JP2006029761A - Refrigerator - Google Patents

Refrigerator Download PDF

Info

Publication number
JP2006029761A
JP2006029761A JP2004353282A JP2004353282A JP2006029761A JP 2006029761 A JP2006029761 A JP 2006029761A JP 2004353282 A JP2004353282 A JP 2004353282A JP 2004353282 A JP2004353282 A JP 2004353282A JP 2006029761 A JP2006029761 A JP 2006029761A
Authority
JP
Japan
Prior art keywords
compression
compressor
refrigerant
case
cooler
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004353282A
Other languages
Japanese (ja)
Inventor
Noriaki Sakamoto
則秋 阪本
Akihiro Noguchi
明裕 野口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Lifestyle Products and Services Corp
Original Assignee
Toshiba Corp
Toshiba Consumer Marketing Corp
Toshiba Home Appliances Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp, Toshiba Consumer Marketing Corp, Toshiba Home Appliances Corp filed Critical Toshiba Corp
Priority to JP2004353282A priority Critical patent/JP2006029761A/en
Publication of JP2006029761A publication Critical patent/JP2006029761A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2400/00General features or devices for refrigeration machines, plants or systems, combined heating and refrigeration systems or heat-pump systems, i.e. not limited to a particular subgroup of F25B
    • F25B2400/07Details of compressors or related parts
    • F25B2400/075Details of compressors or related parts with parallel compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/02Compressor control
    • F25B2600/026Compressor control by controlling unloaders
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F25REFRIGERATION OR COOLING; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS; MANUFACTURE OR STORAGE OF ICE; LIQUEFACTION SOLIDIFICATION OF GASES
    • F25BREFRIGERATION MACHINES, PLANTS OR SYSTEMS; COMBINED HEATING AND REFRIGERATION SYSTEMS; HEAT PUMP SYSTEMS
    • F25B2600/00Control issues
    • F25B2600/25Control of valves
    • F25B2600/2511Evaporator distribution valves

Landscapes

  • Devices That Are Associated With Refrigeration Equipment (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a refrigerator whereby an amount of a refrigerant delivered from a compression part to a cooler can be adjusted by a refrigerating cycle equipped with a compressor having two compression parts arranged side by side in a case, high efficient operation or low efficient operation is achieved by the lightness or heaviness of a cooling load, refrigerating efficiency is improved, and consumed electricity can be reduced. <P>SOLUTION: This refrigerator is provided with the compressor 9 having a plurality of the compression parts 9a and 9b arranged side by side in the case 9c, and the refrigerating cycle 10 wherein a condenser, a decompression device, and freezing and refrigerating coolers 4 and 5 are connected annularly. In the plurality of the compression parts in the compressor, delivery pipes 16 and 17 of the refrigerant gas are merged in the downstream side, and an unloader circuit 20 is provided on the downstream side of at least one of the compression part, the refrigerants from the plurality of the compression parts are merged and are supplied to the cooler when the cooling load is large, and only the refrigerant from the other compression parts 9b is supplied to the cooler by the unloader circuit 20 when the cooling load is small. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、冷蔵庫に係り、特に密閉ケース内に複数の圧縮部を設けた冷媒圧縮機を用いたものに関する。   The present invention relates to a refrigerator, and more particularly to a refrigerator using a refrigerant compressor provided with a plurality of compression units in a sealed case.

冷蔵庫については従来より、種々の構造や制御方法の改良により省電力化が進められ成果が得られているが、近年は資源環境の見地からもますます消費電力の低減を強く期待されているものである。また、本来の機能である貯蔵食品の保存性能についてもより向上が求められている。   For refrigerators, power savings have been achieved through improvements in various structures and control methods, but in recent years there has been a strong expectation of further reduction of power consumption from the viewpoint of resource environment. It is. Further, there is a demand for further improvement in the preservation performance of stored foods, which is the original function.

現在、市場に供されている冷凍冷蔵庫に用いられている冷媒圧縮機は、インバータ制御により能力を変化できるものが多く、また、図12に示すように、圧縮機(59)のケース内に設けた単一の圧縮部(59a)で冷媒を圧縮し凝縮器(51)側に吐出する、いわゆる一段圧縮方式がほとんどである。そして、単一の冷却器、あるいは図示のように冷凍空間および冷蔵空間専用の冷却器(54)(55)を備え、切替弁(52)で冷媒流路を切り替える冷凍サイクル(50)によって、それぞれの貯蔵空間を各所定温度に冷却制御するようにしている。   Many of the refrigerant compressors currently used in refrigerators and refrigerators on the market can change the capacity by inverter control. Also, as shown in Fig. 12, they are installed in the case of the compressor (59). The so-called single-stage compression method is a method in which the refrigerant is compressed by the single compression section (59a) and discharged to the condenser (51) side. And, with a single cooler, or a refrigerating cycle (50) that includes a cooler (54) (55) dedicated to a refrigeration space and a refrigeration space as shown in the figure, and switches the refrigerant flow path with a switching valve (52), respectively. The storage space is controlled to be cooled to each predetermined temperature.

また、近年では、図13に示すように、圧縮機(69)の密閉ケース内にモーターと低段圧縮要素(69a)と高段圧縮要素(69b)とを備えて冷媒ガスを二段に圧縮するようにし、高段圧縮要素(69b)から吐出した冷媒を膨張装置(62)(63)を介して低圧用蒸発器(64)および中間圧用蒸発器(65)に導入させるとともに、低圧用蒸発器(64)の下流を低段圧縮要素(69a)の吸入側に接続させ、中間圧用蒸発器(65)からの戻し管を密閉ケース内の低段圧縮要素の吐出側と高段圧縮要素の吸入側間に開口させることで、庫内の温度制御の精度を高めるとともに庫内各部の温度の均一化や高効率化、低消費電力化をはかるようにした冷凍冷蔵装置の思想(例えば、特許文献1参照)が公開されている。
特開2001−74325号公報
Further, in recent years, as shown in FIG. 13, a motor, a low-stage compression element (69a), and a high-stage compression element (69b) are provided in a sealed case of a compressor (69) to compress refrigerant gas in two stages. The refrigerant discharged from the high-stage compression element (69b) is introduced into the low-pressure evaporator (64) and the intermediate-pressure evaporator (65) via the expansion devices (62) and (63), and the low-pressure evaporation The downstream of the vessel (64) is connected to the suction side of the low-stage compression element (69a), and the return pipe from the intermediate pressure evaporator (65) is connected to the discharge side of the low-stage compression element and the high-stage compression element in the sealed case. The idea of a freezing and refrigeration system that opens between the suction sides increases the accuracy of temperature control in the storage and makes the temperature in each section uniform, increases efficiency, and reduces power consumption (for example, patents) Reference 1) is published.
JP 2001-74325 A

しかしながら、前記従来技術における前者の単一の圧縮部による前記冷凍サイクル(50)については、圧縮機(59)における周波数可変範囲が限られているため、冷凍能力についても周波数に比例してその可変幅が決定され、冷蔵庫の負荷変動に対しては冷凍能力の範囲が限定されたものになっていた。その場合、圧縮機能力の設定は、図4のグラフに示すように、冷蔵庫の最大負荷に合わせる必要があるため、実使用時での大半の時間を占める軽負荷状態では最低周波数でも冷凍能力が、図中斜線ゾーンのように余ることになり、圧縮機の停止と駆動を繰り返す断続運転を余儀なくされ、過渡的な冷凍サイクル上の損失や圧縮機の起動時の運転ロスを生じていた。   However, the refrigeration cycle (50) of the former single compression unit in the prior art has a limited frequency variable range in the compressor (59), so that the refrigeration capacity is variable in proportion to the frequency. The width was determined, and the range of the refrigerating capacity was limited to the load fluctuation of the refrigerator. In that case, as shown in the graph of FIG. 4, the compression function force needs to be adjusted to the maximum load of the refrigerator. Therefore, in the light load state that occupies most of the time during actual use, the refrigeration capacity is low even at the lowest frequency. As shown in the shaded zone in the figure, the remaining operation is repeated, and the intermittent operation of repeating the stop and drive of the compressor is forced, resulting in a transient loss on the refrigeration cycle and an operation loss at the start of the compressor.

