JP2006022396A - Alloy material for resistance - Google Patents

Alloy material for resistance Download PDF

Info

Publication number
JP2006022396A
JP2006022396A JP2004203639A JP2004203639A JP2006022396A JP 2006022396 A JP2006022396 A JP 2006022396A JP 2004203639 A JP2004203639 A JP 2004203639A JP 2004203639 A JP2004203639 A JP 2004203639A JP 2006022396 A JP2006022396 A JP 2006022396A
Authority
JP
Japan
Prior art keywords
copper
resistance
nickel
alloy
resistor
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004203639A
Other languages
Japanese (ja)
Inventor
Keiji Nakamura
圭史 仲村
Shiomi Kikuchi
潮美 菊池
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Koa Corp
Original Assignee
Koa Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Koa Corp filed Critical Koa Corp
Priority to JP2004203639A priority Critical patent/JP2006022396A/en
Publication of JP2006022396A publication Critical patent/JP2006022396A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Non-Adjustable Resistors (AREA)
  • Details Of Resistors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an alloy material for a resistance having a low specific resistance value, further having a relatively low resistance temperature coefficient (TCR), and can reduce thermoelectromotive force in the joining boundary with an electrode. <P>SOLUTION: The alloy material is obtained by using copper and nickel as the main components, and mixing two or more metals having different valences therein. The alloy essentially consisting of copper and nickel preferably comprises 1 to 3% silicon and 1 to 5% gold as well. Alternatively, the alloy essentially consisting of copper and nickel preferably comprises 1% aluminum and 1 to 5% gold as well. Alternatively, the alloy essentially consisting of copper and nickel preferably comprises 1 to 5% aluminum, 1 to 3% silicon and 1 to 5% gold as well. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電流検出用抵抗器等の低抵抗値の抵抗器に用いる抵抗用合金材料に関する。   The present invention relates to a resistance alloy material used for a low-resistance resistor such as a current detection resistor.

電流検出用等の用途に用いられる数十mΩ以下の低抵抗値の抵抗器としては、一般に、板体状の金属抵抗体と、その両端部に形成された銅材等からなる電極とを備えている。ここで、抵抗体には、銅ニッケル合金、あるいは、ニッケルクロム合金等の抵抗用合金材料が用いられる。このような抵抗器によれば、熱放散性に優れ、且つ、低抵抗値とともに低抵抗温度係数(TCR)の抵抗器が得られる(例えば、特許文献1参照)。
特開2001−116771号公報
A resistor having a low resistance value of several tens of mΩ or less used for current detection and the like generally includes a plate-like metal resistor and electrodes made of copper material or the like formed at both ends thereof. ing. Here, a resistance alloy material such as a copper nickel alloy or a nickel chromium alloy is used for the resistor. According to such a resistor, a resistor having excellent heat dissipation and a low resistance value and a low resistance temperature coefficient (TCR) can be obtained (for example, see Patent Document 1).
JP 2001-114771 A

このような低抵抗値の抵抗器の分野においても、さらに低い抵抗値で、かつ抵抗値精度が高く、かつ低抵抗温度係数(TCR)で、かつ小型コンパクト化した構造の抵抗器が要請されている。しかしながら、市販の上記抵抗用合金材料は、例えば銅ニッケル合金であると、49μΩ・cm等の一定の固有抵抗値を有していて、例えば抵抗値が1mΩ以下のような超低抵抗値の抵抗器を製作する場合には、その寸法を、特に抵抗体断面積を大きくせざるを得ず、小型コンパクト化の要請に反することになる。   In the field of such low resistance resistors, there is a demand for a resistor having a lower resistance value, higher resistance accuracy, a lower resistance temperature coefficient (TCR), and a compact and compact structure. Yes. However, when the above-mentioned resistance alloy material on the market is, for example, a copper-nickel alloy, it has a certain specific resistance value such as 49 μΩ · cm, for example, a resistance having an extremely low resistance value such as a resistance value of 1 mΩ or less. In the case of manufacturing a container, its dimensions, in particular, the cross-sectional area of the resistor must be increased, which is contrary to the demand for miniaturization and compactness.

