08-05 2013-02-21 Hitachi Chemical Co Ltd Adhesive film, multilayer printed wiring board using the same and method for producing the multilayer printed wiring board
JP2013129770A (en) * 2011-12-22 2013-07-04 Nitta Corp Polyimide resin
JP2012144741A (en) * 2012-04-20 2012-08-02 Ube Industries Ltd Modified polyimide resin composition
JP2013227441A (en) * 2012-04-26 2013-11-07 Toagosei Co Ltd Adhesive composition, and coverlay film and adhesive sheet using the same
KR20200075799A (en) 2012-11-12 2020-06-26 아지노모토 가부시키가이샤 Insulating resin material
JP2014095047A (en) * 2012-11-12 2014-05-22 Ajinomoto Co Inc Insulation resin material
KR20220044460A (en) 2012-11-12 2022-04-08 아지노모토 가부시키가이샤 Insulating resin material
KR102381505B1 (en) 2012-11-12 2022-04-04 아지노모토 가부시키가이샤 Insulating resin material
KR20210096027A (en) 2012-11-12 2021-08-04 아지노모토 가부시키가이샤 Insulating resin material
KR20140061245A (en) 2012-11-12 2014-05-21 아지노모토 가부시키가이샤 Insulating resin material
KR102125687B1 (en) 2012-11-12 2020-06-23 아지노모토 가부시키가이샤 Insulating resin material
JP2016027097A (en) * 2014-06-30 2016-02-18 味の素株式会社 Resin composition
JP2017075221A (en) * 2015-10-14 2017-04-20 味の素株式会社 Method for producing resin composition, adhesive film and coreless substrate
JP2016104868A (en) * 2015-12-21 2016-06-09 日立化成株式会社 Adhesive film, multilayer printed board using the adhesive film and manufacturing method of multilayer printed board
WO2017145874A1 (en) 2016-02-24 2017-08-31 日産自動車株式会社 Electrode for lithium ion secondary battery and production method therefor
JP2018012748A (en) * 2016-07-19 2018-01-25 日立化成株式会社 Resin film for forming semiconductor redistribution line layer, composite film for forming semiconductor redistribution line layer, semiconductor device using the same, and method for manufacturing semiconductor device
KR20180018429A (en) 2016-08-10 2018-02-21 아지노모토 가부시키가이샤 Resin compositions
KR20180035164A (en) 2016-09-28 2018-04-05 아지노모토 가부시키가이샤 Resin compositions
KR102400207B1 (en) * 2016-10-03 2022-05-23 아지노모토 가부시키가이샤 Resin composition
KR20180037125A (en) * 2016-10-03 2018-04-11 아지노모토 가부시키가이샤 Resin composition
JP2017076814A (en) * 2016-12-26 2017-04-20 味の素株式会社 Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device
JPWO2018127964A1 (en) * 2017-01-06 2019-11-07 ヤマハ株式会社 Stringed musical instrument plate, acoustic stringed musical instrument, and method for manufacturing stringed musical instrument plate
WO2018127964A1 (en) * 2017-01-06 2018-07-12 ヤマハ株式会社 Board material for stringed instrument, acoustic stringed instrument, and method for manufacturing board material for stringed instrument
JP2017160443A (en) * 2017-04-05 2017-09-14 味の素株式会社 Insulation resin material
JP2018141158A (en) * 2018-04-05 2018-09-13 味の素株式会社 Insulation resin material
JP2018207132A (en) * 2018-10-04 2018-12-27 味の素株式会社 Adhesive film, method for manufacturing cured body, cured body, wiring board, and semiconductor device
WO2020075745A1 (en) 2018-10-10 2020-04-16 味の素株式会社 Magnetic paste
KR20200047391A (en) 2018-10-25 2020-05-07 아지노모토 가부시키가이샤 Resin composition
JP2019151857A (en) * 2019-06-10 2019-09-12 味の素株式会社 Insulation resin material
JP2021095580A (en) * 2019-06-10 2021-06-24 味の素株式会社 Insulation resin material
KR20210012935A (en) 2019-07-24 2021-02-03 아지노모토 가부시키가이샤 Resin composition
JP7409473B2 (en) 2019-07-24 2024-01-09 味の素株式会社 resin composition
CN114206989A (en) * 2019-08-01 2022-03-18 积水化学工业株式会社 Resin material and multilayer printed wiring board
KR20220025674A (en) 2020-08-24 2022-03-03 아지노모토 가부시키가이샤 Resin composition
CN112048247A (en) * 2020-09-14 2020-12-08 黑龙江省科学院石油化学研究院 Bismaleimide/cyanate ester foamed adhesive film, and preparation method and application thereof
KR20240023049A (en) 2021-06-22 2024-02-20 아지노모토 가부시키가이샤 Resin compositions, cured products, resin sheets, circuit boards and semiconductor chip packages
WO2023068032A1 (en) 2021-10-19 2023-04-27 味の素株式会社 Resin composition

Also Published As

Publication number Publication date
JP4929623B2 (en) 2012-05-09

Similar Documents

Publication Publication Date Title
JP4929623B2 (en) Thermosetting resin composition containing modified polyimide resin
JP5609110B2 (en) Resin composition for interlayer insulation of multilayer printed wiring board
US20070088134A1 (en) Thermosetting resin composition containing modified polyimide resin
JP4986256B2 (en) Prepreg containing modified polyimide resin
JP6024783B2 (en) Resin composition
JP4423779B2 (en) Epoxy resin composition, adhesive film and prepreg using the composition, multilayer printed wiring board using the same, and method for producing the same
US7989081B2 (en) Resin composite copper foil, printed wiring board, and production processes thereof
JP5011641B2 (en) Thermosetting resin composition, adhesive film using the same, and multilayer printed wiring board
JP2009155354A (en) Resin composition for insulating layer
JP2011236428A (en) Thermosetting resin composition for multilayer printed wiring board, thermosetting adhesive film, and multilayer printed circuit board made by using them
JP2006196863A (en) Method of fabricating printed circuit board
WO2017170521A1 (en) Resin composition and multilayer substrate
KR101027303B1 (en) Resin composition and adhesive film for multi-layered printed wiring board
JPWO2003009655A1 (en) Circuit board film
JP4345554B2 (en) Printed wiring board having an auxiliary adhesion layer between insulating layers and method for manufacturing the same
WO2022034872A1 (en) Resin layer-equipped copper foil and layered body using same
US20050186434A1 (en) Thermosetting resin composition, adhesive film and multilayer printed wiring board using same
KR101021047B1 (en) Thermosetting resin composition containing modified polyimide resin
JP2020172663A (en) Resin composition
JP2011246406A (en) Organosilicon compound
WO2022034871A1 (en) Copper foil with resin layer and laminate using same
JP2016056280A (en) Surface-treated inorganic filler, method for producing the inorganic filler, and resin composition containing the inorganic filler
JP4797816B2 (en) Method for manufacturing printed wiring board
JP2008308580A (en) Thermosetting polyimide resin composition
JP7087912B2 (en) Resin composition

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080109

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110405

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110406

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120117

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120130

R150 Certificate of patent or registration of utility model

Ref document number: 4929623

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150224

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250