また、上記特許文献1に記載の冷凍サイクルでも、冷凍用冷却器である低圧用蒸発器(64)の冷凍能力は低段圧縮要素(69a)のシリンダー排除容積のみで決定されるため、冷凍能力を拡大したり調整することは困難なものであり、圧縮機の密閉ケース内に2つの圧縮要素を設けた圧縮機の能力を冷却負荷の変動に対して拡大し、また可変するものは存在しなかった。   In the refrigeration cycle described in Patent Document 1, the refrigeration capacity of the low-pressure evaporator (64), which is a refrigeration cooler, is determined only by the cylinder displacement volume of the low-stage compression element (69a). It is difficult to expand and adjust the compressor, and there are some that can expand the capacity of the compressor with two compression elements in the compressor's sealed case, and can change it with respect to the fluctuation of the cooling load. There wasn't.

本発明は上記点を考慮してなされたものであり、ケース内に併置した2つの圧縮部を有する圧縮機を備えた冷凍サイクルによって圧縮部から冷却器へ吐出する冷媒量を調節できるようにし、冷却負荷の軽重で高能力運転あるいは低能力運転を可能にして、冷凍効率の向上をはかり、消費電力を低減できるようにした冷蔵庫を提供することを目的とする。   The present invention has been made in consideration of the above points, and allows the amount of refrigerant discharged from the compression section to the cooler to be adjusted by a refrigeration cycle including a compressor having two compression sections juxtaposed in the case. It is an object of the present invention to provide a refrigerator that enables high-capacity operation or low-capacity operation with a light cooling load to improve refrigeration efficiency and reduce power consumption.

上記課題を解決するために、請求項1の発明による冷蔵庫は、ケース内に併置した複数の圧縮部を有する圧縮機と、凝縮器、減圧装置、およびそれぞれの冷却空間を冷却する冷凍用および冷蔵用冷却器とを環状に連結した冷凍サイクルからなり、前記圧縮機における複数の圧縮部は、お互いの冷媒ガスの吐出管部を下流側で合流させるとともに、少なくとも1つの圧縮部の下流にアンローダ回路を設け、冷却負荷が大きい場合は複数の圧縮部からの冷媒を合流させて冷却器に送り、冷却負荷が小さい場合は前記アンローダ回路により他方の圧縮部からの冷媒のみを冷却器に送るようにしたことを特徴とする。   In order to solve the above problems, a refrigerator according to the invention of claim 1 includes a compressor having a plurality of compression units juxtaposed in a case, a condenser, a decompression device, and freezing and refrigeration for cooling each cooling space. A plurality of compression sections in the compressor merge the refrigerant gas discharge pipe sections on the downstream side and an unloader circuit downstream of at least one compression section. When the cooling load is large, the refrigerant from the plurality of compression units is merged and sent to the cooler, and when the cooling load is small, only the refrigerant from the other compression unit is sent to the cooler by the unloader circuit. It is characterized by that.

また、請求項10の発明による冷蔵庫は、ケース内に併置した複数の圧縮部を有する圧縮機と、凝縮器、減圧装置、および貯蔵空間を冷却する冷却器とを環状に連結した冷凍サイクルからなり、前記圧縮機における少なくとも1つの圧縮部の下流にアンローダ回路を設けるとともに、複数の圧縮部からの各冷媒ガスの吐出管部の下流にそれぞれ凝縮部を接続し、冷却負荷が大きい場合は複数の圧縮部からの冷媒を各凝縮器の下流で合流させて冷却器に送り、冷却負荷が小さい場合は前記アンローダ回路を動作させて他方の圧縮部からの冷媒のみを冷却器に送るようにしたことを特徴とし、請求項12の発明による冷蔵庫は、ケース内に併置した複数の圧縮部を有する圧縮機と、凝縮器、減圧装置、および貯蔵空間を冷却する冷却器とを環状に連結した冷凍サイクルからなり、前記圧縮機における少なくとも1つの圧縮部の下流にアンローダ回路を設けるとともに、複数の圧縮部からの各冷媒ガスの吐出管部の合流点の下流に複数の凝縮部を直列に接続し、冷却負荷が大きい場合は少なくとも1つの凝縮器を強制空冷し、冷却負荷が小さい場合は前記アンローダ回路を動作させて他方の圧縮部からの冷媒のみを冷却器に送るようにしたことを特徴とする。   The refrigerator according to the invention of claim 10 comprises a refrigeration cycle in which a compressor having a plurality of compression units juxtaposed in a case, and a condenser, a decompression device, and a cooler for cooling a storage space are connected in a ring shape. An unloader circuit is provided downstream of at least one compression unit in the compressor, and a condensing unit is connected downstream of each refrigerant gas discharge pipe unit from the plurality of compression units. Refrigerant from the compression unit is merged downstream of each condenser and sent to the cooler. When the cooling load is small, the unloader circuit is operated so that only the refrigerant from the other compression unit is sent to the cooler. The refrigerator according to the invention of claim 12 is formed by annularly connecting a compressor having a plurality of compression units juxtaposed in a case, a condenser, a decompression device, and a cooler for cooling a storage space. And an unloader circuit is provided downstream of at least one compression unit in the compressor, and a plurality of condensing units are arranged in series downstream of a confluence of discharge pipe portions of each refrigerant gas from the plurality of compression units. When the cooling load is large, at least one condenser is forcibly air-cooled, and when the cooling load is small, the unloader circuit is operated so that only the refrigerant from the other compression section is sent to the cooler. Features.

請求項1記載の発明によれば、冷凍能力の可変調整幅を大幅に拡大して負荷に応じた能力が得られるため、的確な冷却作用で食品鮮度を長期に亙って保持することができるとともに、圧縮機を断続運転させることなく連続的に運転することで過渡的な冷凍サイクル上の損失や圧縮機の起動時の運転ロスを低減して省エネルギーが可能となる。   According to the first aspect of the present invention, the variable adjustment range of the refrigerating capacity can be greatly expanded and the capacity according to the load can be obtained, so that the food freshness can be maintained over a long period of time with an accurate cooling action. At the same time, by continuously operating the compressor without intermittent operation, it is possible to reduce the loss on the transient refrigeration cycle and the operation loss at the start of the compressor, thereby saving energy.

また、請求項10および請求項11記載の発明によれば、通常は双方の凝縮部によって適正な放熱量を保持できるとともに、軽負荷時には、凝縮器容量を半減して冷凍サイクルの過渡特性を向上させることができ、特に、サイクル起動時のロスを少なくすることができるため、消費電力を低減し、冷却スピードも速くすることができる。その際、防露用パイプを主凝縮器とすれば、軽負荷時のアンローダ運転時においても本体開口周縁には高温の冷媒が循環して放熱作用と同時にキャビネットフランジや仕切板部分を露点温度以上に加熱することになり、該部分への結露を防ぐことができる。   In addition, according to the invention of claim 10 and claim 11, the proper heat radiation amount can be normally held by both condensing parts, and at the time of light load, the condenser capacity is halved to improve the transient characteristics of the refrigeration cycle. In particular, since the loss at the time of starting the cycle can be reduced, the power consumption can be reduced and the cooling speed can be increased. At that time, if the dew-proof pipe is the main condenser, even during unloader operation at light load, high-temperature refrigerant circulates around the periphery of the main body opening and dissipates the cabinet flange and partition plate at the dew point temperature or more. It is possible to prevent condensation on the part.

以下、図面に基づき本発明の1実施形態について説明する。図2に縦断面図を示す冷蔵庫本体(1)は、断熱箱体の内部に貯蔵空間を形成し、仕切壁により冷凍室や製氷室の冷凍空間(2)、冷蔵室や野菜室の冷蔵空間(3)など複数の貯蔵室に区分している。   Hereinafter, an embodiment of the present invention will be described with reference to the drawings. The refrigerator main body (1) whose longitudinal cross-sectional view is shown in FIG. 2 forms a storage space inside the heat insulation box, and the partition wall separates the freezing space (2) of the freezing room and ice making room, and the refrigerating space of the refrigerating room and vegetable room. (3) and so on.

各貯蔵室は、冷凍空間や冷蔵空間毎に配置した冷凍用冷却器(4)と冷蔵用冷却器(5)、および冷気循環ファン(6)(7)によってそれぞれ所定の設定温度に冷却保持されるものであり、各冷却器(4)(5)は、本体背面下部の機械室(8)に設置した圧縮機(9)から供給される冷媒によって冷却される。   Each storage room is cooled and held at a predetermined set temperature by a refrigeration cooler (4), a refrigeration cooler (5), and a cold air circulation fan (6) (7) arranged for each refrigeration space or refrigeration space. Each cooler (4) (5) is cooled by the refrigerant supplied from the compressor (9) installed in the machine room (8) at the lower back of the main body.

