JP2006029977A - Evaluation method of delay destruction-resistant characteristics of steel material for car structural member and steel material for car structural member excellent in delay destruction-resistant characteristics - Google Patents

Evaluation method of delay destruction-resistant characteristics of steel material for car structural member and steel material for car structural member excellent in delay destruction-resistant characteristics Download PDF

Info

Publication number
JP2006029977A
JP2006029977A JP2004209157A JP2004209157A JP2006029977A JP 2006029977 A JP2006029977 A JP 2006029977A JP 2004209157 A JP2004209157 A JP 2004209157A JP 2004209157 A JP2004209157 A JP 2004209157A JP 2006029977 A JP2006029977 A JP 2006029977A
Authority
JP
Japan
Prior art keywords
test
piece
test piece
dummy
steel material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004209157A
Other languages
Japanese (ja)
Other versions
JP4370991B2 (en
Inventor
Yasuhide Ishiguro
康英 石黒
Akihide Nagao
彰英 長尾
Shunsuke Toyoda
俊介 豊田
Akio Sato
昭夫 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Steel Corp
Original Assignee
JFE Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Steel Corp filed Critical JFE Steel Corp
Priority to JP2004209157A priority Critical patent/JP4370991B2/en
Publication of JP2006029977A publication Critical patent/JP2006029977A/en
Application granted granted Critical
Publication of JP4370991B2 publication Critical patent/JP4370991B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Testing Resistance To Weather, Investigating Materials By Mechanical Methods (AREA)
  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for evaluating the delay destruction-resistant characteristics of a thin-walled steel material for a car structural member, and to provide the steel material for the car structural member excellent in delay destruction-resistant characteristics. <P>SOLUTION: After a plating film is formed on a test piece, which is collected from the steel material preferably adjusted in composition of C, Si, Mn and like and having a hardness HV of 250 or above, and a dummy piece having the same wall thickness and surface properties as the test piece while or after charging the same amount of diffusible hydrogen to both pieces by electrolytic treatment of the same condition, the plating film applied test piece and the dummy piece are subjected to a constant load test or a variable load test under a load stress condition and a diffusible hydrogen amount condition both of which simulate even an actual environment. After the test, a diffusible hydrogen amount is measured with respect to the dummy piece in a case that the test piece is destructed and with respect to the test piece or the dummy piece when the test piece is not destructed. By this method, the measurement of high precision of the hydrogen amount can be performed even with respect to the thin-walled steel material and the delay destruction-resistant characteristics of the steel material for the car structural member simulating actual use environment can be evaluated. The steel material markedly enhanced in the delay destruction-resistant characteristics is obtained by adjusting the relation of Ti and N, Ceq and the relation of C and P to a specific range. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、自動車構造部材用鋼材の耐遅れ破壊特性評価方法に係り、とくにビッカース硬さ(HV)で250以上の高硬度を有するか、熱処理によりビッカース硬さ(HV)で250以上の高硬度となる、自動車構造部材用鋼材の耐遅れ破壊特性評価方法および耐遅れ破壊特性に優れた自動車構造部材用鋼材に関する。   The present invention relates to a method for evaluating delayed fracture resistance of steel materials for automobile structural members, and in particular, has a high hardness of 250 or more in Vickers hardness (HV) or a high hardness of 250 or more in Vickers hardness (HV) by heat treatment. The present invention relates to a method for evaluating delayed fracture resistance of steel materials for automobile structural members, and a steel material for automobile structural members excellent in delayed fracture resistance.

なお、本発明でいう「鋼材」には、鋼板、鋼帯および鋼管等、あるいはそれらを用いて構成された構造体をも含むものとする。また、本発明でいう「鋼材」は、好ましくは薄肉鋼材とする。本発明でいう「薄肉」とは、板厚あるいは肉厚が4.5mm以下の鋼材をいうものとする。また、本発明でいう「自動車構造部材」には、自動車走行で想定される、雨天や、小石が敷かれ道や融雪剤が散布された道などの腐食環境下に晒される自動車足回り部材や、インパクトビーム、センターピラーなどの部材が含まれるものとする。   The “steel material” referred to in the present invention includes a steel plate, a steel strip, a steel pipe, and the like, or a structure formed using them. Further, the “steel material” referred to in the present invention is preferably a thin steel material. The “thin wall” as used in the present invention refers to a steel material having a thickness of 4.5 mm or less. In addition, the “automobile structural member” as used in the present invention includes an automobile undercarriage member that is exposed to corrosive environments such as rainy weather, roads that are covered with pebbles, and roads that are sprayed with snow melting agent, which are assumed in automobile driving. In addition, members such as impact beams and center pillars are included.

金属材料、例えば、鋼材を引張強さで720MPaを超えて高強度化して使用する場合には、使用鋼材の拡散性水素に起因する遅れ破壊挙動について予め知っておく必要がある。鋼材の拡散性水素に起因する遅れ破壊挙動は、使用される環境によって大きく変動するため、従来から、鋼材の耐遅れ破壊特性の評価は、実際の使用環境下での長期間の暴露試験により行なわれてきた。しかし、この試験には多大な試験時間と労力とを必要とするため、試験期間を短縮した室内試験を用いる方法が種々提案され、実施されている。とくに、高力ボルトや、PC鋼棒等に関する提案が多くなされている。   When using a metal material, for example, a steel material with a tensile strength exceeding 720 MPa, it is necessary to know in advance the delayed fracture behavior due to the diffusible hydrogen of the steel material used. Since the delayed fracture behavior due to diffusible hydrogen in steel varies greatly depending on the environment in which it is used, conventionally, the delayed fracture resistance of steel has been evaluated through long-term exposure tests in the actual service environment. I have been. However, since this test requires a great amount of test time and labor, various methods using a laboratory test with a shortened test period have been proposed and implemented. In particular, many proposals have been made regarding high-strength bolts and PC steel bars.

例えば、非特許文献1には、高力ボルト、線材を対象に、ボルト形状や棒状の試験片を酸等に浸漬して、水素チャージしたのち、大気雰囲気中で一定荷重を付加する定荷重試験により、限界水素量又は限界応力等を求め、耐遅れ破壊性を評価する方法が提案されている。また、非特許文献2には、棒状の試験片を電解質(チオシアン酸アンモニウム)溶液中に浸漬して水素チャージしながら、一定荷重を付加する定荷重試験を行い、限界応力を求め、耐遅れ破壊性を評価する方法が提案されている。   For example, Non-Patent Document 1 discloses a constant load test in which a bolt or bar-shaped test piece is immersed in an acid or the like and charged with hydrogen and then a constant load is applied in an air atmosphere for high strength bolts and wires. Has proposed a method for obtaining a critical hydrogen amount or a critical stress and evaluating delayed fracture resistance. In Non-Patent Document 2, a constant load test is performed in which a constant load is applied while a rod-shaped test piece is immersed in an electrolyte (ammonium thiocyanate) solution and charged with hydrogen to obtain a critical stress. A method for evaluating sex has been proposed.

また、非特許文献3には、塩酸中に浸漬した状態であるいは電気的に水素チャージしながら4点曲げ試験を行なう方法、あるいはU字曲げ加工しボルト締めした試験片を塩酸中に浸漬する方法など、遅れ破壊特性を評価する方法が提案されている。   Non-Patent Document 3 describes a method of performing a four-point bending test while being immersed in hydrochloric acid or while being electrically charged with hydrogen, or a method of immersing a U-bended and bolted test piece in hydrochloric acid. For example, methods for evaluating delayed fracture characteristics have been proposed.

また、特許文献1には、空洞を有する棒状の金属材試験片の外周面全体を水素侵入雰囲気(ガス)に晒しながら、試験片に一定荷重を加え、同時に空洞に侵入した水素量を測定し、試験片破断時までの侵入水素量を金属材の遅れ破壊の指標とする金属材の遅れ破壊評価方法が提案されている。   In Patent Document 1, a constant load is applied to a test piece while the entire outer peripheral surface of a rod-shaped metal material test piece having a cavity is exposed to a hydrogen intrusion atmosphere (gas), and the amount of hydrogen that has entered the cavity is measured at the same time. In addition, a method for evaluating delayed fracture of a metal material has been proposed in which the amount of intrusion hydrogen until the test piece breaks is used as an indicator of delayed fracture of the metal material.

また、特許文献2には、棒状鋼材に静的な曲げ荷重を一定時間加え、ついで曲げ疲労させて疲労破断するまでの回数を求め、遅れ破壊性を評価する鋼材の遅れ破壊性評価方法が提案されている。この方法は、静的な曲げ荷重を一定時間付加することにより、拡散性水素を応力誘起拡散させて引張応力部に水素を集中させて疲労特性の劣化を測定し、微量な水素侵入下での遅れ破壊性を評価しようとするものである。   Patent Document 2 proposes a method for evaluating the delayed fracture property of a steel material in which a static bending load is applied to a rod-shaped steel material for a certain period of time, and then the number of times until the fatigue fracture occurs after bending fatigue is evaluated. Has been. In this method, a static bending load is applied for a certain period of time to cause stress-induced diffusion of diffusible hydrogen to concentrate hydrogen in the tensile stress area and measure deterioration of fatigue characteristics. It is intended to evaluate delayed fracture.

また、特許文献3には、予め同種の鋼材について、低歪速度引張試験により拡散性水素を含む鋼材の伸びを測定し、拡散性水素を含有しない場合の鋼材の伸びに対する劣化度で定義される水素脆化危険度指数と、鋼中に存在する拡散性水素量との相関関係を求めておき、評価対象鋼材中に存在する拡散性水素量を測定して、その相関関係から、評価対象鋼材の水素脆化危険度を評価する鋼材の水素脆化感受性評価方法が提案されている。   In Patent Document 3, the elongation of a steel material containing diffusible hydrogen is measured in advance by a low strain rate tensile test for the same type of steel material, and is defined as the degree of deterioration relative to the elongation of the steel material when no diffusible hydrogen is contained. Obtain the correlation between the hydrogen embrittlement risk index and the amount of diffusible hydrogen present in the steel, measure the amount of diffusible hydrogen present in the steel to be evaluated, and use the correlation to determine the steel to be evaluated. A hydrogen embrittlement susceptibility evaluation method has been proposed for evaluating the hydrogen embrittlement risk of steel.

また、例えば特許文献4には、薄板を深絞り加工して作製した円筒、あるいは薄肉の鋼管を食塩水中に浸漬して、1週間後に割れの有無を観察する、薄肉材の耐水素脆性特性を評価する方法が提案されている。   Also, for example, Patent Document 4 describes the hydrogen embrittlement resistance characteristics of a thin-walled material in which a cylinder or thin-walled steel pipe produced by deep-drawing a thin plate is immersed in saline and observed for cracks after one week. An evaluation method has been proposed.

また、特許文献5、特許文献6には、U曲げしたサンプルをカチオン塗装したのち、曲げ頂点にスリットを入れて、塗装膜を破壊した状態にして、電解質溶液中で電気的に水素チャージを行いながら、割れが発生するまでの時間(30分まで)を測定し、耐遅れ破壊特性を評価する方法が提案されている。   In Patent Documents 5 and 6, after a U-bended sample is cation-coated, a slit is made at the apex of the bend to break the coating film, and the battery is electrically charged with hydrogen in an electrolyte solution. However, a method for measuring the time until cracking (up to 30 minutes) and evaluating delayed fracture resistance has been proposed.

また、特許文献7には、C−リング試験片を使って、塩酸中に200時間まで浸漬したのち、割れ発生の有無を調査し、耐遅れ破壊特性を評価する方法が提案されている。   Patent Document 7 proposes a method for evaluating delayed fracture resistance by investigating the presence or absence of cracking after immersion in hydrochloric acid for 200 hours using a C-ring test piece.

また、特許文献8には高強度熱延鋼板を用いて、特許文献9には高強度冷延鋼板を用いて、ERWにより造管した高強度ERW鋼管について、C−リング試験片を使った耐遅れ破壊特性の評価が開示されている。   Patent Document 8 uses a high-strength hot-rolled steel sheet, Patent Document 9 uses a high-strength cold-rolled steel sheet, and a high-strength ERW steel pipe formed by ERW is resistant to using a C-ring test piece. An evaluation of delayed fracture properties is disclosed.

また、高力ボルトや、PC鋼棒では、拡散性水素量を正確に同定するために、特許文献1にも記載されているように、2本の試験片に水素チャージしたのち、試験片を乾燥させて、そのうちの一本の試験片について遅れ破壊特性の評価を実施し、残りの一本の試験片には荷重をかけずに水素量を測定する方法が実施されている。
特開平8−145862号公報 特開平11−30577号公報 特開2001−264240号公報 特開平6−145893号公報 特開平7−102341号公報 特開平7−197183号公報 特開平8−337817号公報 特許第3111861号公報 特開平3−138316号公報 N.Suzuki et al.:Wire J. International,vol.19,(1986),pp.36〜47 Takai et al.:鉄と鋼 vol.79(1993),pp.685〜691 長滝ら:NKK技報、No.145(1994)、pp.33〜39.
Moreover, in high-strength bolts and PC steel bars, as described in Patent Document 1, in order to accurately identify the amount of diffusible hydrogen, two test pieces are charged with hydrogen, A method of measuring the amount of hydrogen without applying a load to the remaining one test piece is performed by drying and evaluating the delayed fracture characteristics of one of the test pieces.
JP-A-8-145862 Japanese Patent Laid-Open No. 11-30577 JP 2001-264240 A JP-A-6-145893 Japanese Unexamined Patent Publication No. 7-102341 Japanese Unexamined Patent Publication No. 7-197183 JP-A-8-337817 Japanese Patent No. 3111861 JP-A-3-138316 N. Suzuki et al .: Wire J. International, vol. 19, (1986), pp. 36-47 Takai et al .: Iron and steel vol. 79 (1993), pp. 685-691 Nagataki et al .: NKK Technical Report, No.145 (1994), pp.33-39.

しかしながら、非特許文献1に記載された技術では、酸に浸漬して水素チャージするため、任意の拡散性水素量を鋼中に侵入させることが難しいこと、および試験を大気中で実施するため、チャージされた拡散性水素が試験時間の経過とともに減少し、試験時に希望する拡散性水素量を確保することが難しいことなどの問題があった。   However, in the technique described in Non-Patent Document 1, since it is immersed in an acid and charged with hydrogen, it is difficult to allow an arbitrary amount of diffusible hydrogen to enter the steel, and the test is performed in the atmosphere. Charged diffusible hydrogen decreased with the lapse of test time, and it was difficult to ensure the desired amount of diffusible hydrogen during the test.

また、非特許文献2に記載された技術では、電解質溶液の濃度を変化させたとしても、侵入させる拡散性水素量には限界があり、試験片中拡散性水素量を任意の量に調整することが難しく、拡散性水素量を変化させた条件で行なう必要のある鋼材の遅れ破壊特性の調査には不向きな方法である。   Further, in the technique described in Non-Patent Document 2, even if the concentration of the electrolyte solution is changed, there is a limit to the amount of diffusible hydrogen that enters, and the amount of diffusible hydrogen in the test piece is adjusted to an arbitrary amount. This method is difficult to investigate and is not suitable for investigating delayed fracture characteristics of steel materials that need to be performed under conditions in which the amount of diffusible hydrogen is changed.

また、非特許文献3に記載された技術では、4点曲げ試験片、あるいはU字曲げ加工しボルト締めした試験片を使用するため、自動車足回り部材等の自動車構造部材が受ける一定応力が負荷される応力状態での試験ではなく、自動車構造部材用鋼材の耐遅れ破壊特性を評価する試験方法としては十分であるとは言い難い。   Further, in the technique described in Non-Patent Document 3, since a four-point bending test piece or a U-shaped bending test piece is used, a constant stress applied to an automobile structural member such as an automobile underbody member is loaded. It is difficult to say that it is sufficient as a test method for evaluating the delayed fracture resistance of steel for automobile structural members, rather than a test in a stressed state.

また、特許文献1に記載された技術では、用いる試験片が空洞を有する特殊な形状を有しており、例えば薄肉鋼材のように、鋼材の寸法形状によっては空洞付の試験片を採取できない場合があるという問題がある。また、特許文献1に記載された技術では、中空部分を有する中実試験材を試験液体中に浸漬して破断するまでに試験片の中空部分まで抜けてきた水素の合計量を限界拡散水素量として把握している。しかし、例えば遅れ破壊時の拡散性水素量が、中空部分に蓄まった水素に相当するわけではないため、遅れ破壊を引き起こした場合の拡散性水素量の測定方法としては問題がある。というのは、試験液から試験材に入り込んだ水素は、定常状態であったとしても、「非拡散性水素(中実部分)+拡散性水素(中実部分)+中空部分に蓄まった水素」がバランスして存在しているだけであり、遅れ破壊時に試験片に存在する拡散性水素量が、中空部分に蓄まった水素に相当するわけではない。また、中空部分に蓄まった水素を測定のためにキャリアーガスで連続的に取り出すたびに、試験液からは、新たに水素が試験片に侵入する。そのため、中空部分に蓄まった水素量が、遅れ破壊時に試験片に存在する拡散性水素量であるとは到底言えない。   Moreover, in the technique described in Patent Document 1, the test piece to be used has a special shape having a cavity, and for example, a test piece with a cavity cannot be collected depending on the dimensional shape of the steel material, such as a thin steel material. There is a problem that there is. In the technique described in Patent Document 1, the total amount of hydrogen that has escaped to the hollow portion of the test piece before the solid test material having the hollow portion is immersed in the test liquid and fractured is determined as the critical diffusion hydrogen amount. As you know. However, for example, since the amount of diffusible hydrogen at the time of delayed fracture does not correspond to the hydrogen stored in the hollow portion, there is a problem as a method for measuring the amount of diffusible hydrogen when delayed fracture is caused. This is because the hydrogen that has entered the test material from the test solution is “non-diffusible hydrogen (solid part) + diffusible hydrogen (solid part) + hydrogen accumulated in the hollow part, even in a steady state. "Is only in balance, and the amount of diffusible hydrogen present in the test piece at the time of delayed fracture does not correspond to the hydrogen accumulated in the hollow portion. Moreover, whenever hydrogen stored in the hollow portion is continuously taken out with a carrier gas for measurement, hydrogen newly enters the test piece from the test solution. Therefore, it cannot be said that the amount of hydrogen stored in the hollow portion is the amount of diffusible hydrogen present in the test piece at the time of delayed fracture.

また、特許文献2に記載された技術によれば、棒状試験片を採取できる場合には、鋼材の耐遅れ破壊性の評価は可能であるが、所定寸法形状の試験片を採取できない場合には、静的曲げ荷重の負荷方法をその都度変更する必要がある。さらに、試験片の寸法形状が変化すると、静的曲げ荷重の負荷状況と水素の集中部位との対応が変化するため、荷重負荷と水素の集中部位の対応を制御する必要がある。しかし、荷重負荷部と水素の集中部位とを対応させることはほとんど不可能であり、鋼材の耐遅れ破壊性の評価ができなくなるという問題があった。   Further, according to the technique described in Patent Document 2, when the rod-shaped test piece can be collected, the delayed fracture resistance of the steel material can be evaluated, but when the test piece having a predetermined size and shape cannot be collected. It is necessary to change the loading method of the static bending load each time. Furthermore, since the correspondence between the load state of static bending load and the hydrogen concentration site changes when the size and shape of the test piece changes, it is necessary to control the correspondence between the load load and the hydrogen concentration site. However, it is almost impossible to make the load-loading portion correspond to the hydrogen concentration site, and there is a problem that it is impossible to evaluate the delayed fracture resistance of the steel material.

また、特許文献3に記載された技術では、拡散性水素を含む鋼材の伸び劣化度をもとに鋼材の水素脆化危険度を推定している。しかし、この伸びの劣化度を利用する方法は、水素脆化を推定する一方法ではあるが、伸びの劣化が水素による脆化促進に伴う破断の短時間化とは必ずしも一対一に対応できない。このため、この伸びの劣化度を利用する方法により、鋼材の耐遅れ破壊特性を評価することには問題がある。また、特許文献3に記載された技術では、水素分析装置へ投入する前に行なうめっき剥離や乾燥等の前処理中に漏れる水素量を考慮して水素分析しておらず、拡散性水素量の測定精度にも問題を残している。   Moreover, in the technique described in Patent Document 3, the hydrogen embrittlement risk of a steel material is estimated based on the elongation deterioration degree of the steel material containing diffusible hydrogen. However, this method of utilizing the degree of degradation of elongation is one method for estimating hydrogen embrittlement, but the degradation of elongation does not necessarily correspond one-on-one with the shortening of the fracture time associated with the promotion of embrittlement by hydrogen. For this reason, there is a problem in evaluating the delayed fracture resistance of a steel material by a method utilizing the degree of degradation of elongation. Moreover, in the technique described in Patent Document 3, hydrogen analysis is not performed in consideration of the amount of hydrogen leaking during pretreatment such as plating stripping or drying performed before being introduced into the hydrogen analyzer, and the amount of diffusible hydrogen is reduced. There is also a problem in measurement accuracy.

また、特許文献1〜特許文献3、非特許文献1、非特許文献2に記載された技術では、使用するサンプルが棒状あるいはボルト状を想定しており、体積に対する表面積が小さく、体積自体も大きいため、チャージされた水素量を測定する際に、大気中にたとえ1時間放置しても拡散性水素が全て漏れてなくなるという心配はない。しかし、肉厚の薄い板状サンプルを用いる場合には、大気中に放置すると、拡散性水素が急激に漏れるため、上記した従来技術は、遅れ破壊挙動を評価する手段としては問題を残していた。   In addition, in the techniques described in Patent Document 1 to Patent Document 3, Non-Patent Document 1, and Non-Patent Document 2, the sample to be used assumes a rod shape or a bolt shape, and has a small surface area with respect to the volume and a large volume itself. Therefore, when measuring the amount of charged hydrogen, there is no concern that all diffusible hydrogen will be leaked even if left in the atmosphere for 1 hour. However, when a thin plate-like sample is used, diffusible hydrogen leaks suddenly if left in the atmosphere, so the above-mentioned prior art has left a problem as a means for evaluating delayed fracture behavior. .

また、特許文献1にも記載されているように、高力ボルトや、PC鋼棒では、拡散性水素量を正確に同定するために、2本の試験片に水素チャージしたのち、試験片を乾燥させて、そのうちの一本の試験片について遅れ破壊特性の評価を実施し、残りの一本の試験片には荷重をかけずに水素量を測定する方法が実施されている。しかし、これも、高力ボルトや、PC鋼棒のような容積が大きく、重量のある試験片が採取できる場合には可能であるが、薄肉鋼材の場合には、採取できる試験片の肉厚が薄くなり、試験片を大気中で扱うと急激に水素が抜けて、水素量の正確な測定ができなくなるとともに、耐遅れ破壊特性の評価も不正確となる。   Moreover, as described in Patent Document 1, in order to accurately identify the amount of diffusible hydrogen in high-strength bolts and PC steel bars, two test pieces are charged with hydrogen, A method of measuring the amount of hydrogen without applying a load to the remaining one test piece is performed by drying and evaluating the delayed fracture characteristics of one of the test pieces. However, this is also possible when a large specimen such as a high-strength bolt or a PC steel rod can be collected, and in the case of a thin steel material, the thickness of the specimen that can be collected. However, when the specimen is handled in the atmosphere, hydrogen is rapidly removed, making it impossible to accurately measure the amount of hydrogen, and evaluating delayed fracture resistance is also inaccurate.

また、上記した従来の方法は、ボルトや棒鋼の水素による遅れ破壊等の水素脆化を対象としているため、特許文献1や特許文献2、さらには非特許文献1と非特許文献2にも記載されているように、それらの使用環境を反映して評価する応力水準は、試験片の破断応力の70〜90%で評価する場合が殆どである。   Moreover, since the above-described conventional methods are intended for hydrogen embrittlement such as delayed fracture of hydrogen of bolts and steel bars, they are also described in Patent Document 1, Patent Document 2, and Non-Patent Document 1 and Non-Patent Document 2. As described above, in most cases, the stress level to be evaluated reflecting the use environment thereof is evaluated at 70 to 90% of the breaking stress of the test piece.

しかし、例えば、自動車足回り部材のような利用環境、使用環境であれば、鋼材の引張強さの70〜90%が常時負荷されるとは考えにくい。また、部材に導入される拡散性水素も、1ppmを越える量が常時導入されているとは考えにくい。したがって、例えば自動車足回り部材用鋼材の耐遅れ破壊特性を、上記したような従来技術を用いて評価すると、過酷すぎる条件での評価ということになり、使用環境、利用環境に即した自動車構造部材用鋼材の耐遅れ破壊特性評価となっていないという問題があった。すなわち、上記したような従来技術では、自動車足回り部材等の自動車構造部材用鋼材に対する耐遅れ破壊特性評価の適正な基準を与えていなかったと言える。   However, it is unlikely that 70 to 90% of the tensile strength of the steel material is always loaded in a use environment or use environment such as an automobile underbody member. Also, it is difficult to think that diffusible hydrogen introduced into the member is always introduced in an amount exceeding 1 ppm. Therefore, for example, when the delayed fracture resistance of steel materials for automobile undercarriage members is evaluated using the conventional technology as described above, it will be an evaluation under conditions that are too harsh, and an automobile structural member that conforms to the usage environment and usage environment. There was a problem that the delayed fracture resistance evaluation of steel was not performed. That is, it can be said that the prior art as described above did not give an appropriate standard for evaluating delayed fracture resistance of steel materials for automobile structural members such as automobile underbody members.

また、特許文献4〜特許文献9には、薄肉高強度鋼材についての耐遅れ破壊特性の評価方法が記載されているが、自動車構造部材用鋼材の十分な耐水素脆化特性の評価方法であるとは言い難い。   Further, Patent Documents 4 to 9 describe a method for evaluating delayed fracture resistance of thin-walled high-strength steel materials, but it is a method for evaluating sufficient hydrogen embrittlement resistance of steel materials for automobile structural members. It's hard to say.