また、例えば抵抗値が1mΩ以下のような超低抵抗値の抵抗器を製作する場合に、銅ニッケル合金においても組成比を変更することで、固有抵抗値を下げることができる。しかしながら、この場合には、抵抗温度係数(TCR)が増大し、また、銅ニッケル合金と電極材料の銅材との間に熱起電力が生じるという問題がある。   For example, when a resistor having an extremely low resistance value such as a resistance value of 1 mΩ or less is manufactured, the specific resistance value can be lowered by changing the composition ratio even in the copper-nickel alloy. However, in this case, the temperature coefficient of resistance (TCR) increases, and there is a problem that a thermoelectromotive force is generated between the copper nickel alloy and the copper material of the electrode material.

本発明は、上述した事情に鑑みて為されたもので、低い固有抵抗値を有するとともに、比較的低い抵抗温度係数(TCR)で、また電極との接合界面における熱起電力を低減できる抵抗用合金材料を提供することを目的とする。   The present invention has been made in view of the circumstances described above, and has a low specific resistance value, a resistance temperature coefficient (TCR) which is relatively low, and can reduce the thermoelectromotive force at the joint interface with the electrode. An object is to provide an alloy material.

本発明の抵抗用合金材料は、銅およびニッケルを主体とし、さらに、互いに価数の異なる複数種類の金属を混合してなることを特徴とするものである。   The resistance alloy material of the present invention is characterized in that copper and nickel are the main components, and a plurality of types of metals having different valences are mixed.

ここで、上記銅およびニッケルを主体とした合金に、さらにシリコン1乃至3%と金1乃至5%を含むことが好ましい。また、銅およびニッケルを主体とした合金に、さらにアルミニウム1乃至5%と金1乃至5%を含むことが好ましい。また、銅およびニッケルを主体とした合金に、さらにアルミニウム1乃至5%とシリコン1乃至3%と金1乃至5%を含むことが好ましい。   Here, it is preferable that the alloy mainly composed of copper and nickel further contains 1 to 3% of silicon and 1 to 5% of gold. Further, it is preferable that the alloy mainly composed of copper and nickel further contains 1 to 5% aluminum and 1 to 5% gold. Further, it is preferable that the alloy mainly composed of copper and nickel further contains 1 to 5% aluminum, 1 to 3% silicon, and 1 to 5% gold.

本発明によれば、銅およびニッケルを主体とし、さらに、互いに価数の異なる複数種類の金属を混合してなる抵抗用合金材料とすることで、互いに価数の異なる複数種類の金属の相互補完的な作用により、抵抗温度係数(TCR)を制御することができ、また、抵抗用合金材料の電極材である銅に対する熱起電力を制御することができる。これにより、例えば1mΩ以下の超低抵抗値の抵抗器を、低抵抗温度係数(TCR)で、熱起電力が低く、且つ小型コンパクト化した構造で提供することができる。   According to the present invention, by using a resistance alloy material mainly composed of copper and nickel and further mixed with a plurality of types of metals having different valences, mutual complementation of a plurality of types of metals having different valences is achieved. By this action, the temperature coefficient of resistance (TCR) can be controlled, and the thermoelectromotive force for copper as the electrode material of the resistance alloy material can be controlled. Thereby, for example, a resistor having a very low resistance value of 1 mΩ or less can be provided with a low resistance temperature coefficient (TCR), a low thermoelectromotive force, and a compact and compact structure.

以下、本発明の実施形態について、添付図面に基づいて説明する。なお、各図中、同一の作用または機能を有する部材または要素には、同一の符号を付して重複した説明を省略する。   Hereinafter, embodiments of the present invention will be described with reference to the accompanying drawings. In addition, in each figure, the same code | symbol is attached | subjected to the member or element which has the same effect | action or function, and the overlapping description is abbreviate | omitted.

