JP3814877B2 - Thermal storage air conditioner - Google Patents

Thermal storage air conditioner Download PDF

Info

Publication number
JP3814877B2
JP3814877B2 JP17924096A JP17924096A JP3814877B2 JP 3814877 B2 JP3814877 B2 JP 3814877B2 JP 17924096 A JP17924096 A JP 17924096A JP 17924096 A JP17924096 A JP 17924096A JP 3814877 B2 JP3814877 B2 JP 3814877B2
Authority
JP
Japan
Prior art keywords
heat
heat exchanger
heat storage
valve
storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP17924096A
Other languages
Japanese (ja)
Other versions
JPH1026377A (en
Inventor
大祐 嶋本
守也 宮本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP17924096A priority Critical patent/JP3814877B2/en
Publication of JPH1026377A publication Critical patent/JPH1026377A/en
Application granted granted Critical
Publication of JP3814877B2 publication Critical patent/JP3814877B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/14Thermal energy storage

Landscapes

  • Compression-Type Refrigeration Machines With Reversible Cycles (AREA)
  • Air Conditioning Control Device (AREA)
  • Other Air-Conditioning Systems (AREA)

Abstract

PROBLEM TO BE SOLVED: To carry out a cold heat storage, a heat storage and an air conditioning operation using the heat storage without replacing a heat storage tank even when one of cold heat storage heat exchangers cannot be used in operation. SOLUTION: A heat storage type air conditioner at least comprises a heat storage tank 9 which stores a heat storage medium 21, a first cold heat storage heat exchanger 10a disposed in the heat storage medium 21, a second cold heat storage medium heat exchanger 10b disposed in the heat storage heat exchanger 10b and connected with the first heat storage heat exchanger 10a in parallel, a second valve 26a mounted on one outlet of the first cold heat storage heat exchanger 10a, a fourth valve 27a mounted on the other outlet of the first cold heat storage heat exchanger 10a, a third valve 26b mounted on one outlet of the second cold heat storage heat exchanger 10b, a fifth valve 27b mounted on the other outlet of the second cold heat storage heat exchanger 10b, and third connecting pipes 136, 137 which include a sixth valve 23.

