EP3088551A1 - Rolled steel material for high-strength spring and wire for high-strength spring using same - Google Patents

Rolled steel material for high-strength spring and wire for high-strength spring using same Download PDF

Info

Publication number
EP3088551A1
EP3088551A1 EP14875039.1A EP14875039A EP3088551A1 EP 3088551 A1 EP3088551 A1 EP 3088551A1 EP 14875039 A EP14875039 A EP 14875039A EP 3088551 A1 EP3088551 A1 EP 3088551A1
Authority
EP
European Patent Office
Prior art keywords
less
amount
wire
rolled material
hydrogen
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
EP14875039.1A
Other languages
German (de)
French (fr)
Other versions
EP3088551A4 (en
Inventor
Atsuhiko TAKEDA
Tomokazu Masuda
Sho Takayama
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Family has litigation
First worldwide family litigation filed litigation Critical https://patents.darts-ip.com/?family=53478395&utm_source=***_patent&utm_medium=platform_link&utm_campaign=public_patent_search&patent=EP3088551(A1) "Global patent litigation dataset” by Darts-ip is licensed under a Creative Commons Attribution 4.0 International License.
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Publication of EP3088551A1 publication Critical patent/EP3088551A1/en
Publication of EP3088551A4 publication Critical patent/EP3088551A4/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • C21D9/525Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length for wire, for rods
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B21MECHANICAL METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL; PUNCHING METAL
    • B21CMANUFACTURE OF METAL SHEETS, WIRE, RODS, TUBES OR PROFILES, OTHERWISE THAN BY ROLLING; AUXILIARY OPERATIONS USED IN CONNECTION WITH METAL-WORKING WITHOUT ESSENTIALLY REMOVING MATERIAL
    • B21C1/00Manufacture of metal sheets, metal wire, metal rods, metal tubes by drawing
    • B21C1/003Drawing materials of special alloys so far as the composition of the alloy requires or permits special drawing methods or sequences
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D1/00General methods or devices for heat treatment, e.g. annealing, hardening, quenching or tempering
    • C21D1/18Hardening; Quenching with or without subsequent tempering
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D3/00Diffusion processes for extraction of non-metals; Furnaces therefor
    • C21D3/02Extraction of non-metals
    • C21D3/06Extraction of hydrogen
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D8/00Modifying the physical properties by deformation combined with, or followed by, heat treatment
    • C21D8/06Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires
    • C21D8/065Modifying the physical properties by deformation combined with, or followed by, heat treatment during manufacturing of rods or wires of ferrous alloys
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D9/00Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor
    • C21D9/52Heat treatment, e.g. annealing, hardening, quenching or tempering, adapted for particular articles; Furnaces therefor for wires; for strips ; for rods of unlimited length
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/001Ferrous alloys, e.g. steel alloys containing N
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/002Ferrous alloys, e.g. steel alloys containing In, Mg, or other elements not provided for in one single group C22C38/001 - C22C38/60
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/02Ferrous alloys, e.g. steel alloys containing silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/04Ferrous alloys, e.g. steel alloys containing manganese
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/06Ferrous alloys, e.g. steel alloys containing aluminium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/08Ferrous alloys, e.g. steel alloys containing nickel
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/12Ferrous alloys, e.g. steel alloys containing tungsten, tantalum, molybdenum, vanadium, or niobium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/14Ferrous alloys, e.g. steel alloys containing titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/16Ferrous alloys, e.g. steel alloys containing copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/34Ferrous alloys, e.g. steel alloys containing chromium with more than 1.5% by weight of silicon
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/42Ferrous alloys, e.g. steel alloys containing chromium with nickel with copper
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/44Ferrous alloys, e.g. steel alloys containing chromium with nickel with molybdenum or tungsten
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/46Ferrous alloys, e.g. steel alloys containing chromium with nickel with vanadium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/48Ferrous alloys, e.g. steel alloys containing chromium with nickel with niobium or tantalum
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/50Ferrous alloys, e.g. steel alloys containing chromium with nickel with titanium or zirconium
    • CCHEMISTRY; METALLURGY
    • C22METALLURGY; FERROUS OR NON-FERROUS ALLOYS; TREATMENT OF ALLOYS OR NON-FERROUS METALS
    • C22CALLOYS
    • C22C38/00Ferrous alloys, e.g. steel alloys
    • C22C38/18Ferrous alloys, e.g. steel alloys containing chromium
    • C22C38/40Ferrous alloys, e.g. steel alloys containing chromium with nickel
    • C22C38/54Ferrous alloys, e.g. steel alloys containing chromium with nickel with boron
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/002Bainite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/005Ferrite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/008Martensite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2211/00Microstructure comprising significant phases
    • C21D2211/009Pearlite
    • CCHEMISTRY; METALLURGY
    • C21METALLURGY OF IRON
    • C21DMODIFYING THE PHYSICAL STRUCTURE OF FERROUS METALS; GENERAL DEVICES FOR HEAT TREATMENT OF FERROUS OR NON-FERROUS METALS OR ALLOYS; MAKING METAL MALLEABLE, e.g. BY DECARBURISATION OR TEMPERING
    • C21D2261/00Machining or cutting being involved