特許文献4に記載された技術では、CGLハイテン材の耐水素脆化特性を評価しているが、深絞り加工した加工材を食塩水に浸漬するだけであり、自動車構造部材等における実際の応力負荷や、拡散性水素量を反映した試験条件となっていないという問題があった。   The technique described in Patent Document 4 evaluates the hydrogen embrittlement resistance of CGL high-tensile material, but it only involves immersing the deep-drawn processed material in saline solution, and the actual stress in automobile structural members, etc. There was a problem that the test conditions did not reflect the load or the amount of diffusible hydrogen.

特許文献5及び特許文献6に記載された技術では、U曲げしたサンプルを電解質溶液中で電解チャージしながら割れ発生までの時間を評価しており、自動車足回り部材等の自動車構造部材が受ける応力状態での試験ではなく、自動車構造部材用鋼材の耐遅れ破壊特性を評価する試験方法としては十分であるとは言い難い。また、試験材中に含まれる水素量をガスクロマトグラフィで水素を分析する必要があるが、分析前にカチオン塗装を酸等で除去する必要があり、その際に水素が試験片に導入されることもあり、また一方で、大気中に放置するため試験片から水素が抜けるため、試験片中の水素量測定が不正確となるという問題がある。   In the techniques described in Patent Document 5 and Patent Document 6, the time until cracking is evaluated while electrolytically charging a U-bent sample in an electrolyte solution, and the stress received by an automobile structural member such as an automobile undercarriage member It is difficult to say that it is sufficient as a test method for evaluating the delayed fracture resistance of steel materials for automobile structural members, not a test in a state. In addition, it is necessary to analyze the amount of hydrogen contained in the test material by gas chromatography, but it is necessary to remove the cation coating with an acid or the like before the analysis, and hydrogen is introduced into the test piece at that time. On the other hand, since hydrogen escapes from the test piece because it is left in the atmosphere, there is a problem that measurement of the amount of hydrogen in the test piece becomes inaccurate.

特許文献7に記載された技術では、C−リング試験片を使用し、塩酸中に浸漬する方法を採用しており、特許文献5や特許文献6に記載された技術と同様に、自動車構造部材が受ける応力状態での試験とは言い難く、また、所望の拡散性水素量を試験片に自由に導入することが難しくなるという問題があった。   In the technique described in Patent Document 7, a method of using a C-ring test piece and immersing in hydrochloric acid is adopted. Similarly to the techniques described in Patent Document 5 and Patent Document 6, an automobile structural member is used. There is a problem that it is difficult to say that the test is performed in a stress state that the test piece is subjected to, and that it is difficult to freely introduce a desired amount of diffusible hydrogen into the test piece.

特許文献8、特許文献9に記載された技術では、C−リング試験片を使用して試験片に歪を導入している。このため、歪が集中した箇所にのみ水素が集中する傾向があり、自動車構造部材が受ける環境とは異なる環境での評価となり、自動車構造部材用鋼材の耐遅れ破壊特性を評価する方法としては問題を残していた。   In the techniques described in Patent Document 8 and Patent Document 9, strain is introduced into the test piece using a C-ring test piece. For this reason, hydrogen tends to concentrate only at locations where strain is concentrated, and it becomes an evaluation in an environment different from the environment received by automobile structural members, and it is a problem as a method for evaluating delayed fracture resistance of steel for automotive structural members Was leaving.

このように、上記した特許文献1〜特許文献9に記載された技術はいずれも、使用環境下での応力状態で、かつ使用環境下で導入される拡散性水素を的確にしかも制御良く導入して耐遅れ破壊特性を評価する方法であるとは言い難く、自動車構造部材用鋼材の耐遅れ破壊特性を評価する方法、あるいは耐遅れ破壊特性に優れた鋼材の開発に利用する評価方法としては、問題を残していた。   As described above, any of the techniques described in Patent Documents 1 to 9 described above introduces diffusible hydrogen introduced in a stress state under a use environment and under a use environment accurately and with good control. It is difficult to say that this is a method for evaluating delayed fracture resistance.As a method for evaluating delayed fracture resistance of steel materials for automobile structural members, or as an evaluation method used for developing steel materials having excellent delayed fracture resistance, I left a problem.

本発明は、このような従来技術の問題を解決し、好ましくは薄肉の、高強度化・高硬度化された自動車構造部材用鋼材、あるいは熱処理を施されて高強度化・高硬度化される自動車構造部材用鋼材について、耐遅れ破壊特性を正確に評価できる耐遅れ破壊特性評価方法を提案することを目的とする。また、本発明は、この自動車構造部材用鋼材の耐遅れ破壊特性評価方法に基づいて評価して、耐遅れ破壊特性に優れる自動車構造部材用鋼材を提案することを目的とする。   The present invention solves such problems of the prior art, and is preferably made of a thin steel material for automobile structural members that has been increased in strength and hardness, or is subjected to heat treatment to increase in strength and hardness. The objective is to propose a delayed fracture resistance evaluation method that can accurately evaluate delayed fracture resistance of steel for automobile structural members. Another object of the present invention is to propose a steel material for automobile structural members which is evaluated based on this delayed fracture resistance evaluation method for steel materials for automobile structural members and has excellent delayed fracture resistance properties.

本発明者らは、上記した課題を達成するために、とくに薄肉の試験片しか採取できない場合に、耐遅れ破壊特性を評価した試験片中の拡散性水素量を精度良く推定する方法について、まず鋭意検討した。その結果、同一材料から切出し、同一肉厚(板厚)で、同一の表面性状に加工された試験片およびダミー片を用意し、試験片およびダミー片に同一条件の電解質溶液中での電気化学的手段により拡散性水素を導入する水素チャージを無負荷で行ったのち、試験片には荷重負荷して耐遅れ破壊特性を評価し、一方、ダミー片は無負荷として試験片が破断または所定の時間経過するまで、試験片と同一の条件下に保持して、試験片が破断した場合にはダミー片で、破断しなかった場合は試験片又はダミー片で拡散性水素量を分析することとした。   In order to achieve the above-mentioned problems, the present inventors have first made a method for accurately estimating the amount of diffusible hydrogen in a test piece evaluated for delayed fracture resistance, particularly when only a thin test piece can be collected. We studied diligently. As a result, we prepared test pieces and dummy pieces that were cut out from the same material, processed to the same surface properties with the same thickness (plate thickness), and electrochemistry in an electrolyte solution under the same conditions on the test pieces and dummy pieces. After carrying out hydrogen charging to introduce diffusible hydrogen by a conventional means without load, the test piece was loaded and evaluated for delayed fracture resistance, while the dummy piece was unloaded and the test piece was broken or Hold the test specimen under the same conditions until the time has elapsed, and analyze the amount of diffusible hydrogen with a dummy piece if the specimen breaks, or with the specimen or dummy piece if it does not break. did.

そして、その際、試験片およびダミー片からの拡散性水素の散逸を極力防止するために、試験片及びダミー片への水素のチャージを、
(1)試験片には電解セルを設置し、ダミー片は電解槽に浸漬し、試験片では荷重負荷して耐遅れ破壊特性評価試験を続行しながら、一方ダミー片では無負荷状態で、電解質溶液中での電気化学的手段により行なう方法とするか、あるいは
(2)試験片及びダミー片に電解質溶液中での電気化学的手段で同一量の水素をチャージした後、試験片及びダミー片表面にめっきを施しめっき膜により水素を封じ込める方法として、行なう、
ことが、試験時の試験片中の拡散性水素量を精度良く推定できる好ましい方法であることを見出した。
At that time, in order to prevent the diffusion of diffusible hydrogen from the test piece and the dummy piece as much as possible, the hydrogen charge to the test piece and the dummy piece is performed.
(1) An electrolytic cell is installed on the test piece, the dummy piece is immersed in an electrolytic bath, and the test piece is loaded and the delayed fracture resistance evaluation test is continued. (2) After charging the test piece and the dummy piece with the same amount of hydrogen by the electrochemical means in the electrolyte solution, the surface of the test piece and the dummy piece As a method of confining hydrogen with a plating film after plating
Has been found to be a preferable method capable of accurately estimating the amount of diffusible hydrogen in the test piece during the test.

また、より精度よく拡散性水素量を推定するには、電気化学的手段による水素チャージ停止時あるいはめっき膜剥離時を起点として、試験片又はダミー片を分析装置へ投入するまでを、所定温度以下の大気中で所定時間以内で行なうこと、あるいは予め測定した、電気化学的手段による水素チャージ停止時あるいはめっき膜剥離時を起点とする大気雰囲気中での経過時間と拡散性水素の変化量との関係に基づいて、得られた拡散性水素量の測定値を補正すること、がよいことを見出した。   Also, in order to estimate the amount of diffusible hydrogen with higher accuracy, the test piece or dummy piece is put into the analyzer at a predetermined temperature or less from when hydrogen charging is stopped by electrochemical means or when the plating film is peeled off. Between the elapsed time in the atmosphere and the amount of change in diffusible hydrogen starting from when hydrogen charging is stopped by electrochemical means or when the plating film is peeled off. Based on the relationship, it has been found that it is better to correct the measured value of the amount of diffusible hydrogen obtained.

さらに、本発明者らは、自動車足回り部材等の自動車構造部材用として好適な、高強度化・高硬度化された自動車構造部材用鋼材、あるいは熱処理を施されて高強度化・高硬度化されてから使用される自動車構造部材用鋼材で、とくに薄鋼板、薄鋼帯、鋼管等の板厚(肉厚)4.5mm以下の薄肉鋼材およびそれらの構造体を対象とした場合に、耐遅れ破壊特性を正確に評価できる好ましい方法について鋭意検討した。この結果、上記した知見以外にも以下の点が重要であることを見出した。
(1)鋼材が実際に使用される硬さ(強度)(以下、鋼材実使用時の硬さともいう)、つまり、高強度化・高硬度化された鋼材をそのまま、あるいは加工または熱処理等を施された高強度化・高硬度化された状態で、しかも使用される環境を模擬した拡散性水素量、負荷応力の条件下で、試験を行なうこと、
(2)評価対象を実使用時の鋼材硬さが、ビッカース硬さ(HV)で250以上600以下である鋼材に限定すること、
(3)負荷する応力レベルを、実使用時の鋼材硬さに応じて算出して決めること、
(4)試験片への応力負荷は、一定荷重を連続して負荷する定荷重試験とするか、あるいは、10Hz未満の変動速度で変動荷重を負荷する変動荷重試験とすることがよいこと、
(5)試験片及びダミー片に導入する拡散性水素量は、0.05 ppm以上、1ppm未満の範囲とすることがよいこと、
(6)使用するダミー片は、表面積600mm以上、重量3.5g以上とすること。
Furthermore, the present inventors have made steel materials for automobile structural members that have been improved in strength and hardness, suitable for automobile structural members such as automobile undercarriage members, or increased in strength and hardness through heat treatment. Steel materials for automobile structural members that are used after being used, especially for thin steel materials with a thickness (thickness) of 4.5 mm or less, such as thin steel sheets, thin steel strips, steel pipes, and their structures. We have intensively studied a preferred method that can accurately evaluate the fracture characteristics. As a result, it was found that the following points are important in addition to the above findings.
(1) Hardness (strength) at which the steel material is actually used (hereinafter also referred to as hardness in actual use of the steel material), that is, the steel material that has been increased in strength and hardness, or processed or heat-treated as it is The test should be performed under the conditions of diffusible hydrogen amount and load stress simulating the environment used in the state of high strength and high hardness applied.
(2) The evaluation object is limited to steel materials having a Vickers hardness (HV) of 250 to 600 in actual use.
(3) Determine the stress level to be applied by calculating according to the steel hardness during actual use.
(4) The stress load on the test piece should be a constant load test in which a constant load is continuously applied, or a variable load test in which a variable load is applied at a fluctuation rate of less than 10 Hz.
(5) The amount of diffusible hydrogen introduced into the test piece and dummy piece should be 0.05 ppm or more and less than 1 ppm,
(6) dummy piece used is surface area 600 mm 2 or more, be more weight 3.5 g.

ついで、本発明者らは、上記した自動車構造部材用鋼材の耐遅れ破壊特性評価方法を使用して、自動車構造部材用鋼材の耐遅れ破壊特性に及ぼす組成等各種要因の影響について鋭意検討し、耐遅れ破壊特性に優れた新規な自動車構造部材用鋼材を見出した。   Then, the present inventors diligently examined the influence of various factors such as composition on the delayed fracture resistance of automobile structural member steel using the method for evaluating delayed fracture resistance of steel for automotive structural member, We found a new steel material for automobile structural members with excellent delayed fracture resistance.

本発明は、上記した知見に基づき、さらに検討を加えて完成されたものである。   The present invention has been completed based on the above findings and further studies.

すなわち、本発明の要旨はつぎのとおりである。
(1)ビッカース硬さ(HV)で250以上を有する自動車構造部材用鋼材又は熱処理を施されてビッカース硬さ(HV)で250以上の硬さを有するようになる自動車構造部材用鋼材を評価対象材とし、前記評価対象材から採取した試験片に拡散性水素を電気化学的手段でチャージしながら、該試験片に定荷重として応力σを負荷する定荷重試験又は該試験片に応力σを変動荷重として10Hz未満の変動速度で負荷する変動荷重試験を実施し、該定荷重試験又は変動荷重試験の結果と拡散性水素量との対応から自動車構造部材用鋼材の耐遅れ破壊特性を評価するに当たり、
前記評価対象材がビッカース硬さ(HV)で250以上を有する場合には、そのまま、もしくは加工または熱処理を施してビッカース硬さ(HV)で250以上の鋼材実使用時の硬さに調整したのち該評価対象材から前記試験片およびダミー片を採取し、一方前記評価対象材がビッカース硬さ(HV)で250未満の場合には該評価対象材に加工または熱処理を施してビッカース硬さ(HV)250以上の鋼材実使用時の硬さに調整したのち前記試験片およびダミー片を採取し、又は前記評価対象材から試験片およびダミー片を採取したのち該試験片およびダミー片に加工または熱処理を施しビッカース硬さ(HV)で250以上の鋼材実使用時の硬さに調整し、試験に供するものとし、
前記ダミー片は前記試験片と同一肉厚、同一表面性状でかつ重量が3.5g以上、表面積が600mm以上とし、
前記試験片には電解液を満たした電解セルをセットするとともに、前記ダミー片は前記電解溶液と同じ電解溶液を満たした電解槽に浸漬し、
前記電気化学的手段を、電解溶液中で白金電極と前記試験片又は前記ダミー片との間に予め定めた一定電流密度の電流を流し、該試験片又は該ダミー片に0.05ppm以上1ppm未満の拡散性水素量を定常状態で保持可能とする電解処理とし、
該電解処理は、前記試験片と前記ダミー片とで同一の条件とし、無負荷状態で一定時間行い前記試験片及び前記ダミー片中の拡散性水素量を定常状態に保持したのち、前記試験片及び前記ダミー片で該電解処理を継続したまま、前記定荷重試験を次(1)式
σ(MPa)=3(HV−10)×α ………(1)
(ここで、σ:応力(MPa)、HV:ビッカース硬さ、α:定数(:0.10以上0.7未満の範囲内の一定値)
で定義される応力σ(MPa)を所定時間負荷する定荷重試験とし又は前記変動荷重試験を前記(1)式で定義される応力σ(MPa)を変動荷重として10Hz未満の変動速度で所定時間負荷する変動荷重試験として行ない、前記定荷重試験又は前記変動荷重試験後、
拡散性水素量を、前記試験片が所定時間内に破断した場合には前記ダミー片で、前記試験片が破断しなかった場合は該試験片又は前記ダミー片で、測定し、該測定した拡散性水素量と前記定荷重試験又は前記変動荷重試験の結果とを対応させ、耐遅れ破壊特性を評価することを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。
(2)(1)において、前記定荷重試験又は前記変動荷重試験の終了後、前記試験片又は前記ダミー片の拡散性水素量を測定するに際し、前記試験片又は前記ダミー片への前記電解処理の停止時を起点とし拡散性水素の分析装置へ投入するまでの大気雰囲気中での経過時間から、予め測定した大気雰囲気中での経過時間と拡散性水素の変化量との関係に基づいて、得られた拡散性水素量の測定値を補正することを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。
(3)ビッカース硬さ(HV)で250以上を有する自動車用鋼材又は加工または熱処理を施されてビッカース硬さ(HV)で250以上の硬さを有するようになる自動車構造部材用鋼材を評価対象材とし、
前記評価対象材から採取した試験片に拡散性水素を電気化学的手段でチャージしながら、該試験片に一定の応力σを負荷する定荷重試験又は該試験片に応力σを変動荷重として10Hz未満の変動速度で負荷する変動荷重試験を実施し、該定荷重試験又は変動荷重試験の結果と拡散性水素量との対応から自動車構造部材用鋼材の耐遅れ破壊特性を評価するに当たり、
前記評価対象材がビッカース硬さ(HV)で250以上を有する場合には、そのまま、もしくは加工または熱処理を施してビッカース硬さ(HV)で250以上の鋼材実使用時の硬さに調整したのち該評価対象材から前記試験片およびダミー片を採取し、一方前記評価対象材がビッカース硬さ(HV)で250未満の場合には該評価対象材に加工または熱処理を施してビッカース硬さ(HV)250以上の鋼材実使用時の硬さに調整したのち前記試験片およびダミー片を採取し、又は前記評価対象材から試験片およびダミー片を採取したのち該試験片およびダミー片に加工または熱処理を施しビッカース硬さ(HV)で250以上の鋼材実使用時の硬さに調整し、試験に供するものとし、
前記ダミー片は前記試験片と同一肉厚、同一表面性状でかつ重量が3.5g以上、表面積が600mm以上とし、
前記電気化学的手段を、電解溶液中で白金電極と前記試験片又は前記ダミー片との間に予め定めた一定電流密度の電流を流し、該試験片又は該ダミー片に0.05ppm以上1ppm未満の拡散性水素量を定常状態で保持可能とする電解処理とし、
該電解処理は、前記試験片と前記ダミー片とで同一の条件とし、無負荷状態で一定時間行い前記試験片及び前記ダミー片中の拡散性水素量を同一量の定常状態に保持したのち、前記試験片と前記ダミー片とに拡散性水素を封じ込めるめっきを施し、
前記定荷重試験を次(1)式
σ(MPa)=3(HV−10)×α ………(1)
(ここで、σ:応力(MPa)、HV:ビッカース硬さ、α:定数(:0.10以上0.7未満の範囲内の一定値)
で定義される応力σ(MPa)を定荷重として所定時間負荷する定荷重試験とし又は前記変動荷重試験を前記(1)式で定義される応力σ(MPa)を変動荷重として10Hz未満の変動速度で所定時間負荷する変動荷重試験として大気雰囲気中で行ない、該定荷重試験中又は該変動荷重試験中は、前記めっきを施されたダミー片を前記定荷重試験又は前記変動荷重試験を行なう同一大気雰囲気中に保管し、前記定荷重試験又は前記変動荷重試験後、
拡散性水素量を、前記試験片が所定時間内に破断した場合には前記ダミー片で、前記試験片が破断しなかった場合は該試験片又は前記ダミー片で、測定し、該測定した拡散性水素量と前記定荷重試験又は前記変動荷重試験の結果とを対応させ、耐遅れ破壊特性を評価することを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。
(4)(3)において、前記定荷重試験又は前記変動荷重試験の終了後、前記試験片又は前記ダミー片の拡散性水素量を測定するに際し、前記試験片又は前記ダミー片のめっき剥離時を起点とし拡散性水素の分析装置へ投入するまでの大気雰囲気中での経過時間から、予め測定した大気雰囲気中での経過時間と拡散性水素の変化量との関係に基づいて、得られた拡散性水素量の測定値を補正することを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。
(5)(1)ないし(4)のいずれかにおいて、前記電解処理における前記無負荷状態で行なう一定時間を、1時間以上とすることを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。
(6)(1)ないし(5)のいずれかにおいて、前記自動車構造部材用鋼材が、板厚4.5mm以下の薄肉鋼材であることを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。
(7)(1)ないし(6)のいずれかにおいて、前記試験片が、切欠き付き試験片であることを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。
(8)(1)ないし(7)のいずれかにおいて、前記定荷重試験の所定時間を50時間以上、前記変動荷重試験の所定時間を、変動速度が0.1Hz未満の場合には50時間以上、変動速度が0.1Hz以上10Hz未満の場合には20時間以上とすることを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。
(9)(1)ないし(7)のいずれかにおいて、前記定荷重試験の所定時間を150時間以上、前記変動荷重試験の所定時間を、変動速度が0.1Hz未満の場合には150時間以上、変動速度が0.1Hz以上10Hz未満の場合には60時間以上とすることを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。
(10)質量%で、C:0.05〜0.45%、Si:0.1〜0.6%、Mn:0.5〜2.5%、P:0.030%以下、S:0.003%以下、sol.Al:0.008〜0.1%、N:0.005%以下を、次(2)式
Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 ………(2)
(ここで、Ceq:炭素当量(%)、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%))
で定義される炭素当量Ceqが0.07〜0.9を満足するように含み、残部が実質的にFeからなる組成を有し、ビッカース硬さHVで250以上600以下の硬さを有するか、あるいは焼入れ処理または焼入れ焼戻処理を施された後にビッカース硬さHVで250以上600以下の硬さとなる自動車構造部材用鋼材であって、該自動車構造部材用鋼材から試験片およびダミー試験片を採取し、あるいは該自動車構造部材用鋼材に焼入れ処理または焼入れ焼戻処理を施してビッカース硬さHVで250以上600以下の硬さ、好ましくは鋼材実使用時の硬さに調整したのち試験片およびダミー片を採取し、該試験片およびダミー片を用い、(8)に記載された自動車構造部材用鋼材の耐遅れ破壊特性評価方法で耐遅れ破壊特性を評価した際に前記試験片が破断しないことを特徴とする耐遅れ破壊特性に優れる自動車構造部材用鋼材。
(11)(10)において、前記組成に代えて、質量%で、C:0.15〜0.25%、Si:0.1〜0.55%、Mn:0.5〜2.5%、P:0.016%以下、S:0.003%以下、sol.Al:0.008〜0.1%、N:0.005%以下を、前記(2)式で定義される炭素当量Ceqが0.07〜0.60を満足するように含み、残部が実質的にFeからなる組成を有することを特徴とする自動車構造部材用鋼材。
(12)(10)又は(11)において、前記組成が、さらにC、Pを次(3)式
P<−(4/50)×C+0.045 ………(3)
(ここで、C、P:各元素の含有量(質量%))
を満足するように含有する組成とすることを特徴とする自動車構造部材用鋼材。
(13)(10)又は(11)において、前記組成が、さらにC、Pを次(4)式
P<−(4/50)×C+0.033 ………(4)
(ここで、C、P:各元素の含有量(質量%))
を満足するように含有する組成とし、(9)に記載の自動車構造部材用鋼材の耐遅れ破壊特性評価方法で耐遅れ破壊特性を評価した際に前記試験片が破断しないことを特徴とする自動車構造部材用鋼材。
(14)(10)ないし(13)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ti:0.005〜0.04%を、次(5)式
Ti−(48/14)N>0 ・・・・・・(5)
(ここで、Ti、N:各元素の含有量(質量%))
を満足するように含有する組成とすることを特徴とする自動車構造部材用鋼材。
(15)(10)ないし(14)のいずれかにおいて、前記組成に加えてさらに、質量%で、Nb:0.03%以下を含有する組成とすることを特徴とする自動車構造部材用鋼材。
(16)(10)ないし(15)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cr:0.05〜0.25%、Ni:0.10%以下、Mo:0.20%以下、V:0.10%以下、B:0.0001〜0.005%のうちの1種または2種以上を含有する組成とすることを特徴とする自動車構造部材用鋼材。
(17)(10)ないし(16)のいずれかにおいて、前記組成に加えてさらに、質量%で、Cu:0.20%以下を含有する組成とすることを特徴とする自動車構造部材用鋼材。
(18)(10)ないし(17)のいずれかにおいて、前記組成に加えてさらに、質量%で、Ca:0.0001〜0.0030%を含有する組成とすることを特徴とする自動車構造部材用鋼材。
(19)(10)ないし(18)のいずれかに記載の自動車構造部材用鋼材で構成されてなる自動車構造部材。
That is, the gist of the present invention is as follows.
(1) Steel materials for automobile structural members having a Vickers hardness (HV) of 250 or higher or steel materials for automobile structural members having a Vickers hardness (HV) of 250 or higher after heat treatment A constant load test in which stress σ is applied as a constant load to the test piece while the test piece taken from the evaluation target material is charged with electrochemical means by the electrochemical means, or the stress σ is changed in the test piece In carrying out a fluctuating load test with a fluctuating speed of less than 10 Hz as a load, and evaluating the delayed fracture resistance of steel materials for automobile structural members from the correspondence between the results of the constant load test or fluctuating load test and the amount of diffusible hydrogen. ,
If the material to be evaluated has a Vickers hardness (HV) of 250 or more, the steel is adjusted as it is or after being processed or heat-treated to have a Vickers hardness (HV) of 250 or more. The test piece and the dummy piece are collected from the evaluation target material. On the other hand, when the evaluation target material has a Vickers hardness (HV) of less than 250, the evaluation target material is processed or heat-treated to obtain a Vickers hardness (HV ) After adjusting the hardness at the time of actual use of 250 or more steel materials, the test piece and the dummy piece are collected, or after collecting the test piece and the dummy piece from the evaluation target material, the test piece and the dummy piece are processed or heat-treated. And adjusted to the hardness of 250 or more steel materials in actual use with a Vickers hardness (HV), to be used for testing,
The dummy piece has the same thickness and the same surface properties as the test piece, a weight of 3.5 g or more, and a surface area of 600 mm 2 or more.
The test piece is set with an electrolytic cell filled with an electrolytic solution, and the dummy piece is immersed in an electrolytic bath filled with the same electrolytic solution as the electrolytic solution,
The electrochemical means is configured to pass a current having a predetermined constant current density between a platinum electrode and the test piece or the dummy piece in an electrolytic solution, and 0.05 ppm or more and less than 1 ppm to the test piece or the dummy piece. Electrolytic treatment that can maintain the amount of diffusible hydrogen in a steady state,
The electrolytic treatment is performed under the same conditions for the test piece and the dummy piece, and is performed for a certain period of time in an unloaded state, and after maintaining the diffusible hydrogen amount in the test piece and the dummy piece in a steady state, the test piece And while the electrolytic treatment is continued with the dummy piece, the constant load test is performed by the following equation (1): σ (MPa) = 3 (HV−10) × α (1)
(Here, σ: Stress (MPa), HV: Vickers hardness, α: Constant (: Constant value within the range of 0.10 or more and less than 0.7))
A constant load test in which the stress σ (MPa) defined in (1) is applied for a predetermined time, or the variable load test is performed with the stress σ (MPa) defined in the formula (1) as a variable load at a fluctuation rate of less than 10 Hz for a predetermined time. Perform as a variable load test to load, after the constant load test or the variable load test,
The amount of diffusible hydrogen is measured with the dummy piece when the test piece is broken within a predetermined time, and with the test piece or the dummy piece when the test piece is not broken, the measured diffusion A delayed fracture resistance evaluation method for a steel material for automobile structural members, wherein the amount of reactive hydrogen is associated with the results of the constant load test or the variable load test to evaluate delayed fracture resistance.
(2) In (1), when the amount of diffusible hydrogen in the test piece or the dummy piece is measured after completion of the constant load test or the variable load test, the electrolytic treatment to the test piece or the dummy piece is performed. Based on the relationship between the elapsed time in the atmospheric atmosphere measured in advance and the amount of change in diffusible hydrogen A method for evaluating delayed fracture resistance of steel for automotive structural members, wherein the measured value of the amount of diffusible hydrogen obtained is corrected.
(3) Automotive steel materials with a Vickers hardness (HV) of 250 or higher, or steel materials for automotive structural members that have a Vickers hardness (HV) of 250 or higher after processing or heat treatment. Material,
A constant load test in which a constant stress σ is applied to the test piece while electrochemically charging diffusible hydrogen to the test piece taken from the material to be evaluated, or less than 10 Hz with the stress σ as a variable load. In carrying out a variable load test that loads at a variable speed, and evaluating the delayed fracture resistance characteristics of steel materials for automobile structural members from the correspondence between the results of the constant load test or variable load test and the amount of diffusible hydrogen,
If the material to be evaluated has a Vickers hardness (HV) of 250 or more, the steel is adjusted as it is or after being processed or heat-treated to have a Vickers hardness (HV) of 250 or more. The test piece and the dummy piece are collected from the evaluation target material. On the other hand, when the evaluation target material has a Vickers hardness (HV) of less than 250, the evaluation target material is processed or heat-treated to obtain a Vickers hardness (HV ) After adjusting the hardness at the time of actual use of 250 or more steel materials, the test piece and the dummy piece are collected, or after collecting the test piece and the dummy piece from the evaluation target material, the test piece and the dummy piece are processed or heat-treated. And adjusted to the hardness of 250 or more steel materials in actual use with a Vickers hardness (HV), to be used for testing,
The dummy piece has the same thickness and the same surface properties as the test piece, a weight of 3.5 g or more, and a surface area of 600 mm 2 or more.
The electrochemical means is configured to pass a current having a predetermined constant current density between a platinum electrode and the test piece or the dummy piece in an electrolytic solution, and 0.05 ppm or more and less than 1 ppm to the test piece or the dummy piece. Electrolytic treatment that can maintain the amount of diffusible hydrogen in a steady state,
The electrolytic treatment is performed under the same conditions for the test piece and the dummy piece, and is performed for a predetermined time in an unloaded state, and after maintaining the same amount of diffusible hydrogen in the test piece and the dummy piece in a steady state, Applying plating to contain diffusible hydrogen on the test piece and the dummy piece,
The constant load test is performed by the following equation (1): σ (MPa) = 3 (HV−10) × α (1)
(Here, σ: Stress (MPa), HV: Vickers hardness, α: Constant (: Constant value within the range of 0.10 or more and less than 0.7))
Fluctuation rate of less than 10 Hz with a constant load test in which the stress σ (MPa) defined in (1) is applied as a constant load for a predetermined time or the variable load test as a variable load with the stress σ (MPa) defined in the above equation (1) As a variable load test to be applied for a predetermined time in the atmosphere, during the constant load test or during the variable load test, the dummy piece that has been plated is subjected to the constant load test or the variable load test. Store in the atmosphere, after the constant load test or the variable load test,
The amount of diffusible hydrogen is measured with the dummy piece when the test piece is broken within a predetermined time, and with the test piece or the dummy piece when the test piece is not broken, the measured diffusion A delayed fracture resistance evaluation method for a steel material for automobile structural members, wherein the amount of reactive hydrogen is associated with the results of the constant load test or the variable load test to evaluate delayed fracture resistance.
(4) In (3), after measuring the constant load test or the variable load test, when measuring the amount of diffusible hydrogen of the test piece or the dummy piece, Based on the relationship between the elapsed time in the air atmosphere measured in advance and the amount of change in diffusible hydrogen, from the elapsed time in the air atmosphere until the starting point was introduced into the analyzer for diffusible hydrogen, the obtained diffusion A method for evaluating delayed fracture resistance of steel for automobile structural members, comprising correcting a measured value of the amount of reactive hydrogen.
(5) In any one of (1) to (4), the delayed fracture resistance evaluation of a steel material for an automobile structural member is characterized in that the predetermined time in the electrolytic treatment in the unloaded state is 1 hour or more. Method.
(6) In any one of (1) to (5), the steel material for an automobile structural member is a thin steel material having a thickness of 4.5 mm or less, and the method for evaluating delayed fracture resistance of the steel material for an automotive structural member .
(7) In any one of (1) to (6), the test piece is a notched test piece, and the delayed fracture resistance evaluation method for steel for automobile structural members.
(8) In any one of (1) to (7), the predetermined time of the constant load test is 50 hours or more, and the predetermined time of the variable load test is 50 hours or more when the fluctuation speed is less than 0.1 Hz, A method for evaluating delayed fracture resistance of steel materials for automobile structural members, characterized in that when the fluctuation speed is 0.1 Hz or more and less than 10 Hz, it is 20 hours or more.
(9) In any one of (1) to (7), the predetermined time of the constant load test is 150 hours or more, the predetermined time of the variable load test is 150 hours or more when the fluctuation speed is less than 0.1 Hz, A method for evaluating delayed fracture resistance of steel materials for automobile structural members, characterized in that when the fluctuation speed is 0.1 Hz or more and less than 10 Hz, it is 60 hours or more.
(10) By mass%, C: 0.05 to 0.45%, Si: 0.1 to 0.6%, Mn: 0.5 to 2.5%, P: 0.030% or less, S: 0.003% or less, sol.Al: 0.008 to 0.1%, N : 0.005% or less, the following formula (2) Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (2)
(Where Ceq: carbon equivalent (%), C, Mn, Si, Ni, Cr, Mo, V: content of each element (mass%))
The carbon equivalent Ceq defined by the formula is included so as to satisfy 0.07 to 0.9, the balance is substantially composed of Fe, and has a Vickers hardness HV of 250 to 600, or a quenching treatment. Or a steel material for automobile structural members having a Vickers hardness HV of 250 or more and 600 or less after quenching and tempering treatment, and collecting test pieces and dummy test pieces from the steel materials for automobile structural members, or The steel material for automobile structural members is subjected to quenching or quenching and tempering treatment to adjust the Vickers hardness HV to 250 or more and 600 or less, preferably the hardness at the time of actual use of the steel material, and then collect test pieces and dummy pieces. The test piece and the dummy piece are characterized in that the test piece does not break when the delayed fracture resistance is evaluated by the delayed fracture resistance evaluation method for steel materials for automobile structural members described in (8). You Delayed automobile structural member for a steel having excellent fracture properties.
(11) In (10), instead of the above composition, in mass%, C: 0.15-0.25%, Si: 0.1-0.55%, Mn: 0.5-2.5%, P: 0.016% or less, S: 0.003% or less , Sol.Al: 0.008 to 0.1%, N: 0.005% or less so that the carbon equivalent Ceq defined by the formula (2) satisfies 0.07 to 0.60, and the balance is substantially composed of Fe. A steel material for automobile structural members, comprising:
(12) In (10) or (11), the composition further comprises C and P in the following formula (3)
P <-(4/50) × C + 0.045 (3)
(Where C, P: content of each element (mass%))
A steel material for automobile structural members, characterized in that the composition is contained so as to satisfy the requirements.
(13) In (10) or (11), the composition further comprises C and P in the following formula (4)
P <− (4/50) × C + 0.033 (4)
(Where C, P: content of each element (mass%))
The test piece does not break when the delayed fracture resistance is evaluated by the delayed fracture resistance evaluation method for steel for automobile structural members according to (9). Steel for structural members.
(14) In any one of (10) to (13), in addition to the above composition, Ti: 0.005 to 0.04% is further expressed by the following formula (5) in mass%.
Ti- (48/14) N> 0 (5)
(Here, Ti, N: content of each element (mass%))
A steel material for automobile structural members, characterized in that the composition is contained so as to satisfy the requirements.
(15) In any one of (10) to (14), in addition to the above composition, the steel material for automobile structural members further includes a composition containing Nb: 0.03% or less by mass%.
(16) In any one of (10) to (15), in addition to the above composition, in addition to mass, Cr: 0.05 to 0.25%, Ni: 0.10% or less, Mo: 0.20% or less, V: 0.10% or less B: A steel material for automotive structural members, characterized in that the composition contains one or more of 0.0001 to 0.005%.
(17) A steel material for an automobile structural member according to any one of (10) to (16), characterized in that, in addition to the above composition, the composition further contains Cu: 0.20% or less by mass%.
(18) A steel material for an automobile structural member according to any one of (10) to (17), characterized in that, in addition to the above composition, the composition further contains Ca: 0.0001 to 0.0030% by mass%.
(19) An automotive structural member formed of the steel material for automotive structural members according to any one of (10) to (18).