図1は、銅ニッケル合金における組成比と、固有抵抗値および抵抗温度係数(TCR)との関係を示す図である。横軸は、銅ニッケル合金の組成比であり、ニッケル成分の%比を示す。縦軸は、実線が固有抵抗値Rであり、点線が抵抗温度係数(TCR)Cである。図示するように、ニッケルの成分比が40〜60%近傍で固有抵抗値Rが最大となり、抵抗温度係数(TCR)Cが最小となる。従って、抵抗温度係数(TCR)の良好な材料として使用する場合には、固有抵抗値が49μΩ・cm付近のものに限定されることになる。   FIG. 1 is a diagram showing a relationship between a composition ratio, a specific resistance value, and a temperature coefficient of resistance (TCR) in a copper nickel alloy. The horizontal axis is the composition ratio of the copper-nickel alloy and indicates the percentage ratio of the nickel component. In the vertical axis, the solid line is the specific resistance value R, and the dotted line is the resistance temperature coefficient (TCR) C. As shown in the figure, the specific resistance value R becomes maximum and the temperature coefficient of resistance (TCR) C becomes minimum when the nickel component ratio is in the vicinity of 40 to 60%. Accordingly, when the material is used as a material having a good temperature coefficient of resistance (TCR), the specific resistance value is limited to a value in the vicinity of 49 μΩ · cm.

しかしながら、抵抗値が例えば1mΩ以下のような超低抵抗値の抵抗器を作製する場合は、固有抵抗値が49μΩ・cm付近の材料を用いると、板体状抵抗体の長さに対してその断面積を大きくせざるを得ず、小型・コンパクト化の要請に反するものとなり、所要のサイズの範囲に収まらなくなる場合がある。このため、所要のサイズに収めようとすると、板体状抵抗体の長さに対してその断面積を小さくする必要があり、固有抵抗値が低いもの、例えばニッケルの成分比が20%程度のものを用いざるを得ない。しかしながら、図示されるように、この領域の組成比では、固有抵抗値Rは低下するものの抵抗温度係数(TCR)Cが増大するという問題がある。   However, when a resistor having an extremely low resistance value, for example, having a resistance value of 1 mΩ or less is used, if a material having a specific resistance value of around 49 μΩ · cm is used, the length of the plate-like resistor is The cross-sectional area must be increased, which is against the demand for miniaturization and compactness, and may not be within the required size range. For this reason, if it is going to fit in a required size, it is necessary to make the cross-sectional area small with respect to the length of the plate-like resistor, and the specific resistance value is low, for example, the component ratio of nickel is about 20%. I have to use something. However, as shown in the figure, the composition ratio in this region has a problem that although the specific resistance value R decreases, the temperature coefficient of resistance (TCR) C increases.

また、銅ニッケル合金を抵抗体材料として用い、例えば電極材料として銅を上記抵抗体の両端部に接合して用いると、抵抗体の銅ニッケル合金と電極の銅との接合界面に熱起電力が発生するという問題がある。すなわち、低抵抗値の抵抗器を銅ニッケル合金の抵抗体とこれに接合する銅の電極とで構成した場合に、接合界面の熱起電力から温度差分布が発生し、抵抗値誤差につながる。これは、特に低抵抗値の抵抗器において、抵抗値精度の面から不利なデータとして現れる。   In addition, when a copper nickel alloy is used as a resistor material, for example, when copper is used as an electrode material bonded to both ends of the resistor, a thermoelectromotive force is generated at the bonding interface between the copper nickel alloy of the resistor and the copper of the electrode. There is a problem that occurs. That is, when a resistor having a low resistance value is composed of a copper-nickel alloy resistor and a copper electrode bonded thereto, a temperature difference distribution is generated from the thermoelectromotive force at the bonding interface, leading to a resistance value error. This appears as disadvantageous data in terms of resistance value accuracy, particularly in resistors having low resistance values.