Definitions

  • the present invention relates to a rolled material for high strength spring, and a wire for high strength spring using the same. More particularly, the present invention relates to a rolled material and a wire, which are useful as raw materials of high strength springs that are used in a state of being subjected to heat treatment, namely, quenching and tempering, particularly a rolled material having excellent wire drawability, and a wire for high strength spring, which are excellent in corrosion fatigue properties even though a tensile strength is a high strength in a range of 1,900 MPa or more after wire drawing.
  • Coil springs used in automobiles for example, a valve spring and a suspension spring used in the engine, suspension, and the like are required to reduce the weight and to increase the strength so as to achieve exhaust gas reduction and improvement in fuel efficeincy.
  • wire drawing is applied for the purpose of achieving improvement in dimensional accuracy of a wire diameter and uniformization of a structure due to plastic working before a heat treatment of quenching and tempering.
  • a wire drawing reduction rate is sometimes increased so as to further uniformize the structure in the high strength wire, and a rolled material is required to have satisfactory wire drawability.
  • the spring imparted with high strength is likely to cause hydrogen brittleness because of its poor toughness and ductility, leading to degradation of corrosion fatigue properties.
  • the steel wire (wire) for high strength spring used in the manufacture of a spring is required to have excellent corrosion fatigue properties. Hydrogen generated by corrosion enters into a steel and may lead to embrittlement of a steel material, thus causing corrosion fatigue fracture, so that there is a need to improve corrosion resistance and hydrogen embrittlement resistance of the steel material so as to improve corrosion fatigue properties.
  • Patent Document 1 discloses technology in which a wire rod is cold-drawn and then the structure is adjusted by quenching and tempering through high frequency induction heating.
  • a structural fraction of pearlite is set at 30% or less and a structural fraction composed of martensite and bainite is set at 70% or more and then cold drawing is performed at a predetermined area reduction rate, followed by quenching and tempering to thereby reduce the unsolveded carbides, leading to an improvement in delayed fracture properties.
  • Patent Document 2 a rolled wire rod is subjected to wire drawing, followed by a quenching and tempering treatment through high frequency induction heating. This technology focuses primarily on achievement of the reconciliation of high strength and formability (coiling properties), and gives no consideration to hydrogen embrittlement resistance..
  • Patent Document 3 proposes a hot rolled wire rod having excellent wire drawability under severe wire drawing conditions.
  • Patent Document 3 focuses only on wire drawability during special processing such as sehere wire drawing, and also gives no consideration to hydrogen embrittlement resistance after quenching and tempering, which becomes most important in a suspension spring.
  • the present invention has been made, and it is an object thereof is to provide a rolled material for high strength spring, which is a material for high strength spring including both materials for hot coiling and cold coiling, and which has excellent wire drawability even when suppressing the addition amount of an alloying element, and also can exhibit corrosion fatigue properties after quenching and tempering.
  • the present invention that can solve the foregoing problems provides a rolled material for high strength spring, including, in % by mass:
  • the rolled material for high strength spring of the present invention preferably includes, in % by mass, at least one belonging to any one of the following (a), (b), (c) and (d):
  • an ideal critical diameter D i is preferably in a range of 65 to 140 mm, and is calculated using an equation (2) below when B is not included or using an equation (3) below when B is included. If some elements are not included in the rolled material of the present invention among elements mentioned in the equations, calculation is made under the condition that the content of the elements is 0%.
  • the present invention also includes a wire for high strength spring, having a tensile strength of 1,900 MPa or more, obtained by wire-drawing any one of the rolled materials for high strength spring mentioned above, followed by a quenching and tempering treatment.
  • the rolled material since the amount of nondiffusible hydrogen in a rolled material is suppressed and formation of supercooled structures such as bainite and martensite is suppressed, the rolled material exhibits excellent wire drawability without adding a large amount of an alloying element.
  • an area ratio of ferrite is appropriately adjusted according to the concentration of C, specifically, the area ratio of ferrite decreases as the concentration of C increases, so that a wire obtained by wire-drawing this rolled material, followed by quenching and tempering is excellent in corrosion fatigue properties even though the strength is a high strength in a range of 1,900 MPa or more.
  • Fig. 1 is a graph showing an influence of an amount of C and a ferrite area ratio on hydrogen embrittlement resistance.
  • Wire drawability of a rolled material is usually influenced by ductility of the rolled material. Poor ductility of a basis material or degradation of ductility due to the presence of a supercooled structure may lead to fracture during wire drawing, resulting in drastic degradation of manufacturability. Therefore, wire drawability can be improved by enhancing ductility of the rolled material.
  • corrosion fatigue fracture occurs with these corrosion pits, wall thickness reduction sections, and embrittled sections of the steel material as starting points. Therefore, corrosion fatigue fracture can be improved by improving hydrogen embrittlement resistance and corrosion resistance of the steel material.
  • the inventors of the present invention have made a study of factors that exert an influence on ductility, hydrogen embrittlement resistance and corrosion resistance of a steel material from various viewpoints. As a result, they have found that proper control of both a ferrite area ratio of a rolled material and the amount of hydrogen in a steel expressed particularly by the amount of nondiffusible hydrogen enables an improvement in ductility of the rolled material and significant improvement in hydrogen embrittlement resistance when the rolled material is subjected to wire drawing, followed by quenching and tempering. They have also found that corrosion resistance can also be improved by appropriately adjusting the chemical composition, leading to significant improvement in corrosion fatigue properties, thus completing the present invention.
  • the structure, the amount of hydrogen in steel, and the chemical composition of the rolled material of the present invention will be sequentially described below.
  • the ferrite structure is likely to form a carbide depleted region after quenching and tempering, and formation of the carbide depleted region serves as a fracture starting point, as a strength lowering section. While carbides are capable of detoxicating hydrogen by trapping hydrogen, the carbide depleted region becomes an area lacking such a capability, so that hydrogen embrittlement is likely to occur, leading to fracture. In order to suppress formation of the carbide depleted region after a quenching and tempering treatment to thereby uniformly disperse carbides, there is a need to form a structure in which carbides are uniformly dispersed in a stage of a rolled material before quenching and tempering.
  • a ratio of a pearlite structure which is a structure that ferrite and carbides form layers, is increased to thereby decrease a ratio of a ferrite structure.
  • the inventors of the present invention have found that it is important to make an area ratio of the ferrite structure smaller than that of the ferrite structure obtained by allowing to cool after rolling, so as to improve hydrogen embrittlement resistance, and that the ferrite structure obtained by allowing to cool after rolling has a close relation with the amount of C.
  • the rolled material of the present invention is characterized by controlling the ratio of the ferrite structure so as to satisfy the inequality expression (1) below.
  • the [name of element] in the inequality expression (1) below means a content expressed in % by mass of each element.
  • the ferrite area ratio means a ratio expressed as a percentage. Ferrite area ratio ⁇ 0.77 ⁇ C / 0.77 ⁇ C / 3 + 0.08 ⁇ 100
  • Fig. 1 is a graph showing an influence of an amount of C and a ferrite area ratio on hydrogen embrittlement resistance on the basis of Example data mentioned later.
  • the rolled material of the present invention is significantly characterized by decreasing an area ratio of ferrite as the amount of C increases.
  • the steel material including a large amount of C is required to reduce the ratio of the ferrite structure from a viewpoint that a martensite structure is likely to embrittle, particularly.
  • the less an area ratio of ferrite, the better, and the area ratio of ferrite may be 0%.
  • the ratio of the ferrite structure is preferably reduced by at least 10% lower than that of the ferrite structure obtained by allowing to cool after rolling, namely, the ratio of the ferrite structure preferably satisfies an inequality expression (1-2) below.
  • Ferrite area ratio ⁇ 0.77 ⁇ C / 0.77 ⁇ C / 3 + 0.08 ⁇ 100 ⁇ 0.9
  • the area percentage is 2 percentage or less, preferably 1 percentage or less, most preferably 0 percentage or less.
  • an amount of nondiffusible hydrogen is set at 0.40 ppm by mass or less. If a large amount of nondiffusible hydrogen exists, hydrogen is accumulated around inclusions and segregating zones in the rolled material to thereby generate microcracks, resulting in degraded wire drawability of the rolled material. If a large amount of nondiffusible hydrogen exists, a permissible amount of hydrogen, which further enters until the steel material embrittles, decreases. Therefore, even though a small amount of hydrogen entered during use as a spring, embrittlement of the steel material occurs and early fracture is likely to occur, resulting in degraded hydrogen embrittlement resistance.
  • the amount of nondiffusible hydrogen is preferably 0.35 ppm by mass or less, and more preferably 0.30 ppm by mass or less. The less the amount of nondiffusible hydrogen, the better. However, it is difficult to set at 0 ppm by mass and the lower limit is about 0.01 ppm by mass.
  • the amount of nondiffusible hydrogen is an amount of hydrogen measured by the method mentioned in Examples below, and specifically means the total amount of hydrogen released at 300 to 600°C when the temperature of a steel material is raised at 100°C/hour.
  • Carbon is an element that is required to ensure the strength of a wire for spring, and is also required to generate fine carbides that serve as hydrogen trapping sites. From such a viewpoint, the amount of C is determined in a range of 0.39% or more.
  • the lower limit of the amount of C is preferably 0.45% or more, and more preferably 0.50% or more. Excessive C amount, however, might generate coarse residual austenite and ussolved carbides after quenching and tempering, which further degrades hydrogen embrittlement resistance.
  • C is an element that degrades corrosion resistance, so that there is a need to suppress the amount of C so as to enhance corrosion fatigue properties of a spring product such as a suspension spring which is a final product. From such a viewpoint, the amount of C is determined in a range of 0.65% or less.
  • the upper limit of the amount of C is preferably 0.62% or less, and more preferably 0.60% or less.
  • Si is an element that is required to ensure the strength, and also exhibits the effect of refining carbides. To effectively exhibit these effects, the amount of Si is determined in a range of 1.5% or more.
  • the lower limit of the amount of Si is preferably 1.7% or more, and more preferably 1.9% or more.
  • Si is also an element that accelerates decarburization, excessive Si amount accelerates formation of a decarburized layer on a surface of a steel material, thus requiring the peeling step for removal of the decarburized layer, resulting in increased manufacturing costs. Unsolved carbides also increase, thus degrading hydrogen embrittlement resistance. From such a viewpoint, the amount of Si is determined in a range of 2.5% or less.
  • the upper limit of the amount of Si is preferably 2.3% or less, more preferably 2.2% or less, and still more preferably 2.1% or less.
  • Mn is an element that is employed as a deoxidizing element and reacts with S, which is a harmful element in a steel, to form MnS, and is useful for detoxication of S. Mn is also an element that contributes to an improvement in strength. To effectively exhibit these effects, the amount of Mn is determined in a range of 0.15% or more.
  • the lower limit of the amount of Mn is preferably 0.2% or more, and more preferably 0.3% or more. Excessive Mn amount, however, degrades toughness, thus causing embrittlement of a steel material. From such a viewpoint, the amount of Mn is determined in a range of 1.2% or less.
  • the upper limit of the amount of Mn is preferably 1.0% or less, more preferably 0.85% or less, and still more preferably 0.70% or less.
  • P is a harmful element that degrades ductility such as coiling properties of a rolled material, namely, a wire rod, and the amount thereof is preferably as small as possible. P is likely to segregate in grain boundaries to cause grain boundary embrittlement, and hydrogen is likely to cause fracture of grain boundaries, thus exerting an adverse influence on hydrogen embrittlement resistance. From such a viewpoint, the amount of P is determined in a range of 0.015% or less. The upper limit of the amount of P is preferably 0.010% or less, and more preferably 0.008% or less. The amount of P is preferably as small as possible, and is usually about 0.001%.
  • S is a harmful element that degrades ductility such as coiling properties of a rolled material, and the amount thereof is preferably as small as possible. S is likely to segregate in grain boundaries to cause grain boundary embrittlement, and hydrogen is likely to cause fracture of grain boundaries, thus exerting an adverse influence on hydrogen embrittlement resistance. From such a viewpoint, the amount of S is determined in a range of 0.015% or less. The upper limit of the amount of S is preferably 0. 010% or less, and more preferably 0.008% or less. The amount of S is preferably as small as possible, and is usually about 0.001%.
  • Al is mainly added as a deoxidizing element. This element reacts with N to form AlN to thereby detoxicate solid-soluted N, and also contributes to refining of the structure. To adequately exhibit these effects, the amount of Al is determined in a range of 0.001% or more.
  • the lower limit of the amount of Al is preferably 0.002% or more, and more preferably 0.005% or more.
  • Al is an element that accelerates decarburization, like Si, there is a need to suppress the amount of Al in a steel for spring, which includes a large amount of Si. Therefore, in the present invention, the amount of Al isdetermined in a range of 0.1% or less.
  • the upper limit of the amount of Al is preferably 0.07% or less, more preferably 0.030% or less, and particularly preferably 0.020% or less.
  • Cu is an element that is effective in suppressing surface decarburization and improving corrosion resistance. Therefore, the amount of Cu is determined in a range of 0.1% or more.
  • the lower limit of the amount of Cu is preferably 0.15% or more, more preferably 0.20% or more, and still more preferably 0.25% or more. Excessive Cu amount, however, causes cracks during hot working and increases costs. Therefore, the amount of Cu is determined in a range of 0.80% or less.
  • the upper limit of the amount of Cu is preferably 0.70% or less, more preferably 0.60% or less, still more preferably 0.48% or less, particularly preferably 0.35% or less, and most preferably 0.30% or less.
  • Ni is an element that is effective in suppressing surface decarburization and improving corrosion resistance. Therefore, the amount of Ni is determined in a range of 0.1% or more.
  • the lower limit of the amount of Ni is preferably 0.15% or more, more preferably 0.20% or more, and still more preferably 0.35% or more, and most preferably 0.45% or more. Excessive Ni amount, however, increases costs. Therefore, the amount of Ni is determined in a range of 0.80% or less.
  • the upper limit of the amount of Ni is preferably 0.70% or less, more preferably 0.60% or less, still more preferably 0.55% or less, and yet preferably 0.48% or less, 0.35% or less, and 0.30% or less.
  • the rolled material for spring of the present invention has the chemical composition mentioned above even when suppressing an alloying element such as Cu, and can achieve excellent coiling properties and hydrogen embrittlement resistance while having high strength. Elements mentioned below may be further included for the purpose of improving corrosion resistance according to application.
  • Cr is an element that is effective in improving corrosion resistance. To effectively exhibit these effects, the amount of Cr is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.10% or more. However, Cr is an element that has a strong tendency to form carbides, and forms peculiar carbides in a steel material and is likely to be dissolved in cementite in a high concentration. It is effective to include a small amount of Cr, however, the heating time of the quenching step decreases in high frequency induction heating, leading to insufficient austenitizing of dissolving carbide, cementite, and the like into a base material.
  • the amount of Cr is preferably 1.2% or less, more preferably 0.8% or less, and still more preferably 0.6% or less.
  • Ti is an element that is useful to react with S to form sulfide to thereby detoxicate S. Ti also has the effect of refining the structure by forming carbonitride. To effectively exhibit these effects, the amount of Ti is preferably 0.02% or more, more preferably 0.05% or more, and still more preferably 0.06% or more. Excessive Ti amount, however, may form coarse Ti sulfide, thus degrading ductility. Therefore, the amount of Ti is preferably 0.13% or less. From a viewpoint of cost reduction, the amount of Ti is preferably 0.10% or less, and more preferably 0.09% or less.
  • B is an element that improve hardenability and strengthens prior austenite crystal grain boundaries, and also contributes to suppression of fracture.
  • the amount of B is preferably 0.0005% or more, and more preferably 0.0010% or more. Excessive B amount, however, causes saturation of the above effects, so that the amount of B is preferably 0.01% or less, more preferably 0.0050% or less, and still more preferably 0.0040% or less.
  • Nb is an element that forms carbonitride together with C and N, and mainly contributes to refining of the structure.
  • the amount of Nb is preferably 0.003% or more, more preferably 0.005% or more, and still more preferably 0.01% or more. Excessive Nb amount, however, form coarse carbonitride, thus degrading ductility of a steel material. Therefore, the amount of Nb is preferably 0.1% or less. From a viewpoint of cost reduction, the amount is preferably set at 0.07% or less.
  • Mo is also an element that forms carbonitride together with C and N, and contributes to refining of the structure Mo is an element that is also effective in ensuring the strength after tempering.
  • the amount of Mo is preferably 0.15% or more, more preferably 0.20% or more, and still more preferably 0.25% or more. Excessive Mo amount, however, form coarse carbonitride, thus degrading ductility such as coiling properties of a steel material. Therefore, the amount of Mo is preferably 0.5% or less, and more preferably 0.4% or less.
  • V exceeding 0% and 0.4% or less
  • V is an element that contributes to an improvement in strength and refining of crystal grains. To effectively exhibit these effects, the amount of V is preferably 0.1% or more, more preferably 0.15% or more, and still more preferably 0.20% or more. Excessive V amount, however, increases costs. Therefore, the amount of V is preferably 0.4% or less, and more preferably 0.3% or less.
  • Nb, Mo and V may be included individually, or two or more kinds of them may be included in combination.
  • the rolled material of the present invention includes O and N as inevitable impurities, and the amount of them is preferably adjusted in a range mentioned below.
  • the upper limit of the amount of O is preferably 0.002% or less, more preferably 0.0015% or less, and still more preferably 0.0013% or less.
  • the lower limit of the amount of O is generally 0.0002% or more (preferably 0.0004% or more) from an industrial viewpoint.
  • the amount of N is preferably as small as possible, for example, 0.007% or less, and more preferably 0.005% or less. Meanwhile, if the amount of N is too reduced, productivity is drastically degraded. N forms nitride together with Al to thereby contribute to refining of crystal grains. From such a viewpoint, the amount of N is preferably 0.001% or more, more preferably 0.002% or more, and still more preferably 0.003% or more.
  • an ideal critical diameter D i represented by the equation (2) or (3) below is preferably in a range from 65 to 140 mm.
  • the ideal critical diameter D i is large, hardenability is enhanced and supercooled structures are likely to be generated, so that the upper limit of the ideal critical diameter D i is preferably 140 mm or less.
  • the upper limit of the ideal critical diameter D i is more preferably 135 mm or less, still more preferably 130 mm or less, and particularly preferably 120 mm or less.
  • the lower limit of the ideal critical diameter D i is preferably 65 mm or more, more preferably 70 mm or more, and still more preferably 80 mm or more.
  • a method for producing a rolled material of the present invention will be described below.
  • it is possible to control the amount of nondiffusible hydrogen of the rolled material by adjusting at least one of (A) the amount of hydrogen in a molten steel stage, (B) the homogenizing treatment temperature and time before blooming, and (C) the average cooling rate in a range of 400 to 100°C after hot rolling.
  • the method of reducing the amount of hydrogen in the steel include a method of adjusting in a molten steel stage, a method of adjusting in a stage of a continuously cast material at 1,000°C or higher after solidification, a method of adjusting in a heating stage before hot rolling, a method of adjusting in a heating stage during rolling, and a method of adjusting in a cooling stage after rolling. It is particularly preferred to perform at least one of treatments for reducing nondiffusible hydrogen (A) to (C) mentioned below.
  • TL is more preferably 910°C or higher, and still more preferably 930°C or higher.
  • the upper limit of TL is not particularly limited and is about 1,000°C, although it depends on a finish rolling temperature.
  • an average cooling rate in a range of TL to 650°C is preferably 2°C/second or more, more preferably 2.3°C/second or more, and still more preferably 2.5°C/second or more. If the cooling rate in a range of TL to 650°C is excessively increased, supercooled structures such as martensite and bainite are likely to be formed. Therefore, the cooling rate at TL to 650°C is preferably 5°C/second or less, more preferably 4.5°C/second or less, and still more preferably 4°C/second or less.
  • a cooling rate in a range of 650 to 400°C, at which formation of supercooled structures is initiated, is preferably decreased.
  • An average cooling rate in a range of 650 to 400°C is preferably 2°C/second or less, more preferably 1.5°C/second or less, and still more preferably 1°C/second or less.
  • the lower limit of the average cooling rate is not particularly limited and is, for example, about 0.3°C/second.
  • a wire is manufactured by wire processing of the rolled material mentioned above, namely, wire drawing.
  • quenching and tempering such as high frequency induction heating are performed after wire drawing, and such a wire is also included in the present invention.
  • the rolled material is subjected to wire drawing at an area reduction rate of about 5 to 35%, followed by quenching at about 900 to 1,000°C and further tempering at about 300 to 520°C.
  • the quenching temperature is preferably 900°C or higher so as to sufficiently perform austenitizing, and preferably 1,000°C or lower so as to prevent grain coarsening.
  • the heating temperature for tempering may be set at an appropriate temperature in a range of 300 to 520°C according to a target value of a wire strength.
  • quenching and tempering times are respectively in a range of about 10 to 60 seconds.
  • the thus obtained wire of the present invention can realize a high tensile strength in a range of 1,900 MPa or more.
  • the tensile strength is preferably 1,950 MPa or more, and more preferably 2,000 MPa or more.
  • the upper limit of the tensile strength is not particularly limited and is about 2, 500 MPa.
  • the wire of the present invention can exhibit corrosion fatigue properties even at a high strength in a range of 1, 900 MPa or more because of use of the rolled material of the present invention.
  • Each of steel materials having chemical compositions shown in Tables 1 to 3 was melted by melting in converter and then subjecting to continuous casting and a homogenizing treatment at 1,100°C or higher. After the homogenizing treatment, blooming was performed, followed by heating at 1,100 to 1,280°C and further hot rolling to obtain a wire rod having a diameter of 14.3 mm, namely, a rolled material. Whether or not a degassing treatment of a molten steel is implemented, coiling temperature TL after hot rolling, and cooling conditions after cooling are as shown in Tables 4 to 6. In test examples in which "Implementation" is written in the column of the homogenizing treatment, the homogenizing treatment is performed at 1,100°C for 10 hours or more. In test examples in which the mark "-" is written, the time of the homogenizing treatment at 1,100°C is less than 10 hours.
  • the structure was identified by the procedure below, and the amount of nondiffusible hydrogen was measured and also wire drawability was measured.
  • bainite and martensite structures are collectively referred to as supercooled structures.
  • the measurement was performed at the position of 1 mm deep from a surface.
  • the observation field has a size of 400 ⁇ m ⁇ 300 ⁇ m and the measurement was performed with respect to five visual fields, and the average was regarded as a ratio of each structure.
  • the ratio of the pearlite structure was determined by subtracting the ratios of ferrite and supercooled structures from 100%.
  • a specimen measuring 20 mm in width ⁇ 40 mm in length was cut out from the rolled material. After raising the temperature of the specimen at a temperature rise rate of 100°C/hour, a hydrogen release amount at 300 to 600°C was measured using a gas chromatogram, and the hydrogen release amount was regarded as the amount of nondiffusible hydrogen.
  • Wire drawability was evaluated by reduction of area of a tensile test.
  • a JIS No. 14 specimen was cut out from the rolled material and a tensile test was performed under the conditions of a crosshead speed of 10 mm/minute in accordance with JIS Z2241 (2011) using a universal tester, and then reduction of area RA was measured
  • the rolled material was subjected to wire drawing, namely, cold drawing to obtain a wire having a diameter of 12.5 mm, followed by quenching and tempering.
  • An area reduction rate of the drawn wire mentioned above is about 23.6% and the conditions of quenching and tempering are as follows.
  • a wire was cut into a predetermined length and a tensile test was performed at a distance between chucks of 200 mm and a tensile speed 5 mm/minute in accordance with JIS Z2241 (2011).
  • a specimen measuring 10 mm in width ⁇ 1.5 mm in thickness ⁇ 65 mm in length was cut out from the wire after quenching and tempering.
  • stress of 1,400 MPa is applied to the specimen by four-point bending
  • the specimen was immersed in a mixed solution of 0.5 mol/L of sulfuric acid and 0.01 mol/L of potassium thiocyanate.
  • a voltage of -700 mV which is less nobler than that of a saturated calomel electrode (SCE) was applied and the fracture time required for the occurrence of cracking was measured.
  • a specimen measuring 10 mm in diameter ⁇ 100 mm in length was cut out from the wire after quenching and tempering by cutting.
  • the specimen was subjected to a salt spray test with an aqueous 5%NaCl solution for 8 hours and then held in a wet atmosphere at 35°C and a relative humidity of 60% for 16 hours. After repeating this cycle seven times in total, a difference.in weight before and after the test was measured and the thus obtained difference was regarded as a corrosion weight loss.
  • Samples of test Nos. 1 to 4, 7 to 11, 15 to 18, 21 to 25, 33, 34, 37 to 40, 45 to 47, 49 to 53, 55 to 60, and 65 to 81 are manufactured from a steel having appropriately adjusted chemical composition under preferred manufacturing conditions mentioned above, so that the amount of nondiffusible hydrogen, and the area ratio of ferrite and supercooled structures satisfy the requirements of the present invention. Therefore, the rolled material exhibits a reduction of area RA of 30% or more in the tensile test and is excellent in wire drawability, and the wire obtained by wire drawing of the rolled material, followed by quenching and tempering has an excellent tensile strength in a range of 1,900 MPa or more.
  • the wire obtained after quenching and tempering exhibits a fracture time of 1,000 seconds or more in an evaluation test of hydrogen embrittlement resistance and a corrosion weight loss of 5.0 g or less in an evaluation test of corrosion resistance, so that the wire is excellent in both hydrogen embrittlement resistance and corrosion resistance.
  • "reduction rate" in Tables 4 to 6 is a value in which a ratio of a difference between a value of right side of the inequality expression (1) and an actual value of a ferrite area ratio to a value of right side of the inequality expression (1) is expressed as percentage.
  • At least any one of the requirements including the chemical composition of a steel, the amount of nondiffusible hydrogen, the ferrite area ratio, and the supercooled structure area ratio does not satisfy the requirements of the present invention, leading to the result that at least any one property of wire drawability of a rolled material, tensile strength, hydrogen embrittlement resistance, and corrosion resistance of a wire is inferior.
  • test Nos. 5, 6, 19 and 20 are not subjected to the above-mentioned treatment for reduction of nondiffusible hydrogen, so that the amount of nondiffusible hydrogen in the rolled material increased, thus degrading wire drawability.
  • the rolled material and the wire of the present invention are industrially useful since they can be suitably used for coil springs that are used in automobiles, for example, a valve spring, a suspension spring and the like that are used in the engine, suspension, and the like.