本発明によれば、遅れ破壊試験時に試験片に含まれる拡散性水素量を精度良く測定でき、
また、負荷応力や拡散性水素量等の試験条件を所望の範囲に自由に設定でき、とくに自動車足回り部材のような雨や湿気等に晒され、及び、小石等が当たり腐食防止用の皮膜が取れやすく、更に、融雪剤(塩)が散布されるような腐食されやすい環境において使用される環境下における自動車構造部材用鋼材の耐遅れ破壊特性を精度良く評価でき、産業上格段の効果を奏する。また、本発明は、とくに板厚4.5mm以下の薄板、あるいは肉厚4.5mm以下の鋼管、あるいはそれらを用いた構造体を含む薄肉の、高硬度化された、あるいは熱処理により高硬度化されて使用される自動車構造部材用鋼材の耐遅れ破壊特性を精度良く評価できるという効果もある。また、本発明は、材料選定の基準として活用できるという効果もある。
According to the present invention, it is possible to accurately measure the amount of diffusible hydrogen contained in a test piece during a delayed fracture test,
In addition, test conditions such as load stress and diffusible hydrogen content can be freely set within the desired range, especially exposed to rain and moisture such as automobile undercarriage members, and pebbles etc. In addition, it is possible to accurately evaluate the delayed fracture resistance of steel for automobile structural members in an environment where it is easily corroded where a snow melting agent (salt) is sprayed. Play. In addition, the present invention is a thin plate including a thin plate having a thickness of 4.5 mm or less, a steel pipe having a thickness of 4.5 mm or less, or a structure using the same, which has been hardened or hardened by heat treatment. There is also an effect that the delayed fracture resistance of the steel material for automobile structural members used can be evaluated with high accuracy. In addition, the present invention has an effect that it can be utilized as a standard for material selection.

また、本発明によれば、耐遅れ破壊特性に優れた自動車構造部材用鋼材を安価に提供でき、産業上格段の効果を奏する。   Moreover, according to this invention, the steel material for motor vehicle structural members excellent in the delayed fracture resistance can be provided at low cost, and there is a remarkable industrial effect.

まず、本発明の耐遅れ破壊特性評価方法について説明する。   First, the delayed fracture resistance evaluation method of the present invention will be described.

本発明では、ビッカース硬さ(HV)で250以上、好ましくは600以下を有する自動車構造部材用鋼材又は加工または熱処理を施されて後にビッカース硬さ(HV)で250以上、好ましくは600以下の硬さを有するようになった自動車構造部材用鋼材を評価対象材とする。本発明は、とくに板厚あるいは肉厚が4.5mm以下の薄肉鋼材の耐遅れ破壊特性評価に有効である。   In the present invention, a steel material for automobile structural members having a Vickers hardness (HV) of 250 or more, preferably 600 or less, or a Vickers hardness (HV) of 250 or more, preferably 600 or less after being processed or heat-treated. The steel material for automobile structural members that has a certain thickness is used as a material to be evaluated. The present invention is particularly effective for evaluating delayed fracture resistance of thin steel materials having a thickness of 4.5 mm or less.

評価対象材の硬さをビッカース硬さ(HV)で250以上に限定したのは、ビッカース硬さHVで250以上で耐遅れ破壊特性が問題とされ、ビッカース硬さHVで250未満の場合には、耐遅れ破壊特性は全く考慮する必要がないためである。なお、評価対象材のビッカース硬さHVの上限は600とすることが好ましい。ビッカース硬さHVで600を超えると、耐遅れ破壊特性が劣化しすぎて、さらに感度のよい耐遅れ破壊特性評価方法を必要とする。なお、ここでいう「熱処理」は、焼入れ処理または焼入れ焼戻処理を意味し、焼入れ処理は、通常、オーステナイト(γ)域に加熱したのち水冷する処理をいう。   The reason why the hardness of the material to be evaluated is limited to 250 or more in the Vickers hardness (HV) is that the delayed fracture resistance is a problem in the case of the Vickers hardness HV of 250 or more. This is because there is no need to consider the delayed fracture resistance at all. The upper limit of the Vickers hardness HV of the material to be evaluated is preferably 600. If the Vickers hardness exceeds 600, the delayed fracture resistance deteriorates too much, and a more sensitive delayed fracture resistance evaluation method is required. Here, “heat treatment” means a quenching treatment or a quenching and tempering treatment, and the quenching treatment usually means a treatment of heating to an austenite (γ) region and then cooling with water.

なお、ビッカース硬さHVの測定は、JIS規定に準拠して行なえばよいが、誤差の観点から10kg重(98.07N)の荷重で測定することが好ましい。硬さ測定は、鋼材断面を鏡面研磨した後、板厚1/4〜1/2の範囲で板厚方向にランダムに10点以上測定し、平均した値とすることが好ましい。   The Vickers hardness HV may be measured according to JIS regulations, but it is preferable to measure with a load of 10 kg weight (98.07 N) from the viewpoint of error. The hardness measurement is preferably carried out by mirror-polishing the steel material cross section, then measuring 10 or more points randomly in the thickness direction in the thickness range of 1/4 to 1/2, and obtaining an average value.

本発明の耐遅れ破壊特性評価方法では、ビッカース硬さ(HV)が250以上の実際に鋼材が使用される状態の硬さ(鋼材実使用時の硬さ)にされた鋼材から試験片およびダミー片を採取する。つまり、すでにビッカース硬さHVで250以上に高硬度化された鋼材がそのままの状態で使用される場合には、そのままの状態から、また加工または熱処理を施されてHV250以上になった状態で使用される場合には、加工または熱処理を施してHV250以上の鋼材実使用時の硬さに調整したのち、試験片およびダミー片を採取する。なお、評価対象材から試験片およびダミー片を採取したのち試験片およびダミー片に加工又は熱処理を施してHV250以上の鋼材実使用時の硬さに調整してもよい。加工歪等が導入される場合には、加工歪を導入した状態から採取してもよい。   In the method for evaluating delayed fracture resistance according to the present invention, a test piece and a dummy are obtained from a steel material having a Vickers hardness (HV) of 250 or more in a state where the steel material is actually used (hardness in actual use). Collect a piece. In other words, when a steel material that has already been hardened to 250 or higher with a Vickers hardness of HV is used as it is, it is used as it is or after being processed or heat-treated to become HV250 or higher. In such a case, a test piece and a dummy piece are collected after adjusting the hardness at the time of actual use of a steel material of HV250 or higher by processing or heat treatment. In addition, after collecting a test piece and a dummy piece from the material to be evaluated, the test piece and the dummy piece may be processed or heat-treated to adjust the hardness at the time of actual use of a steel material of HV250 or higher. When processing strain or the like is introduced, the processing strain may be collected from the introduced state.

本発明で対象とする自動車構造部材のうち、とくに自動車足回り部材は、雨天や、自動車走行時に小石が跳ねて塗装膜が傷ついたり、あるいは冬期には“塩”等の融雪剤が撤かれ、腐食が発生し水素が侵入するような環境下で使用される。しかし、自動車構造部材が使用される環境は、高力ボルトやPC鋼棒のように、引張強さ(TS)の70〜90%という高い応力が常時負荷されるような環境ではなく、これより低い応力が負荷される環境である。また、自動車構造部材が使用される環境は、ラインパイプがサワー環境下で使用される際に起こるような1〜20ppm程度の拡散性水素が侵入することはない。本発明の評価方法では、このような使用環境下での自動車構造部材用鋼材の耐遅れ破壊特性を評価する。なお、耐遅れ破壊特性評価に用いる試験は、定荷重試験又は変動荷重試験とする。
(1)試験片およびダミー片の形状
本発明では、評価対象の自動車構造部材用鋼材から、試験片とダミー片とを採取する。組成を含め製造条件が同じ、あるいは熱処理条件が同じであれば、同一材料と見なして構わないが、試験片とダミー片とはできるだけ隣接した個所から採取することが好ましい。
試験片は、主として定荷重試験又は変動荷重試験を実施するために用いる。一方、ダミー片は拡散性水素の分析用とする。
Among the automobile structural members that are the subject of the present invention, in particular, the automobile undercarriage member is rained, or the paint film is damaged by pebbles splashing when the automobile is running, or the snow melting agent such as “salt” is removed in winter, Used in an environment where corrosion occurs and hydrogen enters. However, the environment in which automobile structural members are used is not an environment where high stress of 70 to 90% of tensile strength (TS) is constantly applied, such as high-strength bolts and PC steel bars. It is an environment where low stress is applied. In addition, in an environment where the automobile structural member is used, diffusible hydrogen of about 1 to 20 ppm, which occurs when the line pipe is used in a sour environment, does not enter. In the evaluation method of the present invention, the delayed fracture resistance of the steel material for automobile structural members under such a use environment is evaluated. In addition, the test used for delayed fracture resistance evaluation is a constant load test or a variable load test.
(1) Shape of a test piece and a dummy piece In this invention, a test piece and a dummy piece are extract | collected from the steel material for motor vehicle structural members of evaluation object. If the manufacturing conditions including the composition are the same or the heat treatment conditions are the same, they may be regarded as the same material. However, it is preferable that the test piece and the dummy piece are collected as close as possible.
The test piece is mainly used for performing a constant load test or a variable load test. On the other hand, the dummy piece is used for analysis of diffusible hydrogen.

使用する試験片の寸法形状は、本発明ではとくに限定されない。本発明は、板厚4.5mm以下の板状試験片又は管材から切出した弧状試験片を含む、薄板試験片を用いる場合に特に有効となる。試験片は、砥粒番号#400以上の研削材を用いて表面仕上を行なうことが表面状態の影響を少なくし、水素チャージ量のバラツキを少なくするという観点から好ましい。試験片には、平行部またはくびれ部を形成することが好ましい。また、試験片には試験目的に応じ、種々の切欠きを付与することができる。なお、使用環境下では、腐食が発生し凹部が存在するため、実際の凹部に模擬した切欠きを付与することが好ましく、応力集中係数0.5以上の切欠きとすることが望ましい。変動速度が10Hz未満の変動荷重試験の場合には、切欠きを付与する必要はないが、定荷重試験では、状況に応じ切欠きを付与してもよい。
なお、拡散性水素の侵入・放出条件を試験片と同じとするために、ダミー片の肉厚(板厚)及び表面性状は、試験片のそれと同一にする。本発明では、電流密度で拡散性水素量を制御するため、肉厚(板厚)以外のダミー片の寸法形状は試験片と同じにする必要はない。また、拡散性水素の分析精度の観点からは、ダミー片の重量は重いほうが好ましい。本発明では、ダミー片の肉厚を試験片のそれと同一にする必要があるため、表面積を広く、重量を重くすることが好ましい。このようなことから、ダミー片は、重量3.5g以上、望ましくは6g以上、表面積600 mm以上、望ましくは1000mm以上とすることが好ましい。ダミー片の表面積、重量が上記した好適範囲を外れると、ダミー片に含まれる拡散性水素量自体が少なく、水素の分析測定精度が低下するということに加えて、拡散性水素量を評価する際、ダミー片を水素分析装置にセットするまでの間に漏れ(抜け)出す量が多く、測定された水素量への信頼性が低下する。
試験片、ダミー片の寸法形状の一例を図5に示す。なお、図5(a)の試験片は切欠き付き試験片(R=0.5mm、応力集中係数:約2.4)の例である。
(2)電解処理
上記した試験片及びダミー片に拡散性水素をチャージする。拡散性水素のチャージは、本発明では、電気化学的手段である電解処理を用いて行なう。拡散性水素のチャージは、酸等に浸漬することによっても可能であるが、酸の濃度を変化しても、所望量の拡散性水素を安定して精度よくチャージすることができない。このため、本発明では、拡散性水素のチャージは、電解液(種類、濃度)の選択と電流密度の変化により所望の拡散性水素量を精度よくチャージできる電解処理とした。
The size and shape of the test piece to be used is not particularly limited in the present invention. The present invention is particularly effective when a thin plate test piece including a plate test piece having a thickness of 4.5 mm or less or an arc-shaped test piece cut out from a tube material is used. The test piece is preferably surface-finished using an abrasive having an abrasive grain number of # 400 or more from the viewpoint of reducing the influence of the surface state and reducing variation in the hydrogen charge amount. The test piece is preferably formed with a parallel portion or a constricted portion. Moreover, various notches can be given to a test piece according to the test purpose. It should be noted that, since corrosion occurs and there are recesses in the use environment, it is preferable to provide a notch that simulates the actual recess, and it is preferable that the notch has a stress concentration factor of 0.5 or more. In the case of a fluctuating load test with a fluctuating speed of less than 10 Hz, it is not necessary to provide a notch, but in a constant load test, a notch may be provided depending on the situation.
In order to make the intrusion / release conditions of diffusible hydrogen the same as the test piece, the thickness (plate thickness) and surface properties of the dummy piece are made the same as those of the test piece. In the present invention, since the amount of diffusible hydrogen is controlled by the current density, the dimensional shape of the dummy pieces other than the thickness (plate thickness) need not be the same as that of the test piece. Further, from the viewpoint of analysis accuracy of diffusible hydrogen, it is preferable that the weight of the dummy piece is heavier. In the present invention, since it is necessary to make the thickness of the dummy piece the same as that of the test piece, it is preferable to increase the surface area and the weight. Therefore, it is preferable that the dummy piece has a weight of 3.5 g or more, desirably 6 g or more, a surface area of 600 mm 2 or more, desirably 1000 mm 2 or more. When the surface area and weight of the dummy piece are outside the above-mentioned preferred ranges, the amount of diffusible hydrogen contained in the dummy piece itself is small, and the accuracy of hydrogen analysis and measurement is lowered. The amount of leakage (missing) before the dummy piece is set in the hydrogen analyzer is large, and the reliability of the measured hydrogen amount is lowered.
An example of the dimensional shape of the test piece and the dummy piece is shown in FIG. The test piece in FIG. 5A is an example of a notched test piece (R = 0.5 mm, stress concentration factor: about 2.4).
(2) Electrolytic treatment The test piece and the dummy piece are charged with diffusible hydrogen. In the present invention, the diffusible hydrogen is charged by electrolytic treatment which is electrochemical means. Although the diffusible hydrogen can be charged by immersing it in an acid or the like, a desired amount of diffusible hydrogen cannot be stably and accurately charged even if the acid concentration is changed. For this reason, in the present invention, the diffusible hydrogen is charged by electrolytic treatment that can charge a desired amount of diffusible hydrogen with high accuracy by selecting the electrolyte (type and concentration) and changing the current density.

本発明で拡散性水素のチャージに用いる電解処理では、例えば、図2、図3に示すように、電解槽7あるいは電解セル3を用いて、電解質溶液2中で、試験片1(ダミー片6)を陰極側、白金電極4を陽極側として、試験片1又はダミー片6と白金電極4との間に予め定めた一定の電流密度で電流を流し、試験片1(ダミー片6)に拡散性水素をチャージする。電流密度を一定とすることにより、試験片(ダミー片)に導入される水素量と、導入された水素が試験片(ダミー片)から外に出ようとする量とが釣り合い定常状態となり、試験片(ダミー片)中に一定量の拡散性水素を保持できる。なお、拡散性水素をチャージしている間には、電解質溶液2には窒素あるいはアルゴン等の不活性ガスを吹込み、脱気することが好ましい。これは、電解質溶液中の酸素が試験片又はダミー片に錆を発生させ、チャージする水素量の制御ができなくなる場合を防ぐためである。   In the electrolytic treatment used for charging diffusible hydrogen in the present invention, for example, as shown in FIGS. 2 and 3, the test piece 1 (dummy piece 6) is used in the electrolyte solution 2 using an electrolytic cell 7 or an electrolytic cell 3. ) On the cathode side and the platinum electrode 4 on the anode side, a current is passed between the test piece 1 or dummy piece 6 and the platinum electrode 4 at a predetermined constant current density, and diffused to the test piece 1 (dummy piece 6). Charging hydrogen. By making the current density constant, the amount of hydrogen introduced into the test piece (dummy piece) and the amount of hydrogen introduced outside the test piece (dummy piece) are balanced to achieve a steady state. A certain amount of diffusible hydrogen can be held in the piece (dummy piece). In addition, while charging diffusible hydrogen, the electrolyte solution 2 is preferably deaerated by blowing an inert gas such as nitrogen or argon. This is to prevent a case where oxygen in the electrolyte solution causes rust on the test piece or dummy piece and the amount of hydrogen to be charged cannot be controlled.