図1は、上記本発明の冷蔵庫における冷凍サイクル(10)を示すものであり、前記圧縮機(9)、凝縮器(11)、前記冷凍用および冷蔵用冷却器(4)(5)側への冷媒流路を切り替えるとともに流量を可変する切替弁(12)、および並列に接続した冷凍用および冷蔵用冷却器(4)(5)を環状に連結しており、冷凍サイクル(10)中には、オゾン層破壊や地球温暖化など環境問題に配慮した、例えばR600aやR290などのノンフロン自然冷媒を封入している。   FIG. 1 shows a refrigeration cycle (10) in the refrigerator of the present invention. To the compressor (9), condenser (11), refrigeration and refrigeration coolers (4) and (5) side. A switching valve (12) for switching the refrigerant flow path and the flow rate thereof, and a refrigeration and refrigeration cooler (4) (5) connected in parallel are connected in a ring shape, and the refrigeration cycle (10) Encloses non-fluorocarbon natural refrigerants such as R600a and R290 in consideration of environmental problems such as ozone layer destruction and global warming.

前記凝縮器(11)は、平板状にして前記機械室(8)の前方における冷蔵庫本体(1)の外底面空間に配設されており、凝縮器(11)で液化した冷媒は前記切替弁(12)を介してそれぞれ減圧装置である毛細管(13)(14)を経由し、冷凍用冷却器(4)あるいは冷蔵用冷却器(5)に供給され蒸発することで冷却器を低温化し、ファン(6)(7)による冷気循環によって各貯蔵室内を所定の空気温度に冷却するものであり、蒸発気化した冷媒は、吸込管(15)を介して再び圧縮機(9)に戻るよう構成されている。   The condenser (11) is flat and disposed in the outer bottom space of the refrigerator body (1) in front of the machine room (8), and the refrigerant liquefied by the condenser (11) is the switching valve. (12) is supplied to the refrigeration cooler (4) or the refrigeration cooler (5) via the capillaries (13) and (14), which are decompression devices, respectively, and the temperature of the cooler is lowered by evaporation. Each storage chamber is cooled to a predetermined air temperature by cool air circulation by the fans (6) and (7), and the evaporated vaporized refrigerant returns to the compressor (9) again through the suction pipe (15). Has been.

しかして、圧縮機(9)は、その詳細を図3に示すように、ケース内を低圧とした密閉ケース(9c)内に2つの圧縮部A(9a)および圧縮部B(9b)を設けたレシプロ式であり、密閉ケース(9c)内に収納した電動機構(9d)の回転軸(9e)の回転で偏心して回転する偏心軸(9f)によって、偏心軸(9f)から対称方向に延びるコンロッド(9g)を往復運動させるよう構成している。   As shown in detail in FIG. 3, the compressor (9) is provided with two compression parts A (9a) and B (9b) in a sealed case (9c) with a low pressure inside the case. It is a reciprocating type and extends in a symmetric direction from the eccentric shaft (9f) by an eccentric shaft (9f) that rotates eccentrically by the rotation of the rotating shaft (9e) of the electric mechanism (9d) housed in the sealed case (9c). The connecting rod (9g) is configured to reciprocate.

コンロッド(9g)の両先端にはボールジョイント(9h)を設けてピストン(9i)が嵌め固定されており、シリンダー(9j)内のピストン(9i)の往復運動によって前記圧縮部A(9a)、同B(9b)に対して交互に冷媒を吸い込み、圧縮して吐出するものであり、上記圧縮部へのボールジョイント(9h)の採用により、容積効率を向上させ、2つの圧縮部A(9a)、B(9b)を収納配置する圧縮機(9)の外形スペースの拡大を抑制している。   A ball joint (9h) is provided at both ends of the connecting rod (9g), and a piston (9i) is fitted and fixed to the compression rod A (9a) by reciprocating movement of the piston (9i) in the cylinder (9j). The refrigerant is alternately sucked into B (9b), compressed and discharged, and by adopting the ball joint (9h) to the compression section, the volume efficiency is improved and the two compression sections A (9a) ), B (9b) is restrained from expanding the outer space of the compressor (9) that houses and arranges it.

前記冷凍用冷却器(4)と冷蔵用冷却器(5)との出口管を合流させた吸込み管(15)は、ケース(9c)の開口に接続させており、各圧縮部A(9a)、B(9b)の吸込口(9k)(9m)もケース(9c)内空間部に開口している。また、圧縮した冷媒ガスを吐出する各吐出口(9n)(9p)にはそれぞれ吐出管(16)(17)を接続してケース(9c)外に導出し、両吐出管を合流させて一本の管として凝縮器(11)に接続するようにしている。   The suction pipe (15), in which the outlet pipes of the refrigeration cooler (4) and the refrigeration cooler (5) are joined, is connected to the opening of the case (9c), and each compression section A (9a) , B (9b) suction ports (9k) (9m) are also opened in the space in the case (9c). Further, discharge pipes (16) and (17) are connected to the discharge ports (9n) and (9p) for discharging the compressed refrigerant gas, respectively, are led out of the case (9c), and both discharge pipes are joined to each other. It connects to the condenser (11) as a book tube.

しかして、ケース外に導出した前記一方の圧縮部A(9a)の吐出側には三方弁からなる流路切替弁(19)を設け、この切替弁(19)出口の一方を他方側の圧縮部B(9b)からの吐出管(17)と合流させて凝縮器(11)に導くように配管するとともに、切替弁(19)の他の出口に接続した接続管(20)はその端部を前記圧縮機(9)の密閉ケース(9c)内の空間部に開口させるように配管し、アンローダ回路(18)を形成している。   Accordingly, a flow path switching valve (19) comprising a three-way valve is provided on the discharge side of the one compression section A (9a) led out of the case, and one of the outlets of the switching valve (19) is compressed on the other side. The pipe (20) connected to the other outlet of the switching valve (19) is connected to the discharge pipe (17) from the part B (9b) and led to the condenser (11). Is opened so as to open in a space in the sealed case (9c) of the compressor (9), thereby forming an unloader circuit (18).

なお、通常の冷凍サイクルに設けられ、気液を分離し、冷却器で蒸発しきれなかった液状冷媒を貯留してガス状冷媒のみを送り出し、圧縮機のシリンダーに液冷媒が流入することによる支障を防止するアキュムレータは、本実施例では特に設けていない。すなわち、前記冷凍用および冷蔵用冷却器(4)(5)からの吸込み管(15)は密閉ケース(9c)内の低圧である空間部に導入しており、各冷却器(4)(5)からの吸込み冷媒は直接圧縮機のシリンダー内に流入しないため、必要としないものであり、設置する場合も小形のものでよい。   It is provided in a normal refrigeration cycle, which separates gas and liquid, stores liquid refrigerant that could not be evaporated by the cooler, sends out only gaseous refrigerant, and has troubles due to liquid refrigerant flowing into the compressor cylinder. In this embodiment, an accumulator for preventing the above is not provided. That is, the suction pipe (15) from the refrigeration and refrigeration coolers (4) and (5) is introduced into a low-pressure space in the sealed case (9c), and each cooler (4) (5 ) Is not necessary because it does not flow directly into the cylinder of the compressor, and it may be small even when installed.

以下、前記冷凍サイクル(10)の動作について説明する。冷蔵庫の各貯蔵室内への収納量が少なく、且つ、周囲の外気温が低くて開扉回数が少ないような、いわゆる冷却負荷が軽い状態の際は、これを検知することによって、前記流路切替弁(19)の開口を接続管(20)側に開放し、アンローダ回路(18)を形成する。   Hereinafter, the operation of the refrigeration cycle (10) will be described. When the amount of storage in each storage room of the refrigerator is small and the surrounding air temperature is low and the number of times the door is opened is low, so-called cooling load is light, so that the flow path switching is performed by detecting this. The opening of the valve (19) is opened to the connecting pipe (20) side to form an unloader circuit (18).