Abstract

An object of the present invention is to provide a rolled material for high strength spring, which has excellent wire drawability even when suppressing the addition amount of an alloying element, and which can exhibit corrosion fatigue properties after quenching and tempering.
The present invention provides a rolled material for high strength spring, including C, Si, Mn, P, S, Al, Cu and Ni, wherein an amount of nondiffusible hydrogen is 0.40 ppm by mass or less, and an area ratio of ferrite expressed as a percentage satisfies an inequality expression (1) below, and a total area ratio of bainite and martensite is 2% or less: Ferrite area ratio < 0.77 C / 0.77 C / 3 + 0.08 × 100
Figure imga0001
where [name of element] in the above inequality expression (1) means a content expressed in % by mass of each element.

Description

    Technical Field
  • The present invention relates to a rolled material for high strength spring, and a wire for high strength spring using the same. More particularly, the present invention relates to a rolled material and a wire, which are useful as raw materials of high strength springs that are used in a state of being subjected to heat treatment, namely, quenching and tempering, particularly a rolled material having excellent wire drawability, and a wire for high strength spring, which are excellent in corrosion fatigue properties even though a tensile strength is a high strength in a range of 1,900 MPa or more after wire drawing.
  • Background Art
  • Coil springs used in automobiles, for example, a valve spring and a suspension spring used in the engine, suspension, and the like are required to reduce the weight and to increase the strength so as to achieve exhaust gas reduction and improvement in fuel efficeincy. In the manufacture of a high strength wire, wire drawing is applied for the purpose of achieving improvement in dimensional accuracy of a wire diameter and uniformization of a structure due to plastic working before a heat treatment of quenching and tempering. Particularly, a wire drawing reduction rate is sometimes increased so as to further uniformize the structure in the high strength wire, and a rolled material is required to have satisfactory wire drawability. The spring imparted with high strength is likely to cause hydrogen brittleness because of its poor toughness and ductility, leading to degradation of corrosion fatigue properties. Therefore, the steel wire (wire) for high strength spring used in the manufacture of a spring is required to have excellent corrosion fatigue properties. Hydrogen generated by corrosion enters into a steel and may lead to embrittlement of a steel material, thus causing corrosion fatigue fracture, so that there is a need to improve corrosion resistance and hydrogen embrittlement resistance of the steel material so as to improve corrosion fatigue properties.
  • There has been known, as a method for enhancing wire drawability of a rolled material for high strength spring and corrosion fatigue properties of a wire for high strength spring, a method for controlling by the chemical composition. However, such a method is not necessarily desirable from a viewpoint of an increase in manufacturing costs and resource saving because of use of a large amount of an alloying element.
  • Meanwhile, there have been known, as a method for manufacturing a spring, a method in which a steel wire is heating to a quenching temperature and hot-formed into a spring shape, followed by oil cooling and further tempering, and a method in which a steel wire is subjected to quenching and tempering, and then cold-formed into a spring shape. In the cold forming method of the latter, it is also known that quenching and tempering before forming is performed by high frequency induction heating. For example, Patent Document 1 discloses technology in which a wire rod is cold-drawn and then the structure is adjusted by quenching and tempering through high frequency induction heating. According to this technology, a structural fraction of pearlite is set at 30% or less and a structural fraction composed of martensite and bainite is set at 70% or more and then cold drawing is performed at a predetermined area reduction rate, followed by quenching and tempering to thereby reduce the unsolveded carbides, leading to an improvement in delayed fracture properties.
  • In Examples of Patent Document 2, a rolled wire rod is subjected to wire drawing, followed by a quenching and tempering treatment through high frequency induction heating. This technology focuses primarily on achievement of the reconciliation of high strength and formability (coiling properties), and gives no consideration to hydrogen embrittlement resistance..
  • While paying attention to the amount of hydrogen in a steel that is evaluated by the total amount of hydrogen released when the temperature is raised from room temperature to 350°C, Patent Document 3 proposes a hot rolled wire rod having excellent wire drawability under severe wire drawing conditions. However, Patent Document 3 focuses only on wire drawability during special processing such as sehere wire drawing, and also gives no consideration to hydrogen embrittlement resistance after quenching and tempering, which becomes most important in a suspension spring.
    • Patent Document 1: JP 2004-143482 A
    • Patent Document 2: JP 2006-183137 A
    • Patent Document 3: JP 2007-231347 A
    Summary of Invention Problems to be Solved by the Invention
  • In light of aforementioned circumstances, the present invention has been made, and it is an object thereof is to provide a rolled material for high strength spring, which is a material for high strength spring including both materials for hot coiling and cold coiling, and which has excellent wire drawability even when suppressing the addition amount of an alloying element, and also can exhibit corrosion fatigue properties after quenching and tempering.
  • Means for Solving the Problems
  • The present invention that can solve the foregoing problems provides a rolled material for high strength spring, including, in % by mass:
    • C: 0.39 to 0.65%,
    • Si: 1.5 to 2.5%,
    • Mn: 0.15 to 1.2%,
    • P: exceeding 0% and 0.015% or less,
    • S: exceeding 0% and 0.015% or less,
    • Al: 0.001 to 0.1%,
    • Cu: 0.1 to 0.80%, and
    • Ni: 0.1 to 0.80%, with the balance being iron and inevitable impurities, wherein
    an amount of nondiffusible hydrogen is 0.40 ppm by mass or less, and
    an area ratio of ferrite expressed as a percentage satisfies an inequality expression (1) below, and a total area ratio of bainite and martensite is 2% or less: Ferrite area ratio < 0.77 C / 0.77 C / 3 + 0.08 × 100
    Figure imgb0001
    where [name of element] in the above inequality expression (1) means a content expressed in % by mass of each element.
  • The rolled material for high strength spring of the present invention preferably includes, in % by mass, at least one belonging to any one of the following (a), (b), (c) and (d):
    1. (a) Cr: exceeding 0% and 1.2% or less,
    2. (b) Ti: exceeding 0% and 0.13% or less,
    3. (c) B: exceeding 0% and 0.01% or less, and
    4. (d) at least one selected from the group consisting of Nb: exceeding 0% and 0.1% or less, Mo: exceeding 0% and 0.5% or less, and V: exceeding 0% and 0.4% or less.
  • In the rolled material for high strength spring of the present invention, an ideal critical diameter Di is preferably in a range of 65 to 140 mm, and is calculated using an equation (2) below when B is not included or using an equation (3) below when B is included. If some elements are not included in the rolled material of the present invention among elements mentioned in the equations, calculation is made under the condition that the content of the elements is 0%. D i = 25.4 × 0.71 + 0.01 × C + 0.265 × C 2 × 3.3333 × Mn + 1 × 1 + 0.7 × Si × 1 + 0.363 × Ni × 1 + 2.16 × Cr × 1 + 0.365 × Cu × 1 + 1.73 × V × 1 + 3 × Mo
    Figure imgb0002
    D i = 25.4 × 0.171 + 0.001 × C + 0.265 × C 2 × 3.3333 × Mn + 1 × 1 + 0.7 × Si × 1 + 0.363 × Ni × ( 1 + 2.16 × Cr ) × 1 + 0.365 × Cu × 1 + 1.73 × V × 1 + 3 × Mo × 6.849017 46.78647 × C + 196.6635 × C 2 471.3978 × C 3 + 587.8504 × C 4 295.0410 × C 5 × ×
    Figure imgb0003
    where [name of element] in the above equations (2) and (3) means a content expressed in % by mass of each element.
  • The present invention also includes a wire for high strength spring, having a tensile strength of 1,900 MPa or more, obtained by wire-drawing any one of the rolled materials for high strength spring mentioned above, followed by a quenching and tempering treatment.
  • Effects of the Invention
  • According to the present invention, since the amount of nondiffusible hydrogen in a rolled material is suppressed and formation of supercooled structures such as bainite and martensite is suppressed, the rolled material exhibits excellent wire drawability without adding a large amount of an alloying element. In the rolled material of the present invention, an area ratio of ferrite is appropriately adjusted according to the concentration of C, specifically, the area ratio of ferrite decreases as the concentration of C increases, so that a wire obtained by wire-drawing this rolled material, followed by quenching and tempering is excellent in corrosion fatigue properties even though the strength is a high strength in a range of 1,900 MPa or more. In such a rolled material, it is possible to improve wire drawability of the rolled material and corrosion fatigue properties of the wire even when suppressing the cost of steel materials, thus making it possible to supply a high strength spring which is excellent in manufacturability and is very unlikely to cause corrosion fatigue fracture, for example, a coil spring such as a suspension spring that is one of automobile components, at a cheap price.
  • Brief Description of the Drawings
  • Fig. 1 is a graph showing an influence of an amount of C and a ferrite area ratio on hydrogen embrittlement resistance.
  • Mode for Carrying Out the Invention
  • Wire drawability of a rolled material is usually influenced by ductility of the rolled material. Poor ductility of a basis material or degradation of ductility due to the presence of a supercooled structure may lead to fracture during wire drawing, resulting in drastic degradation of manufacturability. Therefore, wire drawability can be improved by enhancing ductility of the rolled material.
  • Meanwhile, if corrosion occurs, pits are generated on a surface of a steel material, and wall thinning due to corrosion may lead to a decrease in wire diameter of the steel material. Hydrogen generated by corrosion enters into a steel and may lead to embrittlement of the steel material. Corrosion fatigue fracture occurs with these corrosion pits, wall thickness reduction sections, and embrittled sections of the steel material as starting points. Therefore, corrosion fatigue fracture can be improved by improving hydrogen embrittlement resistance and corrosion resistance of the steel material.
  • The inventors of the present invention have made a study of factors that exert an influence on ductility, hydrogen embrittlement resistance and corrosion resistance of a steel material from various viewpoints. As a result, they have found that proper control of both a ferrite area ratio of a rolled material and the amount of hydrogen in a steel expressed particularly by the amount of nondiffusible hydrogen enables an improvement in ductility of the rolled material and significant improvement in hydrogen embrittlement resistance when the rolled material is subjected to wire drawing, followed by quenching and tempering. They have also found that corrosion resistance can also be improved by appropriately adjusting the chemical composition, leading to significant improvement in corrosion fatigue properties, thus completing the present invention. The structure, the amount of hydrogen in steel, and the chemical composition of the rolled material of the present invention will be sequentially described below.
  • The ferrite structure is likely to form a carbide depleted region after quenching and tempering, and formation of the carbide depleted region serves as a fracture starting point, as a strength lowering section. While carbides are capable of detoxicating hydrogen by trapping hydrogen, the carbide depleted region becomes an area lacking such a capability, so that hydrogen embrittlement is likely to occur, leading to fracture. In order to suppress formation of the carbide depleted region after a quenching and tempering treatment to thereby uniformly disperse carbides, there is a need to form a structure in which carbides are uniformly dispersed in a stage of a rolled material before quenching and tempering. Namely, there is a need that a ratio of a pearlite structure, which is a structure that ferrite and carbides form layers, is increased to thereby decrease a ratio of a ferrite structure. The inventors of the present invention have found that it is important to make an area ratio of the ferrite structure smaller than that of the ferrite structure obtained by allowing to cool after rolling, so as to improve hydrogen embrittlement resistance, and that the ferrite structure obtained by allowing to cool after rolling has a close relation with the amount of C.
  • As a result of examination of the ratio of the ferrite structure obtained by allowing to cool after rolling with respect to a steel material in which the amount of C is variously changed, it became clear that the ratio of the ferrite structure obtained by allowing to cool after rolling is represented by the right side of an inequality expression (1) below. The rolled material of the present invention is characterized by controlling the ratio of the ferrite structure so as to satisfy the inequality expression (1) below. The [name of element] in the inequality expression (1) below means a content expressed in % by mass of each element. As used herein, the ferrite area ratio means a ratio expressed as a percentage. Ferrite area ratio < 0.77 C / 0.77 C / 3 + 0.08 × 100
    Figure imgb0004
  • Fig. 1 is a graph showing an influence of an amount of C and a ferrite area ratio on hydrogen embrittlement resistance on the basis of Example data mentioned later. As shown by a straight line in Fig. 1, the ratio of the ferrite structure obtained by allowing to cool after rolling tends to decrease as the amount of C increases. The rolled material of the present invention is significantly characterized by decreasing an area ratio of ferrite as the amount of C increases. The steel material including a large amount of C is required to reduce the ratio of the ferrite structure from a viewpoint that a martensite structure is likely to embrittle, particularly. The less an area ratio of ferrite, the better, and the area ratio of ferrite may be 0%.