Description

【0001】
【発明の属する技術分野】
本発明は、昼間電力の抑制と平準化対策に係る蓄熱式空気調和装置に関するものである。
【0002】
【従来の技術】
従来この種の蓄熱式空気調和装置として、例えば特願平5−30727号公報に開示されたものを図17に示す。すなわち、図17において、1は例えば5馬力の圧縮機、2は圧縮機用四方切換弁で、各々は冷媒回路101にて連結されている。3は冷房時は凝縮器として作用し暖房時は蒸発器として作用する室外側熱交換器であり、圧縮機用四方切換弁2と冷媒回路102にて連結されている。
【0003】
6は室外側熱交換器3と冷媒回路103で連結されている第1の絞り装置、7、8は各々バルブであり、冷媒回路108から分岐して構成された冷媒回路109、110を介して第1の絞り装置6と各々連結されている。9は蓄熱槽であり、内部に多数本の伝熱管を縦に並べ、これを連結して形成した蓄冷熱用熱交換器10により、槽内に貯留した蓄熱媒体21(例えば水)を、冷房時は凍結、暖房時は貯湯できるようにしている。
【0004】
バルブ8は蓄熱槽9の蓄冷熱用熱交換器10と冷媒回路111で連結されている。12はガス状冷媒を搬送する冷媒ポンプであり、ポンプ容量は所定の運転条件にて圧縮機1の運転による冷媒循環量と同量の循環量が得られるものが選ばれている。11は冷媒ポンプ12と冷媒回路114で連結された冷媒ポンプ用四方切換弁である。13は冷媒ポンプ用アキュムレータ、14はバルブであり蓄熱槽9からの冷媒回路112を分岐して冷媒回路113と118を構成し、各々を冷媒ポンプ用四方切換弁11とバルブ14に連結している。
【0005】
冷媒ポンプ用四方切換弁11と冷媒ポンプ用アキュムレータ13は、冷媒回路116で連結されており、冷媒ポンプ用アキュムレータ13は、冷媒回路115で冷媒ポンプ12に連結されている。117は冷媒ポンプ用四方切換弁11と冷媒回路120に接続された冷媒回路、119はバルブ14と冷媒回路125に連結された冷媒回路、20は冷媒回路120と125を接続するバルブであり、冷媒回路125の他端は前述の圧縮機用四方切換弁2に接続されている。
【0006】
121は前述のバルブ7に連結された冷媒回路で、この回路と冷媒回路120間に複数の室内ユニット用冷媒回路系a,b,cを有し、各々の回路系は、冷媒回路122、第2の絞り装置15、冷媒回路123、室内側熱交換器16、冷媒回路124を順次連結して成る。
【0007】
圧縮機用四方切換弁2と圧縮機用アキュムレータ17の間、圧縮機用アキュムレータ17と圧縮機1の間は、それぞれ冷媒回路126、127にて連結されている。
【0008】
次に作用について、図18から図33を用いて説明する。
図18に、例えば夜間の蓄冷運転、即ち製氷運転を示す。図において、バルブ7、20を閉じ、バルブ8、14を開き、圧縮機1を運転する。このとき、圧縮機1より吐出された冷媒は室外側熱交換器3で凝縮し第1の絞り装置6で断熱膨張し蓄冷熱用熱交換器10で蒸発し、蓄熱媒体21(例えば水)から熱をうばい、蓄冷熱用熱交換器10の表面を凍結させるとともに気化冷媒がアキュムレータ17を経由して圧縮機1に戻る。
【0009】
この蓄冷運転時の運転状態を表したモリエル線図を図19に示す。図中数字にて表わす運転点は、図中の同一数字で表わす冷媒回路内の冷媒の状態を示しており、凝縮温度は約40℃、蒸発温度は−3℃程度である。本システムはかかる運転にて、例えば槽内の残水がないことを前提に、22:00より製氷を開始、翌朝8:00に製氷を終了する。
【0010】
以下昼間の冷房運転について述べる。図20は蓄冷熱は利用せずに圧縮機1のみで冷房運転した場合の、冷房運転を示す。
図において、バルブ7、20を開き、バルブ8、14を閉じて圧縮機1を運転する。図18と同様の作用にて凝縮液化した高圧冷媒は、各室内ユニット用冷媒回路系a,b,cに送られ、各々の第2の絞り装置15で冷媒流量調節しながら減圧し、約6kg/cm2 G程度の圧力で室内側熱交換器16内に流入し蒸発する。このとき周囲の室内空気より吸熱し、ガス化した冷媒は、圧縮機用アキュムレータ17を経由し、圧縮機1に戻る。このときの圧縮機1の運転容量は、室内機の運転容量の総和により決定している。
【0011】
この一般冷房運転時の運転状態を表したモリエル線図を図21に示す。図中の数字は図19にて述べた通りで、凝縮温度は約45℃、蒸発温度は約10℃である。本システムはかかる運転にて、例えば蓄冷熱消費後の冷房を行う。
【0012】
図22に、蓄冷熱利用のみによる冷房、即ち放冷運転を示す。
図において、第1の絞り装置6、バルブ14、20を閉じ、バルブ7、8を開いて、冷媒ポンプ12を運転する。このとき冷媒ポンプ12により送出されたガス冷媒は蓄熱槽9内の氷で冷却され20〜25℃で凝縮し、液化した約9kg/cm2 Gの冷媒が各室内ユニット用冷媒回路系a,b,cに送られ、図20と同様にして冷房する。このとき冷媒ポンプ12の冷媒循環量は、図20のときの圧縮機1による冷媒循環量と同等のため、室内側熱交換器16には同温同圧の冷媒が同量流れることとなり、動力としては差圧が約3kg/cm2 G程度の小容量にも拘らず、冷房能力としては圧縮機1の単独運転による図20の一般冷房運転と同等となる。このときの冷媒ポンプ12の運転容量は、室内機の運転容量の総和により決定している。
【0013】
この放冷運転時の運転状態を表したモリエル線図を図23に示す。図中の数字は図19にて述べた通りで、凝縮温度は23℃程度、蒸発温度は約10℃である。本システムはかかる運転にて、例えば軽負荷時の冷房を行なう。
【0014】
図24に図20の一般冷房運転と図22の放冷運転とを同時に作用させた蓄冷熱併用冷房運転を示す。
図において、バルブ14を閉じ、バルブ7、8、20を開いて、圧縮機1および冷媒ポンプ12を運転する。このとき冷媒ポンプ12側の蓄冷熱用熱交換器10で凝縮した液冷媒は、圧縮機1側の第1の絞り装置6で減圧された冷媒とバルブ7の手前で合流し、室内ユニット用冷媒回路系a,b,cへは、図20の一般冷房運転時あるいは図22の放冷運転時の約2倍の量の冷媒が循環して、能力も2倍となる。このときの第1の絞り装置6の開度は一定であり、上記合流部の圧力は8〜10kg/cm2 G程度となる。このときの運転容量は、冷媒ポンプ12は100%出力とし圧縮機1を容量制御して決定するが、その容量制御の割合は室内機の運転容量の総和により決定している。
【0015】
この蓄冷熱併用冷房運転時の運転状態を表したモリエル線図を図25に示す。図中の数字は図19にて述べた通りである。蒸発温度は他の冷房運転と同様約10℃であるが、凝縮温度は、室外側熱交換器3では約45℃、蓄冷熱用熱交換器10では20〜25℃程度である。本システムはかかる運転にて、通常の冷房負荷時の冷房を行なう。
【0016】
以上は冷房に関する作用について説明したが、以下は暖房に関する作用説明であり、従って特に断らない限り圧縮機用四方切換弁2、および冷媒ポンプ用四方切換弁11は暖房モードに設定されている。
図26に、例えば夜間の蓄熱運転、即ち貯湯運転を示す。図において、バルブ7、20を閉じ、バルブ8、14を開き圧縮機1を運転する。このとき圧縮機1より吐出された高温ガス冷媒は図中の矢印の方向に流れ、蓄熱槽9の蓄冷熱用熱交換器10で凝縮し、水21を昇温する。凝縮冷媒は第1の絞り装置6で断熱膨張し、室外側熱交換器3で外気より吸熱して蒸発し、気化冷媒がアキュムレータ17を経由して圧縮機1に戻る。
【0017】
この蓄熱運転時の運転状態を表したモリエル線図を図27に示す。図中の数字は図19にて述べた通りで、槽水温の沸き上り温度は約50℃、このときの凝縮温度は約55℃、蒸発温度は約0℃である。本システムはかかる運転にて、夜間電力時間帯内に貯湯し、所定の槽水温に到達次第運転を終了する。
【0018】
以下昼間の暖房運転について述べる。図28は蓄熱は利用せずに圧縮機1のみで暖房運転した場合の、一般暖房運転を示す。図において、バルブ7、20を開き、バルブ8、14を閉じて、圧縮機1を運転する。圧縮機1より17kg/cm2 G前後の圧力で吐出された高温高圧ガスは各室内ユニット用冷媒回路系a,b,cに送られ、各々の室内側熱交換器16で凝縮し、室内空気を加熱する。凝縮した液冷媒は第2の絞り装置15で若干の減圧をし、更に第1の絞り装置6で減圧して約4kg/cm2 Gの圧力で室外側熱交換器3内で蒸発し、以降図26と同作用にて圧縮機1に戻る。このときの圧縮機1の運転容量は、室内機の運転容量の総和により決定している。
【0019】
この一般暖房運転時の運転状態を表したモリエル線図を図29に示す。図中の数字は図19にて述べた通りで、凝縮温度は42〜43℃程度、蒸発温度は約0℃である。本システムはかかる運転にて、蓄熱消費後の日中の軽負荷時の暖房を行う。
【0020】
図30に蓄熱利用のみによる暖房、即ち放熱運転を示す。図において第1の絞り装置6およびバルブ14、20を閉じ、バルブ7、8を開いて冷媒ポンプ12を運転する。このとき冷媒ポンプ12は槽内で蒸発圧力約13kg/cm2 Gで加熱気化されたガス冷媒を冷媒ポンプ用アキュムレータ13を経由して吸引する。従って、約4kg/cm2 G程度の昇圧で17kg/cm2 G前後の高温・高圧のガス冷媒を各室内ユニット用冷媒回路系a,b,cに送り、以降図26と同様の作用により室内空気の加熱を行なう。凝縮した冷媒は第2の絞り装置15にて減圧し、約13kg/cm2 Gの気液二相冷媒となって蓄熱槽9に戻る。このときの冷媒ポンプ12の運転容量は、室内機の運転容量の総和により決定している。
【0021】
この放熱運転時の運転状態を表したモリエル線図を図31に示す。図中の数字は図19に述べた通りで、凝縮温度は42〜43℃程度、蒸発温度は35℃前後である。本システムはかかる運転にて、例えば軽負荷時の暖房を行なう。
【0022】
図32に、図28の一般暖房運転と図30の放熱運転とを同時に作用させた蓄熱併用暖房運転を示す。図において、バルブ14を閉じ、バルブ7、8、20を開き圧縮機1と冷媒ポンプ12を運転する。このとき冷媒ポンプ12より送出したガス冷媒は圧縮機1より吐出されたガス冷媒とバルブ20出側で合流し、室内ユニット用冷媒回路系a,b,cへは、図28の一般暖房運転時あるいは図30の放熱運転時の約2倍の量の、圧力17kg/cm2 G前後の高温・高圧冷媒が循環して、能力も約2倍となる。第2の絞り装置15で減圧した約13kg/cm2 G程度の冷媒は、約1/2が蓄冷熱用熱交換器10に流入して図30の放熱運転と同様の作用を成すとともに、他の1/2の冷媒は第1の絞り装置6にて更に減圧され、約4kg/cm2 Gの圧力となって室外側熱交換器3に流入して図28の一般暖房運転と同様の作用をなす。このときの運転容量は、冷媒ポンプ12は100%出力とし圧縮機1を容量制御して決定するが、その容量制御の割合は室内機の運転容量の総和により決定している。
【0023】
この蓄熱併用暖房運転時の運転状態を表したモリエル線図を図33に示す。図中の数字は図19にて述べた通りである。凝縮温度は他の暖房運転と同様42〜43℃程度であるが、蒸発温度は、蓄冷熱用熱交換器10では35℃前後、室外側熱交換器3では0℃前後である。本システムはかかる運転にて、暖房負荷の集中する例えば朝の立上り時の暖房を行なう。
【0024】
【発明が解決しようとする課題】
上記のような各々の運転を行う従来の蓄熱式空気調和装置では、蓄冷熱用熱交換器または蓄熱槽が一台使用できない状況になった場合には、蓄熱槽を取り替えなければ蓄冷、蓄熱および蓄熱利用空調運転を行うことができなかった。
【0025】
また、放熱暖房時において、夜間の蓄熱を行った直後には高効率の蓄熱利用暖房ができるが、一度蓄熱の利用を行った後は蓄熱槽内の蓄熱媒体の温度が低下するため、次に蓄熱運転をするまでに再度蓄熱を利用した空調を行う場合には、低下した水温による比較的効率の悪い蓄熱利用暖房しかできなかった。
【0026】
また、放冷時に使用する単位時間毎の蓄冷利用量はいつも同じ量であり、消費電力のピーク時に消費電力夜間移行率を更に増加させるために、放冷時に使用する単位時間毎の蓄冷利用量すなわち蓄冷熱用熱交換器の伝熱面積を増加させることができなかった。
【0027】
また、蓄熱運転の低外気運転時には、使用していない室内機側のユニットおよび配管に冷媒が多く分布している。そのため、使用している冷媒回路中の冷媒量が不足し、不十分な運転状態となっていた。
【0028】
また、蓄熱槽を一体のユニットで構成すると設置スペースが一個所に集中するため、設置のためのスペースが狭く分散されているような場合には、蓄熱槽の設置スペースの確保ができなくなり、蓄熱槽設置に大きな制約を受けていた。
【0029】
【課題を解決するための手段】
上述した種々の問題点を解決するために、この発明による蓄熱式空気調和装置は、圧縮機、四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、一般冷暖房用回路の第1の絞り装置から第2の絞り装置の間と室内側熱交換器から圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し圧縮機,室外側熱交換器,および第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、一般冷暖房用回路の四方切換弁から圧縮機の吸込側の間と第1の接続配管の第1のバルブから第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し第1の蓄冷熱用熱交換器,第3の絞り装置,第2の絞り装置,および室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、蓄熱媒体中に配置されて放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、第1の蓄冷熱用熱交換器と並列して第1の接続配管に接続するとともに、第1の接続配管の第1の蓄冷熱用熱交換器の一方の出側に設けられた第2のバルブと、第1の接続配管の第2の蓄冷熱用熱交換器の一方の出側に設けられた第3のバルブと、第1の接続配管の第1の蓄冷熱用熱交換器の他方の出側に設けられた第4のバルブと、第1の接続配管の第2の蓄冷熱用熱交換器の他方の出側に設けられた第5のバルブと、一般冷暖房用回路の四方切換弁から圧縮機の吸込側の間と第1の接続配管の第1のバルブから第1および第2の蓄冷熱用熱交換器の配管接続位置の間とを第6のバルブを介して接続する第3の接続配管とを具備する構成にされている。
【0030】
また、圧縮機,四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、一般冷暖房用回路の第1の絞り装置から第2の絞り装置の間と室内側熱交換器から圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し圧縮機,室外側熱交換器,および第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、一般冷暖房用回路の四方切換弁から圧縮機の吸込側の間と第1の接続配管の第1のバルブから第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し第1の蓄冷熱用熱交換器,第3の絞り装置,第2の絞り装置,および室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、蓄熱媒体中に配置されて放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、第1の蓄冷熱用熱交換器と並列して第1の接続配管に接続し、蓄熱槽を複数の蓄熱室に区画して構成し、各蓄熱室に第1または第2の蓄冷熱用熱交換器をそれぞれ配置するとともに、第1の接続配管の第1の蓄冷熱用熱交換器の一方の出側に設けられた第2のバルブと、第1の接続配管の第2の蓄冷熱用熱交換器の一方の出側に設けられた第3のバルブと、一般冷暖房用回路の四方切換弁から圧縮機の吸込側の間と第1の接続配管の第1のバルブから第1および第2の蓄冷熱用熱交換器の配管接続位置の間とを第6のバルブを介して接続する第3の接続配管と、放冷・放熱用回路を用いる蓄熱利用暖房運転を行う際に、第2のバルブと第3のバルブの開閉を相互に切り換えて第1または第2の蓄冷熱用熱交換器のいずれかにより蓄熱媒体の蓄熱を使用する蓄熱使用熱交換器管理手段とを具備してなるものである。
【0031】
そして、圧縮機,四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、一般冷暖房用回路の第1の絞り装置から第2の絞り装置の間と室内側熱交換器から圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し圧縮機,室外側熱交換器,および第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、一般冷暖房用回路の四方切換弁から圧縮機の吸込側の間と第1の接続配管の第1のバルブから第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し第1の蓄冷熱用熱交換器,第3の絞り装置,第2の絞り装置,および室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、蓄熱媒体中に配置されて放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、第1の蓄冷熱用熱交換器と並列して第1の接続配管に接続し、蓄熱槽を複数の蓄熱室に区画して構成し、各蓄熱室に第1または第2の蓄冷熱用熱交換器をそれぞれ配置するとともに、第1の接続配管の第1の蓄冷熱用熱交換器の一方の出側に設けられた第2のバルブと、第1の接続配管の第2の蓄冷熱用熱交換器の一方の出側に設けられた第3のバルブと、一般冷暖房用回路の四方切換弁から圧縮機の吸込側の間と第1の接続配管の第1のバルブから第1および第2の蓄冷熱用熱交換器の配管接続位置の間とを第6のバルブを介して接続する第3の接続配管と、放冷・放熱用回路を用いる冷熱利用冷房運転を行う際に、第2のバルブと第3のバルブの開閉を切り換えて第1または第2の蓄冷熱用熱交換器のいずれかまたは双方により蓄熱媒体の冷熱を使用する冷熱使用熱交換器管理手段とを具備してなるものである。
【0032】
更に、圧縮機,四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、一般冷暖房用回路の第1の絞り装置から第2の絞り装置の間と室内側熱交換器から圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し圧縮機,室外側熱交換器,および第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、一般冷暖房用回路の四方切換弁から圧縮機の吸込側の間と第1の接続配管の第1のバルブから第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し第1の蓄冷熱用熱交換器,第3の絞り装置,第2の絞り装置,および室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、蓄熱媒体中に配置されて放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、第1の蓄冷熱用熱交換器と並列して第1の接続配管に接続するとともに、第1の接続配管の第1の蓄冷熱用熱交換器の一方の出側に設けられた第2のバルブと、第1の接続配管の第2の蓄冷熱用熱交換器の一方の出側に設けられた第3のバルブと、一般冷暖房用回路の四方切換弁から圧縮機の吸込側の間と第1の接続配管の第1のバルブから第1および第2の蓄冷熱用熱交換器の配管接続位置の間とを第6のバルブを介して接続する第3の接続配管と、蓄冷・蓄熱用回路を用いる蓄熱運転を行うに先立ち、蓄冷運転を所定時間行って第1または第2の蓄冷熱用熱交換器内から冷媒を排出させる冷凍サイクル内冷媒量調整手段とを具備してなるものである。
【0033】
また、圧縮機,四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、一般冷暖房用回路の第1の絞り装置から第2の絞り装置の間と室内側熱交換器から圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し圧縮機,室外側熱交換器,および第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、一般冷暖房用回路の四方切換弁から圧縮機の吸込側の間と第1の接続配管の第1のバルブから第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し第1の蓄冷熱用熱交換器,第3の絞り装置,第2の絞り装置,および室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、蓄熱媒体中に配置されて放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、第1の蓄冷熱用熱交換器と並列して第1の接続配管に接続し、蓄熱槽を複数の分割蓄熱槽として別個独立に構成するとともに、各分割蓄熱槽に第1または第2の蓄冷熱用熱交換器をそれぞれ配置したものである。
【0034】
【発明の実施の形態】
引続き、この発明の実施の形態につき図面に基づいて説明する。
実施の形態1.
以下、本発明の実施の形態1に係る蓄熱式空気調和装置を図面に基づき説明する。
図1は蓄熱式空気調和装置のシステムを示すものである。同図において、従来例における図17と同一の構成要素については同一の符号を付し、その説明を省略する。
この蓄熱式空気調和装置では、図1に示すように、圧縮機1、四方切換弁28、室外側熱交換器3、第1の絞り装置6、第2の絞り装置15a、15b、15c,および室内側熱交換器16a、16b、16cが、冷媒配管104a、104b、103、108、121、122a、122b、122c、123a、123b、123c、124a、124b、124c、120、128a、128b、139、129を介し順次接続されて一般冷暖房用回路を構成している。
また、一般冷暖房用回路の第1の絞り装置6から第2の絞り装置15a、15b、15cの間の冷媒配管108、121と室内側熱交換器16a、16b、16cから圧縮機1の間の冷媒配管120、128aとを、第3の絞り装置22、第1の蓄冷熱用熱交換器10a、および第1のバルブ14を介して接続する第1の接続配管105、112、118、119が設けられている。この第1の接続配管105、112、118、119は圧縮機1、室外側熱交換器3、および第1の絞り装置6とともに蓄冷・蓄熱用回路を構成している。
また、一般冷暖房用回路の四方切換弁28から圧縮機1の吸込側の間の冷媒配管129、139と第1のバルブ14から第1の蓄冷熱用熱交換器10aの間の第1の接続配管112、118とを冷媒ポンプ12および第7のバルブ24を介して接続する第2の接続配管130、133、132、131が設けられている。この第2の接続配管130、133、132、131は第1の蓄冷熱用熱交換器10a、第3の絞り装置22、第2の絞り装置15a、15b、15c、および室内側熱交換器16a、16b、16cとともに放冷・放熱用回路を構成している。
【0035】
そして、蓄熱媒体21中に配置されて放冷・放熱用回路の一部を構成する第2の蓄冷熱用熱交換器10bが、第1の蓄冷熱用熱交換器10aと並列して第1の接続配管105、112に接続されている。
更には、第1の接続配管112の第1の蓄冷熱用熱交換器10aの一方の出側に設けられた第2のバルブ26aと、第1の接続配管112の第2の蓄冷熱用熱交換器10bの一方の出側に設けられた第3のバルブ26bと、第1の接続配管105の第1の蓄冷熱用熱交換器10aの他方の出側に設けられた第4のバルブ27aと、第1の接続配管105の第2の蓄冷熱用熱交換器10bの他方の出側に設けられた第5のバルブ27bと、一般冷暖房用回路の四方切換弁28から圧縮機1吸込側の間の冷媒配管128b、139と第1のバルブ14から第1および第2の蓄冷熱用熱交換器10a、10bの間の第1の接続配管112とを第6のバルブ23を介して接続する第3の接続配管136、137とを備えてなっている。
【0036】
従って、この蓄熱式空気調和装置においては、第1の蓄冷熱用熱交換器10aが壊れた場合でも、第2のバルブ26aおよび第4のバルブ27aを閉じることにより、第2の蓄冷熱用熱交換器10bが使用可能で、蓄熱槽9を使用する運転が可能となる。逆に、第2の蓄冷熱用熱交換器10bが壊れたときは、第3のバルブ26bおよび第5のバルブ27bを閉じることにより、第1の蓄冷熱用熱交換器10aが使用可能で、蓄熱槽9を使用する運転が可能となる。
【0037】
実施の形態2.
以下、本発明の実施の形態2に係る蓄熱式空気調和装置を図面に基づき説明する。
図2は蓄熱式空気調和装置のシステムを示すものである。同図において、実施の形態1における図1と同一の構成要素については同一の符号を付し、その説明を省略する。図1と異なるのは以下の点である。
すなわち、蓄熱槽9が2つの蓄熱室9a、9bに区画して構成されており、各蓄熱室9a、9bに第1の蓄冷熱用熱交換器10aまたは第2の蓄冷熱用熱交換器10bがそれぞれ配置されていることと、放冷・放熱用回路を用いる蓄熱利用暖房運転を行う際に、予め設定された暖房運転スケジュールに基づいて第2のバルブ26aと第3のバルブ26bの開閉を相互に切り換えて第1または第2の蓄冷熱用熱交換器10a、10bのいずれかにより蓄熱媒体21の蓄熱を使用する蓄熱使用熱交換器管理手段201を備えていることである。
【0038】
次いで、本実施の形態の動作、基本的な冷媒の流れ、運転状態を説明する。
本実施の形態の蓄熱室9aを使用した時の放熱暖房運転の回路図は図2である。
図2において、第3の絞り装置22、第2の絞り装置15a、15b、15c、第6のバルブ23、および第2のバルブ26aは開き、その他の絞り装置およびバルブは閉じている状態で、圧縮機1および冷媒ポンプ12を運転する。このとき圧縮機1は17kg/cm2 G前後の高温・高圧のガス冷媒を各室内ユニット用冷媒回路系a,b,cに送り、室内空気の加熱を行なう。凝縮した冷媒は第2の絞り装置15にて減圧し、約13kg/cm2 Gの気液二相冷媒となって蓄熱室9aにもどり蒸発して、第6のバルブ23を経て、約4kg/cm2 Gで圧縮機1に戻る。
【0039】
一方、本実施の形態の蓄熱室9bを使用した時の放熱暖房運転の回路図を図3に示す。
図3において、第3の絞り装置22、第2の絞り装置15a、15b、15c、第6のバルブ23、および第3のバルブ26bは開き、その他の絞り装置およびバルブは閉じている状態で、圧縮機1および冷媒ポンプ12を運転する。このとき圧縮機1は17kg/cm2 G前後の高温・高圧のガス冷媒を各室内ユニット用冷媒回路系a,b,cに送り、室内空気の加熱を行なう。凝縮した冷媒は第2の絞り装置15にて減圧し、約13kg/cm2 Gの気液二相冷媒となって蓄熱室9bにもどり蒸発して、第6のバルブ23を経て、約4kg/cm2 Gで圧縮機1に戻る。
【0040】
次いで、本実施の形態の一般暖房運転の回路図を図4に示す。
図4において、第1の絞り装置6および第2の絞り装置15a、15b、15cは開き、その他の絞り装置およびバルブは閉っている状態で、圧縮機1を運転する。圧縮機1より17kg/cm2 G前後の圧力で吐出された高温高圧ガスは各室内ユニット用冷媒回路系a,b,cに送られ、各々の室内側熱交換器16a、16b、16cで凝縮し、室内空気を加熱する。凝縮した液冷媒は第2の絞り装置15a、15b、15cで若干の減圧をし、更に第1の絞り装置6で減圧して約4kg/cm2 Gの圧力で室外側熱交換器3内で蒸発し圧縮機1に戻る。
【0041】
次に、本実施の形態の暖房シーズンの暖房時間帯運転切り替え状態図を図5に示す。図中の横軸は時刻、縦軸は暖房運転中の暖房能力である。また、この運転状態の制御を、制御ブロック図の図6に示す。
蓄熱使用熱交換器管理手段201によれば、まず、8:00から暖房時間の時間帯に入り蓄熱室9aを冷凍サイクルに含んだ放熱運転(第2のバルブ26aを開いた状態)を行う(S1、S2)。この時点で、蓄熱室9bの第3のバルブ26bは閉じている。また、8:00の時点では蓄熱室9aおよび蓄熱室9bの蓄熱媒体21である水の温度は40℃である。この運転を8:00から12:00まで行う(S3)。夜間蓄熱量を消費するとされる12:00から16:00の間は第2のバルブ26a、第3のバルブ26bは閉じて一般暖房運転に切り替える動作を同時に行う(S4、S5)。16:00になった時点で(S6)、第3のバルブ26bを開き、放熱運転を開始する動作を同時に行う(S7)。蓄熱室9bを冷凍サイクルに含む放熱運転を開始し(S8)、20:00まで放熱運転を行う。この時点で蓄熱室9bの水温は40℃近くを保っており、放熱運転を効率良く運転できる水温となっている。そして、20:00になった時点で(S9)、第3のバルブ26bを閉じ一般暖房運転を開始する動作を同時に行う(S10)。20:00の時点から22:00までの時間帯は一般暖房運転とし、第2のバルブ26a、第3のバルブ26bは閉じている。22:00では暖房運転時間帯を終了し(S11)、22:00から翌日の8:00までは蓄熱時間帯になる。
【0042】
実施の形態3.
以下、本発明の実施の形態3に係る蓄熱式空気調和装置を図面に基づき説明する。
図7は蓄熱式空気調和装置のシステムを示すものである。同図において、実施の形態2における図2と同一の構成要素については同一の符号を付し、その説明を省略する。図2と異なるのは以下の点である。
すなわち、放冷・放熱用回路を用いる冷熱利用冷房運転を行う際に、予め設定された冷房運転スケジュールに基づいて第2のバルブ26aと第3のバルブ26bの開閉を切り換えて第1または第2の蓄冷熱用熱交換器10a、10bのいずれかまたは双方により蓄熱媒体21の冷熱を使用する冷熱使用熱交換器管理手段202を備えていることである。
【0043】
次いで、本実施の形態の動作、基本的な冷媒の流れ、運転状態について説明する。
まず、蓄熱室9aを使用した時の蓄冷熱併用冷房運転(放冷運転の中の1つの運転)の回路図は図7である。
図7において、第1の絞り装置6、第3の絞り装置22、第2の絞り装置15a、15b、15c、第7のバルブ24、および第2のバルブ26aを開き、他のバルブを閉じている状態で圧縮機1および冷媒ポンプ12を運転する。このとき冷媒ポンプ12側の蓄熱室9aで凝縮した液冷媒は、圧縮機1側の第1の絞り装置6で減圧された冷媒と合流し、室内ユニット用冷媒回路系a,b,cへは、一般冷房運転時の約2倍の量の冷媒が循環して、能力も2倍となる。そして冷媒は圧縮機1へ戻る。
【0044】
一方、蓄熱室9bを使用した時の蓄冷熱併用冷房運転(放冷運転の中の1つの運転)の回路図を図8に示す。
図8において、第1の絞り装置6、第3の絞り装置22、第2の絞り装置15a、15b、15c、第7のバルブ24、および第3のバルブ26bを開き、他のバルブを閉じている状態で圧縮機1および冷媒ポンプ12を運転する。このとき冷媒ポンプ12側の蓄熱室9bで凝縮した液冷媒は、圧縮機1側の第1の絞り装置6で減圧された冷媒と合流し、室内ユニット用冷媒回路系a,b,cへは、一般冷房運転時の約2倍の量の冷媒が循環して、能力も2倍となる。そして冷媒は圧縮機1へ戻る。
【0045】
次いで、一般冷房運転の回路図を図9に示す。
第1の絞り装置6および第2の絞り装置15a、15b、15cは開き、その他の絞り装置およびバルブは閉じている。圧縮機1より吐出された冷媒は室外側熱交換器3にて凝縮液化した高圧冷媒は、各室内ユニット用冷媒回路系a,b,cに送られ、第2の絞り装置15a、15b、15cの各々で冷媒流量調節しながら減圧し、約6kg/cm2 G程度の圧力で室内側熱交換器16a、16b、16c内に流入し蒸発する。このとき周囲の室内空気より吸熱し、ガス化した冷媒は圧縮機1に戻る。
【0046】
次に本実施の形態の冷房シーズンの冷房時間帯運転切り換え状態図を図10に示す。図中の横軸は時刻、縦軸は冷房運転中の冷房能力である。また、この運転状態の制御を、制御ブロック図の図11に示す。
冷熱使用熱交換器管理手段202によれば、まず、8:00から冷房運転時間に入り、第2のバルブ26aおよび第3のバルブ26bを閉じて一般冷房運転を開始する動作を同時に行う(S21、S22)。10:00になった時点で(S23)、蓄熱室9aを一台運転するため、第2のバルブ26aを開き、蓄冷熱併用冷房運転を開始する動作を同時に行う(蓄熱室9aを優先して使用、S24)。10:00から14:00になるまで蓄熱室9aを1台のみ使用した蓄冷熱併用冷房運転を行い(S25)、14:00の時点で(S26)、蓄熱室9bの第3のバルブ26bを開くことにより(S27)、第1の蓄冷熱用熱交換器10aおよび第2の蓄冷熱用熱交換器10bの2台で蓄冷熱併用冷房運転を開始する(S28)。この蓄熱室2台運転を電力消費量の多い14:00から16:00まで使用し、夏の電力ピーク時の夜間電力移行率を高くする。16:00になった時点で(S29)、第2のバルブ26aを閉じて蓄熱室9bのみの蓄熱室1台運転を開始し(S30、S31)、16:00から18:00までこの運転を行う。18:00の時点で(S32)、第3のバルブ26bを閉じて一般冷房運転を開始する動作を同時に行う(S33、S34)。18:00から22:00まで一般冷房運転を行った後、22:00で冷房時間帯を終了して(S35、S36)、蓄冷運転に移行する。尚、本実施の形態は蓄冷利用冷房だけでなく蓄熱利用暖房でも同様の効果を示す。
【0047】
実施の形態4.
以下、本発明の実施の形態4に係る蓄熱式空気調和装置を図面に基づき説明する。
図12は蓄熱式空気調和装置のシステムを示すものである。同図において、実施の形態1における図1と同一の構成要素については同一の符号を付し、その説明を省略する。図1と異なるのは以下の点である。
すなわち、第1の蓄冷熱用熱交換器10aおよび第2の蓄冷熱用熱交換器10bの第3の絞り装置22との接続側に、第4のバルブ27aおよび第5のバルブ27bを設けてあること、また予め設定された暖房運転スケジュールに基づいて蓄冷・蓄熱用回路を用いる蓄熱運転を行うに先立ち、蓄冷運転を所定時間行って第1または第2の蓄冷熱用熱交換器10a、10b内から冷媒を排出させる冷凍サイクル内冷媒量調整手段203を備えていることである。
【0048】
次いで、本実施の形態の動作、基本的な冷媒の流れ、運転状態を説明する。本実施の形態の蓄熱運転については、図12に回路図を示している。
図12において、第1の絞り装置6、第3の絞り装置22、第1のバルブ14、第2のバルブ26a、第3のバルブ26b、および第4のバルブ27aは開き、他の絞り装置およびバルブは閉じている状態で圧縮機1を運転する。このとき圧縮機1により送出されたガス冷媒は蓄熱槽9内で冷却され40℃程度で凝縮し、第3の絞り装置22および第1の絞り装置6で絞られた冷媒が室外ユニット用冷媒回路に送られ、約6kg/cm2 G程度の圧力で室外側熱交換器3内に流入し蒸発する。このとき周囲の室外空気より吸熱し、ガス化した冷媒が圧縮機1に戻る。