アンローダ回路(18)を形成して冷蔵庫を運転した際には、圧縮機(9)の一方の圧縮部A(9a)からの吐出される冷媒ガスは、流路切替弁(19)から直接圧縮機(9)の低圧空間内に流入して冷凍サイクルをバイパスすることになり、冷凍サイクル(10)としての冷媒循環量は、圧縮部B(9b)の排除容積のみの量、すなわち、圧縮部A(9a)、B(9b)の排除容積が同じであれば半減することになる。   When the unloader circuit (18) is formed and the refrigerator is operated, the refrigerant gas discharged from one compression section A (9a) of the compressor (9) is directly compressed from the flow path switching valve (19). The refrigerant flows into the low pressure space of the machine (9) and bypasses the refrigeration cycle, and the refrigerant circulation amount as the refrigeration cycle (10) is the amount of only the excluded volume of the compression section B (9b), that is, the compression section If the excluded volumes of A (9a) and B (9b) are the same, they are halved.

したがって、冷凍サイクル(10)は通常の半分の冷媒循環量で運転されるので、冷凍能力は従来の最下点より下回り、従来であれば停止する状態であっても冷却運転を継続できるようになり、図4に示すように、本発明による冷凍能力の可変幅(A)は、下位方向への能力変動の幅を従来の可変幅(B)に比べて大きく拡げることができ、断続運転の都度発生する圧縮機入力のロスを減らして省電力がはかれるとともに、貯蔵室温度の変動を減少して恒温化が可能となる。   Therefore, since the refrigeration cycle (10) is operated with a refrigerant circulation amount that is half of the normal amount, the refrigeration capacity is lower than the conventional lowest point so that the cooling operation can be continued even if it is stopped in the conventional case. Thus, as shown in FIG. 4, the variable width (A) of the refrigerating capacity according to the present invention can greatly expand the width of the capacity fluctuation in the lower direction as compared with the conventional variable width (B). The loss of compressor input that occurs each time can be reduced to save power, and the temperature can be kept constant by reducing fluctuations in storage room temperature.

また、前記とは逆に、冷蔵庫の各貯蔵室内への収納量が多く、且つ外気温が高くて開扉数が多いような冷却負荷が重い状態の際は、前記流路切替弁(19)の開口を凝縮器(11)側に開放することによって高負荷回路を形成する。   Contrary to the above, when the cooling load is heavy such that the storage amount in each storage room of the refrigerator is large and the outside air temperature is high and the number of doors is large, the flow path switching valve (19) Is opened to the condenser (11) side to form a high load circuit.

この状態で冷蔵庫を運転した際には、圧縮機(9)における一方の圧縮部A(9a)からの吐出冷媒ガスは流路切替弁(19)を経由するとともに他方の圧縮部B(9b)と合流し、圧縮部AB2つの排除容積による倍増した冷媒量で凝縮器(11)を経由し、毛細管(13)(14)から各冷却器(4)(5)に流入してこれを冷却する。   When the refrigerator is operated in this state, the refrigerant gas discharged from one compression section A (9a) in the compressor (9) passes through the flow path switching valve (19) and the other compression section B (9b). , And flows into the coolers (4) and (5) from the capillaries (13) and (14) through the condenser (11) with the refrigerant amount doubled by the two displacement volumes of the compression section AB and cools them. .

上記によれば、冷却器(4)(5)は、軽負荷状態に比較して2倍の冷媒量の供給を受けるため、その冷凍能力は、図4にも示すように、従来に比べて20〜30%の高能力運転をおこなうことができ、軽負荷時のアンローダ回路による低能力側の運転と合わせると、従来に比較してその冷凍能力の可変幅はほぼ倍増するものとなり、冷却負荷の変動に対して高範囲の能力でこれをカバーすることができ、貯蔵食品に対する保存性能を大きく向上させることができる。   According to the above, since the coolers (4) and (5) are supplied with twice the amount of refrigerant compared to the light load state, the refrigerating capacity thereof is higher than that of the conventional case as shown in FIG. 20-30% high-capacity operation can be performed, and when combined with the low-capacity operation by the unloader circuit at light load, the variable range of the refrigerating capacity is almost doubled compared to the conventional, and the cooling load It is possible to cover this with a high range of ability against fluctuations in the storage capacity, and greatly improve the storage performance for stored food.

同時に、前記能力可変幅の拡大によって、収納容積の異なる複数の冷蔵庫に同一能力の圧縮機を搭載することができ、機種の標準化に寄与することができる。   At the same time, by expanding the capacity variable width, a compressor having the same capacity can be mounted in a plurality of refrigerators having different storage volumes, which can contribute to standardization of models.

なお、前記圧縮機(9)は、インバータ制御により能力可変となっており、冷凍および冷蔵空間(2)(3)の検出温度や目標設定温度との差、温度変化率などに基づいて、例えば、30〜70Hz間で回転周波数を決定し、マイコンなどから構成される制御装置によって運転されるものであり、上記負荷による能力可変幅と併用することで、きわめて高範囲の冷凍能力制御をおこなうことができるものである。   The compressor (9) is variable in capacity by inverter control, and based on the difference between the detected temperature of the refrigeration and refrigerated spaces (2) and (3), the target set temperature, the temperature change rate, etc. The rotation frequency is determined between 30 and 70 Hz, and is operated by a control device composed of a microcomputer, etc., and in combination with the variable capacity range by the load, the refrigerating capacity control in a very high range is performed. Is something that can be done.

また、前記切替弁(12)における弁の開放制御は、冷凍用冷却器(4)と冷蔵側冷却器(5)への弁開口度を双方とも全開、あるいは全閉、および冷凍側弁開口を絞って冷蔵側を全開したり、あるいは冷蔵側の弁開口を絞って冷凍側を全開するなど種々のパターンを選択できるが、本実施例では、冷凍用冷却器(4)と冷蔵用冷却器(5)とを並列に接続しており、冷却制御は冷凍冷蔵の同時冷却と冷凍側のみ冷却の2通りとしている。   In addition, the valve opening control in the switching valve (12) is performed by setting the degree of valve opening to the refrigeration cooler (4) and the refrigeration side cooler (5) to both fully open or fully closed, and the refrigeration side valve opening. Various patterns can be selected, such as squeezing to fully open the refrigeration side, or squeezing the refrigeration side valve opening to fully open the refrigeration side. In this embodiment, the refrigeration cooler (4) and the refrigeration cooler ( 5) are connected in parallel, and cooling control is performed in two ways: simultaneous cooling in freezing and refrigeration and cooling only on the freezing side.

そして、冷凍側へ流出した冷媒は、冷凍空間(2)における冷却温度に即した蒸発温度になるよう設定した毛細管(13)を通過し減圧されて冷凍用冷却器(4)において−25℃程度で蒸発し、冷蔵側へも同様に、冷蔵空間(3)での冷却温度に近似する−5℃程度の蒸発温度になるよう設定した冷蔵用毛細管(14)を介して冷蔵用冷却器(5)に冷媒が送られ蒸発する。   And the refrigerant | coolant which flowed out to the freezing side passes through the capillary (13) set so that it might become the evaporating temperature according to the cooling temperature in freezing space (2), and is pressure-reduced, About -25 degreeC in the cooler for freezing (4) Refrigeration cooler (5) through a refrigeration capillary (14) set to an evaporation temperature of about −5 ° C., which is similar to the cooling temperature in the refrigeration space (3). ) And the refrigerant is sent to evaporate.

次に、本発明の他の実施例について説明する。図1に示した前記冷凍サイクルと同一部分に同一符号を附した図5に示す冷凍サイクル(25)は、前記サイクルに対して流路切替弁(19)からのアンローダ回路(28)を形成する接続管(30)を圧縮機(9)への吸込管(15)に接続したものである。   Next, another embodiment of the present invention will be described. The refrigeration cycle (25) shown in FIG. 5 with the same reference numerals attached to the same parts as the refrigeration cycle shown in FIG. 1 forms an unloader circuit (28) from the flow path switching valve (19) with respect to the cycle. The connecting pipe (30) is connected to the suction pipe (15) to the compressor (9).

このように構成することにより、前記実施例に比べて圧縮機(9)へ接続するパイプ本数を削減することができ、圧縮機の製造性を向上することができる。   By comprising in this way, the number of pipes connected to a compressor (9) can be reduced compared with the said Example, and the manufacturability of a compressor can be improved.