  • Regarding the rolled material of the present invention, the ratio of the ferrite structure is preferably reduced by at least 10% lower than that of the ferrite structure obtained by allowing to cool after rolling, namely, the ratio of the ferrite structure preferably satisfies an inequality expression (1-2) below. Ferrite area ratio 0.77 C / 0.77 C / 3 + 0.08 × 100 × 0.9
    Figure imgb0005
  • In the rolled material of the present invention, when the content of supercooled structures such as bainite and martensite increases, wire drawability is drastically degraded. Therefore, even if supercooled structures are included, the area percentage is 2 percentage or less, preferably 1 percentage or less, most preferably 0 percentage or less.
  • In the rolled material of the present invention, formation of ferrite, bainite and martensite is suppressed, and the structure except for them is pearlite.
  • The amount of hydrogen in the rolled material of the present invention will be described below. In the rolled material of the present invention, an amount of nondiffusible hydrogen is set at 0.40 ppm by mass or less. If a large amount of nondiffusible hydrogen exists, hydrogen is accumulated around inclusions and segregating zones in the rolled material to thereby generate microcracks, resulting in degraded wire drawability of the rolled material. If a large amount of nondiffusible hydrogen exists, a permissible amount of hydrogen, which further enters until the steel material embrittles, decreases. Therefore, even though a small amount of hydrogen entered during use as a spring, embrittlement of the steel material occurs and early fracture is likely to occur, resulting in degraded hydrogen embrittlement resistance. The amount of nondiffusible hydrogen is preferably 0.35 ppm by mass or less, and more preferably 0.30 ppm by mass or less. The less the amount of nondiffusible hydrogen, the better. However, it is difficult to set at 0 ppm by mass and the lower limit is about 0.01 ppm by mass.
  • The amount of nondiffusible hydrogen is an amount of hydrogen measured by the method mentioned in Examples below, and specifically means the total amount of hydrogen released at 300 to 600°C when the temperature of a steel material is raised at 100°C/hour.
  • The rolled material for high strength spring according to the present invention is a low alloy steel in which the content of an alloying element is suppressed, and the chemical composition is as follows. The present invention also includes a wire obtained by wire-drawing the above-mentioned rolled material, followed by quenching and tempering, and the chemical composition is the same as that of the rolled material.
  • C: 0.39 to 0.65%
  • Carbon is an element that is required to ensure the strength of a wire for spring, and is also required to generate fine carbides that serve as hydrogen trapping sites. From such a viewpoint, the amount of C is determined in a range of 0.39% or more. The lower limit of the amount of C is preferably 0.45% or more, and more preferably 0.50% or more. Excessive C amount, however, might generate coarse residual austenite and ussolved carbides after quenching and tempering, which further degrades hydrogen embrittlement resistance. C is an element that degrades corrosion resistance, so that there is a need to suppress the amount of C so as to enhance corrosion fatigue properties of a spring product such as a suspension spring which is a final product. From such a viewpoint, the amount of C is determined in a range of 0.65% or less. The upper limit of the amount of C is preferably 0.62% or less, and more preferably 0.60% or less.
  • Si: 1.5 to 2.5%
  • Si is an element that is required to ensure the strength, and also exhibits the effect of refining carbides. To effectively exhibit these effects, the amount of Si is determined in a range of 1.5% or more. The lower limit of the amount of Si is preferably 1.7% or more, and more preferably 1.9% or more. Meanwhile, since Si is also an element that accelerates decarburization, excessive Si amount accelerates formation of a decarburized layer on a surface of a steel material, thus requiring the peeling step for removal of the decarburized layer, resulting in increased manufacturing costs. Unsolved carbides also increase, thus degrading hydrogen embrittlement resistance. From such a viewpoint, the amount of Si is determined in a range of 2.5% or less. The upper limit of the amount of Si is preferably 2.3% or less, more preferably 2.2% or less, and still more preferably 2.1% or less.
  • Mn: 0.15 to 1.2%
  • Mn is an element that is employed as a deoxidizing element and reacts with S, which is a harmful element in a steel, to form MnS, and is useful for detoxication of S. Mn is also an element that contributes to an improvement in strength. To effectively exhibit these effects, the amount of Mn is determined in a range of 0.15% or more. The lower limit of the amount of Mn is preferably 0.2% or more, and more preferably 0.3% or more. Excessive Mn amount, however, degrades toughness, thus causing embrittlement of a steel material. From such a viewpoint, the amount of Mn is determined in a range of 1.2% or less. The upper limit of the amount of Mn is preferably 1.0% or less, more preferably 0.85% or less, and still more preferably 0.70% or less.
  • P: exceeding 0% and 0.015% or less
  • P is a harmful element that degrades ductility such as coiling properties of a rolled material, namely, a wire rod, and the amount thereof is preferably as small as possible. P is likely to segregate in grain boundaries to cause grain boundary embrittlement, and hydrogen is likely to cause fracture of grain boundaries, thus exerting an adverse influence on hydrogen embrittlement resistance. From such a viewpoint, the amount of P is determined in a range of 0.015% or less. The upper limit of the amount of P is preferably 0.010% or less, and more preferably 0.008% or less. The amount of P is preferably as small as possible, and is usually about 0.001%.
  • S: exceeding 0% and 0.015% or less
  • Like P mentioned above, S is a harmful element that degrades ductility such as coiling properties of a rolled material, and the amount thereof is preferably as small as possible. S is likely to segregate in grain boundaries to cause grain boundary embrittlement, and hydrogen is likely to cause fracture of grain boundaries, thus exerting an adverse influence on hydrogen embrittlement resistance. From such a viewpoint, the amount of S is determined in a range of 0.015% or less. The upper limit of the amount of S is preferably 0. 010% or less, and more preferably 0.008% or less. The amount of S is preferably as small as possible, and is usually about 0.001%.
  • Al: 0.001 to 0.1%
  • Al is mainly added as a deoxidizing element. This element reacts with N to form AlN to thereby detoxicate solid-soluted N, and also contributes to refining of the structure. To adequately exhibit these effects, the amount of Al is determined in a range of 0.001% or more. The lower limit of the amount of Al is preferably 0.002% or more, and more preferably 0.005% or more. However, since Al is an element that accelerates decarburization, like Si, there is a need to suppress the amount of Al in a steel for spring, which includes a large amount of Si. Therefore, in the present invention, the amount of Al isdetermined in a range of 0.1% or less. The upper limit of the amount of Al is preferably 0.07% or less, more preferably 0.030% or less, and particularly preferably 0.020% or less.
  • Cu: 0.1 to 0.80%
  • Cu is an element that is effective in suppressing surface decarburization and improving corrosion resistance. Therefore, the amount of Cu is determined in a range of 0.1% or more. The lower limit of the amount of Cu is preferably 0.15% or more, more preferably 0.20% or more, and still more preferably 0.25% or more. Excessive Cu amount, however, causes cracks during hot working and increases costs. Therefore, the amount of Cu is determined in a range of 0.80% or less. The upper limit of the amount of Cu is preferably 0.70% or less, more preferably 0.60% or less, still more preferably 0.48% or less, particularly preferably 0.35% or less, and most preferably 0.30% or less.
  • Ni: 0.1 to 0.80%
  • Like Cu, Ni is an element that is effective in suppressing surface decarburization and improving corrosion resistance. Therefore, the amount of Ni is determined in a range of 0.1% or more. The lower limit of the amount of Ni is preferably 0.15% or more, more preferably 0.20% or more, and still more preferably 0.35% or more, and most preferably 0.45% or more. Excessive Ni amount, however, increases costs. Therefore, the amount of Ni is determined in a range of 0.80% or less. The upper limit of the amount of Ni is preferably 0.70% or less, more preferably 0.60% or less, still more preferably 0.55% or less, and yet preferably 0.48% or less, 0.35% or less, and 0.30% or less.
  • Basic components of the rolled material of the present invention are as mentioned above, the balance being substantially iron. As a matter of course, inclding of inevitable impurities introduced by the state of raw material, material, manufacturing facility, and the like is permitted. The rolled material for spring of the present invention has the chemical composition mentioned above even when suppressing an alloying element such as Cu, and can achieve excellent coiling properties and hydrogen embrittlement resistance while having high strength. Elements mentioned below may be further included for the purpose of improving corrosion resistance according to application.
  • Cr: exceeding 0% and 1.2% or less
  • Cr is an element that is effective in improving corrosion resistance. To effectively exhibit these effects, the amount of Cr is preferably 0.01% or more, more preferably 0.05% or more, and still more preferably 0.10% or more. However, Cr is an element that has a strong tendency to form carbides, and forms peculiar carbides in a steel material and is likely to be dissolved in cementite in a high concentration. It is effective to include a small amount of Cr, however, the heating time of the quenching step decreases in high frequency induction heating, leading to insufficient austenitizing of dissolving carbide, cementite, and the like into a base material. Therefore, when including a large amount of Cr, dissolving residue of cementite, in which Cr-based carbide and metallic Cr in high concentration are solid-soluted, is generated as a stress concentration source, so that fracture likely to occur, thus degrading hydrogen embrittlement resistance. Therefore, the amount of Cr is preferably 1.2% or less, more preferably 0.8% or less, and still more preferably 0.6% or less.
  • Ti: exceeding 0% and 0.13% or less
  • Ti is an element that is useful to react with S to form sulfide to thereby detoxicate S. Ti also has the effect of refining the structure by forming carbonitride. To effectively exhibit these effects, the amount of Ti is preferably 0.02% or more, more preferably 0.05% or more, and still more preferably 0.06% or more. Excessive Ti amount, however, may form coarse Ti sulfide, thus degrading ductility. Therefore, the amount of Ti is preferably 0.13% or less. From a viewpoint of cost reduction, the amount of Ti is preferably 0.10% or less, and more preferably 0.09% or less.
  • B: exceeding 0% and 0.01% or less
  • B is an element that improve hardenability and strengthens prior austenite crystal grain boundaries, and also contributes to suppression of fracture. To effectively exhibit these effects, the amount of B is preferably 0.0005% or more, and more preferably 0.0010% or more. Excessive B amount, however, causes saturation of the above effects, so that the amount of B is preferably 0.01% or less, more preferably 0.0050% or less, and still more preferably 0.0040% or less.
  • Nb: exceeding 0% and 0.1% or less
  • Nb is an element that forms carbonitride together with C and N, and mainly contributes to refining of the structure. To effectively exhibit these effects, the amount of Nb is preferably 0.003% or more, more preferably 0.005% or more, and still more preferably 0.01% or more. Excessive Nb amount, however, form coarse carbonitride, thus degrading ductility of a steel material. Therefore, the amount of Nb is preferably 0.1% or less. From a viewpoint of cost reduction, the amount is preferably set at 0.07% or less.
  • Mo: exceeding 0% and 0.5% or less
  • Like Nb, Mo is also an element that forms carbonitride together with C and N, and contributes to refining of the structure Mo is an element that is also effective in ensuring the strength after tempering. To effectively exhibit these effects, the amount of Mo is preferably 0.15% or more, more preferably 0.20% or more, and still more preferably 0.25% or more. Excessive Mo amount, however, form coarse carbonitride, thus degrading ductility such as coiling properties of a steel material. Therefore, the amount of Mo is preferably 0.5% or less, and more preferably 0.4% or less.
  • V: exceeding 0% and 0.4% or less
  • V is an element that contributes to an improvement in strength and refining of crystal grains. To effectively exhibit these effects, the amount of V is preferably 0.1% or more, more preferably 0.15% or more, and still more preferably 0.20% or more. Excessive V amount, however, increases costs. Therefore, the amount of V is preferably 0.4% or less, and more preferably 0.3% or less.
  • Nb, Mo and V may be included individually, or two or more kinds of them may be included in combination.
  • The rolled material of the present invention includes O and N as inevitable impurities, and the amount of them is preferably adjusted in a range mentioned below.
  • O: exceeding 0% and 0.002% or less
  • Excess amount of O forms oxide inclusions such as coarse Al2O3 and exerts an adverse influence on fatigue properties. Therefore, the upper limit of the amount of O is preferably 0.002% or less, more preferably 0.0015% or less, and still more preferably 0.0013% or less. Meanwhile, the lower limit of the amount of O is generally 0.0002% or more (preferably 0.0004% or more) from an industrial viewpoint.
  • N: exceeding 0% and 0.007% or less
  • As the amount of N increases, it forms coarse nitride together with Ti and Al, thus exerting an adverse influence on fatigue properties. Therefore, the amount of N is preferably as small as possible, for example, 0.007% or less, and more preferably 0.005% or less. Meanwhile, if the amount of N is too reduced, productivity is drastically degraded. N forms nitride together with Al to thereby contribute to refining of crystal grains. From such a viewpoint, the amount of N is preferably 0.001% or more, more preferably 0.002% or more, and still more preferably 0.003% or more.