【0049】
次いで、本実施の形態の蓄冷運転の回路図を図13に示す。
図13において、第1の絞り装置6、第3の絞り装置22、第2のバルブ26a、および第4のバルブ27aを開き、第1のバルブ14および第7のバルブ24はどちらか一方が閉じ、その他の絞り装置およびバルブは閉じている。このとき、圧縮機1より吐出された冷媒は室外側熱交換器3で凝縮し第1の絞り装置6および第3の絞り装置22で断熱膨張し第1の蓄冷熱用熱交換器10aで蒸発し、蓄熱媒体21(例えば水)より熱をうばい、第1の蓄冷熱用熱交換器10aの表面を凍結させるとともに気化冷媒が圧縮機1に戻る。
【0050】
上記蓄熱運転では、第1または第2の蓄冷熱用熱交換器10a、10bを凝縮器として使用するために多量の冷媒が蓄冷熱用熱交換器内に分布する。よって、蓄熱運転冷凍サイクル中の冷媒量は一般冷房運転や一般暖房運転、第1または第2の蓄冷熱用熱交換器10a、10bを蒸発器として使用する放熱運転や蓄冷運転に比べて多量に必要となる。そこで、冷凍サイクル中の冷媒量をうまく配分する制御が必要となる。
【0051】
次に、本実施の形態の蓄熱運転時の冷凍サイクル内冷媒量制御について制御ブロック図の図14を用いて説明する。
冷凍サイクル内冷媒量調整手段203によれば、まず、蓄熱運転を開始する時、準備運転として四方切換弁28の流路を蓄冷側に切り換え、第1の蓄冷熱用熱交換器10aの第2のバルブ26a、第4のバルブ27aを閉じ、第2の蓄冷熱用熱交換器10bの第3のバルブ26b、第5のバルブ27bを開けて、蓄冷運転を行う動作を同時に行う(S41)。蓄冷運転を5分間行うことにより(S42)、蒸発器として使用した第2の蓄冷熱用熱交換器10b内の冷媒量は少なくなる。この5分間の蓄冷運転終了後に四方切換弁28の流路を蓄熱側に切り換え、更に第1の蓄冷熱用熱交換器10aの第2のバルブ26aおよび第4のバルブ27aを開け、第2の蓄冷熱用熱交換器10bの第3のバルブ26bおよび第5のバルブ27bを閉じ、蓄熱運転を開始する動作を同時に行う(S43、S44)。この時点で、蓄熱運転の冷凍サイクル内の冷媒量は多量に存在する。そして、蓄熱槽9の水温が40℃を超えた時点で(S45)、蓄熱運転を終了する(S46)。
【0052】
実施の形態5.
以下、本発明の実施の形態5に係る蓄熱式空気調和装置を図面に基づき説明する。
図15は本実施の形態の蓄熱式空気調和装置の冷媒回路図を示すものである。同図において、実施の形態1における図1と同一の構成要素については同一の符号を付し、その説明を省略する。図1と異なるのは以下の点である。
すなわち、蓄熱槽が複数の分割蓄熱槽9A、9Bとして別個独立に構成されており、各分割蓄熱槽9A、9Bに第1の蓄冷熱用熱交換器10aまたは第2の蓄冷熱用熱交換器10bがそれぞれ配置されたことである。
【0053】
因みに、図16のようなスペースに蓄熱槽を設置する場合、蓄熱槽のサイズ(幅×奥行×高さ)が2m×1m×2mのものでは、入りきらない。ところが、蓄熱槽を容積が1/2であるサイズ1m×1m×2mの蓄熱槽2台分に分割すると、分割蓄熱槽9A、9Bを別々の場所へ収納できる。
このようにすると、蓄熱槽の設置の方法に選択の幅ができる。また、一つの分割蓄熱槽が水漏れ等で使用不可となった場合でも、他の分割蓄熱槽を使用することが可能である。
【0054】
尚、上記した各実施の形態では、第2の蓄冷熱用熱交換器は1台を設けた例を示したが、これに限らず、第2の蓄冷熱用熱交換器を複数台並設したものでもよい。
【0055】
【発明の効果】
この発明の蓄熱式空気調和装置によれば、蓄冷熱用熱交換器等の一部が故障により使用できない状況になった場合でも、蓄冷熱用熱交換器や蓄熱槽を取り替えたりしなくてもよく、蓄冷・蓄熱運転または放冷・放熱による蓄熱利用の空調運転を継続して行うことができる。
【0056】
また、放熱暖房運転に関し、夜間の蓄熱が完了した直後に限らず、蓄熱を一度利用するに伴って蓄熱槽内の蓄熱媒体の温度が低下した場合であっても、効率の良い蓄熱利用の暖房運転を行うことができる。
【0057】
そして、放冷冷房運転に関し、消費電力夜間移行率を更に増加させるために、消費電力のピーク時の放冷冷房運転に使用する単位時間あたりの蓄冷利用量、すなわち蓄冷熱用熱交換器の伝熱面積に比例する放冷量を増加させることができる。
【0058】
更に、蓄熱運転に関し、外気温度が低い場合は使用していない室内ユニットや配管内に冷媒が多量に分布しやすいことから、使用すべき冷媒回路中の冷媒量が不足しがちであるが、蓄熱運転の前の予備運転として少しだけ蓄冷運転を行うようにしたので、使用しない方の蓄冷熱用熱交換器内の冷媒を冷媒回路に移動させたのちに蓄熱運転を開始できる。これにより、不十分な冷媒量による蓄熱運転状態に陥ることを回避できる。
【0059】
また、必要とされる蓄熱槽と総容量が同等となる複数の分割蓄熱槽を用いたので、蓄熱槽設置のためのスペースが分散されていて個々の分散スペースが狭い場合でも、かかる狭いスペースに蓄熱槽を設置することができる。
【図面の簡単な説明】
【図1】 この発明の実施の形態1による冷媒回路図である。
【図2】 実施の形態2による蓄熱室9aを使用した時の放熱暖房運転時の冷媒回路図である。
【図3】 実施の形態2による蓄熱室9bを使用した時の放熱暖房運転時の冷媒回路図である。
【図4】 実施の形態2による一般暖房運転時の冷媒回路図である。
【図5】 実施の形態2による暖房時間帯運転切り換え状態図である。
【図6】 実施の形態2による暖房時間帯運転切り換えの制御ブロック図である。
【図7】 実施の形態3による蓄熱室9aを使用した時の蓄冷熱併用冷房運転の冷媒回路図である。
【図8】 実施の形態3による蓄熱室9bを使用した時の蓄冷熱併用冷房運転の冷媒回路図である。
【図9】 実施の形態3による一般冷房運転の冷媒回路図である。
【図10】 実施の形態3による冷房時間帯運転切り替え状態図である。
【図11】 実施の形態3による冷房時間帯運転切り替えの制御ブロック図である。
【図12】 実施の形態4による蓄熱運転の冷媒回路図である。
【図13】 実施の形態4による蓄冷運転の冷媒回路図である。
【図14】 実施の形態4による蓄熱運転の制御ブロック図である。
【図15】 実施の形態5による冷媒回路図である。
【図16】 実施の形態5による蓄熱槽ユニットの設置図である。
【図17】 従来例の冷媒回路図である。
【図18】 従来例の蓄冷運転時の冷媒回路図である。
【図19】 図18の冷媒回路における運転回路図である。
【図20】 従来例の一般冷房運転時の冷媒回路図である。
【図21】 図20の冷媒回路における運転状態図である。
【図22】 従来例の放冷運転時の冷媒回路図である。
【図23】 図22の冷媒回路における運転状態図である。
【図24】 従来例の蓄冷熱併用冷房運転時の冷媒回路図である。
【図25】 図24の冷媒回路における運転状態図である。
【図26】 従来例の蓄熱運転時の冷媒回路図である。
【図27】 図26の冷媒回路における運転状態図である。
【図28】 従来例の一般暖房運転時の冷媒回路図である。
【図29】 図28の冷媒回路における運転状態図である。
【図30】 従来例の放熱運転時の冷媒回路図である。
【図31】 図30の冷媒回路における運転状態図である。
【図32】 従来例の蓄熱併用暖房運転時の冷媒回路図である。
【図33】 図32の冷媒回路における運転状態図である。
【符号の説明】
1 圧縮機
3 室外側熱交換器
6 第1の絞り装置
9 蓄熱槽
9a、9b 蓄熱室
9A、9B 分割蓄熱槽
10a 第1の蓄冷熱用熱交換器
10b 第2の蓄冷熱用熱交換器
12 冷媒ポンプ
14 第1のバルブ
15a、15b、15c 第2の絞り装置
16a、16b、16c 室内側熱交換器
21 蓄熱媒体
22 第3の絞り装置
23 第6のバルブ
24 第7のバルブ
26a 第2のバルブ
26b 第3のバルブ
27a 第4のバルブ
27b 第5のバルブ
28 四方切換弁
104a、104b、103、108、121、122a、122b、122c、123a、123b、123c、124a、124b、124c、120、128a、128b、139、129 冷媒配管
105、112、118、119 第1の接続配管
130、133、132、131 第2の接続配管
136、137 第3の接続配管
201 蓄熱使用熱交換器管理手段
202 冷熱使用熱交換器管理手段
203 冷凍サイクル内冷媒量調整手段
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to a regenerative air conditioner related to daytime power suppression and leveling measures.
[0002]
[Prior art]
FIG. 17 shows a conventional heat storage type air conditioner disclosed in Japanese Patent Application No. 5-30727, for example. That is, in FIG. 17, 1 is, for example, a 5-horsepower compressor, 2 is a compressor four-way switching valve, and each is connected by a refrigerant circuit 101. Reference numeral 3 denotes an outdoor heat exchanger that functions as a condenser during cooling and functions as an evaporator during heating, and is connected to the compressor four-way switching valve 2 by a refrigerant circuit 102.
[0003]
Reference numeral 6 denotes a first expansion device connected to the outdoor heat exchanger 3 and the refrigerant circuit 103. Reference numerals 7 and 8 denote valves, which are connected to the refrigerant circuit 109 and 110 which are branched from the refrigerant circuit 108. Each is connected to the first diaphragm device 6. Reference numeral 9 denotes a heat storage tank. A heat storage medium 21 (for example, water) stored in the tank is cooled by a heat storage heat exchanger 10 formed by connecting a plurality of heat transfer tubes vertically and connecting them. It is freezing at times and hot water can be stored during heating.
[0004]
The valve 8 is connected to the cold storage heat exchanger 10 of the heat storage tank 9 by a refrigerant circuit 111. Reference numeral 12 denotes a refrigerant pump that conveys a gaseous refrigerant, and the pump capacity is selected so that a circulation amount equal to the refrigerant circulation amount by the operation of the compressor 1 can be obtained under predetermined operating conditions. A refrigerant pump four-way switching valve 11 is connected to the refrigerant pump 12 by a refrigerant circuit 114. 13 is a refrigerant pump accumulator, and 14 is a valve that branches from the refrigerant circuit 112 from the heat storage tank 9 to form refrigerant circuits 113 and 118, which are connected to the refrigerant pump four-way switching valve 11 and the valve 14, respectively. .
[0005]
The refrigerant pump four-way switching valve 11 and the refrigerant pump accumulator 13 are connected by a refrigerant circuit 116, and the refrigerant pump accumulator 13 is connected to the refrigerant pump 12 by a refrigerant circuit 115. 117 is a refrigerant circuit connected to the refrigerant pump four-way switching valve 11 and the refrigerant circuit 120, 119 is a refrigerant circuit connected to the valve 14 and the refrigerant circuit 125, and 20 is a valve connecting the refrigerant circuits 120 and 125. The other end of the circuit 125 is connected to the compressor four-way switching valve 2 described above.
[0006]
121 is a refrigerant circuit connected to the above-described valve 7, and has a plurality of indoor unit refrigerant circuit systems a, b, c between this circuit and the refrigerant circuit 120. The expansion device 15, the refrigerant circuit 123, the indoor heat exchanger 16, and the refrigerant circuit 124 are sequentially connected.
[0007]
Refrigerant circuits 126 and 127 are connected between the compressor four-way switching valve 2 and the compressor accumulator 17, and between the compressor accumulator 17 and the compressor 1, respectively.
[0008]
Next, the operation will be described with reference to FIGS.
FIG. 18 shows a cold storage operation at night, that is, an ice making operation. In the figure, the valves 7 and 20 are closed, the valves 8 and 14 are opened, and the compressor 1 is operated. At this time, the refrigerant discharged from the compressor 1 condenses in the outdoor heat exchanger 3, adiabatically expands in the first expansion device 6, evaporates in the cold storage heat exchanger 10, and from the heat storage medium 21 (for example, water). It absorbs heat, freezes the surface of the heat storage heat exchanger 10, and the vaporized refrigerant returns to the compressor 1 via the accumulator 17.
[0009]
FIG. 19 shows a Mollier diagram representing the operation state during the cold storage operation. The operating points represented by numerals in the figure indicate the state of the refrigerant in the refrigerant circuit represented by the same numerals in the figure, the condensation temperature is about 40 ° C., and the evaporation temperature is about −3 ° C. In this operation, for example, assuming that there is no residual water in the tank, the system starts ice making at 22:00 and ends ice making at 8:00 the next morning.
[0010]
The daytime cooling operation is described below. FIG. 20 shows the cooling operation when the cooling operation is performed only by the compressor 1 without using the cold storage heat.
In the figure, the valves 7 and 20 are opened, the valves 8 and 14 are closed, and the compressor 1 is operated. The high-pressure refrigerant condensed and liquefied by the same action as in FIG. 18 is sent to the refrigerant circuit systems a, b, c for each indoor unit, depressurized while adjusting the refrigerant flow rate by each second expansion device 15, and about 6 kg. /cm 2 It flows into the indoor heat exchanger 16 at a pressure of about G and evaporates. At this time, the refrigerant that has absorbed heat from the surrounding indoor air and gasified returns to the compressor 1 via the compressor accumulator 17. The operating capacity of the compressor 1 at this time is determined by the total operating capacity of the indoor units.
[0011]
FIG. 21 shows a Mollier diagram representing the operation state during the general cooling operation. The numbers in the figure are as described in FIG. 19, and the condensation temperature is about 45 ° C. and the evaporation temperature is about 10 ° C. In this operation, the present system performs cooling after consumption of cold storage heat, for example.
[0012]
FIG. 22 shows the cooling only by using the regenerative heat, that is, the cooling operation.
In the figure, the first expansion device 6 and the valves 14 and 20 are closed, the valves 7 and 8 are opened, and the refrigerant pump 12 is operated. At this time, the gas refrigerant sent out by the refrigerant pump 12 is cooled by ice in the heat storage tank 9, condensed at 20 to 25 ° C., and liquefied about 9 kg / cm. 2 The refrigerant G is sent to each indoor unit refrigerant circuit system a, b, c, and is cooled in the same manner as in FIG. At this time, since the refrigerant circulation amount of the refrigerant pump 12 is equivalent to the refrigerant circulation amount by the compressor 1 in FIG. 20, the same amount of refrigerant of the same temperature and pressure flows through the indoor heat exchanger 16, and the power As for the differential pressure is about 3kg / cm 2 Despite the small capacity of about G, the cooling capacity is equivalent to the general cooling operation of FIG. The operating capacity of the refrigerant pump 12 at this time is determined by the total operating capacity of the indoor units.
[0013]
FIG. 23 shows a Mollier diagram showing the operation state during the cooling operation. The numbers in the figure are as described in FIG. 19, and the condensation temperature is about 23 ° C. and the evaporation temperature is about 10 ° C. In this operation, the present system performs cooling at a light load, for example.
[0014]
FIG. 24 shows a cooling operation combined with regenerative heat in which the general cooling operation of FIG. 20 and the cooling operation of FIG. 22 are simultaneously performed.
In the figure, the valve 14 is closed, the valves 7, 8, and 20 are opened, and the compressor 1 and the refrigerant pump 12 are operated. At this time, the liquid refrigerant condensed in the heat exchanger 10 for regenerative heat on the refrigerant pump 12 side merges with the refrigerant decompressed by the first expansion device 6 on the compressor 1 side and in front of the valve 7, and refrigerant for the indoor unit In the circuit systems a, b, and c, approximately twice the amount of refrigerant circulates in the general cooling operation of FIG. 20 or the cooling operation of FIG. 22, and the capacity is also doubled. At this time, the opening degree of the first expansion device 6 is constant, and the pressure at the junction is 8 to 10 kg / cm. 2 It becomes about G. The operating capacity at this time is determined by controlling the capacity of the compressor 1 with the refrigerant pump 12 at 100% output, and the capacity control ratio is determined by the total operating capacity of the indoor units.
[0015]
FIG. 25 shows a Mollier diagram showing the operation state during the cooling operation with the cold storage heat. The numbers in the figure are as described in FIG. The evaporation temperature is about 10 ° C., as in the other cooling operations, but the condensation temperature is about 45 ° C. for the outdoor heat exchanger 3 and about 20-25 ° C. for the cold storage heat exchanger 10. In this operation, the system performs cooling during normal cooling load.
[0016]
The above has described the operation related to cooling. The following is the description of the operation related to heating. Therefore, unless otherwise specified, the compressor four-way switching valve 2 and the refrigerant pump four-way switching valve 11 are set to the heating mode.
FIG. 26 shows, for example, nighttime heat storage operation, that is, hot water storage operation. In the figure, the valves 7 and 20 are closed, the valves 8 and 14 are opened, and the compressor 1 is operated. At this time, the high-temperature gas refrigerant discharged from the compressor 1 flows in the direction of the arrow in the drawing, condenses in the heat exchanger 10 for cold storage heat of the heat storage tank 9, and raises the temperature of the water 21. The condensed refrigerant adiabatically expands in the first expansion device 6, absorbs heat from the outside air in the outdoor heat exchanger 3 and evaporates, and the vaporized refrigerant returns to the compressor 1 via the accumulator 17.
[0017]
FIG. 27 shows a Mollier diagram representing the operation state during the heat storage operation. The numbers in the figure are as described in FIG. 19, and the boiling temperature of the bath water temperature is about 50 ° C., the condensation temperature at this time is about 55 ° C., and the evaporation temperature is about 0 ° C. In this operation, the system stores hot water in the nighttime power hours and ends the operation as soon as a predetermined bath water temperature is reached.
[0018]
The daytime heating operation is described below. FIG. 28 shows a general heating operation when heating operation is performed only by the compressor 1 without using heat storage. In the figure, the valves 7 and 20 are opened, the valves 8 and 14 are closed, and the compressor 1 is operated. 17 kg / cm from compressor 1 2 The high-temperature and high-pressure gas discharged at a pressure around G is sent to each indoor unit refrigerant circuit system a, b, c, and condensed in each indoor-side heat exchanger 16 to heat indoor air. The condensed liquid refrigerant is slightly depressurized by the second throttling device 15 and further depressurized by the first throttling device 6 to about 4 kg / cm. 2 It evaporates in the outdoor heat exchanger 3 with the pressure of G, and thereafter returns to the compressor 1 by the same action as FIG. The operating capacity of the compressor 1 at this time is determined by the total operating capacity of the indoor units.
[0019]