そこで、本発明者等は銅80%およびニッケル20%の銅ニッケル合金において、互いに価数の異なる複数種類の金属を混合(添加)した抵抗用合金材料とすることで、互いに価数の異なる複数種類の金属の相互補完的な作用により、抵抗温度係数(TCR)を制御することができ、また、銅に対する接合界面における熱起電力を制御することができるのではないかとの発想を得た。   Therefore, the present inventors made a resistance alloy material in which a plurality of types of metals having different valences were mixed (added) in a copper-nickel alloy of 80% copper and 20% nickel. The idea was that the temperature coefficient of resistance (TCR) could be controlled by the complementary action of different types of metals, and that the thermoelectromotive force at the bonding interface to copper could be controlled.

そこで、銅80%およびニッケル20%を主体として、さらに下記の材料を混合(添加)してなる合金を作製した。
Au(1価):1wt%、3wt%、5wt%
Zn(2価):1wt%、3wt%、5wt%
Al(3価):1wt%、3wt%、5wt%
Sn(4価):1wt%、3wt%、5wt%
Si(4価):1wt%、3wt%、5wt%
なお、アルミニウム(Al)は1wt%まで、シリコン(Si)は3wt%までしか溶融しなかった。
Therefore, an alloy composed mainly of 80% copper and 20% nickel and further mixed (added) with the following materials was produced.
Au (monovalent): 1 wt%, 3 wt%, 5 wt%
Zn (divalent): 1 wt%, 3 wt%, 5 wt%
Al (trivalent): 1 wt%, 3 wt%, 5 wt%
Sn (tetravalent): 1 wt%, 3 wt%, 5 wt%
Si (tetravalent): 1 wt%, 3 wt%, 5 wt%
Aluminum (Al) was melted only up to 1 wt% and silicon (Si) was melted only up to 3 wt%.

そして、抵抗値が測定できる厚さまで合金を圧延加工し、抵抗体の抵抗値を測定できる形状のサンプルを作製し、4端子測定法で抵抗値を測定した。まず、サンプルに25℃と100℃の温度差を与え、それぞれ抵抗値を測定し、抵抗温度係数(TCR)値を得た。次に、サンプルの両端に10℃程度の温度差を与え、その際の起電力を測定し、熱起電力値を得た。   And the alloy was rolled to the thickness which can measure resistance value, the sample of the shape which can measure the resistance value of a resistor was produced, and resistance value was measured with the 4-terminal measuring method. First, a temperature difference between 25 ° C. and 100 ° C. was given to the sample, the resistance value was measured, and the resistance temperature coefficient (TCR) value was obtained. Next, a temperature difference of about 10 ° C. was given to both ends of the sample, and the electromotive force at that time was measured to obtain a thermoelectromotive force value.

測定した抵抗温度係数(TCR)値の結果を以下に示す。

Figure 2006022396
The results of the measured resistance temperature coefficient (TCR) value are shown below.
Figure 2006022396

ここで、銅80%およびニッケル20%の銅ニッケル合金は、通常、350〜400×10−6/Kの抵抗温度係数(TCR)値を有している。上記測定結果によれば、アルミニウム(Al)における3wt%以上のもの以外では、抵抗温度係数(TCR)が良くなる(低下する)ことが見られた。特に、錫(Sn:4価)は300×10−6/K以下に抵抗温度係数(TCR)を下げることができた。さらに、金(Au:1価)とシリコン(Si:4価)を混合したものについては、250×10−6/K程度まで抵抗温度係数(TCR)を低減することができるサンプルが見られた。なお、シリコン(Si)を5wt%添加したサンプルについては、材料自体が脆くなり測定ができなかった。 Here, the copper-nickel alloy of 80% copper and 20% nickel usually has a resistance temperature coefficient (TCR) value of 350 to 400 × 10 −6 / K. According to the measurement results, it was found that the temperature coefficient of resistance (TCR) was improved (decreased) except for aluminum (Al) having a content of 3 wt% or more. In particular, tin (Sn: tetravalent) was able to lower the temperature coefficient of resistance (TCR) to 300 × 10 −6 / K or less. Furthermore, for the mixture of gold (Au: 1 valence) and silicon (Si: tetravalent), a sample that can reduce the resistance temperature coefficient (TCR) to about 250 × 10 −6 / K was found. . In addition, about the sample which added 5 wt% of silicon (Si), material itself became weak and it was not able to measure.