  • In the rolled material and the wire of the present invention, an ideal critical diameter Di represented by the equation (2) or (3) below is preferably in a range from 65 to 140 mm. To use the rolled material as a raw material for spring after wire drawing without being subjected to soft annealing, there is a need to reduce supercooled structures to a predetermined content or less so as not to cause wire breakage during wire drawing. If the ideal critical diameter Di is large, hardenability is enhanced and supercooled structures are likely to be generated, so that the upper limit of the ideal critical diameter Di is preferably 140 mm or less. The upper limit of the ideal critical diameter Di is more preferably 135 mm or less, still more preferably 130 mm or less, and particularly preferably 120 mm or less. To perform quenching to the inside as a spring, it is important to ensure given hardenability. Therefore, the lower limit of the ideal critical diameter Di is preferably 65 mm or more, more preferably 70 mm or more, and still more preferably 80 mm or more.
  • When including no B, the following equation (2) defined in ASTM A255 is used as the ideal critical diameter Di. When including B, there is a need to add a boron factor B.F. defined in ASTM A255-02 by multiplying right side of the equation (2) by the boron factor, and the ideal critical diameter Di is calculated by the following equation (3). D i = 25.4 × 0.171 + 0.001 × C + 0.265 × C 2 × 3.3333 × Mn + 1 × 1 + 0.7 × Si × 1 + 0.363 × Ni × 1 + 2.16 × Cr × 1 + 0.365 × Cu × 1 + 1.73 × V × 1 + 3 × Mo
    Figure imgb0006
    D i = 25.4 × 0.171 + 0.001 × C + 0.265 × C 2 × 3.3333 × Mn + 1 × 1 + 0.7 × Si × 1 + 0.363 × Ni × 1 + 2.16 × Cr × 1 + 0.365 × Cu × 1 + 1.73 × V × 1 + 3 × Mo × 6.849017 46.78647 × C + 196.6635 × C 2 471.3978 × C 3 + 587.8504 × C 4 295.0410 × C 5
    Figure imgb0007
    where [name of element] in the above equations (2) and (3) means a content expressed in % by mass of each element.
  • A method for producing a rolled material of the present invention will be described below. In a series of steps of melting a steel having the above chemical composition, followed by continuous casting, blooming, and hot rolling, it is possible to control the amount of nondiffusible hydrogen of the rolled material by adjusting at least one of (A) the amount of hydrogen in a molten steel stage, (B) the homogenizing treatment temperature and time before blooming, and (C) the average cooling rate in a range of 400 to 100°C after hot rolling. It is also possible to adjust the structure of the rolled material, namely, ferrite, martensite and bainite in the range mentioned above by adjusting all of (i) the coiling temperature (TL) after rolling, (ii) the average cooling rate in a range of TL to 650°C, and (iii) the average cooling rate in a range of 650 to 400°C.
  • There is a need to remove hydrogen in a steel by diffusion so as to reduce hydrogen in the steel after solidification, and heating at a high temperature for a long time is effective to increase a diffusion rate of hydrogen so as to release hydrogen from a surface of a steel material. Specific examples of the method of reducing the amount of hydrogen in the steel include a method of adjusting in a molten steel stage, a method of adjusting in a stage of a continuously cast material at 1,000°C or higher after solidification, a method of adjusting in a heating stage before hot rolling, a method of adjusting in a heating stage during rolling, and a method of adjusting in a cooling stage after rolling. It is particularly preferred to perform at least one of treatments for reducing nondiffusible hydrogen (A) to (C) mentioned below.
    1. (A) A degassing treatment is performed by a molten steel treatment to thereby adjust the amount of hydrogen in a molten steel at 2. 5 ppm by mass or less.
      For example, it is effective that a vacuum tank equipped with two immersion tubes is mounted in a ladle in a secondary refining step and then an Ar gas is blown from the side of one immersion tube, followed by vacuum degassing that enables circulation of a molten steel to the vacuum tank utilizing the buoyancy. This method is excellent in hydrogen removing capability and reduction in inclusion. The amount of hydrogen in the molten steel is preferably 2.0 ppm by mass or less, more preferably 1. 8 ppm by mass or less, still more preferably 1. 5 ppm by mass or less, and particularly preferably 1.0 ppm by mass or less.
    2. (B) A homogenizing treatment before blooming is performed at 1,100°C or higher, and preferably 1,200°C or higher for 10 hours or more.
    3. (C) An average cooling rate in a range of 400 to 100°C after rolling is set at 0.5°C/second or less, and preferably 0.3°C/second or less.
  • When a steel material has a large cross-sectional area, particularly, it becomes necessary to perform heating for a long time. If the steel material is heated for a long time, decarburization is accelerated, so that the amount of hydrogen in the steel is preferably reduced by performing the treatment (A) mentioned above.
  • To adjust an area ratio of the structure in the rolled material, namely, ferrite, bainite and martensite in the range mentioned above, it is preferred to adjust rolling conditions as follows, and to adjust to rolling conditions that satisfy all conditions (i) to (iii).
  • (i) Coiling temperature TL before initiation of cooling: 900°C or higher
  • To reduce the ratio of ferrite, there is a need that the coiling temperature TL before initiation of cooling is adjusted at a temperature in an austenitic single phase. Therefore, TL is more preferably 910°C or higher, and still more preferably 930°C or higher. The upper limit of TL is not particularly limited and is about 1,000°C, although it depends on a finish rolling temperature.
  • (ii) Average cooling rate in a range of TL to 650°C: 2 to 5°C/second
  • To allow pearlite transformation to take place, there is a need to suppress formation of ferrite by increasing a cooling rate in a temperature range of TL to 650°C. Therefore, an average cooling rate in a range of TL to 650°C is preferably 2°C/second or more, more preferably 2.3°C/second or more, and still more preferably 2.5°C/second or more. If the cooling rate in a range of TL to 650°C is excessively increased, supercooled structures such as martensite and bainite are likely to be formed. Therefore, the cooling rate at TL to 650°C is preferably 5°C/second or less, more preferably 4.5°C/second or less, and still more preferably 4°C/second or less.
  • (iii) Average cooling rate in a range of 650 to 400°C: 2°C/second or less
  • Further, a cooling rate in a range of 650 to 400°C, at which formation of supercooled structures is initiated, is preferably decreased. An average cooling rate in a range of 650 to 400°C is preferably 2°C/second or less, more preferably 1.5°C/second or less, and still more preferably 1°C/second or less. The lower limit of the average cooling rate is not particularly limited and is, for example, about 0.3°C/second.
  • To manufacture a coil spring used in automobiles, there is a need that a wire is manufactured by wire processing of the rolled material mentioned above, namely, wire drawing. For example, in a cold coiled spring, quenching and tempering such as high frequency induction heating are performed after wire drawing, and such a wire is also included in the present invention. For example, the rolled material is subjected to wire drawing at an area reduction rate of about 5 to 35%, followed by quenching at about 900 to 1,000°C and further tempering at about 300 to 520°C. The quenching temperature is preferably 900°C or higher so as to sufficiently perform austenitizing, and preferably 1,000°C or lower so as to prevent grain coarsening. The heating temperature for tempering may be set at an appropriate temperature in a range of 300 to 520°C according to a target value of a wire strength. When quenching and tempering are performed by high frequency induction heating, quenching and tempering times are respectively in a range of about 10 to 60 seconds.
  • The thus obtained wire of the present invention can realize a high tensile strength in a range of 1,900 MPa or more. The tensile strength is preferably 1,950 MPa or more, and more preferably 2,000 MPa or more. The upper limit of the tensile strength is not particularly limited and is about 2, 500 MPa. The wire of the present invention can exhibit corrosion fatigue properties even at a high strength in a range of 1, 900 MPa or more because of use of the rolled material of the present invention.
  • This application claims priority based on Japanese Patent Application No. 2013-272569 filed on December 27, 2013 in Japan, the disclosure of which is incorporated by reference herein.
  • Examples
  • The present invention will be described in more detail below by way of Examples. It should be noted that, however, these examples are never construed to limit the scope of the invention; various modifications and changes may be made without departing from the scope and spirit of the invention and should be considered to be within the scope of the invention.
  • Each of steel materials having chemical compositions shown in Tables 1 to 3 was melted by melting in converter and then subjecting to continuous casting and a homogenizing treatment at 1,100°C or higher. After the homogenizing treatment, blooming was performed, followed by heating at 1,100 to 1,280°C and further hot rolling to obtain a wire rod having a diameter of 14.3 mm, namely, a rolled material. Whether or not a degassing treatment of a molten steel is implemented, coiling temperature TL after hot rolling, and cooling conditions after cooling are as shown in Tables 4 to 6. In test examples in which "Implementation" is written in the column of the homogenizing treatment, the homogenizing treatment is performed at 1,100°C for 10 hours or more. In test examples in which the mark "-" is written, the time of the homogenizing treatment at 1,100°C is less than 10 hours.
  • With respect to the thus obtained wire rods, namely, rolled materials, the structure was identified by the procedure below, and the amount of nondiffusible hydrogen was measured and also wire drawability was measured.
  • (1) Identification of Structure
  • A cross section of each rolled material was subjected to buffing and etched with an etching solution, and then a microstructure was observed by an optical microscope and each area ratio of a ferrite structure, and bainite and martensite structures (hereinafter, bainite and martensite structures are collectively referred to as supercooled structures) was measured. The measurement was performed at the position of 1 mm deep from a surface. The observation field has a size of 400 µm × 300 µm and the measurement was performed with respect to five visual fields, and the average was regarded as a ratio of each structure. The ratio of the pearlite structure was determined by subtracting the ratios of ferrite and supercooled structures from 100%.
  • (2) Amount of Nondiffusible Hydrogen
  • A specimen measuring 20 mm in width × 40 mm in length was cut out from the rolled material. After raising the temperature of the specimen at a temperature rise rate of 100°C/hour, a hydrogen release amount at 300 to 600°C was measured using a gas chromatogram, and the hydrogen release amount was regarded as the amount of nondiffusible hydrogen.
  • (3) Wire Drawability
  • Wire drawability was evaluated by reduction of area of a tensile test. A JIS No. 14 specimen was cut out from the rolled material and a tensile test was performed under the conditions of a crosshead speed of 10 mm/minute in accordance with JIS Z2241 (2011) using a universal tester, and then reduction of area RA was measured
  • Next, the rolled material was subjected to wire drawing, namely, cold drawing to obtain a wire having a diameter of 12.5 mm, followed by quenching and tempering. An area reduction rate of the drawn wire mentioned above is about 23.6% and the conditions of quenching and tempering are as follows.
  • Quenching and Tempering Conditions
    • High frequency induction heating
    • Heating rate: 200°C/second
    • Quenching: 950°C, 20 seconds, water cooling
    • Tempering: each temperature in a range of 300 to 520°C, 20 seconds, water cooling
  • With respect to the wire after wire drawing, and quenching and tempering, the tensile strength, hydrogen embrittlement resistance and corrosion resistance were evaluated.
  • (4) Measurement of Tensile Strength
  • After quenching and tempering, a wire was cut into a predetermined length and a tensile test was performed at a distance between chucks of 200 mm and a tensile speed 5 mm/minute in accordance with JIS Z2241 (2011).
  • (5) Evaluation of Hydrogen Embrittlement Resistance
  • A specimen measuring 10 mm in width × 1.5 mm in thickness × 65 mm in length was cut out from the wire after quenching and tempering. In a state where stress of 1,400 MPa is applied to the specimen by four-point bending, the specimen was immersed in a mixed solution of 0.5 mol/L of sulfuric acid and 0.01 mol/L of potassium thiocyanate. Using a potentiostat, a voltage of -700 mV, which is less nobler than that of a saturated calomel electrode (SCE), was applied and the fracture time required for the occurrence of cracking was measured.
  • (6) Evaluation of Corrosion Resistance
  • A specimen measuring 10 mm in diameter × 100 mm in length was cut out from the wire after quenching and tempering by cutting. The specimen was subjected to a salt spray test with an aqueous 5%NaCl solution for 8 hours and then held in a wet atmosphere at 35°C and a relative humidity of 60% for 16 hours. After repeating this cycle seven times in total, a difference.in weight before and after the test was measured and the thus obtained difference was regarded as a corrosion weight loss.
  • The results (1) to (6) mentioned above are shown in Tables 4 to 6. [Table 1]
    Chemical composition (% by mass) The balance being iron and inevitable impurities Di value
    Steel C Si Mn P S Al Cu Ni Cr Ti B Nb Mo V O N B is not added B is added
    A1 0.42 2.1 0.86 0.008 0.006 0.027 0.22 0.23 0.35 0.09 0.0012 0.0042 109
    A2 0.41 1.8 0.86 0.006 0.007 0.028 0.21 0.21 0.35 0.08 0.0013 0.0054 97
    A3 0.42 2.1 0.91 0.007 0.007 0.025 0.26 0.26 0.36 0.10 0.0009 0.0043 117
    A4 0.43 2.2 0.89 0.010 0.006 0.029 0.23 0.24 0.35 0.10 0.0010 0.0038 117
    A5 0.42 2.1 0.85 0.005 0.003 0.027 0.26 0.24 0.33 0.09 0.0014 0.0044 107
    A6 0.41 2.1 0.89 0.006 0.002 0.029 0.20 0.23 0.34 0.10 0.0013 0.0042 108
    A7 0.42 2.1 0.89 0.010 0.011 0.025 0.26 0.23 0.35 0.06 0.0012 0.0052 113
    A8 0.60 2.0 0.80 0.004 0.006 0.030 0.35 0.30 0.08 0.09 0.0009 0.0055 87
    A9 0.59 2.0 0.71 0.008 0.003 0.025 0.36 0.37 0.06 0.10 0.0032 0.0012 0.0039 80
    A10 0.62 2.1 0.80 0.004 0.004 0.031 0.34 0.33 0.08 0.0014 0.0039 93
    A11 0.60 2.0 0.71 0.008 0.005 0.027 0.34 0.30 0.0030 0.0014 0.0040 68
    A12 0.61 1.9 0.80 0.005 0.005 0.030 0.30 0.37 0.06 0.0013 0.0045 83