本発明では、まず、試験片(ダミー片)に導入される拡散性水素量と電流密度との関係を予め求めておき、この関係から求めた一定の電流密度で電流を流す電解処理を行う。   In the present invention, first, a relationship between the amount of diffusible hydrogen introduced into the test piece (dummy piece) and the current density is obtained in advance, and electrolytic treatment is performed in which a current is supplied at a constant current density obtained from this relationship.

電解処理で導入される拡散性水素量は、鋼材の種類、電解質の種類及び濃度、電流密度、電解時間、電解液の温度等、により変化する。しかし、本発明では、これらパラメータのうち、電解質の種類、濃度、電流密度をそれぞれ変化させて、導入する拡散性水素量を調整することが好ましい。電解液の温度は変えないことが好ましい。   The amount of diffusible hydrogen introduced by the electrolytic treatment varies depending on the type of steel material, the type and concentration of the electrolyte, the current density, the electrolysis time, the temperature of the electrolytic solution, and the like. However, in the present invention, it is preferable to adjust the amount of diffusible hydrogen to be introduced by changing the type, concentration, and current density of the electrolyte among these parameters. It is preferable that the temperature of the electrolytic solution is not changed.

というのは、電解質溶液の温度は、室温近傍では数℃変化しても導入される拡散性水素量への影響が少なく、一方、70〜80℃という高温にすると電解質溶液の液面の低下が著しく、さらに保温手段や液循環手段等を必要とするなど装置が大きくなリ過ぎるという問題がある。また、本発明では、水素の導入、放出が釣り合った平衡状態で耐遅れ破壊特性の評価を行なうため、ある一定時間以上の電解時間を必要とする。
導入される拡散性水素量は、電解質の種類および濃度、温度、電流密度を一定としても、鋼材の種類(組成)、硬さ、熱処理等によって変化するため、本発明では、予め、鋼材(部材)ごとに、ダミー片を用いて、電解質の種類および濃度、温度を一定にして、電流密度を変化して導入される拡散性水素をそれぞれ分析し、図6に示すような電流密度と導入される拡散性水素量との関係を求めておく。この関係を使用して、所望の拡散性水素量を試験片(およびダミー片)に導入するための電流密度を決定し、電解処理を行う。ただし、耐遅れ破壊特性の正確な評価のためには、試験後、必ず、拡散性水素を測定しておく必要がある。
This is because the temperature of the electrolyte solution has little influence on the amount of diffusible hydrogen introduced even if it changes by several degrees Celsius near room temperature. On the other hand, when the temperature is raised to 70 to 80 degrees Celsius, the liquid level of the electrolyte solution decreases. Remarkably, there is a problem that the apparatus is too large, such as requiring a heat retaining means and a liquid circulating means. In the present invention, since the delayed fracture resistance is evaluated in an equilibrium state where the introduction and release of hydrogen are balanced, an electrolysis time of a certain time or more is required.
The amount of diffusible hydrogen to be introduced varies depending on the type (composition), hardness, heat treatment, etc. of the steel material even if the electrolyte type and concentration, temperature, and current density are constant. ), Using a dummy piece, analyzing the diffusible hydrogen introduced by changing the current density while keeping the type, concentration and temperature of the electrolyte constant, and with the current density as shown in FIG. The relationship with the amount of diffusible hydrogen is determined. Using this relationship, the current density for introducing the desired amount of diffusible hydrogen into the test piece (and the dummy piece) is determined, and the electrolytic treatment is performed. However, diffusible hydrogen must be measured after the test for accurate evaluation of delayed fracture resistance.

電解時間は、試験片(ダミー片)中の拡散性水素量が一定となる定常状態となるのに必要な一定時間とすることが好ましく、板厚:4.5mm以下の板状試験片であれば、一定時間は、1時間以上、好ましくは15時間以上、より好ましくは20時間程度である。   The electrolysis time is preferably a certain time required for a steady state in which the amount of diffusible hydrogen in the test piece (dummy piece) is constant, and if the plate thickness is 4.5 mm or less The fixed time is 1 hour or longer, preferably 15 hours or longer, more preferably about 20 hours.

また、電解質溶液中に投入する電解質は、3%NaCl+0.3g/l NHSCN、0.5%HSO+1.4g/lチオ尿素等のうちから選択し電流密度を変化させることにより、導入する拡散性水素量を0.05ppm以上、1ppm未満の範囲内の所望の拡散性水素量に調整する。なお、電解質は予め窒素やアルゴン等で脱気しておくことが、試験片の錆発生防止、所望の導入拡散性水素量を制御しつつ水素チャージを行なうという観点から好ましい。脱気は電解処理中も行うことがより好ましい。 The electrolyte to be introduced into the electrolyte solution is selected from 3% NaCl + 0.3 g / l NH 4 SCN, 0.5% H 2 SO 4 + 1.4 g / l thiourea, etc., and introduced by changing the current density. The amount of diffusible hydrogen to be adjusted is adjusted to a desired diffusible hydrogen amount within a range of 0.05 ppm or more and less than 1 ppm. In addition, it is preferable to deaerate the electrolyte in advance with nitrogen, argon, or the like from the viewpoints of preventing rust generation of the test piece and performing hydrogen charging while controlling a desired amount of introduced diffusible hydrogen. More preferably, the deaeration is performed during the electrolytic treatment.

導入する拡散性水素量は、本発明が対象とする自動車構造部材用鋼材が晒される実使用環境に則して決定した。本発明が評価対象とする自動車構造部材、とくに足回り部材では、自動車の走行中に生じる小石のまき上げによる衝突等により表面塗装が剥離したり、融雪剤(塩)に起因する錆の発生により、腐食が発生し、水素が多量に侵入することが考えられる。しかし、ラインパイプ等のサワー環境で侵入する水素量1〜20ppm程度よりはかなり少ない。そこで、非常に過酷な状況を想定しても、鋼材に侵入する水素量は1ppm未満であると考え、導入する拡散性水素量の上限を1ppm未満とした。一方、自動車構造部材の使用環境によっては、鋼材に侵入する拡散性水素量は少ない場合があり、さらに電気化学的手段で拡散性水素を導入しガスクロマトグラフィ装置等で分析するときの誤差を考慮して拡散性水素のチャージ量として認識できる下限が0.05ppmであるため、本発明では0.05ppmを導入する拡散性水素量の下限とした。   The amount of diffusible hydrogen to be introduced was determined in accordance with the actual use environment to which the steel material for automobile structural members targeted by the present invention is exposed. In automobile structural members, particularly suspension members that are evaluated by the present invention, surface coating may be peeled off due to collisions caused by rolling up pebbles that occur while the automobile is running, or rust is generated due to snow melting agent (salt). Corrosion occurs, and a large amount of hydrogen may enter. However, the amount of hydrogen entering in a sour environment such as a line pipe is considerably less than about 1 to 20 ppm. Therefore, even if a very severe situation is assumed, the amount of hydrogen entering the steel material is considered to be less than 1 ppm, and the upper limit of the amount of diffusible hydrogen to be introduced is set to less than 1 ppm. On the other hand, depending on the environment in which automobile structural members are used, the amount of diffusible hydrogen entering the steel material may be small. In addition, taking into account errors when diffusible hydrogen is introduced by electrochemical means and analyzed by a gas chromatography device, etc. Therefore, the lower limit that can be recognized as the charge amount of diffusible hydrogen is 0.05 ppm. Therefore, in the present invention, the lower limit of the amount of diffusible hydrogen to be introduced is 0.05 ppm.

本発明では、上記したように、予め求めた拡散性水素量と電流密度との関係から求めた一定の電流密度で行なう電解処理を、試験片とダミー片とに同一条件で定常状態になるまで無負荷状態で一定時間施し、試験片とダミー片とに同一量の拡散性水素を導入する。
(3)定荷重試験又は変動荷重試験
拡散性水素を導入された試験片は、ついで定荷重試験又は変動荷重試験に供される。本発明では、定荷重試験又は変動荷重試験は、電解処理を継続し、試験片及びダミー片への拡散性水素の導入を継続しながら行なうか、あるいは電解処理後に試験片及びダミー片にめっき膜を形成するめっき処理を施し拡散性水素の封じ込めを行ったのち、大気雰囲気中で行なう。
(イ)拡散性水素の導入を継続しながら試験する場合
試験片1の平行部あるいはくびれ部に、図3(a)、(b)に示すように試験片1が電解質溶液2中に浸漬可能な電解セル3をセットする。電解セル3は水素チャージの様子や試験時に試験片が見えるようにガラス製とすることが好ましい。電解セル3には、セット後に電解質溶液2が注入され、さらに白金電極4が電解質溶液2に浸漬して配置される。なお、電解セル3の試験片1への取り付けに際しては、電解溶液が漏れないように十分なシール(例えばゴム栓11)を施すことは言うまでもない。なお、試験片の錆防止のために、電解質溶液2には窒素等の脱気用ガスを1時間以上脱気ガス吹き込み用パイプ5から吹き込み続けることが好ましい。電解質溶液を1時間以上脱気したのち、所定の条件で電解処理を施す。なお、電解セルは図3に示すような上部開放型(a)、あるいは密閉型(b)としてもよく、またこれらに限定されることはない。
In the present invention, as described above, the electrolytic treatment performed at a constant current density obtained from the relationship between the amount of diffusible hydrogen obtained in advance and the current density is performed on the test piece and the dummy piece until the steady state is obtained under the same conditions. It is applied for a certain period of time without load, and the same amount of diffusible hydrogen is introduced into the test piece and the dummy piece.
(3) Constant load test or variable load test The test piece into which diffusible hydrogen is introduced is then subjected to a constant load test or a variable load test. In the present invention, the constant load test or the variable load test is performed while continuing the electrolytic treatment and continuously introducing diffusible hydrogen into the test piece and the dummy piece, or after the electrolytic treatment, the plating film is applied to the test piece and the dummy piece. After carrying out plating treatment to form diffusible hydrogen and confining diffusible hydrogen, it is carried out in an air atmosphere.
(B) When testing while continuing introduction of diffusible hydrogen The test piece 1 can be immersed in the electrolyte solution 2 in the parallel part or constricted part of the test piece 1 as shown in FIGS. A simple electrolysis cell 3 is set. The electrolysis cell 3 is preferably made of glass so that the state of hydrogen charging and the test piece can be seen during the test. In the electrolytic cell 3, the electrolyte solution 2 is injected after setting, and the platinum electrode 4 is further immersed and disposed in the electrolyte solution 2. Needless to say, when the electrolytic cell 3 is attached to the test piece 1, a sufficient seal (for example, a rubber plug 11) is provided so that the electrolytic solution does not leak. In order to prevent rust of the test piece, it is preferable to continuously blow a degassing gas such as nitrogen from the degassing gas blowing pipe 5 into the electrolyte solution 2 for one hour or more. After the electrolyte solution is degassed for 1 hour or longer, electrolytic treatment is performed under predetermined conditions. The electrolytic cell may be an upper open type (a) or a closed type (b) as shown in FIG. 3, and is not limited thereto.

電解処理は、試験片1(ダミー片6)を陰極側、白金電極4を陽極側として、電源8から電流を流す。電解処理条件は、試験片とダミー片とで同一の条件とし、まず、図1(a)に示すように、無負荷の状態で一定時間行い、試験片及びダミー片中の拡散性水素量を定常状態に保持する。無負荷の状態で行なう電解処理の一定時間は、1時間以上、好ましくは15時間以上、より好ましくは20時間程度とする。無負荷状態での電解処理が1時間未満では、水素の侵入と漏れが釣り合う「均衡状態」になっておらず、試験片の肉厚方向で拡散性水素の分布が均一とならず、拡散性水素量が低い状態と同じとなり所望の拡散性水素量での試験結果が得られない。一方、無負荷の状態で行なう電解処理を20時間を超えて長くしても、定常状態となり、効果は飽和する。また、電解質溶液の上面側にフタ12またはゴム栓11を置き、脱気に伴う、電解液の飛沫を防止させる。   In the electrolytic treatment, a current is supplied from a power source 8 with the test piece 1 (dummy piece 6) on the cathode side and the platinum electrode 4 on the anode side. The electrolytic treatment conditions are the same for the test piece and the dummy piece. First, as shown in FIG. 1A, the test piece and the dummy piece are subjected to a certain period of time under no load, and the amount of diffusible hydrogen in the test piece and the dummy piece is determined. Hold in steady state. The fixed time for the electrolytic treatment performed in an unloaded state is 1 hour or longer, preferably 15 hours or longer, more preferably about 20 hours. If the electrolytic treatment in an unloaded state is less than 1 hour, it is not in an “equilibrium state” in which hydrogen intrusion and leakage are balanced, and the distribution of diffusible hydrogen does not become uniform in the thickness direction of the test piece. The result is the same as when the amount of hydrogen is low, and a test result with a desired amount of diffusible hydrogen cannot be obtained. On the other hand, even if the electrolytic treatment performed in an unloaded state is prolonged for more than 20 hours, the steady state is obtained and the effect is saturated. Further, a lid 12 or a rubber plug 11 is placed on the upper surface side of the electrolyte solution to prevent the electrolyte from splashing due to deaeration.

上記した無負荷の状態での電解処理後、図1(b)に示すように、試験片1及びダミー片6とも、電解処理を継続したまま、試験片1を定荷重試験機10にセットし定荷重試験又は変動荷重試験を行なう。図1(b)に示す例は、定荷重試験の場合である。   After the electrolytic treatment in the above-described unloaded state, as shown in FIG. 1B, both the test piece 1 and the dummy piece 6 are set in the constant load tester 10 while the electrolytic treatment is continued. Conduct a constant load test or a variable load test. The example shown in FIG. 1B is a case of a constant load test.

ダミー片6は、図1(a)、図2に示すように試験片とは別な電解槽7で、電解質溶液2中に浸漬して試験片1と同じ条件で電解処理し、試験片と同量の拡散性水素を導入する。なお、電解条件は試験片とダミー片との場合で全く同一としてもよいが、図1に示すような試験片の電解処理では、試験片の平行部(くびれ部)のみ電解質溶液と接触し、つかみ部では電解質溶液と接触していないため、つかみ部から僅かながら拡散性水素の放出のみが生じる。しかし、定荷重試験や変動荷重試験時には、平行部や最狭部分に応力が集中するため、その部分が所望の拡散性水素量になっていればよい。ダミー片で確立した水素チャージ条件をそのまま利用しても平行部や最狭部分ではダミー片と同じとなるため、ほとんどの場合、ダミー片で確立した水素チャージ条件をそのまま利用できる。しかし、より一層正確を期すには試験片のうち電解質に浸漬していない部分からの水素の漏れを考慮して水素チャージ条件を設定してもよいが、水素の出入りの釣り合いは、電解質の浸漬部分で定常状態になるので、その漏れ量は僅かなレベルに留まっている。   As shown in FIGS. 1A and 2, the dummy piece 6 is immersed in the electrolyte solution 2 in an electrolytic tank 7 different from the test piece, and is subjected to electrolytic treatment under the same conditions as the test piece 1. Introduce the same amount of diffusible hydrogen. In addition, although the electrolysis conditions may be exactly the same in the case of the test piece and the dummy piece, in the electrolysis treatment of the test piece as shown in FIG. 1, only the parallel part (necked part) of the test piece is in contact with the electrolyte solution, Since the grip portion is not in contact with the electrolyte solution, only slight diffusion of diffusible hydrogen occurs from the grip portion. However, since stress concentrates on the parallel part and the narrowest part in the constant load test and the variable load test, it is sufficient that the part has a desired amount of diffusible hydrogen. Even if the hydrogen charge condition established with the dummy piece is used as it is, it becomes the same as the dummy piece in the parallel part and the narrowest part, so in most cases, the hydrogen charge condition established with the dummy piece can be used as it is. However, for further accuracy, the hydrogen charge condition may be set in consideration of hydrogen leakage from the portion of the test piece that is not immersed in the electrolyte. Since it becomes a steady state in the part, the amount of leakage remains at a slight level.

なお、定荷重試験又は変動荷重試験の方法はとくに限定する必要はなく、通常の定荷重試験機、疲労試験機を利用することができる。例えば、図1(b)に示す片持ち梁式の定荷重試験機10に試験片1をセットし、錘10c、支点10a、梁10bを介し一定荷重を負荷する定荷重試験としても、あるいはサーボパルサー式試験機で一定荷重を負荷する試験でもよい。また、サーボパルサー式試験機に試験片1をセットし、所定の変動速度で変動荷重を繰返し負荷する変動荷重試験としてもよい。   The method for the constant load test or the variable load test is not particularly limited, and a normal constant load tester or a fatigue tester can be used. For example, the test piece 1 is set on the cantilever type constant load testing machine 10 shown in FIG. 1B, and a constant load test is performed by applying a constant load via the weight 10c, the fulcrum 10a, and the beam 10b, or a servo. It may be a test in which a constant load is applied by a pulsar type testing machine. Alternatively, the test piece 1 may be set on a servo pulsar tester and a variable load test may be performed in which a variable load is repeatedly applied at a predetermined fluctuation speed.

試験終了後、試験片が破断した場合にはダミー片で、試験片が破断しなかった場合は試験片又はダミー片で、拡散性水素量を測定する。破断した試験片で拡散性水素の分析を行なうと、破断時から水素が試験片外に漏れ、試験時の状態から変化し正確な拡散性水素量を評価できなくなるからである。
(ロ)拡散性水素の封じ込めを行なって大気雰囲気中で試験する場合
試験片及びダミー片を電解槽中に浸漬して、(2)項で示したように同一の電解処理条件で同一量の拡散性水素を導入する。電解処理に際しては、予め求めた拡散性水素と電流密度の関係から所望の拡散性水素が導入できる電流密度で、試験片及びダミー片中の拡散性水素が定常状態に達するまで、1時間以上、好ましくは15時間、さらに好ましくは20時間以上行なう。
After the test, the amount of diffusible hydrogen is measured with a dummy piece when the test piece is broken, and with the test piece or dummy piece when the test piece is not broken. This is because if diffusible hydrogen is analyzed with a fractured test piece, hydrogen leaks out of the test piece from the time of rupture and changes from the state at the time of the test, making it impossible to evaluate the exact amount of diffusible hydrogen.
(B) When testing in an air atmosphere with diffusible hydrogen contained, immerse the test piece and dummy piece in an electrolytic cell, and use the same amount under the same electrolytic treatment conditions as shown in (2). Introduce diffusible hydrogen. In the electrolytic treatment, at a current density at which a desired diffusible hydrogen can be introduced from the relationship between diffusible hydrogen and current density obtained in advance, one hour or more until the diffusible hydrogen in the test piece and the dummy piece reaches a steady state, Preferably it is performed for 15 hours, more preferably 20 hours or more.

電解処理終了後、試験片及びダミー片表面にめっき処理を施し、拡散性水素を封じ込め、放出を防止するためのめっき膜を形成する。めっき膜は、Cdめっき、Znめっき等、水素の拡散係数が小さく、かつ孔のない緻密な膜構造を有する材料を選択することが好ましい。めっき処理は、電気めっき処理によって行なう。めっき処理に際しては、導入された拡散性水素が試験片外へ放出されるのを極力防止しつつ、均一で緻密なめっき膜を形成するために、めっき処理作業はできるかぎり短時間で完了すること、緻密なめっき膜の形成を促進するため、めっき処理前に#1000の研磨紙で素早く研磨すること、などの注意が必要となる。なお、形成するめっき膜の膜厚は50〜70μm程度とすることが好ましい。   After the electrolytic treatment is completed, the surface of the test piece and the dummy piece is plated to contain diffusible hydrogen and form a plating film for preventing release. As the plating film, it is preferable to select a material having a dense film structure with a small hydrogen diffusion coefficient and no holes, such as Cd plating or Zn plating. The plating process is performed by an electroplating process. During the plating process, the plating process should be completed in as short a time as possible in order to form a uniform and dense plating film while preventing the introduced diffusible hydrogen from being released outside the specimen as much as possible. In order to promote the formation of a dense plating film, care must be taken such as polishing quickly with # 1000 polishing paper before plating. In addition, it is preferable that the film thickness of the plating film to be formed is about 50 to 70 μm.

めっき膜を形成された試験片は、定荷重試験機又は変動荷重試験機にセットされ、大気雰囲気中で荷重を負荷され、試験に供される。なお、試験中、ダミー片は試験片と同じ大気雰囲気中に放置される。   The test piece on which the plating film is formed is set in a constant load tester or a variable load tester, and a load is applied in an air atmosphere to be used for the test. During the test, the dummy piece is left in the same air atmosphere as the test piece.

試験終了後、(イ)と同様に、試験片が破断した場合にはダミー片で、試験片が破断しなかった場合は試験片又はダミー片で、拡散性水素量を測定する。
(ハ)定荷重試験又は変動荷重試験の応力負荷条件
本発明で耐遅れ破壊特性を評価するために実施する定荷重試験は、試験片に定荷重として一定の応力σを負荷する試験とし、試験片に負荷する応力σは、次(1)式
σ(MPa)=3(HV−10)×α ………(1)
(ここで、σ:応力(MPa)、HV:ビッカース硬さ、α:定数(:0.1以上0.7未満の範囲内の一定値)
で定義される応力σとする。
After the test, the amount of diffusible hydrogen is measured with a dummy piece when the test piece is broken, and with the test piece or dummy piece when the test piece is not broken, as in (a).
(C) Stress load conditions of constant load test or variable load test The constant load test performed to evaluate delayed fracture resistance in the present invention is a test in which a constant stress σ is applied as a constant load to the test piece. The stress σ applied to the piece is expressed by the following equation (1) σ (MPa) = 3 (HV−10) × α (1)
(Where, σ: stress (MPa), HV: Vickers hardness, α: constant (: constant value in the range of 0.1 to less than 0.7))
The stress σ defined by

また、本発明で耐水素脆化特性を評価するために実施する変動荷重試験は、試験片に負荷応力として、上限応力σと下限応力を、10Hz未満の変動速度で所定時間、繰返し負荷する試験とし、負荷する上限応力σを前記(1)式で定義される応力σとする。なお、試験片の座屈を防止するため、下限応力は0MPa以上の引張応力(15MPa程度)とすることが好ましい。なお、水素の拡散定数と、負荷応力の変動速度を考慮すると、変動速度が10Hz以上と速すぎた場合には、拡散性水素の鋼材特性への悪影響、すなわち耐遅れ破壊特性の低下が顕在化しない。これは、水素の拡散と遅れ破壊挙動が連動しないためと考えられ、負荷応力の変動速度を10Hz未満に限定した。   In addition, the variable load test performed to evaluate the hydrogen embrittlement resistance property according to the present invention is a test in which an upper limit stress σ and a lower limit stress are repeatedly applied to a test piece for a predetermined time at a fluctuation rate of less than 10 Hz as a load stress. The upper limit stress σ to be applied is the stress σ defined by the above equation (1). In order to prevent the specimen from buckling, the lower limit stress is preferably set to a tensile stress of about 0 MPa or more (about 15 MPa). Considering the diffusion constant of hydrogen and the rate of change of load stress, if the rate of change is too fast, 10 Hz or more, the adverse effect of diffusible hydrogen on the steel material properties, that is, the deterioration of delayed fracture resistance, becomes apparent. do not do. This is thought to be because the diffusion of hydrogen and delayed fracture behavior are not linked, and the fluctuation rate of the load stress was limited to less than 10 Hz.