FIG. 29 shows a Mollier diagram representing the operation state during the general heating operation. The numbers in the figure are as described in FIG. 19, the condensation temperature is about 42 to 43 ° C., and the evaporation temperature is about 0 ° C. In this operation, the system performs heating during light loads during the day after consumption of heat storage.
[0020]
FIG. 30 shows heating only by heat storage, that is, heat radiation operation. In the figure, the first expansion device 6 and the valves 14 and 20 are closed, the valves 7 and 8 are opened, and the refrigerant pump 12 is operated. At this time, the refrigerant pump 12 has an evaporation pressure of about 13 kg / cm in the tank. 2 The gas refrigerant heated and vaporized by G is sucked through the refrigerant pump accumulator 13. Therefore, about 4kg / cm 2 17kg / cm with G pressure increase 2 The high-temperature and high-pressure gas refrigerant before and after G is sent to the indoor unit refrigerant circuit systems a, b, and c, and the indoor air is heated by the same action as in FIG. The condensed refrigerant is depressurized by the second expansion device 15 and about 13 kg / cm. 2 It returns to the heat storage tank 9 as a gas-liquid two-phase refrigerant of G. The operating capacity of the refrigerant pump 12 at this time is determined by the total operating capacity of the indoor units.
[0021]
FIG. 31 shows a Mollier diagram showing the operation state during the heat radiation operation. The numbers in the figure are as described in FIG. 19, the condensation temperature is about 42 to 43 ° C., and the evaporation temperature is about 35 ° C. In this operation, the system performs heating at a light load, for example.
[0022]
FIG. 32 shows a combined heat storage heating operation in which the general heating operation of FIG. 28 and the heat dissipation operation of FIG. 30 are simultaneously applied. In the figure, the valve 14 is closed, the valves 7, 8 and 20 are opened, and the compressor 1 and the refrigerant pump 12 are operated. At this time, the gas refrigerant delivered from the refrigerant pump 12 merges with the gas refrigerant discharged from the compressor 1 on the outlet side of the valve 20, and the indoor unit refrigerant circuit systems a, b, c are connected to the refrigerant circuit systems a, b, c for indoor unit in the general heating operation of FIG. Alternatively, the pressure is 17kg / cm, which is twice the amount of heat dissipation operation shown in Fig. 30. 2 The high-temperature and high-pressure refrigerant around G circulates and the capacity is doubled. About 13 kg / cm decompressed by the second expansion device 15 2 About 1/2 of the refrigerant of about G flows into the heat storage heat exchanger 10 for cold storage heat, and performs the same operation as the heat radiation operation of FIG. 30, and the other 1/2 refrigerant enters the first expansion device 6. The pressure is further reduced to about 4 kg / cm 2 It becomes the pressure of G, flows into the outdoor heat exchanger 3, and performs the same action as the general heating operation of FIG. The operating capacity at this time is determined by controlling the capacity of the compressor 1 with the refrigerant pump 12 at 100% output, and the capacity control ratio is determined by the total operating capacity of the indoor units.
[0023]
FIG. 33 shows a Mollier diagram representing the operating state during this heat storage combined heating operation. The numbers in the figure are as described in FIG. The condensation temperature is about 42 to 43 ° C. as in other heating operations, but the evaporation temperature is around 35 ° C. for the cold-storage heat exchanger 10 and around 0 ° C. for the outdoor heat exchanger 3. In this operation, the present system performs heating when the heating load is concentrated, for example, at the start-up in the morning.
[0024]
[Problems to be solved by the invention]
In the conventional heat storage type air conditioner that performs each operation as described above, when one of the heat exchangers for cold storage heat or the heat storage tank cannot be used, cold storage, heat storage and Air conditioning operation using heat storage could not be performed.
[0025]
In addition, at the time of heat dissipation heating, high-efficiency heat storage use heating can be performed immediately after performing nighttime heat storage, but once the heat storage is used, the temperature of the heat storage medium in the heat storage tank decreases, In the case of performing air conditioning using heat storage again before the heat storage operation, only heat storage using heating with relatively low efficiency due to the lowered water temperature was possible.
[0026]
In addition, the amount of cold storage used per unit time used during cooling is always the same, and the amount of cold storage used per unit time used during cooling is used to further increase the nighttime power consumption rate at the peak of power consumption. That is, the heat transfer area of the heat exchanger for cold storage heat could not be increased.
[0027]
Further, during low heat operation of heat storage operation, a large amount of refrigerant is distributed in units and pipes on the indoor unit side that are not used. For this reason, the amount of refrigerant in the refrigerant circuit used is insufficient, and the operation state is insufficient.
[0028]
Also, if the heat storage tank is configured as an integral unit, the installation space is concentrated in one place, so if the installation space is narrowly dispersed, the installation space for the heat storage tank cannot be secured, and the heat storage tank The tank installation was severely restricted.
[0029]
[Means for Solving the Problems]
In order to solve the various problems described above, a regenerative air conditioner according to the present invention includes a compressor, a four-way switching valve, an outdoor heat exchanger, a first throttle device, a second throttle device, and an indoor side. A general cooling / heating circuit in which heat exchangers are sequentially connected by piping, a third expansion device between the first expansion device and the second expansion device, and a space between the indoor heat exchanger and the compressor are connected to the third circuit. A first heat storage / heat storage circuit that is connected to the expansion device, the first heat storage heat exchanger, and the first valve together with the compressor, the outdoor heat exchanger, and the first expansion device. A refrigerant pipe is connected between the connection pipe and the four-way switching valve of the general cooling and heating circuit to the suction side of the compressor and between the first valve of the first connection pipe and the first heat storage heat exchanger. Connected first heat storage heat storage heat exchanger, third expansion device, second expansion device, and indoor side A regenerative air conditioner comprising: a second connecting pipe constituting a cooling / radiating circuit together with an exchanger; and a heat storage tank in which a first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. 1, one or a plurality of second cool heat storage heat exchangers that are arranged in the heat storage medium and constitute a part of the cooling / dissipating circuit are arranged in parallel with the first cool heat storage heat exchanger. A second valve provided on one outlet side of the first cold storage heat exchanger of the first connection pipe and a second cold storage heat of the first connection pipe. A third valve provided on one outlet side of the heat exchanger for heat, a fourth valve provided on the other outlet side of the first heat exchanger for cold storage heat of the first connection pipe, A fifth valve provided on the other outlet side of the second heat storage heat storage heat exchanger of the connection pipe, and a four-way switching valve of a general air conditioning circuit The 3rd which connects between the suction side of a compressor, and the piping connection position of the 1st and 2nd heat exchanger for cold storage heat from the 1st valve of the 1st connection piping via the 6th valve. And a connecting pipe.
[0030]
In addition, a general cooling / heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected by piping, and a general cooling / heating circuit Between the first throttling device and the second throttling device and between the indoor heat exchanger and the compressor through a third throttling device, a first heat storage heat exchanger, and a first valve. Connected between the compressor, the outdoor heat exchanger, and the first expansion device together with the first expansion device, between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor Between the first valve of the first connecting pipe and the first heat storage heat exchanger through a refrigerant pump, the first heat storage heat exchanger, the third expansion device, the second The second connecting pipe constituting the cooling / radiating circuit together with the expansion device and the indoor heat exchanger, and storage in the tank In a heat storage type air conditioner comprising a heat storage tank in which a first heat storage heat storage heat exchanger is disposed in the heat storage medium, the heat storage medium is disposed in the heat storage medium and constitutes a part of the circuit for cooling / dissipating heat 1 or A plurality of second heat storage heat exchangers are connected to the first connection pipe in parallel with the first heat storage heat exchanger, and the heat storage tank is divided into a plurality of heat storage chambers, A first valve or a second heat storage heat exchanger disposed in the heat storage chamber, and a second valve provided on one outlet side of the first heat storage heat exchanger of the first connection pipe; , A third valve provided on one outlet side of the second cool storage heat exchanger of the first connection pipe, a first valve between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor, and the first Between the first valve of the connection pipe of the first pipe and the pipe connection position of the first and second heat storage heat storage devices through the sixth valve. When performing the heat storage utilization heating operation using the third connection pipe to be connected and the circuit for cooling and radiating heat, the first and second cold storage heats are switched by opening and closing the second valve and the third valve. The heat storage use heat exchanger management means which uses the heat storage of the heat storage medium by any of the heat exchangers for use.
[0031]
A general cooling / heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected by piping, and a general cooling / heating circuit Between the first throttling device and the second throttling device and between the indoor heat exchanger and the compressor through a third throttling device, a first heat storage heat exchanger, and a first valve. Connected between the compressor, the outdoor heat exchanger, and the first expansion device together with the first expansion device, between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor Between the first valve of the first connecting pipe and the first heat storage heat exchanger through a refrigerant pump, the first heat storage heat exchanger, the third expansion device, the second A second connecting pipe that constitutes a circuit for cooling and radiating heat together with the expansion device and the indoor heat exchanger, and in the tank In a heat storage air conditioner comprising a heat storage tank in which a first heat storage heat storage heat exchanger is disposed in a stored heat storage medium, the heat storage medium is disposed in the heat storage medium and constitutes a part of a circuit for cooling and radiating heat Alternatively, a plurality of second heat storage heat exchangers are connected to the first connection pipe in parallel with the first heat storage heat exchanger, and the heat storage tank is divided into a plurality of heat storage chambers. A second valve provided on one outlet side of the first heat exchanger for cold storage heat of the first connection pipe while arranging the first or second heat storage heat exchanger in each heat storage chamber. And a third valve provided on one outlet side of the second heat storage heat storage heat exchanger of the first connection pipe, a four-way switching valve of the general cooling and heating circuit and a suction side of the compressor Between the first valve of the first connection pipe and the pipe connection position of the first and second heat storage heat exchangers via the sixth valve For the first or second regenerative heat by switching the second valve and the third valve to open and close when performing the cooling use cooling operation using the third connection pipe and the cooling / heat radiation circuit The heat exchanger management means which uses the cold energy which uses the cold energy of the heat storage medium by either or both of the heat exchangers is provided.
[0032]
In addition, a general cooling / heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected by piping, and a general cooling / heating circuit Between the first throttling device and the second throttling device and between the indoor heat exchanger and the compressor through a third throttling device, a first heat storage heat exchanger, and a first valve. Connected between the compressor, the outdoor heat exchanger, and the first expansion device together with the first expansion device, between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor Between the first valve of the first connecting pipe and the first heat storage heat exchanger through a refrigerant pump, the first heat storage heat exchanger, the third expansion device, the second The second connecting pipe constituting the cooling / radiating circuit together with the expansion device and the indoor heat exchanger, and storage in the tank In a heat storage type air conditioner comprising a heat storage tank in which a first heat storage heat storage heat exchanger is disposed in the heat storage medium, the heat storage medium is disposed in the heat storage medium and constitutes a part of the circuit for cooling / dissipating heat 1 or The plurality of second cool heat storage heat exchangers are connected to the first connection pipe in parallel with the first cool heat heat exchanger, and the first heat storage heat exchange of the first connection pipe A second valve provided on one outlet side of the heater, a third valve provided on one outlet side of the second heat storage heat exchanger of the first connecting pipe, and a circuit for general air conditioning Between the four-way switching valve of the compressor and the suction side of the compressor and between the first valve of the first connection pipe and the pipe connection position of the first and second heat storage heat exchangers via the sixth valve. Before performing the heat storage operation using the third connection pipe to be connected and the cold storage / heat storage circuit, the cold storage operation is performed for a predetermined time. Those formed by and a first or second refrigeration cycle in the refrigerant amount adjusting means for discharging the refrigerant from the cold storage heat heat exchanger.