次に、銅に対する熱起電力の測定結果を以下に示す。

Figure 2006022396
Next, the measurement result of the thermoelectromotive force with respect to copper is shown below.
Figure 2006022396

ここで、銅80%およびニッケル20%の銅ニッケル合金の熱起電力は、33.8μV/Kである。添加量5wt%のサンプルに注目してみると、それぞれの銅に対する熱起電力は、金(Au:1価)で9%減、亜鉛(Zn:2価)で18%減、アルミニウム(Al:3価)で79%減、錫(Sn:4価)で29%減であった。特に、アルミニウム(Al:3価)を添加したサンプルについては顕著な熱起電力の低減効果が認められた。   Here, the thermoelectromotive force of the copper nickel alloy of 80% copper and 20% nickel is 33.8 μV / K. When attention is paid to the sample of 5 wt% added, the thermoelectromotive force for each copper is reduced by 9% for gold (Au: 1 valence), reduced by 18% for zinc (Zn: divalent), and aluminum (Al: (Trivalent) decreased by 79%, and Tin (Sn: tetravalent) decreased by 29%. In particular, a remarkable thermoelectromotive force reduction effect was observed for the sample to which aluminum (Al: trivalent) was added.

上記各サンプルで用いられていない金属に関しては、価数を目安として概ね上記の特性評価と同じ評価結果が得られるものと予想される。従って、銅ニッケル合金に他の金属材料を組み合わせる場合には、価数の異なる金属を組み合わせることによって、お互いの利点を生かしつつ、欠点を補完することができる。   For metals that are not used in each of the above samples, it is expected that the same evaluation result as the above characteristic evaluation will be obtained with the valence as a guide. Therefore, when combining other metal materials with the copper-nickel alloy, by combining metals having different valences, the disadvantages can be complemented while taking advantage of each other.

以上のサンプル評価結果より、低い固有抵抗値を有する銅80%およびニッケル20%を主体とした合金に、以下の互いに価数の異なる複数種類の金属を混合(添加)することで、抵抗温度係数(TCR)および対銅の熱起電力を低減することができることが判明した。特に好ましい種類の金属とその添加量の例は、以下のとおりである。   From the above sample evaluation results, by mixing (adding) the following kinds of metals having different valences to an alloy mainly composed of 80% copper and 20% nickel having low specific resistance values, the resistance temperature coefficient It has been found that the thermoelectromotive force of (TCR) and copper can be reduced. Examples of particularly preferred types of metals and the amounts added are as follows.

第1に、銅80%およびニッケル20%を主体とした合金に、さらにシリコン1乃至3%と金1乃至5%を含む合金である。シリコン(Si)は熱起電力の低減に効果があるが、材料の加工性が低下する。一方で、金(Au)は延性に優れており、加工性が向上し、抵抗温度係数(TCR)も低減する。そこで、価数の異なる複数種類の金属として両者を組み合わせることで、良好な低抵抗値用抵抗器の抵抗合金材料を構成可能である。   First, an alloy mainly composed of 80% copper and 20% nickel and further containing 1 to 3% silicon and 1 to 5% gold. Silicon (Si) is effective in reducing the thermoelectromotive force, but the workability of the material is reduced. On the other hand, gold (Au) has excellent ductility, improves workability, and reduces the temperature coefficient of resistance (TCR). Therefore, a combination of the two types of metals having different valences can be used to construct a good resistance alloy material for a low resistance resistor.

第2に、銅80%およびニッケル20%を主体とした合金に、さらにアルミニウム1乃至5%と金1乃至5%を含む合金である。アルミニウム(Al)は熱起電力の低減に効果があるが、抵抗温度係数(TCR)の改善はほとんど見られない。そこで、アルミニウム(Al)とともに金(Au)を添加し、この金(Au)の添加により抵抗温度係数(TCR)を低減することができる。   Second, an alloy mainly composed of 80% copper and 20% nickel and further containing 1 to 5% aluminum and 1 to 5% gold. Aluminum (Al) is effective in reducing the thermoelectromotive force, but hardly improves the temperature coefficient of resistance (TCR). Therefore, gold (Au) is added together with aluminum (Al), and the temperature coefficient of resistance (TCR) can be reduced by adding this gold (Au).