ここで、「3×(HV−10)」は、ビッカース硬さHVを用いて表現した鋼材の強度を意味し、定数αを乗じるのは、負荷する応力を鋼材強度のα倍とすることを意味する。本発明では、αは、0.1以上0.7未満の範囲内の一定値を選択する。本発明は、自動車構造部材が受けると想定される環境下でその部材が使用可能かどうかの評価を行なうことを主旨としている。実際には、想定する自動車構造部材によって、想定される応力条件が多少異なるため、想定する応力により、定数αを0.1以上0.7未満の範囲内の一定値を選択して使用することが好ましい。高力ボルトやPC鋼棒のように、負荷応力を鋼材強度(引張強さ)の0.7〜0.9とすると、自動車構造部材が負荷される想定応力とはかけ離れすぎており、使用する鋼材の耐遅れ破壊特性の模擬とはなりえない。通常、自動車構造部材の使用環境では、高力ボルトやPC鋼棒の使用環境に比べて、低い応力しか作用しないことから、負荷応力の上限を鋼材強度の0.7未満に限定した。一方、負荷応力の下限は、使用環境下で負荷される最低レベルである、鋼材強度の0.1とした。
本発明では、上記した範囲内の拡散性水素量および応力負荷の条件下で、所定時間試験する。所定時間は、定荷重試験の場合には、50時間以上、望ましくは100時間以上、より望ましくは150時間以上、さらに望ましくは200時間以上とすることが好ましい。定荷重試験の場合、試験の所定時間が50時間未満では、使用環境下で遅れ破壊を発生することがある。定荷重試験の場合、100時間以上破断しない場合には、それ以上試験しても破断しないことがほとんどである。なお、より一層緻密に考えた場合には、200時間を超えて試験すればよく、200時間を超えて破断しない場合は破断が全く見られない。
また、変動荷重試験で、変動速度が0.1Hz未満の場合には、試験の所定時間は、定荷重試験と同様に50時間以上とすることが好ましい。変動速度が0.1Hz以上10Hz未満の場合には、20時間以上、望ましくは40時間以上、より望ましくは60時間以上、さらに望ましくは80時間以上、さらにさらに望ましくは100時間以上とすることが好ましい。変動荷重試験の場合、試験の所定時間が20時間未満では、使用環境下で遅れ破壊を発生することがある。変動荷重が、0.1Hz以上10Hz未満の場合には、定荷重試験の場合よりも遅れ破壊の発生が短時間側にシフトするため、上記した基準とした。これは、水素の拡散と連動するためであると推定される。
このようなことから、本発明では、上記した範囲内の拡散性水素量および応力負荷の条件下で定荷重試験を行なった場合又は変動速度が0.1Hz未満の変動荷重試験を行なった場合に、50時間以上破断しない場合を、一方変動速度が0.1Hz以上10Hz未満の変動荷重試験を行なった場合には20時間以上は破断しない場合を、耐遅れ破壊特性に優れる鋼材と判定する。
(4)拡散性水素量の分析方法
本発明では、拡散性水素量の測定は、測定用サンプル(主としてダミー片)を昇温しながら、水素を放出させ、その水素を分析する方法で行なう。
本発明では、拡散性水素量を精度良く測定するために、試験片が破断した場合にはダミー片を測定用サンプルとして使用して拡散性水素量を分析する。なお、試験片が破断しなかった場合には試験片またはダミー片を使用する。
破断した試験片を測定用サンプルとして、試験後に拡散性水素を分析しても、水素は破断時に漏れが始まっており、また破断時から経過時間が長くなるとさらに拡散性水素が減少し、試験時に試験片中に含まれる拡散性水素量を正確に把握することができなくなる。とくに薄肉試験片では、棒状試験片に比して拡散性水素がより抜けやすい状況にある。
Here, “3 × (HV−10)” means the strength of the steel material expressed using the Vickers hardness HV, and the constant α is multiplied by that the applied stress is α times the steel material strength. means. In the present invention, α is selected to be a constant value within the range of 0.1 or more and less than 0.7. The main object of the present invention is to evaluate whether or not a member can be used in an environment assumed to be received by an automobile structural member. Actually, since the assumed stress condition varies somewhat depending on the assumed automobile structural member, it is preferable to select and use a constant α within a range of 0.1 or more and less than 0.7 depending on the assumed stress. If the load stress is 0.7 to 0.9 of the steel material strength (tensile strength), such as high-strength bolts and PC steel bars, it is too far from the assumed stress to which automobile structural members are loaded, and the delay resistance of the steel material used It cannot be a simulation of fracture characteristics. Usually, in the environment where automobile structural members are used, only a lower stress acts than in the environment where high strength bolts and PC steel bars are used. Therefore, the upper limit of the load stress is limited to less than 0.7 of the steel material strength. On the other hand, the lower limit of the load stress was set to 0.1, which is the steel material strength, which is the lowest level to be loaded in the use environment.
In the present invention, the test is performed for a predetermined time under the condition of the amount of diffusible hydrogen and the stress load within the above-described ranges. In the case of a constant load test, the predetermined time is preferably 50 hours or longer, desirably 100 hours or longer, more desirably 150 hours or longer, and even more desirably 200 hours or longer. In the case of a constant load test, if the test time is less than 50 hours, delayed fracture may occur in the usage environment. In the case of a constant load test, if it does not break for more than 100 hours, it does not break even after further testing. In the case of considering it more closely, the test may be performed for more than 200 hours, and when it does not break for more than 200 hours, no breakage is observed.
In the variable load test, when the variable speed is less than 0.1 Hz, the predetermined time for the test is preferably 50 hours or more as in the constant load test. When the fluctuation rate is 0.1 Hz or more and less than 10 Hz, it is preferably 20 hours or longer, desirably 40 hours or longer, more desirably 60 hours or longer, more desirably 80 hours or longer, and even more desirably 100 hours or longer. In the case of a variable load test, if the test time is less than 20 hours, delayed fracture may occur in the usage environment. When the fluctuating load is 0.1 Hz or more and less than 10 Hz, the occurrence of delayed fracture shifts to a shorter time than in the case of the constant load test. This is presumed to be in conjunction with hydrogen diffusion.
For this reason, in the present invention, when a constant load test is performed under the conditions of the amount of diffusible hydrogen and the stress load within the above-described range, or when a variable load test with a variable speed of less than 0.1 Hz is performed, When the fracture does not break for 50 hours or more, and when the fluctuating load test is performed with a fluctuation speed of 0.1 Hz or more and less than 10 Hz, the case where the fracture does not break for 20 hours or more is determined as a steel material having excellent delayed fracture resistance.
(4) Method for Analyzing Diffusible Hydrogen In the present invention, the amount of diffusible hydrogen is measured by a method in which hydrogen is released while the temperature of the measurement sample (mainly a dummy piece) is raised and the hydrogen is analyzed.
In the present invention, in order to accurately measure the amount of diffusible hydrogen, when the test piece is broken, the amount of diffusible hydrogen is analyzed using the dummy piece as a measurement sample. If the test piece does not break, a test piece or a dummy piece is used.
Even if diffusible hydrogen is analyzed after the test using the fractured test piece as a measurement sample, hydrogen begins to leak at the time of rupture. The amount of diffusible hydrogen contained in the test piece cannot be accurately grasped. In particular, thin-walled specimens are in a state where diffusible hydrogen is more easily removed than rod-shaped specimens.

本発明でいう「拡散性水素」とは、昇温脱離分析した時の「温度−水素量」のプロファイルで、低温側のピークを占める水素量のことをいうものとする。ピークの温度はサンプルの厚みや形状、昇温速度によってはずれるものの、6.0mm以下程度の板状のサンプルで、しかも200℃/hで昇温分析した場合には、図4に示すように250℃までに放出された水素の合計量に相当する。なお、昇温速度はとくに限定されないが、50〜200℃/hの範囲とすることが測定能率や測定値の信頼性の観点から好ましい。また、水素の分析は、ガスクロマトグラフィ、あるいは質量分析器等で行なうことが好ましい。   The term “diffusible hydrogen” as used in the present invention refers to the amount of hydrogen occupying a peak on the low temperature side in the profile of “temperature-hydrogen amount” when thermal desorption analysis is performed. Although the peak temperature varies depending on the thickness and shape of the sample, and the rate of temperature rise, it is a plate-like sample of about 6.0 mm or less, and when the temperature rise analysis is performed at 200 ° C./h, 250 ° C. as shown in FIG. This corresponds to the total amount of hydrogen released up to. In addition, the rate of temperature increase is not particularly limited, but a range of 50 to 200 ° C./h is preferable from the viewpoint of measurement efficiency and reliability of measurement values. Further, the analysis of hydrogen is preferably performed by gas chromatography or a mass spectrometer.

なお、試験後、測定用サンプルを水素分析装置へ投入するまでの時間は、できるだけ短時間とすることが好ましい。ここでいう、「試験後、測定用サンプルを水素分析装置へ投入するまでの時間」とは、電解セルで水素チャージを継続しながら試験する場合には、試験片(ダミー片)への電解セル(電解槽)での水素チャージ(電解処理)終了時を起点とし水素分析装置へ投入するまでの時間である。一方、めっき膜で試験片(ダミー片)中に導入された水素を封じ込めた場合には、めっき膜剥離時を起点とし水素分析装置へ投入するまでの時間をいうものとする。   In addition, it is preferable that the time after the test until the measurement sample is put into the hydrogen analyzer is as short as possible. As used herein, “the time until the measurement sample is put into the hydrogen analyzer after the test” refers to the electrolytic cell to the test piece (dummy piece) when testing while continuing the hydrogen charge in the electrolytic cell. This is the time from the end of hydrogen charging (electrolytic treatment) in the (electrolyzer) to the start of charging into the hydrogen analyzer. On the other hand, when the hydrogen introduced into the test piece (dummy piece) is confined by the plating film, the time from when the plating film is peeled off until it is put into the hydrogen analyzer is meant.

試験片、ダミー片が薄板の場合にはとくに、水素の放出が早いため、試験後、あるいは電解処理終了後、水素分析装置へ投入するまでに置かれる雰囲気は、10℃以下、好ましくは0℃以下、さらに好ましくは液体窒素等の低温雰囲気とすることが好ましい。なお、雰囲気温度が15〜30℃では、その雰囲気に置くことができる許容時間は25分以下程度である。この範囲を超えると、放出量が増加し、分析値が、試験時に試験片(ダミー片)に含まれていた正確な拡散性水素量とはいえなくなる。   Especially when the test piece and the dummy piece are thin plates, hydrogen is released quickly, so the atmosphere placed after the test or after the electrolytic treatment and before the introduction to the hydrogen analyzer is 10 ° C. or less, preferably 0 ° C. Hereinafter, it is more preferable to use a low temperature atmosphere such as liquid nitrogen. When the atmospheric temperature is 15 to 30 ° C., the allowable time that can be placed in the atmosphere is about 25 minutes or less. If this range is exceeded, the amount released will increase and the analytical value will not be the exact amount of diffusible hydrogen contained in the test piece (dummy piece) at the time of the test.

なお、水素分析装置へは、測定サンプル(ダミー片または試験片)を、そのまま投入できないので、少なくとも前処理のために5〜15分程度は大気環境に置かざるを得ない。つまり、測定サンプルは、電解質溶液から取り出した状態では、水分、汚れ、薄い酸化膜が付着しており、そのまま水素分析装置に投入すると、とくに、ガスクロマトグラフ式装置では、これらから酸素、一酸化炭素、炭酸ガス等のピークも検出され、水素のピークと重なり、見かけは、水素量が多めに評価される傾向があり、正確な水素量の測定ができなくなる。このため、表面の水分をウェスでとると同時に#400〜800以上の研磨紙で研磨することが必要となり、このような前処理に10分程度費やさざるをえない。また、めっき膜を形成した場合でも、水素分析装置に投入する前にめっき剥離等の前処理が必要であり、同様に測定サンプルは大気中に放置されることになる。   In addition, since a measurement sample (a dummy piece or a test piece) cannot be input as it is to the hydrogen analyzer, it must be placed in an atmospheric environment for at least about 5 to 15 minutes for pretreatment. In other words, when the measurement sample is taken out from the electrolyte solution, moisture, dirt, and a thin oxide film adhere to it. If it is put into a hydrogen analyzer as it is, especially in a gas chromatographic apparatus, oxygen, carbon monoxide is extracted from these. Peaks such as carbon dioxide gas are also detected and overlapped with hydrogen peaks, and apparently there is a tendency that the amount of hydrogen is evaluated excessively, and accurate measurement of the amount of hydrogen becomes impossible. For this reason, it is necessary to remove the moisture on the surface with waste cloth and simultaneously polish it with # 400 to 800 or more polishing paper, and such pretreatment must be spent for about 10 minutes. Even when a plating film is formed, pretreatment such as plating peeling is necessary before putting it into the hydrogen analyzer, and the measurement sample is similarly left in the atmosphere.

また、正確な拡散性水素量を得るためには、試験後、測定用サンプルを水素分析装置へ投入するまでの時間内に放出された水素を考慮することが好ましい。試験後、測定用サンプルを水素分析装置へ投入するまでに大気雰囲気中に置かれた時間(大気放置時間)と、放出された拡散性水素量との関係(大気雰囲気温度:一定)を、図7に示すように、予めもとめておき、大気雰囲気中に置かれた時間から放出拡散性水素量をもとめ、水素分析により得られた拡散性水素量(測定値)を補正することが好ましい。これにより、より精度高い拡散性水素量とすることができる。   In addition, in order to obtain an accurate amount of diffusible hydrogen, it is preferable to consider the hydrogen released after the test and before the measurement sample is put into the hydrogen analyzer. Figure 3 shows the relationship between the time in which the measurement sample was placed in the atmosphere until the sample was put into the hydrogen analyzer after the test (air standing time) and the amount of diffusible hydrogen released (atmosphere temperature: constant). As shown in FIG. 7, it is preferable that the amount of diffusible hydrogen obtained by hydrogen analysis (measured value) is corrected by obtaining in advance the amount of diffusible hydrogen released from the time in the atmosphere. Thereby, it can be set as a more accurate diffusible hydrogen amount.

上記した本発明の方法に従い、定荷重試験又は変動荷重試験を行なうことにより、試験時に試験片に含まれる拡散性水素を精度良く測定でき、鋼材の耐遅れ破壊特性を精度良く評価することができる。したがって、本発明は、実使用環境下で使用有効期限内に、対象とする鋼材製自動車構造部材に遅れ破壊等による破壊などの不具合を生じるか否かの判定を精度良く行なえ、材料選定の基準として有効に活用できる。   By performing a constant load test or a variable load test in accordance with the method of the present invention described above, diffusible hydrogen contained in the test piece can be accurately measured during the test, and the delayed fracture resistance characteristics of the steel material can be accurately evaluated. . Therefore, the present invention can accurately determine whether or not the target steel automobile structural member has a failure such as a failure due to a delayed fracture within the expiration date of use in an actual usage environment, and a material selection criterion. Can be used effectively as

つぎに、本発明の耐遅れ破壊特性に優れる自動車構造部材用鋼材について説明する。本発明の自動車構造部材用鋼材は、ビッカース硬さHVで250以上600以下の硬さを有するか、あるいは焼入れ処理または焼入れ焼戻処理を施された後にビッカース硬さHVで250以上600以下の硬さとなる耐遅れ破壊特性に優れる鋼材である。なお、耐遅れ破壊特性の向上という観点からは焼入れ処理または焼入れ焼戻処理後のビッカース硬さHVは530以下とすることが望ましく、さらに望ましくは480以下である。   Next, the steel material for automobile structural members excellent in delayed fracture resistance of the present invention will be described. The steel material for automobile structural members of the present invention has a Vickers hardness HV of 250 or more and 600 or less, or after being subjected to a quenching treatment or a quenching and tempering treatment, the Vickers hardness HV is a hardness of 250 to 600 or less. This steel material has excellent delayed fracture resistance. From the viewpoint of improving delayed fracture resistance, the Vickers hardness HV after quenching or quenching and tempering is desirably 530 or less, and more desirably 480 or less.

なお、ここでいう「耐遅れ破壊特性に優れる」とは、自動車構造部材用鋼材から試験片およびダミー試験片を採取し、上記した本発明の耐遅れ破壊特性評価方法を用いて試験して、定荷重試験の場合に50時間以上、0.1Hz以上10Hz未満の変動速度で行なった変動荷重試験の場合に20時間以上破断しない場合をいう。なお、該自動車構造部材用鋼材が、ビッカース硬さHVで250以上600以下の硬さを有する場合には該鋼材からあるいは該鋼材に成形時の加工、または実際に使用される時に実施される熱処理を施したのちの該鋼材から試験片およびダミー試験片を採取し、一方、鋼材がビッカース硬さHVで250未満で、熱処理等によりHV250以上の硬さにして使われる場合には、実際に鋼材を使用する時に実施される焼入れ処理または焼入れ焼戻処理を施してビッカース硬さHVで250以上600以下の硬さとしたのち試験片およびダミー片を採取するものとする。なお、鋼材から試験片およびダミー片を採取してから、上記した焼入れ処理または焼入れ焼戻処理を施してもよい。   In addition, the term “excellent in delayed fracture resistance” here means that a test piece and a dummy test piece are collected from a steel material for automobile structural members and tested using the delayed fracture resistance evaluation method of the present invention described above. In the case of a constant load test, it means 50 hours or more, and in the case of a fluctuating load test conducted at a fluctuation speed of 0.1 Hz or more and less than 10 Hz, it means a case where it does not break for 20 hours or more. In addition, when the steel material for automobile structural members has a Vickers hardness HV of 250 or more and 600 or less, the heat treatment performed when the steel material is processed or actually used from the steel material or the steel material When a test piece and a dummy test piece are collected from the steel material after having been subjected to heat treatment, while the steel material is used with a Vickers hardness HV of less than 250 and a hardness of HV250 or more by heat treatment or the like, the steel material A test piece and a dummy piece are collected after a hardening treatment or a quenching and tempering treatment that is performed when using is made to have a Vickers hardness HV of 250 to 600. In addition, after extracting a test piece and a dummy piece from steel materials, you may give the above-mentioned hardening process or quenching tempering process.

本発明の耐遅れ破壊特性に優れた構造部材用高硬度鋼材の組成限定理由について説明する。以下、質量%は、単に%で記す。   The reason for limiting the composition of the high hardness steel for structural members having excellent delayed fracture resistance according to the present invention will be described. Hereinafter, mass% is simply expressed as%.

C:0.05〜0.45%
Cは、焼入れ性を向上させ、熱処理後の硬さを高める作用を有する。本発明では鋼材のビッカース硬さHVを250以上とするために、Cは0.05%以上含有する必要がある。一方、0.45%を超える含有は硬さが高くなりすぎるとともに、熱処理によっては粒界にフィルム状の炭化物が形成される場合が顕著になり、耐遅れ破壊特性が著しく劣化する。このため、Cは0.05〜0.45%に限定した。なお、耐遅れ破壊特性の観点からは0.25%以下、熱処理後の強度確保の観点からは0.15%以上とすることが好ましい。
C: 0.05-0.45%
C has the effect of improving hardenability and increasing the hardness after heat treatment. In this invention, in order to make Vickers hardness HV of steel materials 250 or more, C needs to contain 0.05% or more. On the other hand, if the content exceeds 0.45%, the hardness becomes excessively high, and depending on the heat treatment, film-like carbides are prominently formed at the grain boundaries, and the delayed fracture resistance is remarkably deteriorated. For this reason, C was limited to 0.05 to 0.45%. From the viewpoint of delayed fracture resistance, it is preferably 0.25% or less, and from the viewpoint of securing strength after heat treatment, it is preferably 0.15% or more.

Si:0.1〜0.6%
Siは、固溶して鋼材の強度を高めるとともに、フェライト変態を促進させ、成形性を高める作用を有する。このような効果を得るためには、0.1%以上の含有を必要とする。一方、0.6%を超えて含有すると、熱処理後の低温靭性が劣化し、また電縫溶接性が低下する。このため、Siは0.1〜0.6%の範囲に限定した。なお、低温靭性確保の観点からは0.55%以下となることが好ましく、より好ましくは0.45%以下である。また、スケール欠陥の発生防止という観点からは、Si含有量はより低い方が好ましい。
Si: 0.1-0.6%
Si dissolves to increase the strength of the steel material, and also has the effect of promoting ferrite transformation and improving formability. In order to obtain such an effect, the content of 0.1% or more is required. On the other hand, if the content exceeds 0.6%, the low temperature toughness after the heat treatment is deteriorated and the electric resistance weldability is lowered. For this reason, Si was limited to the range of 0.1 to 0.6%. From the viewpoint of securing low temperature toughness, it is preferably 0.55% or less, more preferably 0.45% or less. Further, from the viewpoint of preventing the occurrence of scale defects, it is preferable that the Si content is lower.

Mn:0.5〜2.5%
Mnは、フェライトの形成を抑制し焼入れ性を向上させ、鋼材の硬さを増加させる元素であり、少なくとも熱延処理後にビッカース硬さHV250以上を確保するために本発明ではMn:0.5%以上の含有を必要とする。一方、2.5%を超えて含有すると、必要以上に硬化し、耐遅れ破壊特性が劣化する。このため、Mnは0.5〜2.5%の範囲に限定した。なお、好ましくは2.0%以下である。なお、電縫溶接性の観点から、Mn含有量(質量%)とSi含有量(質量%)との比である、Mn/Siは4〜9の範囲に調整することが好ましい。
Mn: 0.5-2.5%
Mn is an element that suppresses the formation of ferrite and improves the hardenability and increases the hardness of the steel material. In order to ensure a Vickers hardness of HV250 or more at least after hot rolling treatment, Mn is 0.5% or more in the present invention. Containing is required. On the other hand, if it exceeds 2.5%, it hardens more than necessary, and the delayed fracture resistance deteriorates. For this reason, Mn was limited to the range of 0.5 to 2.5%. In addition, Preferably it is 2.0% or less. In addition, it is preferable to adjust Mn / Si which is a ratio of Mn content (mass%) and Si content (mass%) in the range of 4-9 from a viewpoint of electro-weldability.

P:0.030%以下
Pは、焼入れ処理時にオーステナイト粒界に偏析し、焼戻し処理時にセメンタイト−Fe母相界面に偏析し、耐遅れ破壊特性を著しく劣化させる。このため、本発明ではPはできるだけ低減することが好ましい。しかし、過度の低減は製造コストの高騰を招き経済的に不利となるため、0.030%程度までであれば許容できる。このため、Pは0.030%以下に限定した。なお、Pの偏析を少なくし耐遅れ破壊特性を向上させる観点からは、好ましくは0.016%以下である。
P: 0.030% or less P segregates at the austenite grain boundary during the quenching process, segregates at the cementite-Fe matrix interface during the tempering process, and significantly deteriorates the delayed fracture resistance. For this reason, in the present invention, P is preferably reduced as much as possible. However, excessive reduction causes an increase in manufacturing cost and is economically disadvantageous, so it is acceptable up to about 0.030%. For this reason, P was limited to 0.030% or less. From the viewpoint of reducing the segregation of P and improving the delayed fracture resistance, it is preferably 0.016% or less.

S:0.003%以下
Sは、Mnと結合しMnSを形成し、圧延方向に展伸した形状で鋼材中に存在し、鋼材の延性、成形性、低温靭性、疲労特性等に悪影響を及ぼすため、本発明ではできるだけ低減することが好ましい。しかし、過度の低減は製造コストの高騰を招き経済的に不利となるため、0.003%程度までであれば許容できる。このため、Sは0.003%以下に限定した。
S: 0.003% or less S combines with Mn to form MnS, which exists in the steel material in a shape expanded in the rolling direction, and adversely affects the ductility, formability, low temperature toughness, fatigue properties, etc. of the steel material. In the present invention, it is preferable to reduce as much as possible. However, excessive reduction causes an increase in manufacturing cost and is economically disadvantageous, so it is acceptable up to about 0.003%. For this reason, S was limited to 0.003% or less.

sol.Al:0.008〜0.1%
Alは、脱酸剤として作用するとともに、Nと結合しAlNを形成しオーステナイト粒の粒成長を抑制し、結晶粒微細化に寄与する元素であり、このような効果を得るために本発明ではsol.Alとして0.008%以上の含有を必要とする。一方、0.1%を超える含有は、粗大なアルミナ系介在物を生成させ、表面欠陥を発生させ、製造性を低下させる。このため、sol.Alは0.008〜0.1%の範囲に限定した。
sol.Al: 0.008 to 0.1%
Al is an element that acts as a deoxidizer and combines with N to form AlN to suppress the growth of austenite grains and contribute to the refinement of crystal grains. It needs to contain 0.008% or more as sol.Al. On the other hand, if the content exceeds 0.1%, coarse alumina inclusions are generated, surface defects are generated, and manufacturability is lowered. For this reason, sol.Al was limited to the range of 0.008 to 0.1%.

N:0.005%以下
Nは、AlやTiと結合してAlN、TiNを形成する。Nを多量含有するとAlN、TiNの過剰析出を招き低温靭性が劣化する。このため、Nは0.005%以下に限定した。
N: 0.005% or less N combines with Al and Ti to form AlN and TiN. If N is contained in a large amount, excessive precipitation of AlN and TiN will be caused and the low temperature toughness will deteriorate. For this reason, N was limited to 0.005% or less.

上記した基本成分に加えて、本発明ではさらに、必要に応じてTi:0.005〜0.04%、および/または、Nb:0.03%以下、および/または、Cr:0.05〜0.3%、Ni:0.10%以下、Mo:0.20%以下、V:0.10%以下、B:0.0001〜0.0015%のうちの1種または2種以上、および/または、Cu:0.20%以下、および/または、Ca:0.001〜0.0030%を選択して含有できる。   In addition to the basic components described above, the present invention further includes Ti: 0.005 to 0.04% and / or Nb: 0.03% or less and / or Cr: 0.05 to 0.3%, Ni: 0.10% or less as necessary. Mo: 0.20% or less, V: 0.10% or less, B: one or more of 0.0001 to 0.0015%, and / or Cu: 0.20% or less, and / or Ca: 0.001 to 0.0030% Can be selected and contained.

Ti:0.005〜0.04%
Tiは、NをTiNとして固定し、Bの窒化物形成を抑制し、Bの有効活用により焼入れ性を向上させる作用を有する。また、TiはNをTiNとして固定し固溶N量を低減して加工性を向上させる作用を有する。このような効果を得るためには0.005%以上の含有を必要とする。一方、0.04%を越えて含有すると、熱処理前の成形性や熱処理後の低温靭性が劣化する。このため、Tiは0.005〜0.04%の範囲に限定することが好ましい。なお、より好ましくは0.03%以下である。
Ti: 0.005-0.04%
Ti fixes N as TiN, suppresses formation of nitride of B, and has an effect of improving hardenability by effectively using B. Moreover, Ti has the effect | action which fixes N as TiN, reduces the amount of solute N, and improves workability. In order to acquire such an effect, 0.005% or more of content is required. On the other hand, if the content exceeds 0.04%, the formability before heat treatment and the low temperature toughness after heat treatment deteriorate. For this reason, it is preferable to limit Ti to 0.005 to 0.04% of range. More preferably, it is 0.03% or less.

Ti−(48/14)N >0 ………(5)
(ここで、Ti、N:各元素の含有量(質量%))
Tiは、本発明では、上記した範囲内でかつ(5)式を満足するように含有することが好ましい。(5)式を満足するようにTiを調整して含有することにより、鋼中に固溶するNを完全に固定することができ、Nの悪影響を無害化することができる。
Ti- (48/14) N> 0 (5)
(Here, Ti, N: content of each element (mass%))
In the present invention, Ti is preferably contained within the above range and so as to satisfy the formula (5). By adjusting and containing Ti so as to satisfy the formula (5), it is possible to completely fix N that dissolves in the steel, and it is possible to make the adverse effect of N harmless.

Nb:0.03%以下
Nbは、炭窒化物を形成して、結晶粒を微細化する作用を有し、低温靭性を向上させる有効な元素であり、必要に応じ選択して含有できる。このような効果を得るためには、0.005%以上含有することが望ましいが、0.03%を超えて含有すると、熱処理前の成形性が低下する。このため、Nbは0.03%以下に限定することが好ましい。
Nb: 0.03% or less
Nb is an effective element that forms carbonitrides to refine crystal grains and improves low-temperature toughness, and can be selected and contained as necessary. In order to acquire such an effect, it is desirable to contain 0.005% or more, but when it contains exceeding 0.03%, the moldability before heat processing will fall. For this reason, it is preferable to limit Nb to 0.03% or less.