[0033]
In addition, a general cooling / heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected by piping, and a general cooling / heating circuit Between the first throttling device and the second throttling device and between the indoor heat exchanger and the compressor through a third throttling device, a first heat storage heat exchanger, and a first valve. Connected between the compressor, the outdoor heat exchanger, and the first expansion device together with the first expansion device, between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor Between the first valve of the first connecting pipe and the first heat storage heat exchanger through a refrigerant pump, the first heat storage heat exchanger, the third expansion device, the second The second connecting pipe constituting the cooling / radiating circuit together with the expansion device and the indoor heat exchanger, and storage in the tank In a heat storage type air conditioner comprising a heat storage tank in which a first heat storage heat storage heat exchanger is disposed in the heat storage medium, the heat storage medium is disposed in the heat storage medium and constitutes a part of the circuit for cooling / dissipating heat 1 or The plurality of second heat storage heat exchangers are connected to the first connection pipe in parallel with the first heat storage heat exchanger, and the heat storage tank is configured as a plurality of divided heat storage tanks independently. Each of the divided heat storage tanks is provided with a first or second heat storage heat storage device.
[0034]
DETAILED DESCRIPTION OF THE INVENTION
Subsequently, embodiments of the present invention will be described with reference to the drawings.
Embodiment 1 FIG.
Hereinafter, a heat storage type air-conditioning apparatus according to Embodiment 1 of the present invention will be described with reference to the drawings.
FIG. 1 shows a system of a heat storage type air conditioner. In the figure, the same components as those in FIG. 17 in the conventional example are designated by the same reference numerals, and the description thereof is omitted.
In this heat storage type air conditioner, as shown in FIG. 1, the compressor 1, the four-way switching valve 28, the outdoor heat exchanger 3, the first expansion device 6, the second expansion devices 15a, 15b, 15c, and The indoor heat exchangers 16a, 16b, 16c are connected to the refrigerant pipes 104a, 104b, 103, 108, 121, 122a, 122b, 122c, 123a, 123b, 123c, 124a, 124b, 124c, 120, 128a, 128b, 139, 129 are sequentially connected to form a general air conditioning circuit.
In addition, the refrigerant pipes 108 and 121 between the first expansion device 6 and the second expansion devices 15a, 15b, and 15c of the general cooling and heating circuit and the indoor heat exchangers 16a, 16b, and 16c and the compressor 1 are connected. First connection pipes 105, 112, 118, and 119 that connect the refrigerant pipes 120 and 128a via the third expansion device 22, the first heat storage heat exchanger 10a, and the first valve 14 are provided. Is provided. The first connection pipes 105, 112, 118, and 119 together with the compressor 1, the outdoor heat exchanger 3, and the first expansion device 6 constitute a cold storage / heat storage circuit.
Moreover, the 1st connection between the refrigerant | coolant piping 129,139 between the four-way switching valve 28 of the circuit for general cooling / heating and the suction side of the compressor 1, and the 1st valve 14 from the 1st heat storage heat exchanger 10a. Second connection pipes 130, 133, 132, and 131 that connect the pipes 112 and 118 via the refrigerant pump 12 and the seventh valve 24 are provided. The second connection pipes 130, 133, 132, and 131 are the first heat storage heat exchanger 10 a, the third expansion device 22, the second expansion devices 15 a, 15 b, 15 c, and the indoor heat exchanger 16 a. , 16b, and 16c constitute a cooling / dissipating circuit.
[0035]
And the 2nd cold storage heat exchanger 10b which is arrange | positioned in the thermal storage medium 21 and comprises a part of circuit for cooling / radiating heat is parallel to the 1st cold storage heat exchanger 10a, and is 1st. The connection pipes 105 and 112 are connected.
Furthermore, the second valve 26a provided on one outlet side of the first cold storage heat exchanger 10a of the first connection pipe 112, and the second cold storage heat of the first connection pipe 112. A third valve 26b provided on one outlet side of the exchanger 10b and a fourth valve 27a provided on the other outlet side of the first cold storage heat exchanger 10a of the first connection pipe 105. And a fifth valve 27b provided on the other outlet side of the second cool storage heat exchanger 10b of the first connection pipe 105, and the compressor 1 suction side from the four-way switching valve 28 of the general cooling / heating circuit. The refrigerant pipes 128b and 139 between the first valve 14 and the first connection pipe 112 between the first and second regenerative heat exchangers 10a and 10b are connected via the sixth valve 23. Third connecting pipes 136 and 137 are provided.
[0036]
Therefore, in this regenerative air conditioner, even when the first regenerator heat exchanger 10a is broken, the second regenerator heat is closed by closing the second valve 26a and the fourth valve 27a. The exchanger 10b can be used, and the operation using the heat storage tank 9 becomes possible. Conversely, when the second heat storage heat exchanger 10b is broken, the first heat storage heat exchanger 10a can be used by closing the third valve 26b and the fifth valve 27b, The operation | movement which uses the thermal storage tank 9 is attained.
[0037]
Embodiment 2. FIG.
Hereinafter, a regenerative air conditioner according to Embodiment 2 of the present invention will be described with reference to the drawings.
FIG. 2 shows a system of a heat storage type air conditioner. In the figure, the same components as those in FIG. 1 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Differences from FIG. 1 are as follows.
That is, the heat storage tank 9 is divided into two heat storage chambers 9a and 9b, and each of the heat storage chambers 9a and 9b has a first heat storage heat exchanger 10a or a second heat storage heat exchanger 10b. Are arranged, and when performing a heat storage-use heating operation using a cooling / radiating circuit, the second valve 26a and the third valve 26b are opened and closed based on a preset heating operation schedule. It is provided with heat storage use heat exchanger management means 201 that switches between them and uses the heat storage of the heat storage medium 21 by either the first or second heat storage heat exchanger 10a, 10b.
[0038]
Next, the operation of the present embodiment, the basic refrigerant flow, and the operating state will be described.
The circuit diagram of the heat radiation heating operation when using the heat storage chamber 9a of the present embodiment is FIG.
In FIG. 2, the third throttling device 22, the second throttling devices 15a, 15b, 15c, the sixth valve 23, and the second valve 26a are open, and the other throttling devices and valves are closed. The compressor 1 and the refrigerant pump 12 are operated. At this time, the compressor 1 is 17 kg / cm. 2 High-temperature and high-pressure gas refrigerants before and after G are sent to the indoor unit refrigerant circuit systems a, b, and c to heat the indoor air. The condensed refrigerant is depressurized by the second expansion device 15 and about 13 kg / cm. 2 It becomes a gas-liquid two-phase refrigerant of G, evaporates back to the heat storage chamber 9a, passes through the sixth valve 23, and is about 4 kg / cm. 2 Return to compressor 1 with G.
[0039]
On the other hand, FIG. 3 shows a circuit diagram of the heat radiation heating operation when the heat storage chamber 9b of the present embodiment is used.
In FIG. 3, the third throttling device 22, the second throttling devices 15a, 15b, 15c, the sixth valve 23, and the third valve 26b are open, and the other throttling devices and valves are closed. The compressor 1 and the refrigerant pump 12 are operated. At this time, the compressor 1 is 17 kg / cm. 2 High-temperature and high-pressure gas refrigerants before and after G are sent to the indoor unit refrigerant circuit systems a, b, and c to heat the indoor air. The condensed refrigerant is depressurized by the second expansion device 15 and about 13 kg / cm. 2 It becomes a gas-liquid two-phase refrigerant of G, evaporates back to the heat storage chamber 9b, passes through the sixth valve 23, and is about 4 kg / cm. 2 Return to compressor 1 with G.
[0040]
Next, FIG. 4 shows a circuit diagram of the general heating operation of the present embodiment.
In FIG. 4, the compressor 1 is operated with the first throttle device 6 and the second throttle devices 15a, 15b, 15c open, and the other throttle devices and valves closed. 17 kg / cm from compressor 1 2 The high-temperature and high-pressure gas discharged at a pressure around G is sent to each indoor unit refrigerant circuit system a, b, c, and condensed in each indoor-side heat exchanger 16a, 16b, 16c to heat indoor air. The condensed liquid refrigerant is slightly depressurized by the second throttling devices 15a, 15b, and 15c, and further depressurized by the first throttling device 6 to about 4 kg / cm. 2 It evaporates in the outdoor heat exchanger 3 with the pressure of G and returns to the compressor 1.
[0041]
Next, FIG. 5 shows a heating time zone operation switching state diagram of the heating season of the present embodiment. In the figure, the horizontal axis represents time, and the vertical axis represents the heating capacity during heating operation. Further, this control of the operating state is shown in FIG. 6 of the control block diagram.
According to the heat storage and use heat exchanger management means 201, first, a heat release operation (a state in which the second valve 26a is opened) is performed in which the heat storage chamber 9a is included in the refrigeration cycle in the heating time period from 8:00 ( S1, S2). At this time, the third valve 26b of the heat storage chamber 9b is closed. Moreover, the temperature of the water which is the heat storage medium 21 of the heat storage chamber 9a and the heat storage chamber 9b is 40 degreeC at the time of 8:00. This operation is performed from 8:00 to 12:00 (S3). During the period from 12:00 to 16:00, where the amount of stored heat is consumed at night, the second valve 26a and the third valve 26b are closed and the operation for switching to the general heating operation is performed simultaneously (S4, S5). When 16:00 is reached (S6), the third valve 26b is opened and the operation of starting the heat radiation operation is simultaneously performed (S7). The heat radiation operation including the heat storage chamber 9b in the refrigeration cycle is started (S8), and the heat radiation operation is performed until 20:00. At this time, the water temperature of the heat storage chamber 9b is kept close to 40 ° C., and the water temperature is such that the heat radiation operation can be efficiently performed. And when it becomes 20:00 (S9), the operation | movement which closes the 3rd valve 26b and starts general heating operation is performed simultaneously (S10). During the time period from 20:00 to 22:00, the general heating operation is performed, and the second valve 26a and the third valve 26b are closed. At 22:00, the heating operation time zone ends (S11), and from 22:00 to 8:00 the next day, the heat storage time zone is reached.
[0042]
Embodiment 3 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 3 of the present invention will be described with reference to the drawings.
FIG. 7 shows a system of a heat storage type air conditioner. In the figure, the same components as those in FIG. 2 in the second embodiment are denoted by the same reference numerals, and the description thereof is omitted. The following points are different from FIG.
That is, when performing the cooling / cooling operation using the cooling / dissipating circuit, the first or second valve 26a and the third valve 26b are switched on and off based on a preset cooling operation schedule. The heat exchanger management means 202 for using cold energy that uses the cold energy of the heat storage medium 21 by either or both of the heat exchangers 10a and 10b for cold energy storage is provided.
[0043]
Next, the operation of the present embodiment, the basic refrigerant flow, and the operating state will be described.
First, FIG. 7 is a circuit diagram of a cooling operation combined with cold storage heat (one operation in the cooling operation) when the heat storage chamber 9a is used.
In FIG. 7, the first throttling device 6, the third throttling device 22, the second throttling devices 15a, 15b, 15c, the seventh valve 24, and the second valve 26a are opened, and the other valves are closed. In this state, the compressor 1 and the refrigerant pump 12 are operated. At this time, the liquid refrigerant condensed in the heat storage chamber 9a on the refrigerant pump 12 side merges with the refrigerant depressurized by the first expansion device 6 on the compressor 1 side, and reaches the refrigerant circuit systems a, b, and c for indoor units. About twice as much refrigerant as in general cooling operation circulates and the capacity doubles. Then, the refrigerant returns to the compressor 1.
[0044]
On the other hand, FIG. 8 shows a circuit diagram of a cooling operation combined with cold storage heat (one operation in the cooling operation) when the heat storage chamber 9b is used.
In FIG. 8, the first throttling device 6, the third throttling device 22, the second throttling devices 15a, 15b, 15c, the seventh valve 24, and the third valve 26b are opened, and the other valves are closed. In this state, the compressor 1 and the refrigerant pump 12 are operated. At this time, the liquid refrigerant condensed in the heat storage chamber 9b on the refrigerant pump 12 side merges with the refrigerant depressurized by the first expansion device 6 on the compressor 1 side, and reaches the refrigerant circuit systems a, b, and c for indoor units. About twice as much refrigerant as in general cooling operation circulates and the capacity doubles. Then, the refrigerant returns to the compressor 1.
[0045]
Next, FIG. 9 shows a circuit diagram of the general cooling operation.
The first throttling device 6 and the second throttling devices 15a, 15b, 15c are open, and the other throttling devices and valves are closed. The refrigerant discharged from the compressor 1 is condensed and liquefied in the outdoor heat exchanger 3, and the high-pressure refrigerant is sent to the indoor unit refrigerant circuit systems a, b, c, and the second expansion devices 15a, 15b, 15c. Reduce the pressure while adjusting the refrigerant flow rate in each of the 6 kg / cm 2 It flows into the indoor heat exchangers 16a, 16b and 16c at a pressure of about G and evaporates. At this time, the refrigerant that absorbs heat from the surrounding indoor air and returns to gas returns to the compressor 1.
[0046]