アンローダ回路については、図6に冷凍サイクルの圧縮機部分の要部のみを示すように、流路切替弁(19)とともに圧縮部A(9a)、B(9b)からの各吐出管(26)(27)の合流部を密閉ケース(9c)内に収納配設し、流路切替弁(19)のアンローダ回路を形成する他方側の開口(30a)を低圧の密閉ケース(9c)内空間に開放させることによって、圧縮機からの吐出管の本数をも1本に減らすことができ、圧縮機(29)への配管構成、および圧縮機(29)を配置している機械室(8)の配管レイアウトをシンプルにすることができる。   As for the unloader circuit, each discharge pipe (26) from the compression sections A (9a) and B (9b) together with the flow path switching valve (19) as shown in FIG. 6 only in the main part of the compressor portion of the refrigeration cycle. The merging portion of (27) is accommodated in the sealed case (9c), and the other side opening (30a) forming the unloader circuit of the flow path switching valve (19) is provided in the space inside the low-pressure sealed case (9c). By opening it, the number of discharge pipes from the compressor can be reduced to one, the piping configuration to the compressor (29), and the machine room (8) in which the compressor (29) is disposed. The piping layout can be simplified.

また、前記実施例においては、圧縮部を2つとしたが、図7に示すように、圧縮部A(9a)、B(9b)に圧縮部C(9s)を加えて3つとし、アンローダ回路(32)(33)を形成する流路切替弁(19)を少なくとも圧縮部A(9a)およびB(9b)の吐出管(36)(37)に配設したものである。このように構成すれば、3つの圧縮部A(9a)、B(9b)およびC(9s)による冷媒流とアンローダ回路(32)(33)によって圧縮機(39)の排除容積をさらに複数段階に変化させることができ、冷凍能力幅を大きくできるとともに、貯蔵食品の保存性能をより向上させることができる。   In the above embodiment, there are two compression units. However, as shown in FIG. 7, the compression unit A (9a) and B (9b) are combined with a compression unit C (9s) to provide three unloader circuits. (32) The flow path switching valve (19) forming the (33) is disposed at least in the discharge pipes (36), (37) of the compression sections A (9a) and B (9b). If comprised in this way, the exclusion volume of a compressor (39) will be further multi-stage by the refrigerant | coolant flow by three compression parts A (9a), B (9b), and C (9s), and an unloader circuit (32) (33). The refrigeration capacity range can be increased, and the preservation performance of stored food can be further improved.

次に、図8により、さらに他の実施例について説明する。本実施例は、前記同様にシリンダーとピストンとからなるレシプロ式で構成した複数の圧縮部の中の少なくとも一つの圧縮部の排除容積を他の圧縮部と相違させ、本実施例では少なく設定したものである。   Next, still another embodiment will be described with reference to FIG. In the present embodiment, the excluded volume of at least one compression portion among a plurality of compression portions configured by a reciprocating type composed of a cylinder and a piston is different from that of the other compression portions, and is set to be small in this embodiment. Is.

これは、排除容積を同容量とした2つの圧縮部であれば、双方の圧縮部A(9a)およびB(9b)による運転と流路切替弁(19)の動作によるアンロード運転との差が2:1になるのに対して、冷蔵庫の負荷特性に応じた最適比率に設定することができ、例えば、圧縮部D(9t)の排除容積を圧縮部A(9a)の50%とすることにより、高負荷時は軽負荷時に対して1.5倍の排除容積で高能力とした冷凍運転をおこなうことができ、省エネルギーと高負荷特性を最大限まで引き出すことができる。   This is the difference between the operation by both compression sections A (9a) and B (9b) and the unload operation by the operation of the flow path switching valve (19) if the two compression sections have the same excluded volume. Can be set to an optimum ratio according to the load characteristics of the refrigerator, for example, the displacement volume of the compression part D (9t) is 50% of the compression part A (9a) As a result, it is possible to perform a refrigeration operation with a high capacity with an exclusion volume 1.5 times that at light loads at high loads, and to maximize energy saving and high load characteristics.

したがって、圧縮部の数は2つに限らず、特に図示しないが、前記のように例えば3つにして、中2つの圧縮部A、Bを同じ排除容積にして流路切替弁(19)をそれぞれ接続し、他の圧縮部D(9t)の排除容積を他のものより小さくするようにして、さらに負荷に応じた段階的最適制御がおこなえるようにしてもよい。   Therefore, the number of the compression parts is not limited to two, and although not particularly shown, for example, as described above, the number of the compression parts A and B is set to, for example, three, and the middle two compression parts A and B are set to the same exclusion volume, so that the flow path switching valve (19) is provided. They may be connected to each other so that the excluded volume of the other compression part D (9t) is smaller than the other ones, and further stepwise optimal control according to the load may be performed.

なお、前記図1に示す実施例においては、冷凍サイクル(10)における冷凍用および冷蔵用冷却器(4)(5)を切替弁(12)に対して並列に接続して交互に、あるいは同時に冷却作用をおこなうした構成としたが、これに限らず、前記切替弁を冷媒流路の切り替えが可能な膨張弁としてもよく、また、図9に示すように、冷凍用冷却器(4)と冷蔵用冷却器(5)とを直列に接続し、さらに切替弁(12)から冷蔵用冷却器(5)をバイパスして冷凍用冷却器(4)に接続した側路管(41)を設けるように配管した冷凍サイクルとしてもよい。このサイクル構成によれば、切替弁の構成をより簡易なものでき、冷凍冷蔵用冷却器への同時冷媒流しと冷凍用のみへの切り替えによる冷却制御を比較的容易におこなうことができる。   In the embodiment shown in FIG. 1, the refrigeration and refrigeration coolers (4) and (5) in the refrigeration cycle (10) are connected in parallel to the switching valve (12) and alternately or simultaneously. However, the present invention is not limited to this, and the switching valve may be an expansion valve capable of switching the refrigerant flow path. Also, as shown in FIG. A refrigeration cooler (5) is connected in series, and a bypass pipe (41) is provided that bypasses the refrigeration cooler (5) from the switching valve (12) and is connected to the refrigeration cooler (4). It is good also as a refrigeration cycle piping so. According to this cycle configuration, the configuration of the switching valve can be simplified, and cooling control by simultaneous refrigerant flow to the freezer / refrigerator and switching to only freezing can be performed relatively easily.

そしてさらに、前記複数の圧縮部を有する圧縮機は、インバータによる能力可変制御方式でなくともよく、このように固定周波数タイプの圧縮機とすれば、周波数毎の能力可変はできずとも、負荷の軽重に応じた能力切り替えを安価におこなうことができるものである。   In addition, the compressor having the plurality of compression units may not be a variable capacity control system using an inverter. Thus, if a fixed frequency type compressor is used in this manner, the capacity cannot be varied for each frequency, but the load Capability switching according to light weight can be performed at low cost.

前記各実施例の構成においては、凝縮器(11)を通過する冷媒流は単一経路であることから、凝縮器(11)の放熱能力はアンローダ運転の有無に係わりなく同一であった。そのため、冷却負荷が軽い場合は、過放熱になって冷凍サイクルの過渡特性上のロスを生じ、電力を無駄に消費する問題があったが、次に、これを改善した本発明の他の実施形態について説明する。   In the configuration of each of the above embodiments, since the refrigerant flow passing through the condenser (11) is a single path, the heat dissipation capability of the condenser (11) is the same regardless of whether or not the unloader operation is performed. For this reason, when the cooling load is light, there is a problem of excessive heat dissipation and loss of transient characteristics of the refrigeration cycle, and there is a problem of wasting power consumption. A form is demonstrated.

図1に示した冷凍サイクルと同一部分に同一符号を附した図10に示す冷凍サイクル(35)は、前記サイクル(10)に対して、圧縮機(9)における圧縮部(9a)(9b)のうち、一方の圧縮部(9a)の下流にアンローダ回路(18)を設けるとともに、複数の圧縮部(9a)(9b)からの各冷媒ガスの吐出管部(16)(17)の下流に、凝縮器(21)としてそれぞれ凝縮部(21a)(21b)を設けたことを特徴としており、凝縮部(21a)(21b)の下流で冷媒配管を合流するよう接続させ、切替弁(12)、毛細管(13)(14)を介して冷凍用冷却器(4)あるいは冷蔵用冷却器(5)に供給するようにしている。   The refrigeration cycle (35) shown in FIG. 10 in which the same reference numerals are given to the same parts as the refrigeration cycle shown in FIG. 1 is different from the cycle (10) in the compression parts (9a) (9b) in the compressor (9). Among them, an unloader circuit (18) is provided downstream of one of the compression sections (9a), and downstream of the refrigerant gas discharge pipe sections (16) (17) from the plurality of compression sections (9a) (9b). The condenser (21) is provided with condensing parts (21a) and (21b), respectively, and the refrigerant pipes are connected downstream of the condensing parts (21a) and (21b) to connect the switching valve (12). The refrigeration cooler (4) or the refrigeration cooler (5) is supplied through the capillaries (13) and (14).