Cr、Ni、Mo、V、Bは、いずれも焼入れ性を向上させる元素であり、必要に応じ選択して含有できる。   Cr, Ni, Mo, V, and B are all elements that improve the hardenability and can be selected and contained as necessary.

Ni、Mo、Vは焼入れ性を向上させ、鋼材の硬さ増加、低温靭性向上に寄与する。このような効果はNi:0.005%以上、Mo:0.005%以上、V:0.005%以上の含有で顕著に認められるが、Ni:0.10%、Mo:0.20%、V:0.10%をそれぞれ超える含有は熱処理前の成形性を劣化させる。このため、Ni:0.10%以下、Mo:0.20%以下、V:0.10%以下に、それぞれ限定することが好ましい。   Ni, Mo, and V improve hardenability and contribute to increasing the hardness and low temperature toughness of steel materials. Such effects are remarkably recognized when the content of Ni is 0.005% or more, Mo is 0.005% or more, and V is 0.005% or more. However, the content exceeding Ni: 0.10%, Mo: 0.20%, and V: 0.10% Deteriorates formability before heat treatment. For this reason, it is preferable to limit to Ni: 0.10% or less, Mo: 0.20% or less, and V: 0.10% or less, respectively.

Crは、Mnと同様に焼入れ性を向上させ、鋼材の硬さを増加させる元素であり、ビッカース硬さHV250以上を確保するために本発明では0.05%以上含有することがこのましい。一方、0.3%を超えて含有するとビッカース硬さが600を超えて高くなりすぎ、耐遅れ破壊特性が劣化する。このため、Crは0.05〜0.3%の範囲に限定することが好ましい。なお、Crは、Mnに比べてマルテンサイト変態開始温度を低下させる度合いが少なく、そのためCrの含有は焼入れ歪の増加を抑制できる。また、Crはオーステナイト粒界にPと共偏析しがたいため、耐遅れ破壊特性への悪影響は少ない。なお、熱処理後の硬さが高くなりすぎないために、Crは0.25%以下とすることが好ましい。   Like Mn, Cr is an element that improves hardenability and increases the hardness of the steel material. In order to ensure a Vickers hardness of HV250 or more, Cr is preferably contained in an amount of 0.05% or more in the present invention. On the other hand, if the content exceeds 0.3%, the Vickers hardness exceeds 600, and the delayed fracture resistance is deteriorated. For this reason, Cr is preferably limited to a range of 0.05 to 0.3%. Note that Cr has a lower degree of lowering the martensitic transformation start temperature than Mn, and therefore the inclusion of Cr can suppress an increase in quenching strain. Further, since Cr is difficult to co-segregate with P at the austenite grain boundary, there is little adverse effect on the delayed fracture resistance. In order to prevent the hardness after heat treatment from becoming too high, Cr is preferably 0.25% or less.

Bは、耐遅れ破壊特性を大きく劣化させずに、少量の含有で焼入れ性を向上させる元素であり、本発明では、0.0001%以上含有することが好ましい。一方、0.005%を超えて含有すると、耐遅れ破壊特性が顕著に劣化する。このため、Bは0.0001〜0.005%の範囲に限定することが好ましい。なお、耐遅れ破壊特性向上の観点からは、より好ましくは0.003%以下である。   B is an element that improves hardenability by containing a small amount without significantly degrading the delayed fracture resistance, and in the present invention, B is preferably contained by 0.0001% or more. On the other hand, if the content exceeds 0.005%, the delayed fracture resistance is remarkably deteriorated. For this reason, it is preferable to limit B to 0.0001 to 0.005% of range. From the viewpoint of improving delayed fracture resistance, it is more preferably 0.003% or less.

なお、Cr、Ni、Mo、Vの含有は、炭素当量の増加に寄与するため、C,Si,Mn,Cr含有量との関係で所定の炭素当量Ceqの範囲内となるように含有量を調整することが好ましい。   In addition, since the content of Cr, Ni, Mo, and V contributes to an increase in carbon equivalent, the content should be adjusted so as to be within the predetermined carbon equivalent Ceq in relation to the C, Si, Mn, and Cr content. It is preferable to adjust.

Cu:0.20%以下
Cuは、腐食を抑制する作用を有するとともに、鋼中への水素侵入を抑制する作用を有し、必要に応じ含有できる。このような効果を得るためには0.005%以上含有することが望ましいが、0.20%を超える含有は、熱間圧延時の表面欠陥発生の原因となる。このため、Cuは0.20%以下に限定することが好ましい。
Cu: 0.20% or less
Cu has an action of suppressing corrosion and an action of suppressing hydrogen intrusion into steel, and can be contained as necessary. In order to obtain such an effect, the content is preferably 0.005% or more, but the content exceeding 0.20% causes surface defects during hot rolling. For this reason, it is preferable to limit Cu to 0.20% or less.

Ca:0.0001〜0.0030%
Caは、Sと結合し粒状のCaSを形成し、展伸したMnS系介在物を少なくして、鋼材の加工性、低温靭性、耐疲労特性、耐遅れ破壊特性等を向上させる。このような効果は0.0001%以上の含有で発現するが0.0030%を超える含有はCaO系介在物量を増加させ、加工性、低温靭性、耐疲労特性、耐遅れ破壊特性等を劣化させる。このため、Caは0.0001〜0.0030%の範囲に限定することが好ましい。
Ca: 0.0001 to 0.0030%
Ca combines with S to form granular CaS and reduces the expanded MnS inclusions to improve the workability, low temperature toughness, fatigue resistance, delayed fracture resistance, etc. of the steel. Such an effect is manifested with a content of 0.0001% or more, but a content exceeding 0.0030% increases the amount of CaO inclusions, and deteriorates workability, low temperature toughness, fatigue resistance, delayed fracture resistance, and the like. For this reason, it is preferable to limit Ca to 0.0001 to 0.0030% of range.

上記した成分の範囲内としたうえで、本発明では(2)式で定義される炭素当量Ceqが、0.07〜0.9となるように成分を調整する。   In the present invention, the components are adjusted so that the carbon equivalent Ceq defined by the formula (2) is 0.07 to 0.9, within the range of the components described above.

Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 ………(2)
(ここで、Ceq:炭素当量(%)、C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%))
なお、(2)式中の元素で含有しないものは零として計算するものとする。
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (2)
(Where Ceq: carbon equivalent (%), C, Mn, Si, Ni, Cr, Mo, V: content of each element (mass%))
It should be noted that the element not contained in the formula (2) is calculated as zero.

Ceqが0.07未満では、鋼材の硬さHVが250以上を確保することができない。一方、Ceqが0.9を超えると、鋼材の硬さHVが600を超え、耐遅れ破壊特性が劣化する。このため、Ceqを0.07〜0.9の範囲に限定した。なお、耐遅れ破壊特性向上の観点からはCeqを0.60以下とすることが好ましく、さらに好ましくは0.55程度以下である。   If Ceq is less than 0.07, the hardness HV of the steel material cannot be ensured to be 250 or more. On the other hand, when Ceq exceeds 0.9, the hardness HV of the steel material exceeds 600 and the delayed fracture resistance is deteriorated. For this reason, Ceq was limited to the range of 0.07 to 0.9. From the viewpoint of improving delayed fracture resistance, Ceq is preferably 0.60 or less, and more preferably about 0.55 or less.

上記した成分範囲に加えて、さらに耐遅れ破壊特性の向上のために、C、Pを(3)式又は(4)式を満足するように調整することが好ましい。   In addition to the above component range, it is preferable to adjust C and P so as to satisfy the formula (3) or (4) in order to further improve the delayed fracture resistance.

P<−(4/50)×C+0.045 ………(3)
P<−(4/50)×C+0.033 ………(4)
(ここで、C、P:各元素の含有量(質量%))
Pは、熱処理後の旧オーステナイト粒界に偏析して耐遅れ破壊特性を劣化させ、Cは、熱処理後の旧オーステナイト粒界にフィルム状炭化物を形成して耐遅れ破壊特性を劣化させるとともに、過剰なCは熱処理後の硬さを増加させすぎて、耐遅れ破壊特性を劣化させる。P、Cは相乗して耐遅れ破壊特性を劣化させる可能性が高い。このため、本発明ではP、C含有量を、上記した範囲内としたうえで、(3)式を満足するように調整することが好ましい。これにより、耐遅れ破壊特性が顕著に向上する。なお、P、C含有量を(4)式を満足するように調整することにより、より一層、耐遅れ破壊特性が向上する。
P <-(4/50) × C + 0.045 (3)
P <− (4/50) × C + 0.033 (4)
(Where C, P: content of each element (mass%))
P segregates at the prior austenite grain boundaries after heat treatment and degrades delayed fracture resistance, and C forms a film-like carbide at the prior austenite grain boundaries after heat treatment and degrades delayed fracture resistance. C causes the hardness after heat treatment to increase excessively and deteriorates the delayed fracture resistance. P and C have a high possibility of synergistically deteriorating the delayed fracture resistance. For this reason, in this invention, after making P and C content into the above-mentioned range, it is preferable to adjust so that (3) Formula may be satisfied. Thereby, the delayed fracture resistance is remarkably improved. Note that the delayed fracture resistance is further improved by adjusting the P and C contents so as to satisfy the expression (4).

耐遅れ破壊特性に及ぼすC含有量とP含有量との関係を図8に示す。図8は、定荷重試験における試験条件(拡散性水素量、負荷応力)を略同じ範囲内とし、各鋼材で熱処理によりビッカース硬さHV250以上に調整したサンプルを用いて行なった結果である。P、C含有量が、(3)式を満足しない場合には破断時間が50時間未満であり、(3)式を満足し(4)式を満足しない場合には、破断時間が50時間以上150時間未満、(4)式を満足する場合には、150時間以上、好ましくは250時間以上破断しない。P含有量とC含有量との関係がこのような特定関係を満足するようにP、C含有量を調整することにより、耐遅れ破壊特性が顕著に向上することがわかる。   FIG. 8 shows the relationship between the C content and the P content affecting the delayed fracture resistance. FIG. 8 shows the results obtained by using samples in which the test conditions (the amount of diffusible hydrogen and the load stress) in the constant load test are within substantially the same range and each steel material is adjusted to a Vickers hardness of HV250 or more by heat treatment. When the P and C contents do not satisfy the formula (3), the fracture time is less than 50 hours, and when the formula (3) is satisfied and the formula (4) is not satisfied, the fracture time is 50 hours or more. When the expression (4) is satisfied for less than 150 hours, it does not break for 150 hours or more, preferably 250 hours or more. It can be seen that the delayed fracture resistance is remarkably improved by adjusting the P and C contents so that the relationship between the P content and the C content satisfies such a specific relationship.

上記した成分以外の残部は実質的にFeからなる。ここで「実質的にFe」とは、Feおよび不可避的不純物からなることを意味する。   The balance other than the above components is substantially made of Fe. Here, “substantially Fe” means composed of Fe and inevitable impurities.

上記した範囲に組成を調整することにより、焼入れ処理または焼入れ焼戻処理後のビッカース硬さがHVで250以上好ましくは600以下となり、高硬度を維持しつつ優れた耐遅れ破壊特性を確保できる。なお、耐遅れ破壊特性向上の観点からは、焼入れ処理または焼入れ焼戻処理後の硬さは、HVで530以下とすることが望ましく、480以下とすることがさらに望ましい。
本発明の自動車構造部材用鋼材の製造方法は、とくに限定されないが、上記した組成範囲の溶鋼を通常の溶製法で溶製したのち、公知の連続鋳造法等の鋳造法で鋼素材とし、公知の圧延等の熱間加工、あるいはさらに冷間加工、さらには熱処理等を施されて所望の硬さに調整された、薄板、鋼管等の鋼材とすることが好ましい。
By adjusting the composition within the above range, the Vickers hardness after quenching or quenching and tempering is HV of 250 or more, preferably 600 or less, and excellent delayed fracture resistance can be ensured while maintaining high hardness. From the viewpoint of improving delayed fracture resistance, the hardness after quenching or quenching and tempering is preferably 530 or less, more preferably 480 or less in terms of HV.
The manufacturing method of the steel material for automobile structural members of the present invention is not particularly limited, but after the molten steel having the above composition range is melted by a normal melting method, the steel material is obtained by a casting method such as a known continuous casting method. It is preferable to use a steel material such as a thin plate or a steel pipe which has been subjected to hot working such as rolling, or further cold working, further heat treatment, etc., and adjusted to a desired hardness.

本発明では、耐遅れ破壊特性を評価するに際し、その鋼材が使用される状態に沿した状態にて評価を行なう。つまり、評価対象の鋼材がそのまま、あるいは加工して利用される場合で、ビッカース硬さHVですでに250以上の場合には、その鋼材から試験片及びダミー片を加工して評価する。加工時の歪を鋼材に印加させたものを評価してもよい。鋼材が熱処理されて利用される場合は、鋼材に焼入れ処理又は焼入れ焼戻処理からなる熱処理を施してビッカース硬さHVで250以上の、実際に使用される状態(硬さ)にしてから、試験片及びダミー片を加工して評価を行なう。この熱処理の条件は、特に限定されない。熱処理雰囲気については、脱炭等を防止し鋼材の表面と中心部での強度、組織のばらつきを極力抑えるために、不活性ガス雰囲気又は窒素ガス雰囲気等の無酸素雰囲気、あるいは酸素含有量が10%以下の減酸素雰囲気とすることが望ましい。   In the present invention, when evaluating the delayed fracture resistance, the evaluation is performed in a state in which the steel material is used. That is, when the steel material to be evaluated is used as it is or after being processed, and the Vickers hardness HV is already 250 or more, the test piece and the dummy piece are processed from the steel material and evaluated. You may evaluate what applied the distortion at the time of a process to steel materials. When steel material is used after being heat-treated, the steel material is subjected to heat treatment consisting of quenching or quenching and tempering treatment to bring it to a state of actual use (hardness) with a Vickers hardness HV of 250 or more, and then test A piece and a dummy piece are processed and evaluated. The conditions for this heat treatment are not particularly limited. As for the heat treatment atmosphere, an oxygen-free atmosphere such as an inert gas atmosphere or a nitrogen gas atmosphere, or an oxygen content of 10 is used in order to prevent decarburization and the like, and to suppress variations in the strength and structure of the steel material as much as possible. % Or less oxygen reduction atmosphere is desirable.

以下、実施例にしたがい、さらに本発明について説明する。   Hereinafter, the present invention will be further described in accordance with examples.

(実施例1)
表1に示す板厚(肉厚)を有する鋼材を用意し、硬さがビッカース硬さHVで250未満のものについては表1に示す熱処理を施し、ビッカース硬さHVで250以上の表1に示す各硬さに調整した。なお、サンプルNo.A、No.Cはとくに熱処理を行わなかった。これら硬さを調節された鋼材から図5に示す形状寸法とほぼ同一の試験片およびダミー片を採取した。
なお、一部の試験片には応力集中係数が1.8〜2.8となるように切欠きを付与した。また、採取した試験片およびダミー片の板厚は各サンプルの板厚と同一とした。なお、熱処理時にスケール、曲がりが発生したものは、両面からほぼ等量づつ研削し平坦な試験片、ダミー片とした。使用した試験片およびダミー片の寸法形状を表3にまとめて示す。
(Example 1)
Steel materials having the plate thickness (wall thickness) shown in Table 1 are prepared. If the hardness is less than 250 with a Vickers hardness HV, the heat treatment shown in Table 1 is applied, and the Vickers hardness HV is 250 or more in Table 1. It adjusted to each hardness shown. Samples No. A and No. C were not specifically heat treated. Test pieces and dummy pieces having the same shape and dimensions as those shown in FIG. 5 were collected from the steel materials adjusted in hardness.
Some test pieces were notched so that the stress concentration factor was 1.8 to 2.8. Further, the thickness of the collected test piece and dummy piece was the same as the thickness of each sample. In addition, the thing which the scale and the curvature generate | occur | produced at the time of heat processing was ground in equal amounts from both surfaces, and it was set as the flat test piece and the dummy piece. Table 3 summarizes the dimensions and shapes of the test pieces and dummy pieces used.

ついで、これら試験片に、図1に示すように電解セル3を試験片1の平行部が電解質溶液2に浸漬するように取り付けて、表4に示す条件の電解処理を無負荷状態で施した。なお、使用した電解質は、表2に示す。一方、ダミー片6には、図1に示すように、試験片1とは別の電解槽7で、試験片1と同一条件で電解処理を施した。なお、電流密度は、予め求めた拡散性水素量−電流密度の関係から、所望の拡散性水素量を導入できるように変化させた。   Next, as shown in FIG. 1, the electrolytic cell 3 was attached to these test pieces so that the parallel part of the test piece 1 was immersed in the electrolyte solution 2, and the electrolytic treatment under the conditions shown in Table 4 was performed in an unloaded state. . The electrolyte used is shown in Table 2. On the other hand, as shown in FIG. 1, the dummy piece 6 was subjected to an electrolytic treatment under the same conditions as the test piece 1 in an electrolytic cell 7 different from the test piece 1. The current density was changed so that a desired amount of diffusible hydrogen could be introduced from the previously obtained relationship between the amount of diffusible hydrogen and the current density.

表3に示す無負荷状態の電解処理を所定時間(無負荷電解時間)施したのち、試験片1を図1に示す定荷重試験機10にセットし、試験片1に表3に示す負荷応力σとなるように一定荷重を負荷し定荷重試験を実施した。なお試験中は、試験片及びダミー片とも表3に示す条件の電解処理を継続した。
また、一部の試験では、電解セル3を使用せずに、電解槽7で表4に示す条件で電解処理を行い拡散性水素をチャージし、電解処理終了後、試験片及びダミー片表面に亜鉛めっき処理を施し、表面にZnめっき膜を形成し、拡散性水素を封じ込めた。亜鉛めっき処理は、電解浴として酸性塩化亜鉛アンモニウム浴を用い、亜鉛板を陽極とし、試験片/ダミー片を陰極とする電気めっき処理とした。亜鉛めっきは、電流密度:28mA/cm、処理時間30分とした。なお、試験片/ダミー片と導線との接触位置を2回以上変更して電気めっき処理を施し、試験片およびダミー片全体に均一なめっき膜を形成するようにした。めっき膜を形成された試験片1を図1に示す定荷重試験機10にセットし、試験片1に表3に示す負荷応力となるように一定荷重を負荷して大気雰囲気中で、試験片得に電解セルを配設し電解処理を継続しながら試験する場合と同様に定荷重試験を実施した。なお試験中、ダミー片は、試験片と同一環境、つまり、大気中で放置された。
また、一部、定荷重試験に代えて、変動荷重試験を実施した。なお、変動荷重試験は、図5(c)に示す寸法形状の試験片を使用し、表3に示す電解処理条件、および応力負荷条件(負荷応力:上限応力σ、下限応力:15MPa(引張応力)とした。)で行ない、試験片には電解セルをセットし電解処理を継続しながら、実施した。なお、変動荷重試験中、ダミー片を電解槽中に浸漬し、電解処理を継続した。
After applying the electrolysis treatment in the no-load state shown in Table 3 for a predetermined time (no-load electrolysis time), the test piece 1 is set in the constant load tester 10 shown in FIG. A constant load test was carried out under a constant load so as to be σ. During the test, the electrolytic treatment under the conditions shown in Table 3 was continued for both the test piece and the dummy piece.
In some tests, the electrolytic cell 3 is not used and the electrolytic treatment is performed in the electrolytic cell 7 under the conditions shown in Table 4 to charge diffusible hydrogen. Zinc plating treatment was performed, a Zn plating film was formed on the surface, and diffusible hydrogen was contained. The galvanizing treatment was an electroplating treatment using an acidic zinc ammonium chloride bath as an electrolytic bath, a zinc plate as an anode, and a test piece / dummy piece as a cathode. In the galvanization, the current density was 28 mA / cm 2 and the treatment time was 30 minutes. In addition, the contact position between the test piece / dummy piece and the conductive wire was changed twice or more to perform electroplating treatment so that a uniform plating film was formed on the entire test piece and dummy piece. The test piece 1 on which the plating film is formed is set in the constant load testing machine 10 shown in FIG. 1, and a constant load is applied to the test piece 1 so that the load stress shown in Table 3 is obtained. A constant load test was conducted in the same manner as in the case where the electrolytic cell was disposed and the test was conducted while continuing the electrolytic treatment. During the test, the dummy piece was left in the same environment as the test piece, that is, in the atmosphere.
In addition, a variable load test was carried out in place of the constant load test. The variable load test uses a test piece having the dimensions shown in FIG. 5C, and the electrolytic treatment conditions and stress load conditions shown in Table 3 (load stress: upper limit stress σ, lower limit stress: 15 MPa (tensile stress) The test cell was set with an electrolytic cell, and the electrolytic treatment was continued. During the fluctuating load test, the dummy piece was immersed in the electrolytic cell and the electrolytic treatment was continued.

なお、電解質溶液2の脱気のため、電解セル3への窒素ガス吹き込みを行なった。定荷重試験は、原則として50時間までとし、状況に応じ一部、250時間まで継続した。なお、50時間経過前に破断したものは、「破断」とし、それぞれ、括弧の内に、破断時間を記入した。なお、50時間を越えた数字は、その時間まで一定荷重が負荷され試験が継続されていたことを意味する。   Note that nitrogen gas was blown into the electrolytic cell 3 in order to deaerate the electrolyte solution 2. The constant load test was conducted for up to 50 hours in principle and continued for up to 250 hours depending on the situation. In addition, those that broke before 50 hours passed were designated as “break”, and the break time was entered in parentheses. A number exceeding 50 hours means that a constant load was applied until that time and the test was continued.

変動荷重試験は、原則として20時間までとし、状況に応じ一部、100時間まで継続した。なお、20時間経過前に破断したものは、「破断」とし、それぞれ、括弧の内に、破断時間を記入した。なお、20時間を越えた数字は、その時間まで、試験を継続していたことを意味する。   The fluctuating load test was conducted for up to 20 hours in principle and continued for up to 100 hours depending on the situation. In addition, those that broke before the lapse of 20 hours were designated as “break”, and the break time was entered in parentheses. A number exceeding 20 hours means that the test was continued until that time.

試験終了後、試験片が破断しない場合には試験片とダミー片を、試験片が破断した場合にはダミー片を、測定用サンプルとして水素分析を実施した。なお、試験片については、電解質液に浸漬された部分のみを切り取り、測定用サンプルとして拡散性水素を分析した。   After the test, hydrogen analysis was performed using the test piece and the dummy piece when the test piece was not broken, and the dummy piece as the measurement sample when the test piece was broken. In addition, about the test piece, only the part immersed in the electrolyte solution was cut off, and diffusible hydrogen was analyzed as a measurement sample.

なお、拡散性水素の分析の前処理として、測定用サンプルとして用いる試験片とダミー片について、水分の除去、表面の酸化膜除去、汚れの除去をウエスあるいは研磨紙を用いて行なった。この前処理は、水素、酸素、一酸化炭素、炭酸ガス、水分のガスクロマトグラフィでのピークが互いに近接しており、ピークの重複による水素量の測定誤差を少なくするために必須とした。   In addition, as a pretreatment for analysis of diffusible hydrogen, a test piece and a dummy piece used as measurement samples were subjected to water removal, surface oxide film removal, and dirt removal using waste cloth or abrasive paper. This pretreatment was essential in order to reduce the measurement error of the amount of hydrogen due to the peak of hydrogen, oxygen, carbon monoxide, carbon dioxide gas, and moisture in the gas chromatography being close to each other.

なお、電解セルで水素チャージを継続しながら試験した場合には、試験片(ダミー片)への電解セル(電解槽)での水素チャージ(電解処理)終了時を起点とし、水素分析の前処理を行ない、水素分析装置へ投入するまでの時間を大気放置時間として記録した。めっき膜で試験片(ダミー片)中に導入された水素を封じ込めた場合には、めっき膜剥離時を起点とした。この大気放置時間に基づき、一部の場合に、予め求めた放出水素量と放置時間との関係から測定値を補正した。なお、水素分析の前処理が、8〜15℃程度の環境下で行なわれた場合は、大気放置中でも拡散性水素の放出は少ないものとして、測定値の補正は行なわなかった。   In addition, when testing while continuing the hydrogen charge in the electrolysis cell, the hydrogen treatment (electrolysis treatment) at the end of the electrolysis cell (electrolysis tank) to the test piece (dummy piece) is the starting point and the hydrogen analysis pretreatment The time until charging into the hydrogen analyzer was recorded as the time left in the atmosphere. When hydrogen introduced into the test piece (dummy piece) was contained in the plating film, the starting point was when the plating film was peeled off. Based on this air exposure time, in some cases, the measured values were corrected from the relationship between the amount of released hydrogen and the exposure time determined in advance. When the pretreatment for the hydrogen analysis was performed in an environment of about 8 to 15 ° C., the measurement value was not corrected because the release of diffusible hydrogen was small even when left in the atmosphere.

拡散性水素の分析は、一定流量の高純度アルゴンを流しながら、測定用サンプルを200℃/hの昇温速度で昇温し、放出される水素を恒温装置を経由してガスクロマトグラフィに導入し水素分析を行なった。なお、室温から250℃までに放出されるピークを構成する合計水素量を拡散性水素量とした。   In the analysis of diffusible hydrogen, the sample for measurement is heated at a heating rate of 200 ° C./h while flowing a high-purity argon at a constant flow rate, and the released hydrogen is introduced into the gas chromatography via a thermostat. Hydrogen analysis was performed. The total amount of hydrogen constituting the peak released from room temperature to 250 ° C. was defined as the amount of diffusible hydrogen.

得られた拡散性水素量と定荷重試験又は変動荷重試験の結果を纏めて表4に示す。   The obtained amount of diffusible hydrogen and the results of constant load test or variable load test are summarized in Table 4.