第3に、銅80%およびニッケル20%を主体とした合金に、さらにアルミニウム1乃至5%とシリコン1乃至3%と金1乃至5%を添加した合金である。上述したように、シリコンおよびアルミニウムは熱起電力の低減に効果があるが、シリコン(Si)は材料の加工性が低下するという問題があり、アルミニウムでは、抵抗温度係数(TCR)の改善はほとんど見られない。そこで、これらの金属とともに、金(Au)を添加することで、合金の加工性を向上し、抵抗温度係数(TCR)を低減することができる。   Thirdly, an alloy mainly composed of 80% copper and 20% nickel is further added with aluminum 1 to 5%, silicon 1 to 3% and gold 1 to 5%. As described above, silicon and aluminum are effective in reducing the thermoelectromotive force, but silicon (Si) has a problem that the workability of the material is lowered, and aluminum has almost no improvement in the temperature coefficient of resistance (TCR). can not see. Therefore, by adding gold (Au) together with these metals, the workability of the alloy can be improved and the temperature coefficient of resistance (TCR) can be reduced.

図2は、上記抵抗用合金材料を用いた抵抗器の一例を示す。この抵抗器10は、板体状の抵抗体11とこの抵抗体11の両端部に配置された一対の銅からなる電極12,13とを備えている。抵抗体11には、上述した銅80%およびニッケル20%を主体とした合金に、さらに互いに価数の異なる複数種類の金属を添加した抵抗用合金材料が用いられている。ここで、添加する金属の種類としては、熱起電力の低減にアルミニウムまたはシリコンが好ましく、合金の加工性の向上および抵抗温度係数(TCR)の低減に金が好ましい。   FIG. 2 shows an example of a resistor using the above-described resistance alloy material. The resistor 10 includes a plate-like resistor 11 and a pair of copper electrodes 12 and 13 disposed at both ends of the resistor 11. For the resistor 11, a resistance alloy material is used in which a plurality of types of metals having different valences are added to the above-described alloy mainly composed of 80% copper and 20% nickel. Here, as the type of metal to be added, aluminum or silicon is preferable for reducing the thermoelectromotive force, and gold is preferable for improving the workability of the alloy and reducing the temperature coefficient of resistance (TCR).

なお、抵抗体11の上面には絶縁膜15が配置され、抵抗体11の下面の電極12,13間にも絶縁膜16が配置されている。そして、電極12,13の下面には溶融はんだ層12a,13aが配置され、実装時のはんだ付け性を良好なものとしている。   An insulating film 15 is disposed on the upper surface of the resistor 11, and an insulating film 16 is also disposed between the electrodes 12 and 13 on the lower surface of the resistor 11. And the molten solder layers 12a and 13a are arrange | positioned at the lower surface of the electrodes 12 and 13, and the solderability at the time of mounting is made favorable.

この抵抗器は、長さ×幅が、6.3mm×3.6mm、5.0mm×2.5mm、3.2mm×1.6mm等の標準チップ部品のサイズを有している。そして、厚さも1mm程度以下の薄型となっていて、小型コンパクト化した構造となっている。   This resistor has the size of a standard chip component such as length × width of 6.3 mm × 3.6 mm, 5.0 mm × 2.5 mm, 3.2 mm × 1.6 mm. The thickness is about 1 mm or less, and the structure is compact and compact.

この抵抗器によれば、抵抗体11の固有抵抗値が通常の銅ニッケル合金の49μΩ・cmの半分程度であり、1mΩ以下の超低抵抗値のチップ型抵抗器を容易に作製することができる。   According to this resistor, the specific resistance value of the resistor 11 is about half of 49 μΩ · cm of a normal copper nickel alloy, and a chip resistor having an ultra-low resistance value of 1 mΩ or less can be easily manufactured. .