アンローダ回路(18)を設けた吐出管部(16)には、冷蔵庫本体底面に配設した底面コンデンサおよび除霜水の蒸発作用をおこなう蒸発パイプを補助凝縮器(21a)として接続し、他の一方の吐出管(17)には、本体開口周縁に配設した防露用パイプを主凝縮器(21b)として接続しており、高外気温時や扉開閉数が多い場合などの冷却負荷が大きい場合は、複数の圧縮部(9a)(9b)からの冷媒を各凝縮器(21a)(21b)に導き、その下流で合流させて切替弁(12)から冷却器(4)または(5)、あるいはその双方に送って蒸発させるようにしている。   The discharge pipe section (16) provided with the unloader circuit (18) is connected to the bottom condenser disposed on the bottom face of the refrigerator main body and the evaporation pipe for performing the defrosting water evaporation action as an auxiliary condenser (21a). One discharge pipe (17) is connected to the main condenser (21b) with a dew-proof pipe arranged at the periphery of the opening of the main body, and is subject to cooling loads such as when the outdoor temperature is high or the number of doors is large. If larger, the refrigerant from the plurality of compression sections (9a) and (9b) is led to the respective condensers (21a) and (21b), and is merged downstream thereof from the switching valve (12) to the cooler (4) or (5 ), Or both to evaporate.

逆に、冷却負荷が小さい、いわゆる軽負荷の場合は、前記アンローダ回路(18)を動作させ、圧縮部(9a)からの吐出冷媒を流路切替弁(19)から接続管(20)を経由して圧縮機ケース(9c)内に戻すことで、補助凝縮器(21a)側には冷媒を流さず、他方の圧縮部(9b)からの冷媒のみを主凝縮器(21b)で放熱し液化して冷却器(4)(5)に送るようにしている。   On the other hand, in the case of a so-called light load with a small cooling load, the unloader circuit (18) is operated, and the refrigerant discharged from the compression section (9a) is routed from the flow path switching valve (19) to the connection pipe (20). Then, by returning it to the compressor case (9c), the refrigerant does not flow to the auxiliary condenser (21a) side, and only the refrigerant from the other compression part (9b) is radiated and liquefied by the main condenser (21b). Then, it is sent to the coolers (4) and (5).

さらに、アンローダ回路(18)側の補助凝縮器(21a)に対しては放熱ファン(22)を配して、双方の圧縮部(9a)(9b)による冷却運転時には、温度センサー(23)で検出した凝縮器(21)の出口温度により冷却負荷量を推定し、負荷量に応じて前記放熱ファン(22)の回転数を変更することで、冷凍サイクルとして適正な放熱量を保持するように制御している。   Furthermore, a heat radiating fan (22) is arranged for the auxiliary condenser (21a) on the unloader circuit (18) side, and during the cooling operation by both compression parts (9a) (9b), the temperature sensor (23) Estimate the cooling load based on the detected outlet temperature of the condenser (21), and change the number of rotations of the heat dissipation fan (22) according to the load so as to maintain an appropriate heat dissipation for the refrigeration cycle I have control.

すなわち、外気温が20℃以下と低い場合や閉扉状態での冷蔵庫運転が継続するような軽負荷運転時には、圧縮機シリンダー(9j)の排除容積を半分にするとともに、これに応じて補助凝縮器(21a)にも冷媒を流さず、主凝縮器(21b)のみで放熱させることで、放熱容量とともに能力も半減させて過冷却や過放熱を防止し、しかも防露用パイプである主凝縮器(21b)には冷媒を流通させることで、キャビネット外面の露点温度を保持してキャビネット表面への露付きを防止することができるものである。   That is, when the outside air temperature is as low as 20 ° C. or lower, or during a light load operation in which the refrigerator operation is continued in the closed door state, the displacement volume of the compressor cylinder (9j) is halved and the auxiliary condenser is accordingly The main condenser (21a) is a dew-proof pipe that does not flow refrigerant and radiates heat only with the main condenser (21b), thereby halving its capacity as well as heat dissipation capacity to prevent overcooling and overheat dissipation. In (21b), by circulating the refrigerant, the dew point temperature on the outer surface of the cabinet can be maintained to prevent dew condensation on the cabinet surface.

また、従来方式の凝縮器であって本体底面コンデンサ方式のような構成の場合は、過放熱によって凝縮した液冷媒が底面コンデンサ部分に滞留してしまう、いわゆる液冷媒の寝込み現象を引き起こして冷凍サイクル内に冷媒が充分循環しないケースを生じたが、本発明の構成によって、効果的な放熱作用が得ることができ、冷媒の寝込み現象を生じることがない効果を奏する。   In addition, in the case of a conventional condenser having a structure such as a main body bottom condenser system, a liquid refrigerant condensed due to excessive heat dissipation stays in the bottom condenser part, causing a so-called stagnation phenomenon of the liquid refrigerant and causing a refrigeration cycle. Although there was a case where the refrigerant did not circulate sufficiently, the structure of the present invention can provide an effective heat dissipating effect and the effect of preventing the refrigerant stagnation phenomenon.

次に、前記図10に示す実施例に対する他の実施例を説明する。前記実施例と同様に記載した図11に示す冷凍サイクル(40)は、前記サイクル(35)に対して、圧縮機(9)の少なくとも1つの圧縮部(9a)の下流にアンローダ回路(18)を設けるとともに、このアンローダ回路(18)と他方の圧縮部(9b)とを合流させ、この合流部の下流に接続した凝縮器(31)として、補助凝縮器(31a)と主凝縮器(31b)との直列回路を設けたものである。   Next, another embodiment for the embodiment shown in FIG. 10 will be described. The refrigeration cycle (40) shown in FIG. 11 described in the same manner as in the above embodiment has an unloader circuit (18) downstream of at least one compression section (9a) of the compressor (9) with respect to the cycle (35). The unloader circuit (18) and the other compression section (9b) are joined together, and a condenser (31) connected downstream of the joining section serves as an auxiliary condenser (31a) and a main condenser (31b). ) And a series circuit.

そして、補助凝縮器(31a)には放熱ファン(22)を設け、主凝縮器(31b)の下流側には、前記同様切替弁(12)とともに毛細管(13)(14)を設け、それぞれに冷却器(4)(5)を接続しているものであり、アンローダ運転時には前記放熱ファン(22)を停止することによって補助凝縮器(31a)の放熱量を低下させ、主凝縮器(31b)である防露用パイプの温度が過冷却になることを防いでいる。   The auxiliary condenser (31a) is provided with a heat dissipating fan (22), and on the downstream side of the main condenser (31b), the switching valves (12) and the capillaries (13) (14) are provided, respectively. The coolers (4) and (5) are connected to the main condenser (31b) by reducing the heat radiation of the auxiliary condenser (31a) by stopping the heat radiating fan (22) during unloader operation. This prevents the temperature of the dew-proof pipe from being overcooled.

放熱ファン(22)は、前記のように、アンローダ運転時に停止させるだけでなく、主凝縮器(31b)の出口温度を検出する温度センサー(23)により、アンローダ運転時の最小能力から2つの圧縮部(9a)(9b)の駆動による最大能力での冷却運転に応じてその回転数を制御するようにしており、この制御方式によってより効率的な冷凍サイクル制御と省エネルギー運転を可能にすることができる。   As described above, the heat dissipating fan (22) is not only stopped at the time of unloader operation, but is also compressed by the temperature sensor (23) that detects the outlet temperature of the main condenser (31b) from the minimum capacity at the time of unloader operation. The number of rotations is controlled in accordance with the cooling operation at the maximum capacity by driving the parts (9a) and (9b), and this control system enables more efficient refrigeration cycle control and energy saving operation. it can.