Next, FIG. 10 shows a cooling time zone operation switching state diagram in the cooling season of the present embodiment. In the figure, the horizontal axis represents time, and the vertical axis represents the cooling capacity during the cooling operation. Further, this operation state control is shown in FIG. 11 of the control block diagram.
According to the cooling-heat-use heat exchanger management means 202, first, the cooling operation time starts at 8:00, and the operation of closing the second valve 26a and the third valve 26b and starting the general cooling operation is simultaneously performed (S21). , S22). At 10:00 (S23), in order to operate one heat storage chamber 9a, the second valve 26a is opened and the operation for starting the cooling operation combined with the cold storage heat is simultaneously performed (prioritizing the heat storage chamber 9a). Use, S24). From 10:00 to 14:00, a regenerative heat combined cooling operation using only one heat storage chamber 9a is performed (S25), and at 14:00 (S26), the third valve 26b of the heat storage chamber 9b is turned on. By opening (S27), the cooling operation combined with the regenerative heat is started by the two units, the first regenerator heat exchanger 10a and the second regenerator heat exchanger 10b (S28). The operation of the two heat storage rooms is used from 14:00 to 16:00, which consumes a large amount of power, and the nighttime power transfer rate at the peak of summer power is increased. At 16:00 (S29), the second valve 26a is closed and the operation of one heat storage chamber only for the heat storage chamber 9b is started (S30, S31), and this operation is performed from 16:00 to 18:00. Do. At 18:00 (S32), the operation of closing the third valve 26b and starting the general cooling operation is simultaneously performed (S33, S34). After performing the general cooling operation from 18:00 to 22:00, the cooling time zone is terminated at 22:00 (S35, S36), and the operation proceeds to the cold storage operation. In addition, this Embodiment shows the same effect not only with cool storage utilization cooling but with heat storage utilization heating.
[0047]
Embodiment 4 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 4 of the present invention will be described with reference to the drawings.
FIG. 12 shows a system of a heat storage type air conditioner. In the figure, the same components as those in FIG. 1 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Differences from FIG. 1 are as follows.
That is, the fourth valve 27a and the fifth valve 27b are provided on the connection side of the first cool storage heat exchanger 10a and the second cool storage heat exchanger 10b with the third expansion device 22. In addition, prior to performing the heat storage operation using the cold storage / heat storage circuit based on a preset heating operation schedule, the first or second heat storage heat exchanger 10a, 10b is performed by performing the cold storage operation for a predetermined time. The refrigerant amount adjusting means 203 in the refrigeration cycle for discharging the refrigerant from the inside is provided.
[0048]
Next, the operation of the present embodiment, the basic refrigerant flow, and the operating state will be described. About the thermal storage operation of this Embodiment, the circuit diagram is shown in FIG.
In FIG. 12, the first throttle device 6, the third throttle device 22, the first valve 14, the second valve 26a, the third valve 26b, and the fourth valve 27a are opened, and other throttle devices and The compressor 1 is operated with the valve closed. At this time, the gas refrigerant sent out by the compressor 1 is cooled in the heat storage tank 9 and condensed at about 40 ° C., and the refrigerant throttled by the third throttling device 22 and the first throttling device 6 is the refrigerant circuit for the outdoor unit. About 6kg / cm 2 It flows into the outdoor heat exchanger 3 at a pressure of about G and evaporates. At this time, heat is absorbed from the surrounding outdoor air, and the gasified refrigerant returns to the compressor 1.
[0049]
Next, FIG. 13 shows a circuit diagram of the cold storage operation of the present embodiment.
In FIG. 13, the first throttle device 6, the third throttle device 22, the second valve 26a, and the fourth valve 27a are opened, and either the first valve 14 or the seventh valve 24 is closed. Other throttling devices and valves are closed. At this time, the refrigerant discharged from the compressor 1 condenses in the outdoor heat exchanger 3, adiabatically expands in the first expansion device 6 and the third expansion device 22, and evaporates in the first heat storage heat exchanger 10a. Then, heat is received from the heat storage medium 21 (for example, water), the surface of the first heat storage heat exchanger 10a is frozen, and the vaporized refrigerant returns to the compressor 1.
[0050]
In the heat storage operation, a large amount of refrigerant is distributed in the heat storage heat exchanger for using the first or second heat storage heat exchanger 10a, 10b as a condenser. Therefore, the amount of refrigerant in the heat storage operation refrigeration cycle is larger than that in general cooling operation and general heating operation, and heat dissipation operation and cold storage operation using the first or second heat storage heat exchanger 10a, 10b as an evaporator. Necessary. Therefore, it is necessary to control the distribution of the refrigerant amount in the refrigeration cycle.
[0051]
Next, the refrigerant amount control in the refrigeration cycle during the heat storage operation of the present embodiment will be described with reference to FIG. 14 of the control block diagram.
According to the refrigerant amount adjusting means 203 in the refrigeration cycle, first, when the heat storage operation is started, the flow path of the four-way switching valve 28 is switched to the cold storage side as a preparatory operation, and the second heat exchanger 10a for the first cold storage heat exchanger 10a is switched. The valve 26a and the fourth valve 27a are closed, the third valve 26b and the fifth valve 27b of the second heat storage heat exchanger 10b are opened, and the operation for performing the cold storage operation is simultaneously performed (S41). By performing the cold storage operation for 5 minutes (S42), the amount of refrigerant in the second heat storage heat exchanger 10b used as an evaporator decreases. After the 5 minute cool-down operation is completed, the flow path of the four-way switching valve 28 is switched to the heat storage side, and the second valve 26a and the fourth valve 27a of the first heat storage heat exchanger 10a are opened, and the second The third valve 26b and the fifth valve 27b of the heat storage heat exchanger 10b are closed, and the operation for starting the heat storage operation is simultaneously performed (S43, S44). At this time, there is a large amount of refrigerant in the refrigeration cycle in the heat storage operation. And when the water temperature of the thermal storage tank 9 exceeds 40 degreeC (S45), thermal storage operation is complete | finished (S46).
[0052]
Embodiment 5 FIG.
Hereinafter, a heat storage type air conditioner according to Embodiment 5 of the present invention will be described with reference to the drawings.
FIG. 15 shows a refrigerant circuit diagram of the regenerative air conditioner of the present embodiment. In the figure, the same components as those in FIG. 1 in the first embodiment are denoted by the same reference numerals, and the description thereof is omitted. Differences from FIG. 1 are as follows.
That is, the heat storage tank is configured separately as a plurality of divided heat storage tanks 9A and 9B, and each of the divided heat storage tanks 9A and 9B has a first heat storage heat exchanger 10a or a second heat storage heat storage heat exchanger. 10b is arranged.
[0053]
Incidentally, when a heat storage tank is installed in a space as shown in FIG. 16, the heat storage tank size (width × depth × height) is 2 m × 1 m × 2 m, which cannot be fully accommodated. However, if the heat storage tank is divided into two heat storage tanks of size 1 m × 1 m × 2 m having a volume of 1/2, the divided heat storage tanks 9A and 9B can be stored in different places.
If it does in this way, the range of choice will be made in the method of installation of a thermal storage tank. Moreover, even when one divided heat storage tank becomes unusable due to water leakage or the like, another divided heat storage tank can be used.
[0054]
In each of the above-described embodiments, an example is shown in which one second heat storage heat exchanger is provided. However, the present invention is not limited to this, and a plurality of second heat storage heat exchangers are arranged in parallel. You may have done.
[0055]
【The invention's effect】
According to the heat storage type air conditioner of the present invention, even if a part of the heat storage heat exchanger or the like becomes unusable due to a failure, it is not necessary to replace the heat storage heat storage tank or the heat storage tank. Well, cold storage / heat storage operation or air-conditioning operation using heat storage by cooling / dissipating heat can be continued.
[0056]
In addition, regarding heat radiation heating operation, not only immediately after the completion of nighttime heat storage, even when the temperature of the heat storage medium in the heat storage tank decreases as the heat storage is used once, efficient heating using the heat storage You can drive.
[0057]
Then, in order to further increase the power consumption night shift rate for the cooling and cooling operation, the amount of cold storage used per unit time used for the cooling and cooling operation at the peak of power consumption, that is, the transmission of the heat exchanger for cold storage heat. The amount of cooling that is proportional to the heat area can be increased.
[0058]
Furthermore, with regard to heat storage operation, when the outside air temperature is low, the refrigerant amount in the refrigerant circuit to be used tends to be insufficient because a large amount of refrigerant is likely to be distributed in unused indoor units and piping. Since the cold storage operation is performed only a little as the preliminary operation before the operation, the heat storage operation can be started after the refrigerant in the heat exchanger for cold storage heat that is not used is moved to the refrigerant circuit. Thereby, it can avoid falling into the heat storage driving | running state by inadequate refrigerant | coolant amount.
[0059]
In addition, since a plurality of divided heat storage tanks with the same total capacity as the required heat storage tanks were used, even if the space for installing the heat storage tanks is dispersed and the individual dispersion spaces are narrow, such narrow spaces A heat storage tank can be installed.
[Brief description of the drawings]
FIG. 1 is a refrigerant circuit diagram according to Embodiment 1 of the present invention.
FIG. 2 is a refrigerant circuit diagram at the time of heat radiation heating operation when a heat storage chamber 9a according to Embodiment 2 is used.
FIG. 3 is a refrigerant circuit diagram at the time of heat radiation heating operation when a heat storage chamber 9b according to Embodiment 2 is used.
4 is a refrigerant circuit diagram during general heating operation according to Embodiment 2. FIG.
FIG. 5 is a heating time zone operation switching state diagram according to the second embodiment.
FIG. 6 is a control block diagram of heating time zone operation switching according to the second embodiment.
FIG. 7 is a refrigerant circuit diagram of cooling operation combined with cold storage heat when the heat storage chamber 9a according to Embodiment 3 is used.
FIG. 8 is a refrigerant circuit diagram of cooling operation combined with cold storage heat when the heat storage chamber 9b according to Embodiment 3 is used.
9 is a refrigerant circuit diagram of general cooling operation according to Embodiment 3. FIG.
FIG. 10 is a cooling time zone operation switching state diagram according to the third embodiment.
FIG. 11 is a control block diagram of cooling time zone operation switching according to the third embodiment.
12 is a refrigerant circuit diagram of a heat storage operation according to Embodiment 4. FIG.
FIG. 13 is a refrigerant circuit diagram of cold storage operation according to the fourth embodiment.
FIG. 14 is a control block diagram of heat storage operation according to the fourth embodiment.
FIG. 15 is a refrigerant circuit diagram according to the fifth embodiment.
FIG. 16 is an installation diagram of a heat storage tank unit according to the fifth embodiment.
FIG. 17 is a refrigerant circuit diagram of a conventional example.
FIG. 18 is a refrigerant circuit diagram during cold storage operation of a conventional example.
19 is an operation circuit diagram in the refrigerant circuit of FIG.
FIG. 20 is a refrigerant circuit diagram during a general cooling operation of a conventional example.
FIG. 21 is an operation state diagram in the refrigerant circuit of FIG. 20;
FIG. 22 is a refrigerant circuit diagram during a cooling operation of a conventional example.
FIG. 23 is an operation state diagram in the refrigerant circuit of FIG. 22;
FIG. 24 is a refrigerant circuit diagram at the time of cooling operation combined with cold storage heat according to a conventional example.
25 is an operational state diagram in the refrigerant circuit of FIG. 24. FIG.
FIG. 26 is a refrigerant circuit diagram during a heat storage operation of a conventional example.
27 is an operational state diagram in the refrigerant circuit of FIG. 26. FIG.
FIG. 28 is a refrigerant circuit diagram during general heating operation of a conventional example.
29 is an operation state diagram in the refrigerant circuit of FIG. 28. FIG.
FIG. 30 is a refrigerant circuit diagram during a heat radiation operation of a conventional example.
31 is an operational state diagram in the refrigerant circuit of FIG. 30. FIG.
FIG. 32 is a refrigerant circuit diagram in a conventional heat storage combined heating operation.
33 is an operational state diagram in the refrigerant circuit of FIG. 32. FIG.
[Explanation of symbols]
1 Compressor
3 outdoor heat exchanger
6 First diaphragm device
9 Thermal storage tank
9a, 9b Thermal storage room
9A, 9B Division heat storage tank
10a First heat exchanger for cold storage heat
10b Second heat storage heat storage unit
12 Refrigerant pump
14 First valve
15a, 15b, 15c Second diaphragm device
16a, 16b, 16c Indoor side heat exchanger
21 Heat storage medium
22 Third aperture device
23 Sixth valve
24 Seventh valve
26a second valve
26b Third valve
27a Fourth valve
27b Fifth valve
28 Four-way selector valve
104a, 104b, 103, 108, 121, 122a, 122b, 122c, 123a, 123b, 123c, 124a, 124b, 124c, 120, 128a, 128b, 139, 129 Refrigerant piping
105, 112, 118, 119 First connection piping
130, 133, 132, 131 Second connection pipe
136, 137 Third connection piping
201 Heat exchanger using heat storage management means
202 Chilled heat exchanger management means
203 Refrigerating cycle refrigerant amount adjusting means