そして、抵抗温度係数(TCR)も銅80%およびニッケル20%の銅ニッケル合金の抵抗温度係数(TCR)と比較して、低いものとなっている。また、銅からなる電極12,13と抵抗体11との接合界面に形成される熱起電力も、銅80%およびニッケル20%を主体とした銅ニッケル合金の熱起電力に対して、低いものとなる。   The temperature coefficient of resistance (TCR) is also lower than the temperature coefficient of resistance (TCR) of the copper-nickel alloy of 80% copper and 20% nickel. Further, the thermoelectromotive force formed at the bonding interface between the electrodes 12 and 13 made of copper and the resistor 11 is also lower than the thermoelectromotive force of a copper-nickel alloy mainly composed of 80% copper and 20% nickel. It becomes.

特に、1mΩ以下の超低抵抗値の電流検出用抵抗器においては、検出電圧が極めて小さいので、熱起電力の影響は大きな誤差要因となり、このため、熱起電力の低減効果は特に高精度の超低抵抗値の抵抗器にとって重要である。   In particular, in a current detection resistor having an extremely low resistance value of 1 mΩ or less, the detection voltage is extremely small, so the influence of the thermoelectromotive force becomes a large error factor. Therefore, the effect of reducing the thermoelectromotive force is particularly high accuracy. This is important for very low resistance resistors.

なお、これまで本発明の一実施形態について説明したが、本発明は上述の実施形態に限定されず、その技術的思想の範囲内において種々異なる形態にて実施されてよいことは言うまでもない。特に、以上の説明は、主として、銅80%およびニッケル20%の銅ニッケル合金についてのものであるが、例えば、銅70〜80%及びニッケル30〜20%の範囲内で必要とされる特性に合わせて適宜選択することが可能であり、その他の組成比についても、本発明の趣旨を同様に適用することが可能である。   In addition, although one Embodiment of this invention was described so far, it cannot be overemphasized that this invention is not limited to the above-mentioned embodiment, and may be implemented with a different form within the range of the technical idea. In particular, the above description is primarily for copper-nickel alloys of 80% copper and 20% nickel, but for the properties required, for example, in the range of 70-80% copper and 30-20% nickel. It is possible to select them as appropriate, and the gist of the present invention can be similarly applied to other composition ratios.

銅ニッケル合金における組成比と固有抵抗値および抵抗温度係数(TCR)との関係を示す図である。It is a figure which shows the relationship between the composition ratio in a copper nickel alloy, a specific resistance value, and a temperature coefficient of resistance (TCR). 本発明の一実施形態の抵抗器を示す断面図である。It is sectional drawing which shows the resistor of one Embodiment of this invention.

符号の説明Explanation of symbols

10 抵抗器
11 抵抗体
12,13 電極
12a,13a 溶融はんだ層
15,16 絶縁膜
DESCRIPTION OF SYMBOLS 10 Resistor 11 Resistor 12, 13 Electrode 12a, 13a Molten solder layer 15, 16 Insulating film

Claims (4)

銅およびニッケルを主体とし、さらに、互いに価数の異なる複数種類の金属を混合してなることを特徴とする抵抗用合金材料。   A resistance alloy material comprising copper and nickel as main components and a mixture of a plurality of types of metals having different valences. 銅およびニッケルを主体とした合金に、さらにシリコン1乃至3%と金1乃至5%を含むことを特徴とする請求項1に記載の抵抗用合金材料。   The resistance alloy material according to claim 1, wherein the alloy mainly composed of copper and nickel further contains 1 to 3% of silicon and 1 to 5% of gold. 銅およびニッケルを主体とした合金に、さらにアルミニウム1乃至5%と金1乃至5%を含むことを特徴とする請求項1に記載の抵抗用合金材料。   The resistance alloy material according to claim 1, wherein the alloy mainly composed of copper and nickel further contains 1 to 5% aluminum and 1 to 5% gold. 銅およびニッケルを主体とした合金に、さらにアルミニウム1乃至5%とシリコン1乃至3%と金1乃至5%を含むことを特徴とする請求項1に記載の抵抗用合金材料。   The resistance alloy material according to claim 1, wherein the alloy mainly composed of copper and nickel further contains 1 to 5% aluminum, 1 to 3% silicon, and 1 to 5% gold.
JP2004203639A 2004-07-09 2004-07-09 Alloy material for resistance Pending JP2006022396A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203639A JP2006022396A (en) 2004-07-09 2004-07-09 Alloy material for resistance