なお、前記実施形態においては、冷凍サイクルにおける冷却器を冷凍用と冷蔵用の2冷却器方式のものについて説明したが、冷却器は3つ以上でもよく、また単一冷却器による方式にも適用できることは言うまでもない。   In the above-described embodiment, the cooler in the refrigeration cycle has been described for the two-cooler type for refrigeration and refrigeration. However, the number of coolers may be three or more, and it is also applicable to the method using a single cooler. Needless to say, you can.

本発明は、密閉ケース内に複数の圧縮部を設けた冷媒圧縮機を用いて負荷に応じた冷凍能力と消費電力の少ない冷蔵庫に利用することができる。   INDUSTRIAL APPLICATION This invention can be utilized for the refrigerator with little refrigerating capacity and power consumption according to load using the refrigerant compressor which provided the some compression part in the airtight case.

本発明の1実施形態を示す冷蔵庫の冷凍サイクル図である。It is a refrigerating cycle diagram of a refrigerator showing one embodiment of the present invention. 図1の冷凍サイクルを搭載した冷蔵庫の概略縦断面図である。It is a schematic longitudinal cross-sectional view of the refrigerator carrying the refrigeration cycle of FIG. 図1における2シリンダー圧縮機の詳細を示す縦断面図である。It is a longitudinal cross-sectional view which shows the detail of the 2 cylinder compressor in FIG. 本発明による冷凍能力の従来との比較グラフである。It is a comparison graph with the past of the refrigerating capacity by the present invention. 本発明の他の実施例を示す冷蔵庫の冷凍サイクル図である。It is a refrigerating cycle figure of the refrigerator which shows the other Example of this invention. さらに他の実施例を示す圧縮機部のサイクル図である。It is a cycle figure of the compressor part which shows other examples. さらに他の実施例を示す圧縮機部のサイクル図である。It is a cycle figure of the compressor part which shows other examples. さらに他の実施例を示す圧縮機部のサイクル図である。It is a cycle figure of the compressor part which shows other examples. 本発明の他の構成を示す冷凍サイクル図である。It is a refrigerating cycle figure showing other composition of the present invention. 本発明の他の実施形態を示す冷蔵庫の冷凍サイクル図である。It is a refrigerating cycle figure of the refrigerator which shows other embodiment of this invention. 図10に対する他の実施例を示す冷凍サイクル図である。FIG. 11 is a refrigeration cycle diagram showing another embodiment with respect to FIG. 従来の冷蔵庫の冷凍サイクル図である。It is a freezing cycle figure of the conventional refrigerator. 従来の他の例を示す冷蔵庫の冷凍サイクル図である。It is a refrigeration cycle diagram of a refrigerator showing another conventional example.

符号の説明Explanation of symbols

1 冷蔵庫本体 2 冷凍空間 3 冷蔵空間
4 冷凍用冷却器 5 冷蔵用冷却器 6、7 冷却ファン
8 機械室 9、29、39 圧縮機 9a 圧縮部A
9b 圧縮部B 9c ケース 9g コンロッド
9h ボールジョイント 9k,9m 吸込口 9n、9p 吐出口
9s 圧縮部C 9t 圧縮部D 10、25、35、40 冷凍サイクル
11 凝縮器 12 切替弁 13、14 毛細管
15 冷凍側吸込み管 16、17 吐出管 18、36、37 アンローダ回路
19 流路切替弁 20、30、32、33 接続管 21、31 凝縮器
21a、31a 補助凝縮器 21b、31b 主凝縮器 22 放熱ファン
23 温度センサー 30a 開口
DESCRIPTION OF SYMBOLS 1 Refrigerator body 2 Refrigeration space 3 Refrigeration space 4 Refrigeration cooler 5 Refrigeration cooler 6, 7 Cooling fan 8 Machine room 9, 29, 39 Compressor 9a Compressor A
9b Compression part B 9c Case 9g Connecting rod 9h Ball joint 9k, 9m Suction port 9n, 9p Discharge port 9s Compression part C 9t Compression part D 10, 25, 35, 40 Refrigeration cycle
11 Condenser 12 Switching valve 13, 14 Capillary tube
15 Refrigeration side suction pipe 16, 17 Discharge pipe 18, 36, 37 Unloader circuit
19 Flow path switching valve 20, 30, 32, 33 Connection pipe 21, 31 Condenser
21a, 31a Auxiliary condenser 21b, 31b Main condenser 22 Radiating fan
23 Temperature sensor 30a opening

Claims (13)