Claims (5)

圧縮機,四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、上記一般冷暖房用回路の上記第1の絞り装置から上記第2の絞り装置の間と上記室内側熱交換器から上記圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,および上記第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、上記一般冷暖房用回路の上記四方切換弁から上記圧縮機の吸込側の間と上記第1の接続配管の上記第1のバルブから上記第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し上記第1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,および上記室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、
上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、上記第1の蓄冷熱用熱交換器と並列して上記第1の接続配管に接続するとともに、上記第1の接続配管の上記第1の蓄冷熱用熱交換器の一方の出側に設けられた第2のバルブと、上記第1の接続配管の上記第2の蓄冷熱用熱交換器の一方の出側に設けられた第3のバルブと、上記第1の接続配管の上記第1の蓄冷熱用熱交換器の他方の出側に設けられた第4のバルブと、上記第1の接続配管の上記第2の蓄冷熱用熱交換器の他方の出側に設けられた第5のバルブと、上記一般冷暖房用回路の上記四方切換弁から上記圧縮機の吸込側の間と上記第1の接続配管の上記第1のバルブから上記第1および第2の蓄冷熱用熱交換器の配管接続位置の間とを第6のバルブを介して接続する第3の接続配管とを具備してなることを特徴とする蓄熱式空気調和装置。
A general cooling / heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected to each other by piping. Between the first throttling device and the second throttling device and between the indoor heat exchanger and the compressor, a third throttling device, a first heat storage heat exchanger, and a first A first connecting pipe which is connected via a valve to form a cold storage / heat storage circuit together with the compressor, the outdoor heat exchanger, and the first expansion device; and the four-way switching valve of the general cooling / heating circuit. To the suction side of the compressor and between the first valve of the first connection pipe to the heat exchanger for the first cold storage heat through a refrigerant pump, the first cold storage heat. Heat exchanger, the third expansion device, the second expansion device, and the indoor heat A regenerative air conditioner comprising: a second connection pipe constituting a cooling / radiating circuit together with a converter; and a heat storage tank in which the first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. In the device
One or more second heat storage heat exchangers arranged in the heat storage medium and constituting a part of the cooling / dissipating circuit are arranged in parallel with the first heat storage heat exchanger. A second valve provided on one outlet side of the first heat exchanger for regenerative heat of the first connection pipe, and connected to the first connection pipe; A third valve provided on one outlet side of the second heat storage heat exchanger and a second valve provided on the other outlet side of the first cold storage heat exchanger of the first connection pipe. A fourth valve, a fifth valve provided on the other outlet side of the second heat storage heat exchanger of the first connection pipe, and the four-way switching valve of the general cooling / heating circuit. Arrangement of the first and second regenerator heat exchangers between the suction side of the compressor and the first valve of the first connection pipe. Thermal storage type air conditioning apparatus characterized by comprising; and a third connection pipe for connecting the between the connection position via a sixth valve.
圧縮機,四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、上記一般冷暖房用回路の上記第1の絞り装置から上記第2の絞り装置の間と上記室内側熱交換器から上記圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,および上記第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、上記一般冷暖房用回路の上記四方切換弁から上記圧縮機の吸込側の間と上記第1の接続配管の上記第1のバルブから上記第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し上記第1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,および上記室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、
上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、上記第1の蓄冷熱用熱交換器と並列して上記第1の接続配管に接続し、上記蓄熱槽を複数の蓄熱室に区画して構成し、上記各蓄熱室に上記第1または第2の蓄冷熱用熱交換器をそれぞれ配置するとともに、上記第1の接続配管の上記第1の蓄冷熱用熱交換器の一方の出側に設けられた第2のバルブと、上記第1の接続配管の上記第2の蓄冷熱用熱交換器の一方の出側に設けられた第3のバルブと、上記一般冷暖房用回路の上記四方切換弁から上記圧縮機の吸込側の間と上記第1の接続配管の上記第1のバルブから上記第1および第2の蓄冷熱用熱交換器の配管接続位置の間とを第6のバルブを介して接続する第3の接続配管と、上記放冷・放熱用回路を用いる蓄熱利用暖房運転を行う際に上記第2のバルブと上記第3のバルブの開閉を相互に切り換えて上記第1または第2の蓄冷熱用熱交換器のいずれかにより蓄熱媒体の蓄熱を使用する蓄熱使用熱交換器管理手段とを具備してなることを特徴とする蓄熱式空気調和装置。
A general cooling / heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected to each other by piping. Between the first throttling device and the second throttling device and between the indoor heat exchanger and the compressor, a third throttling device, a first heat storage heat exchanger, and a first A first connecting pipe which is connected via a valve to form a cold storage / heat storage circuit together with the compressor, the outdoor heat exchanger, and the first expansion device; and the four-way switching valve of the general cooling / heating circuit. To the suction side of the compressor and between the first valve of the first connection pipe to the heat exchanger for the first cold storage heat through a refrigerant pump, the first cold storage heat. Heat exchanger, the third expansion device, the second expansion device, and the indoor heat A regenerative air conditioner comprising: a second connection pipe constituting a cooling / radiating circuit together with a converter; and a heat storage tank in which the first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. In the device
One or more second heat storage heat exchangers arranged in the heat storage medium and constituting a part of the cooling / dissipating circuit are arranged in parallel with the first heat storage heat exchanger. The first connection pipe is connected, the heat storage tank is divided into a plurality of heat storage chambers, and the first or second cold storage heat exchanger is disposed in each of the heat storage chambers. A second valve provided on one outlet side of the first heat exchanger for cold storage heat of the first connection pipe and one of the second heat exchanger for cold storage heat of the first connection pipe A third valve provided on the outlet side of the compressor, between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor, and from the first valve of the first connection pipe to the first and A third connecting pipe for connecting between the pipe connecting positions of the second heat storage heat exchanger through the sixth valve; When performing the regenerative / heat radiating heating operation using the heat storage / heat dissipation circuit, the second valve and the third valve are switched to each other to switch between the first and second heat storage heat exchangers. A heat storage type air conditioner characterized by comprising heat storage use heat exchanger management means using the heat storage of the heat storage medium.
圧縮機,四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、上記一般冷暖房用回路の上記第1の絞り装置から上記第2の絞り装置の間と上記室内側熱交換器から上記圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,および上記第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、上記一般冷暖房用回路の上記四方切換弁から上記圧縮機の吸込側の間と上記第1の接続配管の上記第1のバルブから上記第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し上記第1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,および上記室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、
上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、上記第1の蓄冷熱用熱交換器と並列して上記第1の接続配管に接続し、上記蓄熱槽を複数の蓄熱室に区画して構成し、上記各蓄熱室に上記第1または第2の蓄冷熱用熱交換器をそれぞれ配置するとともに、上記第1の接続配管の上記第1の蓄冷熱用熱交換器の一方の出側に設けられた第2のバルブと、上記第1の接続配管の上記第2の蓄冷熱用熱交換器の一方の出側に設けられた第3のバルブと、上記一般冷暖房用回路の上記四方切換弁から上記圧縮機の吸込側の間と上記第1の接続配管の上記第1のバルブから上記第1および第2の蓄冷熱用熱交換器の配管接続位置の間とを第6のバルブを介して接続する第3の接続配管と、上記放冷・放熱用回路を用いる冷熱利用冷房運転を行う際に上記第2のバルブと上記第3のバルブの開閉を切り換えて上記第1または第2の蓄冷熱用熱交換器のいずれかまたは双方により蓄熱媒体の冷熱を使用する冷熱使用熱交換器管理手段とを具備してなることを特徴とする蓄熱式空気調和装置。
A general cooling / heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected to each other by piping. Between the first throttling device and the second throttling device and between the indoor heat exchanger and the compressor, a third throttling device, a first heat storage heat exchanger, and a first A first connecting pipe which is connected via a valve to form a cold storage / heat storage circuit together with the compressor, the outdoor heat exchanger, and the first expansion device; and the four-way switching valve of the general cooling / heating circuit. To the suction side of the compressor and between the first valve of the first connection pipe to the heat exchanger for the first cold storage heat through a refrigerant pump, the first cold storage heat. Heat exchanger, the third expansion device, the second expansion device, and the indoor heat A regenerative air conditioner comprising: a second connection pipe constituting a cooling / radiating circuit together with a converter; and a heat storage tank in which the first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. In the device
One or more second heat storage heat exchangers arranged in the heat storage medium and constituting a part of the cooling / dissipating circuit are arranged in parallel with the first heat storage heat exchanger. The first connection pipe is connected, the heat storage tank is divided into a plurality of heat storage chambers, and the first or second cold storage heat exchanger is disposed in each of the heat storage chambers. A second valve provided on one outlet side of the first heat exchanger for cold storage heat of the first connection pipe and one of the second heat exchanger for cold storage heat of the first connection pipe A third valve provided on the outlet side of the compressor, between the four-way switching valve of the general cooling and heating circuit and the suction side of the compressor, and from the first valve of the first connection pipe to the first and A third connecting pipe for connecting between the pipe connecting positions of the second heat storage heat exchanger through the sixth valve; Either of the first and second heat storage heat exchangers is switched by switching between opening and closing of the second valve and the third valve when performing a cooling use cooling operation using the cooling / radiating circuit. A regenerative air conditioner comprising: a refrigerating heat exchanger managing means that uses the refrigerating heat of the regenerator medium.
圧縮機,四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、上記一般冷暖房用回路の上記第1の絞り装置から上記第2の絞り装置の間と上記室内側熱交換器から上記圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,および上記第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、上記一般冷暖房用回路の上記四方切換弁から上記圧縮機の吸込側の間と上記第1の接続配管の上記第1のバルブから上記第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し上記第1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,および上記室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、
上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、上記第1の蓄冷熱用熱交換器と並列して上記第1の接続配管に接続するとともに、上記第1の接続配管の上記第1の蓄冷熱用熱交換器の一方の出側に設けられた第2のバルブと、上記第1の接続配管の上記第2の蓄冷熱用熱交換器の一方の出側に設けられた第3のバルブと、上記一般冷暖房用回路の上記四方切換弁から上記圧縮機の吸込側の間と上記第1の接続配管の上記第1のバルブから上記第1および第2の蓄冷熱用熱交換器の配管接続位置の間とを第6のバルブを介して接続する第3の接続配管と、上記蓄冷・蓄熱用回路を用いる蓄熱運転を行うに先立ち、蓄冷運転を所定時間行って上記第1または第2の蓄冷熱用熱交換器内から冷媒を排出させる冷凍サイクル内冷媒量調整手段とを具備してなることを特徴とする蓄熱式空気調和装置。
A general cooling / heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected to each other by piping. Between the first throttling device and the second throttling device and between the indoor heat exchanger and the compressor, a third throttling device, a first heat storage heat exchanger, and a first A first connecting pipe which is connected via a valve to form a cold storage / heat storage circuit together with the compressor, the outdoor heat exchanger, and the first expansion device; and the four-way switching valve of the general cooling / heating circuit. To the suction side of the compressor and between the first valve of the first connection pipe to the heat exchanger for the first cold storage heat through a refrigerant pump, the first cold storage heat. Heat exchanger, the third expansion device, the second expansion device, and the indoor heat A regenerative air conditioner comprising: a second connection pipe constituting a cooling / radiating circuit together with a converter; and a heat storage tank in which the first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. In the device
One or more second heat storage heat exchangers arranged in the heat storage medium and constituting a part of the cooling / dissipating circuit are arranged in parallel with the first heat storage heat exchanger. A second valve provided on one outlet side of the first heat exchanger for regenerative heat of the first connection pipe, and connected to the first connection pipe; The first connection between the third valve provided on one outlet side of the second heat storage heat exchanger and the four-way switching valve of the general cooling / heating circuit to the suction side of the compressor A third connection pipe for connecting the first valve of the pipe to the pipe connection position of the first and second heat storage heat exchangers through a sixth valve; and the cold storage and heat storage Prior to performing the heat storage operation using the circuit, the heat storage operation is performed for a predetermined time to perform the heat exchange for the first or second cold storage heat. Vessel in thermal storage type air conditioning apparatus characterized by comprising; and a refrigeration cycle in the refrigerant amount adjusting means for discharging the coolant from.
圧縮機,四方切換弁,室外側熱交換器,第1の絞り装置,第2の絞り装置,および室内側熱交換器を順次配管接続してなる一般冷暖房用回路と、上記一般冷暖房用回路の上記第1の絞り装置から上記第2の絞り装置の間と上記室内側熱交換器から上記圧縮機の間とを第3の絞り装置,第1の蓄冷熱用熱交換器,および第1のバルブを介して接続し上記圧縮機,上記室外側熱交換器,および上記第1の絞り装置とともに蓄冷・蓄熱用回路を構成する第1の接続配管と、上記一般冷暖房用回路の上記四方切換弁から上記圧縮機の吸込側の間と上記第1の接続配管の上記第1のバルブから上記第1の蓄冷熱用熱交換器の間とを冷媒ポンプを介して接続し上記第1の蓄冷熱用熱交換器,上記第3の絞り装置,上記第2の絞り装置,および上記室内側熱交換器とともに放冷・放熱用回路を構成する第2の接続配管と、槽内に貯留した蓄熱媒体中に上記第1の蓄冷熱用熱交換器を配置した蓄熱槽とを備える蓄熱式空気調和装置において、
上記蓄熱媒体中に配置されて上記放冷・放熱用回路の一部を構成する1もしくは複数の第2の蓄冷熱用熱交換器を、上記第1の蓄冷熱用熱交換器と並列して上記第1の接続配管に接続し、上記蓄熱槽を複数の分割蓄熱槽として別個独立に構成するとともに、上記各分割蓄熱槽に上記第1または第2の蓄冷熱用熱交換器をそれぞれ配置したことを特徴とする蓄熱式空気調和装置。
A general cooling / heating circuit in which a compressor, a four-way switching valve, an outdoor heat exchanger, a first expansion device, a second expansion device, and an indoor heat exchanger are sequentially connected to each other by piping. Between the first throttling device and the second throttling device and between the indoor heat exchanger and the compressor, a third throttling device, a first heat storage heat exchanger, and a first A first connecting pipe which is connected via a valve to form a cold storage / heat storage circuit together with the compressor, the outdoor heat exchanger, and the first expansion device; and the four-way switching valve of the general cooling / heating circuit. To the suction side of the compressor and between the first valve of the first connection pipe to the heat exchanger for the first cold storage heat through a refrigerant pump, the first cold storage heat. Heat exchanger, the third expansion device, the second expansion device, and the indoor heat A regenerative air conditioner comprising: a second connection pipe constituting a cooling / radiating circuit together with a converter; and a heat storage tank in which the first heat storage heat exchanger is disposed in a heat storage medium stored in the tank. In the device
One or more second heat storage heat exchangers arranged in the heat storage medium and constituting a part of the cooling / dissipating circuit are arranged in parallel with the first heat storage heat exchanger. The heat storage tank is connected to the first connection pipe, and the heat storage tanks are separately configured as a plurality of divided heat storage tanks, and the first or second heat storage heat exchanger is disposed in each of the divided heat storage tanks. A regenerative air conditioner characterized by that.
JP17924096A 1996-07-09 1996-07-09 Thermal storage air conditioner Expired - Fee Related JP3814877B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP17924096A JP3814877B2 (en) 1996-07-09 1996-07-09 Thermal storage air conditioner