    A13 0.61 2.0 0.69 0.008 0.009 0.031 0.35 0.35 0.08 0.0012 0.0049 81
    A14 0.60 2.0 0.68 0.005 0.006 0.028 0.33 0.30 0.09 0.09 0.0011 0.0039 79
    A15 0.59 2.0 0.72 0.008 0.009 0.031 0.37 0.36 0.60 0.0010 0.0040 161
    A16 0.62 2.0 0.65 0.006 0.005 0.025 0.37 0.36 0.80 0.0012 0.0039 185
    A17 0.60 2.0 0.66 0.003 0.003 0.031 0.31 0.32 0.55 0.003% 0.0008 0.0054 141
    A18 0.35 2.1 0.79 0.010 0.012 0.032 0.28 0.30 0.50 0.0015 0.0056 118
    A19 0.40 2.0 0.77 0.010 0.005 0.025 0.25 0.27 0.40 0.0013 0.0055 104
    A20 0.64 1.9 0.80 0.009 0.004 0.032 0.25 0.28 0.0013 0.0054 73
    A21 0.68 2.0 0.79 0.008 0.004 0.026 0.30 0.26 0.0030 0.0015 0.0047 43
    A22 0.50 1.3 0.80 0.005 0.001 0.030 0.29 0.27 0.21 0.0014 0.0043 75
    A23 0.52 1.6 0.80 0.005 0.006 0.030 0.31 0.27 0.42 0.0012 0.0046 112
    A24 0.49 2.0 0.20 0.008 0.009 0.025 0.30 0.30 0.90 0.0014 0.0053 86
    A25 0.50 2.0 0.80 0.005 0.004 0.032 0.28 0.28 0.50 0.09 0.0035 0.0008 0.0053 163
    A26 0.53 2.0 0.80 0.003 0.006 0.027 0.27 0.27 0.20 0.0014 0.0045 95
    [Table 2]
    Chemical composition (% by mass) The balance being iron and inevitable impurities Di value
    Steel C Si Mn P S Al Cu Ni Cr Ti B Nb Mo V O N B is not added B is added
    A27 0.50 2.1 1.50 0.005 0.005 0.032 0.31 0.32 0.0015 0.0047 111
    A28 0.55 2.1 0.76 0.032 0.027 0.029 0.28 0.26 0.0010 0.0051 67
    A29 0.50 2.0 0.77 0.005 0.030 0.025 0.29 0.31 0.20 0.0030 0.0014 0.0041 111
    A30 0.55 1.9 0.75 0.006 0.004 0.029 0.00 0.00 0.32 0.0011 0.0054 88
    A31 0.50 2.0 0.82 0.009 0.008 0.032 0.13 0.27 0.15 0.0011 0.0049 82
    A32 0.50 2.1 0.78 0.010 0.011 0.027 0.32 0.25 0.0012 0.0045 65
    A33 0.45 2.0 0.77 0.004 0.002 0.030 0.45 0.30 0.30 0.08 0.0035 0.0010 0.0049 138
    A34 0.5% 1.9 0.81 0.007 0.008 0.025 0.29 0.00 0.30 0.0011 0.0051 95
    A35 0.52 2.0 0.82 0.004 0.005 0.028 0.30 0.12 0.15 0.0009 0.0041 85
    A36 0.50 2.0 0.76 0.008 0.003 0.029 0.31 0.029 0.22 0.08 0.0030 0.0014 0.0040 113
    A37 0.49 2.0 0.82 0.009 0.008 0.030 0.29 0.45 0.31 0.0011 0.0043 115
    A38 0.50 2.1 0.76 0.008 0.005 0.026 0.30 0.25 0.50 0.0015 0.0054 133
    A39 0.45 1.8 0.40 0.005 0.004 0.031 0.28 0.28 1.10 0.0013 0.0051 124
    A40 0.55 1.9 0.75 0.008 0.009 0.029 0.29 0.26 1.50 0.0010 0.0040 268
    A41 0.50 2.1 0.95 0.010 0.008 0.028 0.31 0.32 0.05 0.0009 0.0045 77
    A42 0.50 2.0 0.95 0.008 0.007 0.029 0.31 0.27 0.08 0.0010 0.0052 74
    A43 0.47 1.9 0.95 0.005 0.004 0.031 0.26 0.27 0.0030 0.0012 0.0050 68
    A44 0.48 2.0 0.98 0.008 0.002 0.030 0.32 0.30 0.08 0.0012 0.0038 75
    A45 0.50 2.0 0.76 0.007 0.004 0.032 0.25 0.26 0.40 0.0014 0.0056 134
    A46 0.50 2.0 0.78 0.007 0.004 0.025 0.30 0.26 0.30 0.0014 0.0045 96
    A47 0.40 2.0 0.77 0.010 0.005 0.025 0.25 0.27 0.40 0.0013 0.0055 104
    A48 0.49 2.0 0.20 0.008 0.009 0.025 0.30 0.30 0.90 0.0014 0.0053 86
    A49 0.50 2.0 0.80 0.005 0.004 0.032 0.28 0.28 0.50 0.09 0.0035 0.0008 0.0053 163
    A50 0.53 2.0 0.80 0.003 0.006 0.027 0.27 0.27 0.20 0.0014 0.0045 95
    [Table 3]
    Chemical composition (% by mass) The balance being iron and inevitable impurities Di value
    Steel C Si Mn P S Al Cu Ni Cr Ti B Nb Mo V O N B is not added B is added
    A51 0.59 2.1 0.35 0.006 0.008 0.027 0.29 0.47 0.31 0.10 0.0012 0.0040 77
    A52 0.61 2.2 0.55 0.007 0.008 0.027 0.31 0.52 0.29 0.09 0.0009 0.0040 106
    A53 0.58 2.2 0.41 0.006 0.008 0.025 0.32 0.60 0.35 0.08 0.0014 0.0051 95
    A54 0.61 2.1 0.55 0.010 0.010 0.032 0.28 0.80 0.25 0.07 0.0009 0.0041 105
    A55 0.58 2.2 0.40 0.008 0.009 0.029 0.12 0.53 0.28 0.11 0.0012 0.0043 78
    A56 0.60 2.2 0.70 0.007 0.006 0.030 0.20 0.58 0.28 0.08 0.0010 0.0043 120
    A57 0.61 2.1 0.62 0.008 0.010 0.027 0.58 0.62 0.27 0.09 0.0011 0.0054 122
    A58 0.62 2.2 0.48 0.008 0.008 0.025 0.29 0.56 0.31 0.0012 0.0041 102
    A59 0.59 2.2 0.59 0.010 0.007 0.030 0.32 0.47 0.22 0.0009 0.0040 97
    A60 0.49 2.2 0.58 0.007 0.009 0.032 0.32 0.56 0.21 0.08 0.0012 0.0043 87
    A61 0.55 2.1 0.52 0.009 0.006 0.025 0.29 0.51 0.19 0.10 0.0012 0.0041 80
    A62 0.60 2.2 0.65 0.010 0.007 0.029 0.31 0.56 0.10 0.0009 0.0053 73
    A63 0.61 2.2 0.75 0.008 0.008 0.030 0.28 0.49 0.08 0.0011 0.0053 79
    A64 0.61 2.3 0.60 0.007 0.007 0.032 0.35 0.56 0.35 0.07 0.0012 0.0051 128
    A65 0.58 2.4 0.54 0.008 0.009 0.029 0.28 0.62 0.32 0.08 0.0012 0.0041 113
    A66 0.61 2.1 0.50 0.009 0.008 0.025 0.28 0.58 0.19 0.07 0.13 0.0009 0.0054 104
    A67 0.63 2.1 0.42 0.008 0.006 0.029 0.45 0.55 0.27 0.07 0.18 0.0009 0.0043 121
    Figure imgb0008
    [Table 5]
    Test No, Steel No. Whether or not treatment for reduction of hydrogen in steel is implemented Roiling/cooling conditions Amount of nondiffusible hydrogen (ppm by mass) Ferrite area ratio (%) Value of right side of inequality expression (1) (Value of right side of inequality expression (1)) -(Ferrite area ratio) Reduction rate (%) Area ratio of supercooled structure (%) Area ratio of structure (%) Wire tensile strength (MPa) Reduction rolled of rolled material (%) Hydrogen Corrosion embrittlement weight resistance loss (sec) (g)
    Molten steel treatment Homogenizing treatment Cooling (iii) in a range of 400 to 100°C after rolling TL temperature (°C) Average cooling rate in a range of TL to 650°C (°C/sec) Cooling (i) average cooling rate in a range of 650 to 400°C (°C/sec) Cooling (ii)
    33 A19 Implementation - - 950 4 1 0.12 35.9 42.7 6.8 16 ≤1% 64.1 1913 50.0 1,100 4.2
    34 A20 Implementation - - 900 4 I 0.08 0.3 3.5 3.2 92 ≤1% 99.7 2188 44.1 1068 4.4
    35 A21 Implementation - - 900 4 1 0.18 - - - - ≤1% - 2254 39.6 756 4.2
    36 A22 Implementation - - 930 4 1 0.12 20.9 26.4 5.5 21 ≤1% 79.1 1855 53.1
    37 A23 Implementation - - 930 4 1 0.10 16.3 23.1 6.8 30 ≤1% 83.7 2043 50.1 1090 4.2
    38 A24 Implementation - - 930 4 1 0.12 21.0 28.0 7.0 25 <1% 79.0 2006 52.4 1116 3.8
    39 A25 Implementation - - 930 4 1 0.22 18.8 26.4 7.6 29 ≤1% 81.2 2026 42.8 1073 4.1
    40 A26 Implementation - - 930 4 1 0.09 14.2 21.5 7.3 34 ≤1% 85.8 2068 46.4 1092 4.1
    41 A27 Implementation - - 930 4 1 0.25 18.3 26.4 8.1 31 ≤1% 81.7 2022 33.9 756 3.8
    42 A28 Implementation - - 930 4 I 0.10 11.6 18.2 6.6 36 ≤1% 88.4 2089 44.9 369 4.2
    43 A29 Implementation - - 930 4 1 0.11 19.5 26.4 6.9 26 ≤1% 80.5 2019 47.3 258 3.9
    44 A30 Implementation - - 930 4 1 0.14 11.6 18.2 6.6 36 ≤ 1% 88.4 2089 45.5 1080 5.3
    45 A31 Implementation - - 930 4 1 0.30 19.3 26.4 7.1 27 ≤1% 80.7 2033 40.2 1058 4.4
    46 A32 Implementation - - 930 4 1 0.13 20.2 26.4 6.2 23 ≤1% 79.8 2029 45.0 1081 4
    47 A33. Implementation - - 930 4 1 0.20 28.2 34.6 6.4 18 ≤1% 71.8 1965 45.5 1084 3.7
    48 A34 Implementation - - 930 4 1 0.25 19.2 26.4 7.2 27 ≤1% 80.8 2031 43.4 1075 5.4
    49 A35 Implementation - - 930 4 1 0.16 16.6 23.1 6.5 28 ≤1% 83.4 2056 44.7 1074 4.7
    50 A36 Implementation - - 930 4 1 0.19 20.3 26.4 6.1 23 ≤1% 79.7 2041 44.1 1073 4
    51 A37 Implementation - - 930 4 1 0.08 21.1 28.0 6.9 25 ≤1% 78.9 2020 48.0 1090 3.5
    52 A38 Implementation - - 930 4 1 0.15 19.7 26.4 6.7 25 ≤1% 80.3 2030 44.9 1081 4.2
    53 A39 Implementation - - 930 4 1 0.08 27.3 34.6 7.3 21 ≤1% 72.7 1977 55.1 1127 4.1
    54 A40 Implementation - - 930 4 1 0.18 9.0 18.2 9.2 51 ≤1% 91.0 2087 44.0 885 4
    55 A41 Implementation - - 930 4 1 0.22 19.7 26.4 6.7 25 ≤1% 80.3 2024 40.9 1057 3.9
    56 A42 Implementation - - 930 4 1. 0.25 19.6 26.4 6.8 26 < 1% 80.4 2031 40.7 1057 4
    57 A43 Implementation - - 930 4 1 0.25 25.0 31.3 6.3 20 ≤1% 75.0 1989 42.6 1064 4.2
    58 A44 Implementation - - 930 4 1 0.22 22.9 29.7 6.8 23 ≤1% 77.1 1998 41.9 1071 4
    59 A45 Implementation - - 930 4 1 0.09 20.5 26.4 5.9 22 ≤1% 79.5 2023 47.7 1088 4
    60 A46 Implementation - - 930 4 1 0.15 19.6 26.4 6.8 26 ≤1% 80.4 2022 46.0 1082 4.1
    61 A47 Implementation - - 950 1 1 0.12 50.2 42.7 -7.5 -18 ≤1% 49.8 1905 51.2 905 4.3
    62 A48 Implementation - - 930 1 1 0.12 32.2 28.0 -4.2 -15 ≤1% 67.8 2000 53.0 920 3.8
    63 A49 Implementation - - 930 1 1 0.22 30.2 26.4 3.8 -14 ≤1% 69.8 2025 42.5 775 4
    64 A50 Implementation - - 930 1 1 0.09 23.5 21.5 -2.0 -9 ≤1% 76.5 2060 46.0 799 4
    [Table 6]
    Test No. Steel No, Whether or not treatment for reduction of hydrogen in steel is implemented Roiling/cooling conditions Amount of nondiffusible hydrogen (ppm by mass) Ferrite area ratio (%) Value of right side of inequality expression (1) (Value of right side of inequality expression (1)) -(Ferrite area ratio) Reduction rate (%) Area ratio of supercooled structure (%) Area ratio of pearlite structure (%) Wire tensile strength (MPa) Reduction rolled material (%) Hydrogen embrittlement resistance (sec) Corrosion weight loss (g)
    Molten steel treatment Homogenizing treatment Cooling (iii) in a range of 400 to 100°C after rolling TL temperature (°C) Average cooling rate in a range of TL to 650°C (°C/sec) Cooling (i) Average cooling rate in a range of 650 to 400°C (°C/sec) Cooling (ii)
    65 A51 Implementation - - 930 4 1 0.18 5.0 11.7 6.7 57 ≤1% 95.0 1992 46.8 1079 2.5
    66 A52 Implementation - - 930 4 1 0.25 1.0 8.4 7.5 89 ≤1% 99.0 2030 37.2 1069 2.2
    67 A53 Implementation - - 930 4 1 0.22 6.2 13.3 7.1 53 <1% 93.8 2010 40.3 1068 1.7
    68 A54 Implementation - - 930 4 1 0.16 1.2 8.4 7.2 86 ≤1% 98.8 2004 47.7 1094 1.0
    69 A55 Implementation - - 930 4 I 0.22 6.2 13.3 7.2 54 ≤1% 93.8 2018 32.6 1030 2.1
    70 A56 Implementation - - 930 4 1 0.16 2.5 10.1 7.6 75 ≤1% 97.5 2018 35.1 1015 1.7
    71 A57 Implementation - - 930 4 1 0.20 1.0 8.4 7.4 88 ≤1% 99.0 1994 43.6 1094 1.4
    72 A58 Implementation - - 930 4 1 0.24 0.5 6.8 6.3 93 ≤1% 99.5 1995 44.9 1080 2.2
    73 A59 Implementation - - 930 4 1 0.23 4.6 11.7 7.1 61 ≤1% 95.4 2010 44.4 1064 2.4
    74 A60 Implementation - - 930 4 1 0.24 21.4 28.0 6.6 24 ≤1% 78.6 1981 50.8 1122 2.1
    75 A61 Implementation - - 930 4 1 0.17 11.6 18.2 6.6 36 ≤1% 88.4 2004 45.7 1085 2.3
    76 A62 Implementation - - 930 4 1 0.19 3.2 10.1 6.8 68 <1% 96.8 2021 42.1 1060 1.8
    77 A63 Implementation - - 930 4 1 0.22 1.1 8.4 7.3 87 ≤1% 98.9 2011 42.0 1158 2.0
    78 A64 Implementation - - 930 4 I 0.24 0.6 8.4 7.9 93 ≤1% 99.4 2028 45.2 1178 1.7
    79 A65 Implementation - - 930 4 1 0.24 5.6 13.3 7.8 58 ≤1% 94.4 1988 42.4 1076 1.5
    80 A66 Implementation - - 930 4 1 0.18 1.3 8.4 7.2 85 ≤1% 98.7 1981 40.2 1024 1.8
    81 A67 Implementation - - 930 4 1 0.19 0.5 5.2 4.7 90 ≤1% 99.5 2014 39.4 1069 1.9
  • Samples of test Nos. 1 to 4, 7 to 11, 15 to 18, 21 to 25, 33, 34, 37 to 40, 45 to 47, 49 to 53, 55 to 60, and 65 to 81 are manufactured from a steel having appropriately adjusted chemical composition under preferred manufacturing conditions mentioned above, so that the amount of nondiffusible hydrogen, and the area ratio of ferrite and supercooled structures satisfy the requirements of the present invention. Therefore, the rolled material exhibits a reduction of area RA of 30% or more in the tensile test and is excellent in wire drawability, and the wire obtained by wire drawing of the rolled material, followed by quenching and tempering has an excellent tensile strength in a range of 1,900 MPa or more. Further, the wire obtained after quenching and tempering exhibits a fracture time of 1,000 seconds or more in an evaluation test of hydrogen embrittlement resistance and a corrosion weight loss of 5.0 g or less in an evaluation test of corrosion resistance, so that the wire is excellent in both hydrogen embrittlement resistance and corrosion resistance. Further, "reduction rate" in Tables 4 to 6 is a value in which a ratio of a difference between a value of right side of the inequality expression (1) and an actual value of a ferrite area ratio to a value of right side of the inequality expression (1) is expressed as percentage.
  • In contrast, in examples other than the above-mentioned ones, at least any one of the requirements, including the chemical composition of a steel, the amount of nondiffusible hydrogen, the ferrite area ratio, and the supercooled structure area ratio does not satisfy the requirements of the present invention, leading to the result that at least any one property of wire drawability of a rolled material, tensile strength, hydrogen embrittlement resistance, and corrosion resistance of a wire is inferior.
  • All of samples of test Nos. 5, 6, 19 and 20 are not subjected to the above-mentioned treatment for reduction of nondiffusible hydrogen, so that the amount of nondiffusible hydrogen in the rolled material increased, thus degrading wire drawability.
  • In samples of tests Nos. 12 and 26, because of low average cooling rate in a range of a coiling temperature TL to 650°C, the ferrite area ratio increased, thus degrading hydrogen embrittlement resistance. In samples of tests Nos. 13 and 27, because of high average cooling rate in a range of a coiling temperature TL to 650°C, the supercooled structures increased, thus degrading wire drawability. In samples of tests Nos. 14 and 28, because of high average cooling rate in a range of 650 to 400°C, the supercooled structure increased, thus degrading wire drawability.
  • In samples of tests Nos. 29 to 31, the supercooled structure increased, thus degrading wire drawability. In sample of test No. 32, because of a small amount of C, the wire exhibited poor tensile strength. In sample of test No. 35, because of a large amount of C, residual austenite was generated, thus degrading hydrogen embrittlement resistance. In sample of test No. 36, because of a small amount of Si, the wire exhibited poor tensile strength.
  • In sample of test No. 41, because of a large amount of Mn, toughness was degraded, thus degrading hydrogen embrittlement resistance. In sample of test No. 42, because of a large amount of P and a large amount of S, grain boundary embrittlement occurred, thus degrading hydrogen embrittlement resistance. In sample of test No. 43, because of a large amount of S, grain boundary embrittlement occurred, thus degrading hydrogen embrittlement resistance. In sample of test No. 44, neither Cu nor Ni is not added, thus degrading corrosion resistance.
  • In sample of test No. 48, Ni is not added, occurred, thus degrading corrosion resistance. In sample of test No. 54 , because of a large amount of Cr, dissolving residue of cementite, is which chromium-based carbide and metallic Cr in high concentration are solid-soluted, was generated as a stress concentration source, thus degrading hydrogen embrittlement resistance.
  • In samples of tests Nos. 61 to 64, because of low average cooling rate in a range of a coiling temperature TL to 650°C, the ferrite area ratio increased, thus degrading hydrogen embrittlement resistance.
  • Industrial Applicability
  • The rolled material and the wire of the present invention are industrially useful since they can be suitably used for coil springs that are used in automobiles, for example, a valve spring, a suspension spring and the like that are used in the engine, suspension, and the like.