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203639A JP2006022396A (en) 2004-07-09 2004-07-09 Alloy material for resistance

Publications (1)

Publication Number Publication Date
JP2006022396A true JP2006022396A (en) 2006-01-26

Family

ID=35795882

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203639A Pending JP2006022396A (en) 2004-07-09 2004-07-09 Alloy material for resistance

Country Status (1)

Country Link
JP (1) JP2006022396A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237294A (en) * 2005-02-25 2006-09-07 Koa Corp Metal plate resistor
JP2013055130A (en) * 2011-09-01 2013-03-21 Rohm Co Ltd Jumper resistor
JP2020017678A (en) * 2018-07-26 2020-01-30 Koa株式会社 Shunt resistor and current detection device including the same

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006237294A (en) * 2005-02-25 2006-09-07 Koa Corp Metal plate resistor
JP4621042B2 (en) * 2005-02-25 2011-01-26 コーア株式会社 Metal plate resistor for current detection
JP2013055130A (en) * 2011-09-01 2013-03-21 Rohm Co Ltd Jumper resistor
JP2020017678A (en) * 2018-07-26 2020-01-30 Koa株式会社 Shunt resistor and current detection device including the same
WO2020021987A1 (en) * 2018-07-26 2020-01-30 Koa株式会社 Shunt resistor and electric current detector using same
KR20210003251A (en) * 2018-07-26 2021-01-11 코아가부시끼가이샤 Shunt resistor and current detection device using the same
KR102360792B1 (en) * 2018-07-26 2022-02-09 코아가부시끼가이샤 Shunt resistor and current detection device using the same
CN114127869A (en) * 2018-07-26 2022-03-01 Koa株式会社 Shunt resistor and current detection device using same
JP7193941B2 (en) 2018-07-26 2022-12-21 Koa株式会社 SHUNT RESISTOR AND CURRENT DETECTION DEVICE USING THE SAME
CN114127869B (en) * 2018-07-26 2023-12-15 Koa株式会社 Shunt resistor and current detection device using the same

Similar Documents

Publication Publication Date Title
EP2979807B1 (en) Solder alloy, solder composition, solder paste and electronic circuit board
JP4974544B2 (en) Alloy material for resistance, resistor and method for manufacturing resistor
JP3684811B2 (en) Solder and soldered articles
JP5668837B2 (en) Electronic component mounting structure
US11346726B2 (en) Sensor element, sensor arrangement, and method for manufacturing a sensor element and a sensor arrangement
KR102225427B1 (en) Substrate for power module, method for manufacturing same, and power module
JP4792806B2 (en) Resistor
DE102014110553A1 (en) Sensor element, sensor arrangement and method for producing a sensor element
JP2006022396A (en) Alloy material for resistance
JP2014078538A (en) Shunt resistor and method of mounting the same
JP3924563B2 (en) Multilayer chip varistor
JP7404426B2 (en) Current detection resistor and method for manufacturing current detection resistor
JP4621042B2 (en) Metal plate resistor for current detection
JP6530267B2 (en) Electrode material for thermal fuse
Lee et al. Surface oxidation of molten sn (ag, ni, in, cu) alloys
JP3700668B2 (en) Solder and soldered articles
US2192456A (en) Silver solder alloy
JP2667690B2 (en) Low melting point Ag solder
JP3218906B2 (en) Thermistor element
JP7135880B2 (en) Connecting terminal
JP7420363B2 (en) solder joints
TW498009B (en) Improvements in or relating to solders
US2192455A (en) Silver solder alloy
JPH0370361B2 (en)
JP2005103554A (en) Soldering paste, manufacturing method of soldering paste and mounting structure of electronic component, and mounting method