ケース内に併置した複数の圧縮部を有する圧縮機と、凝縮器、減圧装置、およびそれぞれの冷却空間を冷却する冷凍用および冷蔵用冷却器とを環状に連結した冷凍サイクルからなり、前記圧縮機における複数の圧縮部は、お互いの冷媒ガスの吐出管部を下流側で合流させるとともに、少なくとも1つの圧縮部の下流にアンローダ回路を設け、冷却負荷が大きい場合は複数の圧縮部からの冷媒を合流させて冷却器に送り、冷却負荷が小さい場合は前記アンローダ回路により他方の圧縮部からの冷媒のみを冷却器に送るようにしたことを特徴とする冷蔵庫。   The compressor comprises a compressor having a plurality of compression units juxtaposed in a case, a condenser, a decompression device, and a refrigeration cycle for refrigerating and refrigerating to cool each cooling space in an annular manner. The plurality of compression sections join together the refrigerant gas discharge pipe sections downstream, and an unloader circuit is provided downstream of at least one compression section. When the cooling load is large, refrigerant from the plurality of compression sections is supplied. A refrigerator characterized in that it is merged and sent to a cooler, and when the cooling load is small, only the refrigerant from the other compression section is sent to the cooler by the unloader circuit. 圧縮機は、インバータによる周波数変換で能力可変としたことを特徴とする請求項1記載の冷蔵庫。   2. The refrigerator according to claim 1, wherein the compressor is variable in capacity by frequency conversion by an inverter. 圧縮機は、密閉ケース内に収納した電動機構の回転軸で回転する偏心軸によって往復動するコンロッドと、コンロッドの先端に設けたボールジョイントで嵌め固定されたピストンのシリンダー内での往復運動によって2つの圧縮部に対して交互に冷媒を吸い込み、圧縮して吐出するレシプロ式としたことを特徴とする請求項1記載の冷蔵庫。   The compressor is reciprocated in a cylinder of a connecting rod that reciprocates by an eccentric shaft that rotates on the rotating shaft of an electric mechanism housed in a sealed case, and a piston that is fitted and fixed by a ball joint provided at the tip of the connecting rod. The refrigerator according to claim 1, wherein the refrigerator is a reciprocating type in which refrigerant is alternately sucked into and compressed and discharged from one compression section. 圧縮機はケース内圧力を低圧として複数の圧縮部の吸込み部をケース内に開口し、吐出側の管を合流してケース外に引き出し凝縮器に接続させたことを特徴とする請求項1記載の冷蔵庫。   2. The compressor according to claim 1, wherein the internal pressure of the compressor is set to a low pressure, suction portions of a plurality of compression portions are opened in the case, pipes on the discharge side are joined, drawn out of the case, and connected to a condenser. Refrigerator. 圧縮機はケース内圧力を低圧とし、一方の圧縮部の下流側に流路切替弁を設けてアンローダ回路を形成するとともに戻し管をケース内に接続して開口させたことを特徴とする請求項1記載の冷蔵庫。   The compressor is characterized in that the pressure in the case is low, a flow path switching valve is provided downstream of one compression section to form an unloader circuit, and a return pipe is connected and opened in the case. The refrigerator according to 1. 圧縮機はケース内圧力を低圧とし、アンローダ回路の流路切替弁をケース内に設置して戻し管をケース内に開口させたことを特徴とする請求項1記載の冷蔵庫。   2. The refrigerator according to claim 1, wherein the compressor has a low pressure in the case, a flow path switching valve of an unloader circuit is installed in the case, and a return pipe is opened in the case. アンローダ回路の戻し管を、冷却器と圧縮機との間の吸込管に接続したことを特徴とする請求項1記載の冷蔵庫。   The refrigerator according to claim 1, wherein the return pipe of the unloader circuit is connected to a suction pipe between the cooler and the compressor. シリンダーとピストンからなるレシプロ式の圧縮部を3個以上設け、アンローダ回路における流路切替弁で1乃至複数の圧縮部からの流路を切り替えることにより、圧縮部の排除容積を可変にしたことを特徴とする請求項1記載の冷蔵庫。   3 or more reciprocating compression parts consisting of cylinders and pistons are provided, and the displacement volume of the compression part is made variable by switching the flow path from one or more compression parts with the flow path switching valve in the unloader circuit. The refrigerator according to claim 1. 複数の圧縮部をシリンダーとピストンとからなるレシプロ式で構成し、前記各シリンダーの排除容積を相違させたことを特徴とする請求項1記載の冷蔵庫。   2. The refrigerator according to claim 1, wherein the plurality of compression parts are constituted by a reciprocating type composed of a cylinder and a piston, and the excluded volumes of the cylinders are made different. ケース内に併置した複数の圧縮部を有する圧縮機と、凝縮器、減圧装置、および貯蔵空間を冷却する冷却器とを環状に連結した冷凍サイクルからなり、前記圧縮機における少なくとも1つの圧縮部の下流にアンローダ回路を設けるとともに、複数の圧縮部からの各冷媒ガスの吐出管部の下流にそれぞれ凝縮部を接続し、冷却負荷が大きい場合は複数の圧縮部からの冷媒を各凝縮器の下流で合流させて冷却器に送り、冷却負荷が小さい場合は前記アンローダ回路を動作させて他方の圧縮部からの冷媒のみを冷却器に送るようにしたことを特徴とする冷蔵庫。   A refrigeration cycle in which a compressor having a plurality of compression units juxtaposed in a case, a condenser, a decompression device, and a cooler for cooling a storage space are connected in an annular shape, and at least one compression unit of the compressor An unloader circuit is provided downstream, and a condensing unit is connected downstream of each refrigerant gas discharge pipe unit from the plurality of compression units. When the cooling load is large, refrigerant from the plurality of compression units is downstream of each condenser. The refrigerator is characterized in that when the cooling load is small, the unloader circuit is operated to send only the refrigerant from the other compression section to the cooler. アンローダ回路を設けた凝縮器に対応して放熱ファンを設け、アンローダ動作時には前記放熱ファンの回転を停止するようにしたことを特徴とする請求項10記載の冷蔵庫。   11. The refrigerator according to claim 10, wherein a radiator fan is provided corresponding to the condenser provided with the unloader circuit, and the rotation of the radiator fan is stopped during the unloader operation. ケース内に併置した複数の圧縮部を有する圧縮機と、凝縮器、減圧装置、および貯蔵空間を冷却する冷却器とを環状に連結した冷凍サイクルからなり、前記圧縮機における少なくとも1つの圧縮部の下流にアンローダ回路を設けるとともに、複数の圧縮部からの各冷媒ガスの吐出管部の合流点の下流に複数の凝縮部を直列に接続し、冷却負荷が大きい場合は少なくとも1つの凝縮器を強制空冷し、冷却負荷が小さい場合は前記アンローダ回路を動作させて他方の圧縮部からの冷媒のみを冷却器に送るようにしたことを特徴とする冷蔵庫。   A refrigeration cycle in which a compressor having a plurality of compression units juxtaposed in a case, a condenser, a decompression device, and a cooler for cooling a storage space are connected in an annular shape, and at least one compression unit of the compressor In addition to providing an unloader circuit downstream, a plurality of condensing units are connected in series downstream of the confluence of the discharge pipes of each refrigerant gas from a plurality of compression units, and at least one condenser is forced when the cooling load is large The refrigerator is characterized in that when it is air-cooled and the cooling load is small, the unloader circuit is operated so that only the refrigerant from the other compression section is sent to the cooler. 圧縮機はケース内圧力を低圧とし、一方の圧縮部の下流側に冷媒流路切替弁を設けて一方の流路を凝縮器へ接続するとともに他方の戻し管流路を圧縮機のケース内に接続して開口させることでアンローダ回路を形成したことを特徴とする請求項10または12記載の冷蔵庫。
The compressor has a low pressure in the case, and a refrigerant flow path switching valve is provided downstream of one compression section to connect one flow path to the condenser and the other return pipe flow path in the compressor case. 13. The refrigerator according to claim 10, wherein an unloader circuit is formed by connecting and opening.
JP2004353282A 2004-06-15 2004-12-06 Refrigerator Pending JP2006029761A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004353282A JP2006029761A (en) 2004-06-15 2004-12-06 Refrigerator

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004177551 2004-06-15
JP2004353282A JP2006029761A (en) 2004-06-15 2004-12-06 Refrigerator

Publications (1)

Publication Number Publication Date
JP2006029761A true JP2006029761A (en) 2006-02-02

Family

ID=35896336

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004353282A Pending JP2006029761A (en) 2004-06-15 2004-12-06 Refrigerator

Country Status (1)

Country Link
JP (1) JP2006029761A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2137467A1 (en) * 2007-03-16 2009-12-30 LG Electronics Inc. Multi-unit air conditioning system and controlling method for the same
KR20130096963A (en) * 2012-02-23 2013-09-02 엘지전자 주식회사 A refrigerator and the method of the refrigerator
KR20150031078A (en) * 2013-09-13 2015-03-23 엘지전자 주식회사 Refrigerator
JP2016136082A (en) * 2015-01-05 2016-07-28 三星電子株式会社Samsung Electronics Co.,Ltd. Cooling system
FR3077191A1 (en) * 2018-01-29 2019-08-02 Y2I Finances EXHIBITION CABINET FOR PRESENTATION OF PRODUCTS
CN110296565A (en) * 2019-07-19 2019-10-01 西安交通大学 A kind of double evaporating temperature refrigeration systems and its control method
WO2020178891A1 (en) * 2019-03-01 2020-09-10 三菱電機株式会社 Motor drive device and refrigeration cycle application device

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2137467A1 (en) * 2007-03-16 2009-12-30 LG Electronics Inc. Multi-unit air conditioning system and controlling method for the same
EP2137467A4 (en) * 2007-03-16 2011-10-26 Lg Electronics Inc Multi-unit air conditioning system and controlling method for the same
KR20130096963A (en) * 2012-02-23 2013-09-02 엘지전자 주식회사 A refrigerator and the method of the refrigerator
KR20150031078A (en) * 2013-09-13 2015-03-23 엘지전자 주식회사 Refrigerator
KR102157544B1 (en) 2013-09-13 2020-09-18 엘지전자 주식회사 Refrigerator
JP2016136082A (en) * 2015-01-05 2016-07-28 三星電子株式会社Samsung Electronics Co.,Ltd. Cooling system
FR3077191A1 (en) * 2018-01-29 2019-08-02 Y2I Finances EXHIBITION CABINET FOR PRESENTATION OF PRODUCTS
WO2020178891A1 (en) * 2019-03-01 2020-09-10 三菱電機株式会社 Motor drive device and refrigeration cycle application device
CN110296565A (en) * 2019-07-19 2019-10-01 西安交通大学 A kind of double evaporating temperature refrigeration systems and its control method

Similar Documents

Publication Publication Date Title
US8857211B2 (en) Injectable two-staged rotary compressor and heat pump system
JP6934603B2 (en) Refrigerator and cooling system
KR101638675B1 (en) Combined binary refrigeration cycle apparatus
JPH05223370A (en) Refrigerator
TW200526912A (en) Refrigerator
JP2009300000A (en) Refrigerator-freezer and cooling storage
JPH05223368A (en) Refrigerator
KR20100059170A (en) Heat pump storage system
JP3461736B2 (en) refrigerator
US20060162356A1 (en) Capacity-variable air conditioner
JP2006029761A (en) Refrigerator
JP2005106454A (en) Refrigerator
JP6101926B2 (en) refrigerator
JP3847499B2 (en) Two-stage compression refrigeration system
JP2007051788A (en) Refrigerating device
JP2005257149A (en) Refrigerator
JP2006125843A (en) Cooling cycle and refrigerator
JP2007327355A (en) Vapor compression type refrigeration circuit and vehicular air conditioning system using same
JP5056026B2 (en) vending machine
WO2013027237A1 (en) Two-stage compressor, and heat pump device
JP3847493B2 (en) Two-stage compression refrigeration system
JP2003207250A (en) Refrigerator
KR102494567B1 (en) A refrigerator and a control method the same
JP2005134080A (en) Refrigerator
JP6242235B2 (en) Heat source unit and refrigeration cycle apparatus