Claims (5)

  1. A rolled material for high strength spring, comprising, in % by mass:
    C: 0.39 to 0.65%,
    Si: 1.5 to 2.5%,
    Mn: 0.15 to 1.2%,
    P: exceeding or and 0.015% or less,
    S: exceeding 0% and 0.015% or less,
    Al: 0.001 to 0.1%,
    Cu: 0.1 to 0.80%, and
    Ni: 0.1 to 0.80%, with the balance being iron and inevitable impurities, wherein
    an amount of nondiffusible hydrogen is 0.40 ppm by mass or less, and
    an area ratio of ferrite expressed as a percentage satisfies an inequality expression (1) below, and a total area ratio of bainite and martensite is 2% or less: Ferrite area ratio < 0.77 C / 0.77 C / 3 + 0.08 × 100
    Figure imgb0009
    where [name of element] in the above inequality expression (1) means a content expressed in % by mass of each element.
  2. The rolled material for high strength spring according to claim 1, further comprising, in % by mass, at least one belonging to any one of the following (a), (b), (c) and (d):
    (a) Cr: exceeding 0% and 1.2% or less,
    (b) Ti: exceeding 0% and 0.13% or less,
    (c) B: exceeding 0% and 0.01% or less, and
    (d) at least one selected from the group consisting of Nb: exceeding 0% and 0.1% or less, Mo: exceeding 0% and 0.5% or less, and V: exceeding 0% and 0.4% or less.
  3. The rolled material for high strength spring according to claim 1 or 2, wherein an ideal critical diameter Di, which is calculated using an equation (2) below when B is not included or using an equation (3) below when B is included, is in a range of 65 to 140 mm: D i = 25.4 × 0.171 + 0.001 × C + 0.265 × C 2 × 3.3333 × Mn + 1 × 1 + 0.7 × Si × 1 + 0.363 × Ni × 1 + 2.16 × Cr × 1 + 0.365 × Cu × 1 + 1.73 × V × 1 + 3 × Mo
    Figure imgb0010
    D i = 25.4 × 0.171 + 0.001 × C + 0.265 × C 2 × 3.3333 × Mn + 1 × 1 + 0.7 × Si × 1 + 0.363 × Ni × 1 + 2.16 × Cr × 1 + 0.365 × Cu × 1 + 1.73 × V × 1 + 3 × Mo × 6.849017 46.78647 × C + 196.6635 × C 2 471.3978 × C 3 + 587.8504 × C 4 295.0410 × C 5
    Figure imgb0011
    where [name of element] in the above equations (2) and (3) means a content expressed in % by mass of each element.
  4. A wire for high strength spring, having a tensile strength of 1, 900 MPa or more, obtained by wire-drawing the rolled material for high strength spring according to claim 1 or 2, followed by a quenching and tempering treatment.
  5. A wire for high strength spring, having a tensile strength of 1, 900 MPa or more, obtained by wire-drawing the rolled material for high strength spring according to claim 3, followed by a quenching and tempering treatment.
EP14875039.1A 2013-12-27 2014-12-10 Rolled steel material for high-strength spring and wire for high-strength spring using same Withdrawn EP3088551A4 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2013272569 2013-12-27
PCT/JP2014/082728 WO2015098531A1 (en) 2013-12-27 2014-12-10 Rolled steel material for high-strength spring and wire for high-strength spring using same