Figure 2006029977
Figure 2006029977

Figure 2006029977
Figure 2006029977

Figure 2006029977
Figure 2006029977

Figure 2006029977
Figure 2006029977

本発明によれば、拡散性水素量、負荷応力を所望の範囲に変化させることができ、さらに薄肉鋼材でも試験片に導入された拡散性水素量を正確に推定できる。このため、自動車構造部材が使用される実使用環境を模擬した拡散性水素量、負荷応力の条件下で、薄肉の自動車構造部材用鋼材の耐遅れ破壊特性を正確に評価できる。それにより、その鋼材の使用応力、使用環境における適用可否の判断指標にできる。   According to the present invention, the amount of diffusible hydrogen and load stress can be changed to desired ranges, and the amount of diffusible hydrogen introduced into the test piece can be accurately estimated even with a thin steel material. Therefore, it is possible to accurately evaluate the delayed fracture resistance of the thin steel material for automobile structural members under the conditions of the amount of diffusible hydrogen and load stress simulating the actual usage environment in which the automobile structural members are used. Thereby, it can be set as the judgment index of the applicability in the use stress of the steel materials, and a use environment.

定荷重試験で本発明範囲の負荷応力条件、拡散性水素量条件で試験し、50時間以上破断しない本発明例(試験No.5〜No.7、No.9、No.15〜20、No.22、No.24、No.26、No.28)は、設定された条件で優れた耐遅れ破壊特性を示す例である。一方、定荷重試験で本発明範囲内の負荷応力条件、拡散性水素量条件で試験し、50時間未満で破断した本発明例(試験No.4、No.21、No.23、No.25、No.27)は、設定された負荷応力および拡散性水素条件下では、耐遅れ破壊特性に劣る例であると評価できる。   In the constant load test, tested under load stress conditions and diffusible hydrogen amount conditions within the scope of the present invention, and the present invention examples that do not break for more than 50 hours (Test Nos. 5 to 7, No. 9, No. 15 to 20, No. .22, No.24, No.26, No.28) are examples showing excellent delayed fracture resistance under the set conditions. On the other hand, the present invention examples (test No. 4, No. 21, No. 23, No. 25) which were tested in a constant load test under load stress conditions and diffusible hydrogen amount conditions within the scope of the present invention and fractured in less than 50 hours. No. 27) can be evaluated as an example inferior in delayed fracture resistance under the set load stress and diffusible hydrogen condition.

また、変動荷重試験では、変動速度を0.1Hz以上10Hz未満として試験すると定荷重試験に比べ短時間側で破断する(試験No.12、No.13)。このため、変動荷重試験では、本発明範囲内の負荷応力条件、拡散性水素量条件で試験し、20時間以上破断しない場合を耐遅れ破壊特性に優れるとする必要がある。変動荷重試験では、変動速度が10Hz以上では、破断時間の短時間化が認められず耐遅れ破壊特性の評価はできない(試験No.10、No.11)。しかし、変動速度が0.1Hz未満では定荷重試験と同じ挙動を示す(試験No.14)。   In the variable load test, if the variable speed is tested at 0.1 Hz or more and less than 10 Hz, it breaks on the short time side compared to the constant load test (test No. 12, No. 13). For this reason, in the variable load test, it is necessary to test under a load stress condition and a diffusible hydrogen amount condition within the scope of the present invention, and to have excellent delayed fracture resistance when not ruptured for 20 hours or more. In fluctuating load tests, if the fluctuating speed is 10 Hz or higher, the fracture time is not shortened and delayed fracture resistance cannot be evaluated (test No. 10, No. 11). However, when the fluctuation speed is less than 0.1 Hz, the same behavior as the constant load test is exhibited (test No. 14).

試験No.8は、ダミー片の重量、表面積が本発明範囲を低く外れる場合であり、ダミー片を用いて水素量を測定しても低い値しか得られず、試験片の正確な拡散性水素量が測定できなかった比較例である。なお、この例は、試験片は破断しなかったが試験片の大気放置時間が25分と長いため、試験片からの水素の漏れ量が多くなっている。   Test No. 8 is the case where the weight and surface area of the dummy piece deviate from the scope of the present invention, and even when the amount of hydrogen is measured using the dummy piece, only a low value is obtained, and the exact diffusible hydrogen of the test piece is obtained. It is a comparative example whose amount could not be measured. In this example, the test piece did not break, but the amount of hydrogen leaked from the test piece increased because the test piece was left in the atmosphere for 25 minutes.

試験No.4、No.12、No.13、No.21、No.23、No.25、No.27、No.30は試験片が破断し、破断時に、試験片を回収できないために(破断時に通常は立ち会えない)、試験片で水素分析できないゆえに、ダミー片を使って水素分析した例である。   Test No.4, No.12, No.13, No.21, No.23, No.25, No.27, No.30 because the test piece breaks and cannot be recovered at the time of breakage ( This is an example of hydrogen analysis using a dummy piece because hydrogen cannot be analyzed with a test piece.

試験No.8は、試験片は破断してないが、試験片回収が破断後26分経過した後であり、試験片から水素が漏れているため、ダミー片を使って、拡散性水素を把握した例である。   In Test No. 8, the test piece was not broken, but the test piece was recovered after 26 minutes had passed and the hydrogen leaked from the test piece. This is an example.

一方、試験片No.2、No.5〜No.7、No.9、No.10、No.14、No.15、No.18、No.19、No.22、No.24、No.26、No.28は、試験片、ダミー片いずれを使っても、拡散性水素量を評価できた例である。   On the other hand, test pieces No. 2, No. 5 to No. 7, No. 9, No. 10, No. 14, No. 15, No. 18, No. 19, No. 22, No. 24, No. Nos. 26 and 28 are examples in which the amount of diffusible hydrogen could be evaluated using either a test piece or a dummy piece.

試験No.16は、ダミー片の大気放置時間が長く、ダミー片の拡散性水素量が低い値しか得られなかったために、試験片で拡散性水素量を同定した例である。   Test No. 16 is an example of identifying the amount of diffusible hydrogen with the test piece because the dummy piece was allowed to stand in the atmosphere for a long time and only a low value of the diffusible hydrogen amount of the dummy piece was obtained.

試験No.17は、試験No.16と同様に試験した例でダミー片の大気放置時間を基に、図7に示す関係を用いて大気放置中に放出された水素量を補正した例であり、補正により正確な拡散性水素量が推定できることがわかる。   Test No. 17 is an example tested in the same manner as in Test No. 16, and is based on the amount of hydrogen released during air exposure using the relationship shown in FIG. It can be seen that the correct amount of diffusible hydrogen can be estimated by the correction.

試験No.19、No.20は、板厚が4.9mmと厚い例であり、拡散性水素が試験片等から抜けにくく、大気放置時間が35分と長くなっても測定誤差を考慮しても水素はほとんど漏れていない。   Test No. 19 and No. 20 are examples with a thick plate thickness of 4.9 mm, and diffusible hydrogen is difficult to escape from the test piece, etc. Almost no hydrogen leaks.

試験No.29、No.30は、熱処理後の硬さがHV600を超えるため、耐遅れ破壊特性が顕著に劣化し拡散性水素量が0.05ppmに満たない、0.04ppmであっても、破断し、耐遅れ破壊特性を本発明方法では正確に評価できない例である。
(実施例2)
表5に示す組成の鋼素材を熱間圧延して、熱延鋼材とした。ついで、これら鋼材に表6に示す熱処理を施し、表8に示す硬さの鋼材とした。これら鋼材から、試験片およびダミー片を採取した。試験片およびダミー片は図5に示す形状に準じたものとし、表8に示す寸法とした。なお、試験片およびダミー片の板厚は鋼材板厚と同一とした。なお、熱処理時にスケール、曲がりが発生したものは、両面からほぼ等量づつ研削し平坦な試験片、ダミー片とした。
Test No. 29 and No. 30 have a hardness after HV600 exceeding HV600, so the delayed fracture resistance is markedly degraded and the amount of diffusible hydrogen is less than 0.05 ppm, even if it is 0.04 ppm, it breaks. This is an example in which delayed fracture resistance cannot be accurately evaluated by the method of the present invention.
(Example 2)
A steel material having the composition shown in Table 5 was hot-rolled to obtain a hot-rolled steel material. Subsequently, these steel materials were subjected to the heat treatment shown in Table 6 to obtain steel materials having the hardness shown in Table 8. Test pieces and dummy pieces were collected from these steel materials. The test piece and the dummy piece were in accordance with the shape shown in FIG. The plate thickness of the test piece and the dummy piece was the same as the steel plate thickness. In addition, the thing which the scale and the curvature generate | occur | produced at the time of heat processing was ground in equal amounts from both surfaces, and it was set as the flat test piece and the dummy piece.

これら試験片およびダミー片を用いて、表7に示す条件の電解処理により試験片およびダミー片に同一量の拡散性水素量を導入し、表7に示す負荷応力条件で、実施例1と同様に定荷重試験又は変動荷重試験を実施し、実施例1と同様に破断の有無と導入された拡散性水素量を測定した。   Using these test pieces and dummy pieces, the same amount of diffusible hydrogen was introduced into the test pieces and dummy pieces by electrolytic treatment under the conditions shown in Table 7, and the same as in Example 1 under the load stress conditions shown in Table 7 A constant load test or a fluctuating load test was carried out on the sample, and the presence or absence of breakage and the amount of diffusible hydrogen introduced were measured in the same manner as in Example 1.

得られた結果を表8に示す。   Table 8 shows the obtained results.

Figure 2006029977
Figure 2006029977

Figure 2006029977
Figure 2006029977

Figure 2006029977
Figure 2006029977

Figure 2006029977
Figure 2006029977

本発明例(試験No.2−5〜No.2−17、No.2−20、No.2−22〜No.2−27)はいずれも、自動車構造部材の実使用環境を模擬した本発明範囲の負荷応力条件、拡散性水素量条件において定荷重試験では50時間以上破断せず、変動荷重試験では20時間以上破断しない。つまり、組成を本発明の範囲内に調整し、ビッカース硬さHVが250以上600以下のものであれば、実使用環境を模擬した応力条件、拡散性水素条件において、耐遅れ破壊特性に優れた鋼材であると判断できる。   Examples of the present invention (tests No. 2-5 to No. 2-17, No. 2-20, No. 2-22 to No. 2-27) are books that simulate the actual use environment of automobile structural members. Under the load stress condition and diffusible hydrogen amount condition within the scope of the invention, the constant load test does not break for more than 50 hours, and the variable load test does not break for more than 20 hours. In other words, if the composition is adjusted within the range of the present invention and the Vickers hardness HV is 250 or more and 600 or less, it has excellent delayed fracture resistance under stress conditions and diffusible hydrogen conditions simulating the actual use environment. It can be judged that it is a steel material.

一方、組成が本発明の範囲を外れる鋼材である比較例は、自動車構造部材の実使用環境を模擬した本発明範囲の負荷応力条件、拡散性水素量条件の定荷重試験で50時間未満で破断し、耐遅れ破壊特性が劣化している鋼材である。   On the other hand, the comparative example, which is a steel material whose composition falls outside the scope of the present invention, breaks in less than 50 hours in a constant load test under the load stress condition and diffusible hydrogen content condition of the present invention scope simulating the actual use environment of automobile structural members However, this steel material has deteriorated delayed fracture resistance.

なお、P、C含有量の関係が(3)式、さらには(4)式を満足する本発明例は、破断時間が50時間を超えて長時間側となり、一層、耐遅れ破壊特性が向上している。   In addition, the present invention example in which the relationship between the P and C contents satisfies the formula (3) and further the formula (4) is longer than 50 hours, and the delayed fracture resistance is further improved. is doing.

試験No.2-1、No.2-2は、ビッカース硬さHVが250未満であり、導入する拡散性水素量を1ppm超えとしても遅れ破壊の発生は認められない。また、試験No.2-3と試験No.2-4とを比較すれば、HV250以上のビッカース硬さを有する鋼材では、導入する拡散性水素量が1ppmを超えると、早期に破断が生じることがわかる。また、試験No.2-31は、C含有量が本発明の範囲を高く外れており硬さがHV600を超え耐遅れ破壊特性が顕著に劣化して、微量の拡散性水素量の導入でも早期に破断が生じている。   In tests No. 2-1 and No. 2-2, the Vickers hardness HV is less than 250, and even if the amount of diffusible hydrogen to be introduced exceeds 1 ppm, delayed fracture is not observed. In addition, comparing test No.2-3 and test No.2-4, in steel materials with Vickers hardness of HV250 or higher, if the amount of diffusible hydrogen to be introduced exceeds 1 ppm, breakage occurs at an early stage. I understand. In Test No. 2-31, the C content is far outside the scope of the present invention, the hardness exceeds HV600, and the delayed fracture resistance is markedly deteriorated. Even when a small amount of diffusible hydrogen is introduced, Has broken.

また、試験No.2-18、No.2-19は、Mn含有量が本発明範囲を外れた比較例であり、早期に破断が生じている。また、試験No.2-28はPが、No.2-29はBが、試験No.2-30はCrが、それぞれ本発明範囲を外れた比較例であり、早期に破断が生じている。   Tests No. 2-18 and No. 2-19 are comparative examples in which the Mn content is outside the scope of the present invention, and breakage occurs early. Test No. 2-28 is P, No. 2-29 is B, and Test No. 2-30 is Cr, which is a comparative example out of the scope of the present invention. .

また、試験片が破断した例(試験No.2−4、No.2−10、No.2−11、No.2−17、No.2−18、No.2−19、No.2−21、No.2−24〜No.2−31)では、試験片では水素が抜け、正確に拡散性水素量の定量できず、ダミー片を用いて拡散性水素量を測定した。   Moreover, the example which the test piece fractured | ruptured (Test No.2-4, No.2-10, No.2-11, No.2-17, No.2-18, No.2-19, No.2- 21, No. 2-24 to No. 2-31), hydrogen was lost from the test piece, and the amount of diffusible hydrogen could not be accurately determined, and the amount of diffusible hydrogen was measured using a dummy piece.

本発明の実施に好適な定荷重試験機および電解処理装置を示す概略説明図である。It is a schematic explanatory drawing which shows the constant load testing machine and electrolytic processing apparatus suitable for implementation of this invention. ダミー片に電解処理を施す電解槽の一例を示す模式図である。It is a schematic diagram which shows an example of the electrolytic cell which electrolyzes a dummy piece. 電解セルの構造の一例を示す模式図である。It is a schematic diagram which shows an example of the structure of an electrolysis cell. 拡散性水素量の定義を示す説明図である。It is explanatory drawing which shows the definition of the amount of diffusible hydrogen. 試験片、ダミー片の寸法形状の一例を模式的に示す説明図である。It is explanatory drawing which shows typically an example of the dimension shape of a test piece and a dummy piece. 電解処理における導入される拡散性水素量と電流密度の関係の一例を模式的に示すグラフである。It is a graph which shows typically an example of the relation between the amount of diffusible hydrogen introduced in electrolytic treatment, and current density. 大気中放置の場合のダミー片の拡散性水素量変化の一例を模式的に示すグラフである。It is a graph which shows typically an example of diffusible hydrogen content change of a dummy piece in the case of being left in the atmosphere. 耐遅れ破壊特性に及ぼすC含有量とP含有量との関係を示すグラフである。It is a graph which shows the relationship between C content and P content which have an influence on delayed fracture resistance.

符号の説明Explanation of symbols

1 試験片
2 電解質溶液
3 電解セル
4 白金電極
5 脱気ガス吹き込み用パイプ
6 ダミー片
7 電解槽
8 電源
10 定荷重試験機
10a 支点
10b 梁(レバー)
10c 錘
11 ゴム栓
12 フタ
DESCRIPTION OF SYMBOLS 1 Test piece 2 Electrolyte solution 3 Electrolysis cell 4 Platinum electrode 5 Pipe for degassing gas blowing 6 Dummy piece 7 Electrolysis tank 8 Power supply
10 Constant load testing machine
10a fulcrum
10b Beam (lever)
10c weight
11 Rubber stopper
12 Lid

Claims (19)

ビッカース硬さ(HV)で250以上を有する自動車構造部材用鋼材又は加工または熱処理を施されてビッカース硬さ(HV)で250以上の硬さを有するようになる自動車構造部材用鋼材を評価対象材とし、前記評価対象材から採取した試験片に拡散性水素を電気化学的手段でチャージしながら、該試験片に定荷重として応力σを負荷する定荷重試験又は該試験片に変動荷重として応力σを10Hz未満の変動速度で負荷する変動荷重試験を実施し、該定荷重試験又は変動荷重試験の結果と拡散性水素量との対応から自動車構造部材用鋼材の耐遅れ破壊特性を評価するに当たり、
前記評価対象材がビッカース硬さ(HV)で250以上を有する場合には、そのまま、もしくは加工または熱処理を施してビッカース硬さ(HV)で250以上の鋼材実使用時の硬さに調整したのち該評価対象材から前記試験片およびダミー片を採取し、一方前記評価対象材がビッカース硬さ(HV)で250未満の場合には該評価対象材に加工または熱処理を施してビッカース硬さ(HV)250以上の鋼材実使用時の硬さに調整したのち前記試験片およびダミー片を採取し、又は前記評価対象材から試験片およびダミー片を採取したのち該試験片およびダミー片に加工または熱処理を施しビッカース硬さ(HV)で250以上の鋼材実使用時の硬さに調整し、試験に供するものとし、
前記ダミー片は前記試験片と同一肉厚、同一表面性状でかつ重量が3.5g以上、表面積が600mm以上とし、
前記試験片には電解溶液を満たした電解セルをセットするとともに、前記ダミー片は前記電解液と同じ電解溶液を満たした電解槽に浸漬し、
前記電気化学的手段を、電解溶液中で白金電極と前記試験片又は前記ダミー片との間に予め定めた一定電流密度の電流を流し、該試験片又は該ダミー片に0.05ppm以上1ppm未満の拡散性水素量を定常状態で保持可能とする電解処理とし、
該電解処理は、前記試験片と前記ダミー片とで同一の条件とし、無負荷状態で一定時間行い前記試験片及び前記ダミー片中の拡散性水素量を定常状態に保持したのち、前記試験片及び前記ダミー片で該電解処理を継続したまま、前記定荷重試験を下記(1)式で定義される応力σ(MPa)を所定時間負荷する定荷重試験とし又は前記変動荷重試験を下記(1)式で定義される応力σ(MPa)を10Hz未満の変動速度で所定時間負荷する変動荷重試験として行ない、前記定荷重試験又は前記変動荷重試験後、
拡散性水素量を、前記試験片が所定時間内に破断した場合には前記ダミー片で、前記試験片が破断しなかった場合は該試験片又は前記ダミー片で、測定し、該測定した拡散性水素量と前記定荷重試験又は前記変動荷重試験の結果とを対応させ、耐遅れ破壊特性を評価することを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。

σ(MPa)=3(HV−10)×α ………(1)
ここで、σ:応力(MPa)、
HV:ビッカース硬さ
α:定数(:0.10以上0.7未満の範囲内の一定値)
Steel materials for automobile structural members having a Vickers hardness (HV) of 250 or more, or steel materials for automobile structural members having a Vickers hardness (HV) of 250 or more after being processed or heat-treated A constant load test in which stress σ is applied as a constant load to the test piece, or stress σ as a variable load in the test piece while charging diffusible hydrogen to the test piece collected from the evaluation target material by electrochemical means. In carrying out a variable load test that loads at a variable speed of less than 10 Hz, and evaluating the delayed fracture resistance of steel materials for automobile structural members from the correspondence between the results of the constant load test or variable load test and the amount of diffusible hydrogen,
If the material to be evaluated has a Vickers hardness (HV) of 250 or more, the steel is adjusted as it is or after being processed or heat-treated to have a Vickers hardness (HV) of 250 or more. The test piece and the dummy piece are collected from the evaluation target material. On the other hand, when the evaluation target material has a Vickers hardness (HV) of less than 250, the evaluation target material is processed or heat-treated to obtain a Vickers hardness (HV ) After adjusting the hardness at the time of actual use of 250 or more steel materials, the test piece and the dummy piece are collected, or after collecting the test piece and the dummy piece from the evaluation target material, the test piece and the dummy piece are processed or heat-treated. And adjusted to the hardness of 250 or more steel materials in actual use with a Vickers hardness (HV), to be used for testing,
The dummy piece has the same thickness and the same surface properties as the test piece, a weight of 3.5 g or more, and a surface area of 600 mm 2 or more.
The test piece is set with an electrolytic cell filled with an electrolytic solution, and the dummy piece is immersed in an electrolytic bath filled with the same electrolytic solution as the electrolytic solution,
The electrochemical means is configured to pass a current having a predetermined constant current density between a platinum electrode and the test piece or the dummy piece in an electrolytic solution, and 0.05 ppm or more and less than 1 ppm to the test piece or the dummy piece. Electrolytic treatment that can maintain the amount of diffusible hydrogen in a steady state,
The electrolytic treatment is performed under the same conditions for the test piece and the dummy piece, and is performed for a certain period of time in an unloaded state, and after maintaining the diffusible hydrogen amount in the test piece and the dummy piece in a steady state, the test piece The constant load test is a constant load test in which the stress σ (MPa) defined by the following equation (1) is applied for a predetermined time while the electrolytic treatment is continued with the dummy piece, or the variable load test is the following (1 ) Is performed as a variable load test in which the stress σ (MPa) defined by the equation is applied for a predetermined time at a variable speed of less than 10 Hz, and after the constant load test or the variable load test,
The amount of diffusible hydrogen is measured with the dummy piece when the test piece is broken within a predetermined time, and with the test piece or the dummy piece when the test piece is not broken, the measured diffusion A delayed fracture resistance evaluation method for a steel material for automobile structural members, wherein the amount of reactive hydrogen is associated with the results of the constant load test or the variable load test to evaluate delayed fracture resistance.
Σ (MPa) = 3 (HV−10) × α (1)
Where σ: stress (MPa),
HV: Vickers hardness
α: Constant (: Constant value within the range of 0.10 to 0.7)
前記定荷重試験又は前記変動荷重試験の終了後、前記試験片又は前記ダミー片の拡散性水素量を測定するに際し、前記試験片又は前記ダミー片への前記電解処理の停止時を起点とし拡散性水素の分析装置へ投入するまでの大気雰囲気中での経過時間から、予め測定した大気雰囲気中での経過時間と拡散性水素の変化量との関係に基づいて、得られた拡散性水素量の測定値を補正することを特徴とする請求項1に記載の自動車構造部材用鋼材の耐遅れ破壊特性評価方法。   When measuring the diffusible hydrogen amount of the test piece or the dummy piece after completion of the constant load test or the variable load test, the diffusibility starts when the electrolytic treatment is stopped on the test piece or the dummy piece. Based on the relationship between the elapsed time in the air atmosphere and the amount of change in diffusible hydrogen measured in advance from the elapsed time in the air atmosphere until the hydrogen analyzer was charged, the amount of diffusible hydrogen obtained The method for evaluating delayed fracture resistance of steel for automobile structural members according to claim 1, wherein the measured value is corrected. ビッカース硬さ(HV)で250以上を有する自動車用鋼材又は加工または熱処理を施されてビッカース硬さ(HV)で250以上の硬さを有するようになる自動車構造部材用鋼材を評価対象材とし、
前記評価対象材から採取した試験片に拡散性水素を電気化学的手段でチャージしながら、該試験片に定荷重として応力σを負荷する定荷重試験又は該試験片に変動荷重として応力σを10Hz未満の変動速度で負荷する変動荷重試験を実施し、該定荷重試験又は変動荷重試験の結果と拡散性水素量との対応から自動車構造部材用鋼材の耐遅れ破壊特性を評価するに当たり、
前記評価対象材がビッカース硬さ(HV)で250以上を有する場合には、そのまま、もしくは加工または熱処理を施してビッカース硬さ(HV)で250以上の鋼材実使用時の硬さに調整したのち該評価対象材から前記試験片およびダミー片を採取し、一方前記評価対象材がビッカース硬さ(HV)で250未満の場合には該評価対象材に加工または熱処理を施してビッカース硬さ(HV)250以上の鋼材実使用時の硬さに調整したのち前記試験片およびダミー片を採取し、又は前記評価対象材から試験片およびダミー片を採取したのち該試験片およびダミー片に加工または熱処理を施しビッカース硬さ(HV)で250以上の鋼材実使用時の硬さに調整し、試験に供するものとし、
前記ダミー片は前記試験片と同一肉厚、同一表面性状でかつ重量が3.5g以上、表面積が600mm以上とし、
前記電気化学的手段を、電解溶液中で白金電極と前記試験片又は前記ダミー片との間に予め定めた一定電流密度の電流を流し、該試験片又は該ダミー片に0.05ppm以上1ppm未満の拡散性水素量を定常状態で保持可能とする電解処理とし、
該電解処理は、前記試験片と前記ダミー片とで同一の条件とし、無負荷状態で一定時間行い前記試験片及び前記ダミー片中の拡散性水素量を同一量の定常状態に保持したのち、前記試験片と前記ダミー片とに拡散性水素を封じ込めるめっきを施し、
前記定荷重試験を下記(1)式で定義される一定応力σ(MPa)を所定時間負荷する定荷重試験として又は前記変動荷重試験を下記(1)式で定義される応力σ(MPa)を変動荷重として10Hz未満の変動速度で所定時間負荷する変動荷重試験として、大気雰囲気中で行ない、該定荷重試験中又は該変動荷重試験中は、前記めっきを施されたダミー片を前記定荷重試験又は前記変動荷重試験を行なう同一大気雰囲気中に保管し、前記定荷重試験又は前記変動荷重試験後、
拡散性水素量を、前記試験片が所定時間内に破断した場合には前記ダミー片で、前記試験片が破断しなかった場合は該試験片又は前記ダミー片で、測定し、該測定した拡散性水素量と前記定荷重試験又は前記変動荷重試験の結果とを対応させ、耐遅れ破壊特性を評価することを特徴とする自動車構造部材用鋼材の耐遅れ破壊特性評価方法。