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP17924096A JP3814877B2 (en) 1996-07-09 1996-07-09 Thermal storage air conditioner

Publications (2)

Publication Number Publication Date
JPH1026377A JPH1026377A (en) 1998-01-27
JP3814877B2 true JP3814877B2 (en) 2006-08-30

Family

ID=16062400

Family Applications (1)

Application Number Title Priority Date Filing Date
JP17924096A Expired - Fee Related JP3814877B2 (en) 1996-07-09 1996-07-09 Thermal storage air conditioner

Country Status (1)

Country Link
JP (1) JP3814877B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3854586B2 (en) * 2002-10-18 2006-12-06 株式会社三菱地所設計 Heat source system, control method of heat source system, heat source, and control method of heat source
CN104833010B (en) 2015-05-25 2017-06-06 广东美的暖通设备有限公司 The outdoor unit and heat-reclamation multi-compressors of heat-reclamation multi-compressors
CN105588360B (en) * 2015-06-30 2018-09-25 青岛海信日立空调***有限公司 A kind of accumulation of heat outdoor unit, heat pump system and its control method
CN105066343B (en) * 2015-07-31 2017-11-28 新智能源***控制有限责任公司 Suitable for the change water temperature control system of air-conditioning Variable flow system
CN114110846B (en) * 2021-11-23 2023-05-02 珠海格力电器股份有限公司 Energy storage heat pump system and control method thereof

Also Published As

Publication number Publication date
JPH1026377A (en) 1998-01-27

Similar Documents

Publication Publication Date Title
JP2894421B2 (en) Thermal storage type air conditioner and defrosting method
JP4298990B2 (en) Refrigeration equipment using carbon dioxide as refrigerant
JPH0235216B2 (en)
JP3352469B2 (en) Air conditioner
JP3882056B2 (en) Refrigeration air conditioner
KR101864636B1 (en) Waste heat recovery type hybrid heat pump system
JP2018132269A (en) Heat pump system
JP4345178B2 (en) Air conditioner
JP3567168B2 (en) Thermal storage heat pump air conditioner for cold regions
JP3814877B2 (en) Thermal storage air conditioner
CN216481291U (en) Air conditioner
JP2001263848A (en) Air conditioner
KR20030082822A (en) The Combined Cooling and Heating Ice Regenerative System
JP2004251557A (en) Refrigeration device using carbon dioxide as refrigerant
JP2757660B2 (en) Thermal storage type air conditioner
JP2646877B2 (en) Thermal storage refrigeration cycle device
JP3781340B2 (en) Thermal storage refrigeration air conditioner
JP3370501B2 (en) Cooling system
JP3197107B2 (en) Thermal storage type air conditioner
JP3919362B2 (en) Ice storage refrigerator unit
JPH04257660A (en) Two stage compression refrigerating cycle device
CN219283480U (en) Air conditioning system
JP3253276B2 (en) Thermal storage type air conditioner and operation method thereof
CN212566000U (en) Air conditioner waste heat recovery system and air conditioner system
JP2980624B2 (en) Cooling method using heat storage type liquid receiver and liquid pump, and cooling and heating methods

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040715

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060403

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20060516

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20060529

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100616

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110616

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120616

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130616

Year of fee payment: 7

LAPS Cancellation because of no payment of annual fees