Publications (2)

Publication Number Publication Date
EP3088551A1 true EP3088551A1 (en) 2016-11-02
EP3088551A4 EP3088551A4 (en) 2017-08-23

Family

ID=53478395

Family Applications (1)

Application Number Title Priority Date Filing Date
EP14875039.1A Withdrawn EP3088551A4 (en) 2013-12-27 2014-12-10 Rolled steel material for high-strength spring and wire for high-strength spring using same

Country Status (8)

Country Link
US (1) US20160319393A1 (en)
EP (1) EP3088551A4 (en)
JP (1) JP6212473B2 (en)
KR (1) KR20160102526A (en)
CN (2) CN105849297A (en)
MX (1) MX2016008501A (en)
TW (1) TWI535860B (en)
WO (1) WO2015098531A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112491A4 (en) * 2014-02-28 2017-11-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Rolled material for high strength spring, and wire for high strength spring

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6458927B2 (en) * 2014-10-07 2019-01-30 大同特殊鋼株式会社 High-strength spring steel with excellent wire rod rollability
WO2017122828A1 (en) * 2016-01-15 2017-07-20 株式会社神戸製鋼所 Rolled material for high-strength spring
WO2017122827A1 (en) * 2016-01-15 2017-07-20 株式会社神戸製鋼所 Wire for high-strength spring, and method for producing same
JP6447799B1 (en) 2017-06-15 2019-01-09 新日鐵住金株式会社 Rolled wire rod for spring steel
WO2019003397A1 (en) 2017-06-28 2019-01-03 三菱製鋼株式会社 Method for manufacturing hollow stabilizer
KR102020385B1 (en) * 2017-09-29 2019-11-04 주식회사 포스코 Steel wire rod and steel wire for spring having corrosion fatigue resistance and method of manufacturing thereof
WO2020256140A1 (en) 2019-06-19 2020-12-24 日本製鉄株式会社 Wire rod
EP3796101A1 (en) * 2019-09-20 2021-03-24 Nivarox-FAR S.A. Hairspring for clock movement

Family Cites Families (31)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63317626A (en) * 1987-06-19 1988-12-26 Kobe Steel Ltd Production of ultra-high strength extremely fine wire
JPS6487746A (en) * 1987-06-19 1989-03-31 Kobe Steel Ltd Ultra-high-strength extra fine wire
JPH01224540A (en) * 1988-02-29 1989-09-07 Kobe Steel Ltd Fine spring
US5951944A (en) * 1994-12-21 1999-09-14 Mitsubishi Steel Mfg. Co., Ltd. Lowly decarburizable spring steel
US5776267A (en) * 1995-10-27 1998-07-07 Kabushiki Kaisha Kobe Seiko Sho Spring steel with excellent resistance to hydrogen embrittlement and fatigue
JP3816721B2 (en) * 2000-04-07 2006-08-30 株式会社神戸製鋼所 High strength wire rod excellent in delayed fracture resistance and under neck toughness, or delayed fracture resistance, forgeability and under neck toughness, and method for producing the same
JP4261760B2 (en) * 2000-10-10 2009-04-30 新日本製鐵株式会社 High strength spring steel excellent in hydrogen fatigue fracture resistance and manufacturing method thereof
JP3918587B2 (en) * 2002-03-07 2007-05-23 大同特殊鋼株式会社 Spring steel for cold forming
JP3764715B2 (en) 2002-10-22 2006-04-12 新日本製鐵株式会社 Steel wire for high-strength cold forming spring and its manufacturing method
JP4280123B2 (en) * 2003-07-01 2009-06-17 株式会社神戸製鋼所 Spring steel with excellent corrosion fatigue resistance
JP4008391B2 (en) * 2003-07-11 2007-11-14 株式会社神戸製鋼所 High strength steel with excellent hydrogen embrittlement resistance and method for producing the same
JP4555768B2 (en) 2004-11-30 2010-10-06 新日本製鐵株式会社 Steel wire for high strength spring
JP4476846B2 (en) * 2005-03-03 2010-06-09 株式会社神戸製鋼所 High strength spring steel with excellent cold workability and quality stability
JP4423253B2 (en) * 2005-11-02 2010-03-03 株式会社神戸製鋼所 Spring steel excellent in hydrogen embrittlement resistance, and steel wire and spring obtained from the steel
JP4423254B2 (en) * 2005-12-02 2010-03-03 株式会社神戸製鋼所 High strength spring steel wire with excellent coiling and hydrogen embrittlement resistance
JP4027956B2 (en) * 2006-01-23 2007-12-26 株式会社神戸製鋼所 High strength spring steel having excellent brittle fracture resistance and method for producing the same
JP4393467B2 (en) * 2006-02-28 2010-01-06 株式会社神戸製鋼所 Hot rolled wire rod for strong wire drawing and manufacturing method thereof
JP2007327084A (en) * 2006-06-06 2007-12-20 Kobe Steel Ltd Wire rod having excellent wire drawability and its production method
KR100797327B1 (en) * 2006-10-11 2008-01-22 주식회사 포스코 Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same
US8734599B2 (en) * 2006-10-11 2014-05-27 Posco Steel wire rod for high strength and high toughness spring having excellent cold workability, method for producing the same and method for producing spring by using the same
JP4310359B2 (en) * 2006-10-31 2009-08-05 株式会社神戸製鋼所 Steel wire for hard springs with excellent fatigue characteristics and wire drawability
JP4699342B2 (en) * 2006-11-17 2011-06-08 株式会社神戸製鋼所 High strength non-tempered steel for cold forging with excellent fatigue limit ratio
JP5157230B2 (en) * 2007-04-13 2013-03-06 新日鐵住金株式会社 High carbon steel wire rod with excellent wire drawing workability
CN102268604A (en) * 2007-07-20 2011-12-07 株式会社神户制钢所 Steel wire material for spring and its producing method
CN101624679B (en) * 2007-07-20 2011-08-17 株式会社神户制钢所 Steel wire material for spring and its producing method
JP4694537B2 (en) * 2007-07-23 2011-06-08 株式会社神戸製鋼所 Spring wire with excellent fatigue characteristics
JP5121360B2 (en) * 2007-09-10 2013-01-16 株式会社神戸製鋼所 Spring steel wire rod excellent in decarburization resistance and wire drawing workability, and method for producing the same
JP5476598B2 (en) * 2010-03-04 2014-04-23 株式会社神戸製鋼所 Manufacturing method of seamless steel pipe for high strength hollow spring
JP5250609B2 (en) * 2010-11-11 2013-07-31 日本発條株式会社 Steel for high strength spring, method for producing high strength spring, and high strength spring
JP5655627B2 (en) * 2011-02-24 2015-01-21 新日鐵住金株式会社 High strength spring steel with excellent hydrogen embrittlement resistance
JP6452454B2 (en) * 2014-02-28 2019-01-16 株式会社神戸製鋼所 Rolled material for high strength spring and wire for high strength spring

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP3112491A4 (en) * 2014-02-28 2017-11-15 Kabushiki Kaisha Kobe Seiko Sho (Kobe Steel, Ltd.) Rolled material for high strength spring, and wire for high strength spring

Also Published As

Publication number Publication date
JP2015143391A (en) 2015-08-06
MX2016008501A (en) 2016-09-14
CN109112262A (en) 2019-01-01
CN105849297A (en) 2016-08-10
EP3088551A4 (en) 2017-08-23
JP6212473B2 (en) 2017-10-11
TWI535860B (en) 2016-06-01
KR20160102526A (en) 2016-08-30
US20160319393A1 (en) 2016-11-03
TW201538747A (en) 2015-10-16
WO2015098531A1 (en) 2015-07-02

Similar Documents

Publication Publication Date Title
EP3088551A1 (en) Rolled steel material for high-strength spring and wire for high-strength spring using same
EP2546379B1 (en) High-strength steel and high-strength bolt with excellent resistance to delayed fracture, and manufacturing method therefor
RU2625374C1 (en) Hot-molded component of steel sheet and method of its manufacture and steel sheet for hot moulding
EP2811047B1 (en) Hot-dip galvanized steel sheet and production method therefor
EP2243852B1 (en) High-strength hot-dip zinc coated steel sheet excellent in workability and process for production thereof
EP2530180B1 (en) Steel sheet and method for manufacturing the steel sheet
KR102232097B1 (en) Electrically-sealed steel pipe for high-strength thin-walled hollow stabilizer and its manufacturing method
EP3421635B1 (en) High-strength cold-rolled steel sheet having excellent bendability
EP2937434B1 (en) Steel wire rod for high-strength spring with excellent hydrogen embrittlement resistance and manufacturing process therefor and high-strength spring
EP2371978B1 (en) Steel sheet and surface-treated steel sheet
EP3112491A1 (en) Rolled material for high strength spring, and wire for high strength spring
EP3309273A1 (en) Galvannealed steel sheet and method for manufacturing same
EP3282029B1 (en) Steel sheet for heat treatment
EP3093359A1 (en) Hot-formed member and process for manufacturing same
EP3026138A1 (en) High-strength steel material for oil well use, and oil well pipe
EP2980252A1 (en) High-strength steel wire material exhibiting excellent cold-drawing properties, and high-strength steel wire
EP2942414A1 (en) Thick, tough, high tensile strength steel plate and production method therefor
EP2589678A1 (en) High-strength steel sheet with excellent processability and process for producing same
TW201317366A (en) High-strength hot-dip galvanized steel sheet and process for producing same
EP3124638B1 (en) Stabilizer steel having high strength and excellent corrosion resistance, vehicle stabilizer employing same, and method for manufacturing same
EP2843075A1 (en) High-strength hot-rolled steel plate with good ductility, stretch flangeability and material quality uniformity, and process for manufacturing same
EP3165625A1 (en) Wire material for steel wire, and steel wire
EP3156511A1 (en) Steel for mechanical structure for cold working, and method for producing same
EP2578714B1 (en) Hot-rolled high-strength steel sheet and process for production thereof
EP3266894B1 (en) High-strength steel sheet and method for producing same

Legal Events

Date Code Title Description
PUAI Public reference made under article 153(3) epc to a published international application that has entered the european phase

Free format text: ORIGINAL CODE: 0009012

17P Request for examination filed

Effective date: 20160630

AK Designated contracting states

Kind code of ref document: A1

Designated state(s): AL AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HR HU IE IS IT LI LT LU LV MC MK MT NL NO PL PT RO RS SE SI SK SM TR

AX Request for extension of the european patent

Extension state: BA ME

DAX Request for extension of the european patent (deleted)
A4 Supplementary search report drawn up and despatched

Effective date: 20170720

RIC1 Information provided on ipc code assigned before grant

Ipc: B21C 1/00 20060101ALI20170714BHEP

Ipc: C22C 38/54 20060101ALI20170714BHEP

Ipc: C22C 38/04 20060101ALI20170714BHEP

Ipc: C21D 1/18 20060101ALI20170714BHEP

Ipc: C22C 38/48 20060101ALI20170714BHEP

Ipc: C22C 38/46 20060101ALI20170714BHEP

Ipc: C22C 38/08 20060101ALI20170714BHEP

Ipc: C21D 8/06 20060101ALI20170714BHEP

Ipc: C22C 38/12 20060101ALI20170714BHEP

Ipc: C22C 38/50 20060101ALI20170714BHEP

Ipc: C22C 38/42 20060101ALI20170714BHEP

Ipc: C22C 38/34 20060101ALI20170714BHEP

Ipc: C22C 38/06 20060101ALI20170714BHEP

Ipc: C21D 3/06 20060101ALI20170714BHEP

Ipc: C21D 9/52 20060101ALI20170714BHEP

Ipc: C22C 38/14 20060101ALI20170714BHEP

Ipc: C22C 38/00 20060101AFI20170714BHEP

Ipc: C22C 38/16 20060101ALI20170714BHEP

Ipc: C22C 38/02 20060101ALI20170714BHEP

Ipc: C22C 38/44 20060101ALI20170714BHEP

17Q First examination report despatched

Effective date: 20180419

GRAP Despatch of communication of intention to grant a patent

Free format text: ORIGINAL CODE: EPIDOSNIGR1

INTG Intention to grant announced

Effective date: 20180713

STAA Information on the status of an ep patent application or granted ep patent

Free format text: STATUS: THE APPLICATION IS DEEMED TO BE WITHDRAWN

18D Application deemed to be withdrawn

Effective date: 20181124