σ(MPa)=3(HV−10)×α ………(1)
ここで、σ:応力(MPa)、
HV:ビッカース硬さ
α:定数(:0.10以上0.7未満の範囲内の一定値)
A steel material for automobiles having a Vickers hardness (HV) of 250 or more, or a steel material for automobile structural members that has been processed or heat-treated and has a hardness of 250 or more in Vickers hardness (HV), is an evaluation target material.
While charging diffusible hydrogen to the test piece collected from the material to be evaluated by electrochemical means, a constant load test in which stress σ is applied as a constant load to the test piece or a stress σ of 10 Hz as a variable load is applied to the test piece. In carrying out a fluctuating load test that loads at a fluctuating speed of less than, and evaluating the delayed fracture resistance of steel materials for automobile structural members from the correspondence between the results of the constant load test or fluctuating load test and the amount of diffusible hydrogen
If the material to be evaluated has a Vickers hardness (HV) of 250 or more, the steel is adjusted as it is or after being processed or heat-treated to have a Vickers hardness (HV) of 250 or more. The test piece and the dummy piece are collected from the evaluation target material. On the other hand, when the evaluation target material has a Vickers hardness (HV) of less than 250, the evaluation target material is processed or heat-treated to obtain a Vickers hardness (HV ) After adjusting the hardness at the time of actual use of 250 or more steel materials, the test piece and the dummy piece are collected, or after collecting the test piece and the dummy piece from the evaluation target material, the test piece and the dummy piece are processed or heat-treated. And adjusted to the hardness of 250 or more steel materials in actual use with a Vickers hardness (HV), to be used for testing,
The dummy piece has the same thickness and the same surface properties as the test piece, a weight of 3.5 g or more, and a surface area of 600 mm 2 or more.
The electrochemical means is configured to pass a current having a predetermined constant current density between a platinum electrode and the test piece or the dummy piece in an electrolytic solution, and 0.05 ppm or more and less than 1 ppm to the test piece or the dummy piece. Electrolytic treatment that can maintain the amount of diffusible hydrogen in a steady state,
The electrolytic treatment is performed under the same conditions for the test piece and the dummy piece, and is performed for a predetermined time in an unloaded state, and after maintaining the same amount of diffusible hydrogen in the test piece and the dummy piece in a steady state, Applying plating to contain diffusible hydrogen on the test piece and the dummy piece,
The constant load test is performed as a constant load test in which a constant stress σ (MPa) defined by the following equation (1) is applied for a predetermined time, or the stress σ (MPa) defined by the following equation (1) is used as the variable load test. As a variable load test for a predetermined time at a variable speed of less than 10 Hz as a variable load, it is performed in the air atmosphere. During the constant load test or during the variable load test, the plated dummy piece is subjected to the constant load test. Or store in the same atmospheric atmosphere to perform the variable load test, after the constant load test or the variable load test,
The amount of diffusible hydrogen is measured with the dummy piece when the test piece is broken within a predetermined time, and with the test piece or the dummy piece when the test piece is not broken, the measured diffusion A delayed fracture resistance evaluation method for a steel material for automobile structural members, wherein the amount of reactive hydrogen is associated with the results of the constant load test or the variable load test to evaluate delayed fracture resistance.
Σ (MPa) = 3 (HV−10) × α (1)
Where σ: stress (MPa),
HV: Vickers hardness
α: Constant (: Constant value within the range of 0.10 to 0.7)
前記定荷重試験又は前記変動荷重試験の終了後、前記試験片又は前記ダミー片の拡散性水素量を測定するに際し、前記試験片又は前記ダミー片のめっき剥離時を起点とし拡散性水素の分析装置へ投入するまでの大気雰囲気中での経過時間から、予め測定した大気雰囲気中での経過時間と拡散性水素の変化量との関係に基づいて、得られた拡散性水素量の測定値を補正することを特徴とする請求項3に記載の自動車構造部材用鋼材の耐遅れ破壊特性評価方法。   When the amount of diffusible hydrogen in the test piece or the dummy piece is measured after the constant load test or the variable load test is completed, an analyzer for diffusible hydrogen starting from the time of plating peeling of the test piece or the dummy piece. Based on the relationship between the elapsed time in the air atmosphere measured in advance and the amount of change in diffusible hydrogen, the measured value of the diffusible hydrogen amount obtained is corrected The method for evaluating delayed fracture resistance of a steel material for automobile structural members according to claim 3. 前記電解処理における前記無負荷状態で行なう一定時間を、1時間以上とすることを特徴とする請求項1ないし4のいずれかに記載の自動車構造部材用鋼材の耐遅れ破壊特性評価方法。   The method for evaluating delayed fracture resistance of a steel material for automobile structural members according to any one of claims 1 to 4, wherein a predetermined time in the electrolysis treatment in the unloaded state is 1 hour or more. 前記自動車構造部材用鋼材が、板厚4.5mm以下の薄肉鋼材であることを特徴とする請求項1ないし5のいずれかに記載の自動車構造部材用鋼材の耐遅れ破壊特性評価方法。   The method for evaluating delayed fracture resistance of a steel material for automobile structural members according to any one of claims 1 to 5, wherein the steel material for automobile structural members is a thin steel material having a thickness of 4.5 mm or less. 前記試験片が、切欠き付き試験片であることを特徴とする請求項1ないし6のいずれかに記載の自動車構造部材用鋼材の耐遅れ破壊特性評価方法。   The method for evaluating delayed fracture resistance of a steel material for automobile structural members according to any one of claims 1 to 6, wherein the test piece is a notched test piece. 前記定荷重試験の所定時間を50時間以上、前記変動荷重試験の所定時間を、変動速度が0.1Hz未満の場合には50時間以上、変動速度が0.1Hz以上10Hz未満の場合には20時間以上とすることを特徴とする請求項1ないし7のいずれかに記載の自動車構造部材用鋼材の耐遅れ破壊特性評価方法。   The predetermined time of the constant load test is 50 hours or more, the predetermined time of the variable load test is 50 hours or more when the fluctuation speed is less than 0.1 Hz, and 20 hours or more when the fluctuation speed is 0.1 Hz or more and less than 10 Hz. The method for evaluating delayed fracture resistance of steel for automobile structural members according to any one of claims 1 to 7. 前記定荷重試験の所定時間を150時間以上、前記変動荷重試験の所定時間を、変動速度が0.1Hz未満の場合には150時間以上、変動速度が0.1Hz以上10Hz未満の場合には60時間以上とすることを特徴とする請求項1ないし7のいずれかに記載の自動車構造部材用鋼材の耐遅れ破壊特性評価方法。   The predetermined time of the constant load test is 150 hours or more, the predetermined time of the variable load test is 150 hours or more when the fluctuation speed is less than 0.1 Hz, and 60 hours or more when the fluctuation speed is 0.1 Hz or more and less than 10 Hz. The method for evaluating delayed fracture resistance of steel for automobile structural members according to any one of claims 1 to 7. 質量%で、
C:0.05〜0.45%、 Si:0.1〜0.6%、
Mn:0.5〜2.5%、 P:0.030%以下、
S:0.003%以下、 sol.Al:0.008〜0.1%、
N:0.005%以下
を、下記(2)式で定義される炭素当量Ceqが0.07〜0.9を満足するように含み、残部が実質的にFeからなる組成を有し、ビッカース硬さHVで250以上600以下の硬さを有するか、あるいは焼入れ処理または焼入れ焼戻処理を施された後にビッカース硬さHVで250以上600以下の硬さとなる自動車構造部材用鋼材であって、該自動車構造部材用鋼材から試験片およびダミー試験片を採取し、あるいは該自動車構造部材用鋼材に焼入れ処理または焼入れ焼戻処理を施してビッカース硬さHVで250以上600以下の硬さとしたのち試験片およびダミー片を採取し、該試験片およびダミー片を用い、請求項8に記載された自動車構造部材用鋼材の耐遅れ破壊特性評価方法で耐遅れ破壊特性を評価した際に前記試験片が破断しないことを特徴とする耐遅れ破壊特性に優れる自動車構造部材用鋼材。

Ceq=C+Mn/6+Si/24+Ni/40+Cr/5+Mo/4+V/14 ………(2)
ここで、Ceq:炭素当量(%)、
C、Mn、Si、Ni、Cr、Mo、V:各元素の含有量(質量%)
% By mass
C: 0.05 to 0.45%, Si: 0.1 to 0.6%,
Mn: 0.5 to 2.5%, P: 0.030% or less,
S: 0.003% or less, sol.Al: 0.008 to 0.1%,
N: 0.005% or less is included so that the carbon equivalent Ceq defined by the following formula (2) satisfies 0.07 to 0.9, the balance is substantially composed of Fe, and the Vickers hardness HV is 250 or more. An automotive structural member steel having a hardness of 600 or less, or having a Vickers hardness HV of 250 or more and 600 or less after being quenched or tempered, the automotive structural member steel Specimens and dummy specimens are collected from the above, or the steel materials for automobile structural members are subjected to quenching or quenching and tempering to obtain a Vickers hardness HV of 250 to 600, and then specimens and dummy specimens are collected. The test piece and the dummy piece are characterized in that the test piece does not break when the delayed fracture resistance is evaluated by the delayed fracture resistance evaluation method for steel for automobile structural members according to claim 8. Resistance to Steel material for automobile structural members with excellent delayed fracture characteristics.
Ceq = C + Mn / 6 + Si / 24 + Ni / 40 + Cr / 5 + Mo / 4 + V / 14 (2)
Where Ceq: carbon equivalent (%),
C, Mn, Si, Ni, Cr, Mo, V: Content of each element (% by mass)
前記組成に代えて、質量%で、
C:0.15〜0.25%、 Si:0.1〜0.55%、
Mn:0.5〜2.5%、 P:0.016%以下、
S:0.003%以下、 sol.Al:0.008〜0.1%、
N:0.005%以下
を、前記(2)式で定義される炭素当量Ceqが0.07〜0.60を満足するように含み、残部が実質的にFeからなる組成を有することを特徴とする請求項10に記載の自動車構造部材用鋼材。
In place of the composition,
C: 0.15-0.25%, Si: 0.1-0.55%,
Mn: 0.5 to 2.5%, P: 0.016% or less,
S: 0.003% or less, sol.Al: 0.008 to 0.1%,
N: 0.005% or less is included so that the carbon equivalent Ceq defined by the formula (2) satisfies 0.07 to 0.60, and the balance is substantially composed of Fe. The steel material for automotive structural members as described.
前記組成が、さらにC、Pを下記(3)式を満足するように含有する組成であることを特徴とする請求項10又は11に記載の自動車構造部材用鋼材。

P<{−(4/50)×C+0.045} ………(3)
ここで、C、P:各元素の含有量(質量%)
The steel composition for automobile structural members according to claim 10 or 11, wherein the composition further contains C and P so as to satisfy the following expression (3).
Record
P <{-(4/50) × C + 0.045} (3)
Here, C, P: Content of each element (% by mass)
前記組成が、さらにC、Pを下記(4)式を満足するように含有する組成であり、請求項9に記載された自動車構造部材用鋼材の耐遅れ破壊特性評価方法で耐遅れ破壊特性を評価した際に前記試験片が破断しないことを特徴とする請求項10又は11に記載の自動車構造部材用鋼材。

P<{−(4/50)×C+0.033} ………(4)
ここで、C、P:各元素の含有量(質量%)
The composition further contains C and P so as to satisfy the following formula (4), and the delayed fracture resistance evaluation method according to the method for evaluating delayed fracture resistance of steel for automotive structural members according to claim 9. The steel material for automobile structural members according to claim 10 or 11, wherein the test piece does not break when evaluated.
Record
P <{-(4/50) × C + 0.033} (4)
Here, C, P: Content of each element (% by mass)
前記組成に加えてさらに、質量%で、Ti:0.005〜0.04%を、下記(5)式を満足するように含有する組成とすることを特徴とする請求項10ないし13のいずれかに記載の自動車構造部材用鋼材。

Ti−(48/14)N>0 ………(5)
ここで、Ti、N:各元素の含有量(質量%)
The composition according to any one of claims 10 to 13, wherein the composition further contains, in mass%, Ti: 0.005 to 0.04% so as to satisfy the following formula (5): Steel for automobile structural members.
Record
Ti- (48/14) N> 0 (5)
Here, Ti, N: Content of each element (mass%)
前記組成に加えてさらに、質量%で、Nb:0.03%以下を含有する組成とすることを特徴とする請求項10ないし14のいずれかに記載の自動車構造部材用鋼材。   The steel material for an automobile structural member according to any one of claims 10 to 14, wherein the steel material further contains Nb: 0.03% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Cr:0.05〜0.25%、Ni:0.10%以下、Mo:0.20%以下、V:0.10%以下、B:0.0001〜0.005%のうちの1種または2種以上を含有する組成とすることを特徴とする請求項10ないし15のいずれかに記載の自動車構造部材用鋼材。   In addition to the above composition, in addition to mass, one or two of Cr: 0.05 to 0.25%, Ni: 0.10% or less, Mo: 0.20% or less, V: 0.10% or less, B: 0.0001 to 0.005% The steel material for automobile structural members according to any one of claims 10 to 15, wherein the steel material has a composition containing the above. 前記組成に加えてさらに、質量%で、Cu:0.20%以下を含有する組成とすることを特徴とする請求項10ないし16のいずれかに記載の自動車構造部材用鋼材。   The steel material for automobile structural members according to any one of claims 10 to 16, wherein the steel material further contains Cu: 0.20% or less by mass% in addition to the composition. 前記組成に加えてさらに、質量%で、Ca:0.0001〜0.0030%を含有する組成とすることを特徴とする請求項10ないし17のいずれかに記載の自動車構造部材用鋼材。   The steel material for an automobile structural member according to any one of claims 10 to 17, wherein the steel material further contains Ca: 0.0001 to 0.0030% by mass% in addition to the composition. 請求項10ないし18のいずれかに記載の自動車構造部材用鋼材で構成されてなる自動車構造部材。   An automotive structural member made of the steel material for automotive structural members according to any one of claims 10 to 18.
JP2004209157A 2004-07-15 2004-07-15 Method for evaluating delayed fracture resistance of steel for automotive structural members and steel for automotive structural members excellent in delayed fracture resistance Expired - Fee Related JP4370991B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004209157A JP4370991B2 (en) 2004-07-15 2004-07-15 Method for evaluating delayed fracture resistance of steel for automotive structural members and steel for automotive structural members excellent in delayed fracture resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004209157A JP4370991B2 (en) 2004-07-15 2004-07-15 Method for evaluating delayed fracture resistance of steel for automotive structural members and steel for automotive structural members excellent in delayed fracture resistance

Publications (2)

Publication Number Publication Date
JP2006029977A true JP2006029977A (en) 2006-02-02
JP4370991B2 JP4370991B2 (en) 2009-11-25

Family

ID=35896519

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004209157A Expired - Fee Related JP4370991B2 (en) 2004-07-15 2004-07-15 Method for evaluating delayed fracture resistance of steel for automotive structural members and steel for automotive structural members excellent in delayed fracture resistance

Country Status (1)

Country Link
JP (1) JP4370991B2 (en)

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069007A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Steel sheet hydrogen embrittlement evaluation method
JP2009069008A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Test piece for steel sheet hydrogen embrittlement evaluation, and steel sheet hydrogen embrittlement evaluation method
JP2009069004A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Device and method for evaluating hydrogen embrittlement of thin steel sheet
JP2010054494A (en) * 2008-07-28 2010-03-11 Kobe Steel Ltd Method for evaluating hydrogen cracking resistivity of steel products
JP2013044716A (en) * 2011-08-26 2013-03-04 Jfe Steel Corp Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal portion of moving body
JP2013142684A (en) * 2012-01-13 2013-07-22 Neturen Co Ltd Delayed fracture characteristics evaluation method of pc steel
WO2013133270A1 (en) 2012-03-07 2013-09-12 新日鐵住金株式会社 Steel sheet for hot stamping, method for producing same, and hot-stamped steel material
WO2015080261A1 (en) * 2013-11-29 2015-06-04 三菱重工業株式会社 Method for determining characteristic stress of welding structure, method for designing welded structure, and method for manufacturing welded structure
WO2015129215A1 (en) * 2014-02-25 2015-09-03 Jfeスチール株式会社 Stress corrosion cracking test method for alcohol environments
JP2015172529A (en) * 2014-03-12 2015-10-01 日本電信電話株式会社 Method for evaluating hydrogen embrittlement resistance
JP2016045158A (en) * 2014-08-26 2016-04-04 日本電信電話株式会社 Pretreatment method for material evaluation
JP2016057163A (en) * 2014-09-09 2016-04-21 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement characteristic of steel material
JP2016125996A (en) * 2015-01-06 2016-07-11 東プレ株式会社 Delayed fracture test method
CN107101891A (en) * 2017-05-07 2017-08-29 华北理工大学 A kind of electrochemistry be flushed with hydrogen under the conditions of Mechanics Performance Testing device
KR20190075496A (en) * 2017-12-21 2019-07-01 주식회사 포스코 Hydrogen delayed fracture testing method
JP2021124352A (en) * 2020-02-04 2021-08-30 日本製鉄株式会社 Strength test method
CN114034628A (en) * 2021-11-07 2022-02-11 中国兵器工业第五九研究所 Accelerated environmental aging test method for flexible piezoelectric film
JP2022072595A (en) * 2020-10-30 2022-05-17 Jfeスチール株式会社 Method of preparing sample for analyzing absorbed hydrogen in steel, analyzing method of absorbed hydrogen in steel, prediction method of brittle deterioration caused by diffusible hydrogen in steel plate, and certification method of steel plate test result
WO2023013520A1 (en) * 2021-08-03 2023-02-09 学校法人福岡大学 Hydrogen charging device and rotary bending fatigue testing machine using same
WO2023181539A1 (en) * 2022-03-24 2023-09-28 Jfeスチール株式会社 Method, device, and program for predicting delayed fracture in press-formed article, and method for manufacturing press-formed article

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6350917B2 (en) * 2015-06-12 2018-07-04 日本電信電話株式会社 Hydrogen absorption method

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009069007A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Steel sheet hydrogen embrittlement evaluation method
JP2009069008A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Test piece for steel sheet hydrogen embrittlement evaluation, and steel sheet hydrogen embrittlement evaluation method
JP2009069004A (en) * 2007-09-13 2009-04-02 Nippon Steel Corp Device and method for evaluating hydrogen embrittlement of thin steel sheet
JP2010054494A (en) * 2008-07-28 2010-03-11 Kobe Steel Ltd Method for evaluating hydrogen cracking resistivity of steel products
JP2013044716A (en) * 2011-08-26 2013-03-04 Jfe Steel Corp Method for measuring amount of hydrogen penetrated into metal and method for monitoring amount of hydrogen penetrated into metal portion of moving body
JP2013142684A (en) * 2012-01-13 2013-07-22 Neturen Co Ltd Delayed fracture characteristics evaluation method of pc steel
WO2013133270A1 (en) 2012-03-07 2013-09-12 新日鐵住金株式会社 Steel sheet for hot stamping, method for producing same, and hot-stamped steel material
KR20140138829A (en) 2012-03-07 2014-12-04 신닛테츠스미킨 카부시키카이샤 Steel sheet for hot stamping, method for producing same, and hot-stamped steel material
US10161023B2 (en) 2012-03-07 2018-12-25 Nippon Steel & Sumitomo Metal Corporation Steel sheet for hot stamping, method for production thereof, and hot stamping steel material
WO2015080261A1 (en) * 2013-11-29 2015-06-04 三菱重工業株式会社 Method for determining characteristic stress of welding structure, method for designing welded structure, and method for manufacturing welded structure
JP2015104745A (en) * 2013-11-29 2015-06-08 三菱重工業株式会社 Characteristic stress determination method of welded structure, design method of welded construction and manufacturing method of welded structure
US9931715B2 (en) 2013-11-29 2018-04-03 Mitsubishi Heavy Industries, Ltd. Method for determining characteristic stress of welding structure, method for designing welded structure, and method for manufacturing welded structure
JPWO2015129215A1 (en) * 2014-02-25 2017-03-30 Jfeスチール株式会社 Test method for stress corrosion cracking in alcoholic environment
WO2015129215A1 (en) * 2014-02-25 2015-09-03 Jfeスチール株式会社 Stress corrosion cracking test method for alcohol environments
CN106030281A (en) * 2014-02-25 2016-10-12 杰富意钢铁株式会社 Stress corrosion cracking test method for alcohol environments
KR101821083B1 (en) * 2014-02-25 2018-01-22 제이에프이 스틸 가부시키가이샤 Stress corrosion crack test method in alcohol environment
US10024781B2 (en) 2014-02-25 2018-07-17 Jfe Steel Corporation Stress corrosion crack test method in alcohol environment
JP2015172529A (en) * 2014-03-12 2015-10-01 日本電信電話株式会社 Method for evaluating hydrogen embrittlement resistance
JP2016045158A (en) * 2014-08-26 2016-04-04 日本電信電話株式会社 Pretreatment method for material evaluation
JP2016057163A (en) * 2014-09-09 2016-04-21 新日鐵住金株式会社 Evaluation method of hydrogen embrittlement characteristic of steel material
JP2016125996A (en) * 2015-01-06 2016-07-11 東プレ株式会社 Delayed fracture test method
CN107101891A (en) * 2017-05-07 2017-08-29 华北理工大学 A kind of electrochemistry be flushed with hydrogen under the conditions of Mechanics Performance Testing device
CN107101891B (en) * 2017-05-07 2019-05-28 华北理工大学 A kind of electrochemistry be flushed with hydrogen under the conditions of Mechanics Performance Testing device
KR20190075496A (en) * 2017-12-21 2019-07-01 주식회사 포스코 Hydrogen delayed fracture testing method
KR102043517B1 (en) * 2017-12-21 2019-11-12 주식회사 포스코 Hydrogen delayed fracture testing method
JP2021124352A (en) * 2020-02-04 2021-08-30 日本製鉄株式会社 Strength test method
JP7328547B2 (en) 2020-02-04 2023-08-17 日本製鉄株式会社 Strength test method
JP2022072595A (en) * 2020-10-30 2022-05-17 Jfeスチール株式会社 Method of preparing sample for analyzing absorbed hydrogen in steel, analyzing method of absorbed hydrogen in steel, prediction method of brittle deterioration caused by diffusible hydrogen in steel plate, and certification method of steel plate test result
JP7327353B2 (en) 2020-10-30 2023-08-16 Jfeスチール株式会社 Method for preparing samples for hydrogen analysis in steel, method for analyzing hydrogen in steel, method for predicting brittle deterioration of steel plate due to diffusible hydrogen, and method for verifying inspection results of steel plate
WO2023013520A1 (en) * 2021-08-03 2023-02-09 学校法人福岡大学 Hydrogen charging device and rotary bending fatigue testing machine using same
CN114034628A (en) * 2021-11-07 2022-02-11 中国兵器工业第五九研究所 Accelerated environmental aging test method for flexible piezoelectric film
WO2023181539A1 (en) * 2022-03-24 2023-09-28 Jfeスチール株式会社 Method, device, and program for predicting delayed fracture in press-formed article, and method for manufacturing press-formed article

Also Published As

Publication number Publication date
JP4370991B2 (en) 2009-11-25

Similar Documents

Publication Publication Date Title
JP4370991B2 (en) Method for evaluating delayed fracture resistance of steel for automotive structural members and steel for automotive structural members excellent in delayed fracture resistance
Huang et al. Hydrogen-induced cracking susceptibility and hydrogen trapping efficiency of different microstructure X80 pipeline steel
JP4901662B2 (en) Test piece for evaluating hydrogen embrittlement of thin steel sheet and method for evaluating hydrogen embrittlement of thin steel sheet
JP5081175B2 (en) Method for evaluating hydrogen cracking resistance of steel
Pound Hydrogen trapping in high-strength steels
EP2557195B1 (en) Spring steel and method of manufacture for same
ES2709515T3 (en) Steel for high strength springs
EP3088551A1 (en) Rolled steel material for high-strength spring and wire for high-strength spring using same
CN103201404A (en) High-strength spring steel, method for producing high-strength spring, and high-strength spring
AU2017433092A1 (en) Steel Material
Leiva-García et al. Corrosion behaviour of sensitized and unsensitized Alloy 900 (UNS 1.4462) in concentrated aqueous lithium bromide solutions at different temperatures
Adasooriya et al. Effect of hydrogen on mechanical properties and fracture of martensitic carbon steel under quenched and tempered conditions
Degerbeck et al. Some aspects of the influence of manganese in austenitic stainless steels
Shibayama et al. An evaluation method for hydrogen embrittlement of high strength steel sheets using U-bend specimens
Huang et al. Sulfide stress cracking resistance of the welded WDL690D HSLA steel in H2S environment
Ma et al. Microstructure, properties and weldability of duplex stainless steel 2101
JP4823991B2 (en) Evaluation method for hydrogen embrittlement of thin steel sheet
Husby et al. Effect of nickel on the hydrogen stress cracking resistance of ferritic/pearlitic low alloy steels
Chalfoun et al. Sulfide Stress Cracking of Low Alloy Steels for Oil and Gas Production: Revisiting the Effect of Ni as an Alloying Element
Wu et al. Effect of reversed austenite on the stress corrosion cracking of modified 17-4PH stainless steel
Latypova et al. Hydrogen-induced cracking of 500 HBW steels studied using a novel tuning-fork test with integrated loadcell system
KR101632512B1 (en) Ferritic stainless steel having an excellent anticorrosive property against condensate water and a manufacturing method thereof
JP2003328087A (en) Steel for chemical tank excellent in resistance to sulfuric acid corrosion and pitting corrosion
Hadžipašić et al. The influence of microstructure on hydrogen diffusion and embrittlement of fine-grained high strength dual-phase steels.
Visser et al. Influence of different types of localized corrosion on the fatigue behavior of an austenitic stainless steel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20090714

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090811

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090824

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4370991

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120911

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130911

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees