JP2006021242A - Laser beam machining method - Google Patents

Laser beam machining method Download PDF

Info

Publication number
JP2006021242A
JP2006021242A JP2004203488A JP2004203488A JP2006021242A JP 2006021242 A JP2006021242 A JP 2006021242A JP 2004203488 A JP2004203488 A JP 2004203488A JP 2004203488 A JP2004203488 A JP 2004203488A JP 2006021242 A JP2006021242 A JP 2006021242A
Authority
JP
Japan
Prior art keywords
conductor layer
hole
laser beam
resin layer
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004203488A
Other languages
Japanese (ja)
Other versions
JP4252939B2 (en
Inventor
Hiroyuki Makino
博之 牧野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Heavy Industries Ltd
Original Assignee
Sumitomo Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Heavy Industries Ltd filed Critical Sumitomo Heavy Industries Ltd
Priority to JP2004203488A priority Critical patent/JP4252939B2/en
Publication of JP2006021242A publication Critical patent/JP2006021242A/en
Application granted granted Critical
Publication of JP4252939B2 publication Critical patent/JP4252939B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Landscapes

  • Laser Beam Processing (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a laser beam machining method different from conventional ones, which makes it easy to remove a smear remained on the bottom face of a hole, which is formed in a machining object including a lamination structure of a conductive layer and a resin layer, and on whose bottom face the conductive layer is exposed. <P>SOLUTION: The laser beam machining method includes: a step (a), where a hole, whose bottom face reaches the conductive layer, is formed by irradiating the lamination structure of the conductive layer and the resin layer with a laser beam to remove the resin layer; a step (b), where the surface of the conductive layer is melted by irradiating the bottom face of the hole with a pulse laser beam having a pulse width of >100 ns and having an energy density per one pulse at the bottom face of the hole of ≥ 1.5 J/cm<SP>2</SP>; and a step (c), where the smear remained on the bottom face of the hole is removed after the above step (b). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、レーザ加工方法に関し、特に、導体層と樹脂層とが積層された構造を含む加工対象物にレーザビームを照射して樹脂層を除去し、底面に導体層が露出する穴を形成するレーザ加工方法に関する。   The present invention relates to a laser processing method, and in particular, removes a resin layer by irradiating a processing object including a structure in which a conductor layer and a resin layer are laminated to form a hole in which the conductor layer is exposed on the bottom surface. The present invention relates to a laser processing method.

プリント基板の樹脂層にレーザビームを照射して、底面に内層導体層が露出する穴を形成する加工が行われている。内層導体層の樹脂層と接する表面は、内層導体層と樹脂層との密着性を向上させるための粗化処理が施されており粗い。   A process of irradiating a resin layer of a printed circuit board with a laser beam to form a hole exposing the inner conductor layer on the bottom surface is performed. The surface of the inner conductor layer in contact with the resin layer is roughened by a roughening treatment for improving the adhesion between the inner conductor layer and the resin layer.

レーザビームで樹脂層に穴を形成すると、穴の底面に樹脂層の残渣であるスミアが残留する。スミアは、穴の底面に露出した内層導体層の粗い表面の凹部に入り込むので、容易には除去されない。スミアが充分に除去されないと、後の工程で形成される配線と、内層導体層との電気的接触が良好に行われない。   When a hole is formed in the resin layer with a laser beam, smear that is a residue of the resin layer remains on the bottom surface of the hole. Smear enters the concave portion of the rough surface of the inner conductor layer exposed at the bottom of the hole and is not easily removed. If the smear is not sufficiently removed, the electrical contact between the wiring formed in the subsequent process and the inner conductor layer is not performed well.

特許文献1には、以下に説明するように、内層導体層の粗い表面の凹部に入り込んだスミアであっても、除去することができるレーザ加工方法が開示されている。プリント基板の樹脂層にレーザビームを照射し、底面に内層導体層が露出した穴を形成する。穴を形成するレーザビームとして、例えば、赤外波長域の炭酸ガスレーザ、紫外波長域のエキシマレーザ等が用いられる。   Patent Document 1 discloses a laser processing method capable of removing even a smear that has entered a recess on a rough surface of an inner conductor layer, as will be described below. The resin layer of the printed board is irradiated with a laser beam, and a hole in which the inner conductor layer is exposed is formed on the bottom surface. As the laser beam for forming the hole, for example, an infrared wavelength range carbon dioxide laser, an ultraviolet wavelength range excimer laser, or the like is used.

次に、形成された穴の底面に、パルス幅100ps以下のパルスレーザビームを、穴の底面における1パルス当たりのエネルギ密度が0.5J/cm以上となる条件で照射する。このレーザ照射により、穴の底面に露出した内層導体層の表層が除去される。これにより、内層導体層の表面に付着したスミアも一緒に除去することができる。スミアの除去用のレーザビームを出射するレーザ光源は、穴の形成用のレーザビームを出射するレーザ光源とは別に準備される。スミアの除去用のレーザビームとして、例えばYLFレーザの第2高調波(波長523nm)が用いられる。 Next, the bottom surface of the formed hole is irradiated with a pulse laser beam having a pulse width of 100 ps or less under the condition that the energy density per pulse at the bottom surface of the hole is 0.5 J / cm 2 or more. By this laser irradiation, the surface layer of the inner conductor layer exposed on the bottom surface of the hole is removed. Thereby, the smear adhering to the surface of the inner conductor layer can be removed together. A laser light source that emits a laser beam for removing smear is prepared separately from a laser light source that emits a laser beam for forming holes. As the laser beam for removing smear, for example, the second harmonic (wavelength 523 nm) of a YLF laser is used.

特開2004−74211号公報JP 2004-74211 A

特許文献1に開示された方法では、スミアの除去に伴い、内層導体層の表層まで除去されてしまう。スミアを除去するために、穴の形成用のレーザ光源と別のレーザ光源を準備する必要がある。   In the method disclosed in Patent Document 1, the surface layer of the inner conductor layer is removed along with the removal of smear. In order to remove smear, it is necessary to prepare a laser light source different from the laser light source for forming holes.

本発明の一目的は、導体層と樹脂層とが積層された構造を含む加工対象物に形成され、底面に導体層が露出した穴の底面に残留したスミアの除去を容易にすることが可能な、従来とは異なるレーザ加工方法を提供することである。   One object of the present invention is to form a processing object including a structure in which a conductor layer and a resin layer are laminated, and to easily remove smear remaining on the bottom surface of a hole in which the conductor layer is exposed on the bottom surface. Another object is to provide a laser processing method different from the conventional one.

本発明の一観点によれば、(a)導体層と樹脂層とが積層された構造を含む加工対象物の、該導体層と該樹脂層とが積層された構造にレーザビームを照射して、該樹脂層を除去し、底面が該導体層に達する穴を形成する工程と、(b)前記穴の底面に、パルス幅が100nsより長く、前記穴の底面における1パルス当たりのエネルギ密度が1.5J/cm以上のパルスレーザビームを照射し、前記導体層の表面を溶融させる工程と、(c)前記工程(b)の後、前記穴の底面に残留したスミアを除去する工程と
を有するレーザ加工方法が提供される。
According to one aspect of the present invention, (a) a processing object including a structure in which a conductor layer and a resin layer are stacked is irradiated with a laser beam on the structure in which the conductor layer and the resin layer are stacked. Removing the resin layer and forming a hole having a bottom surface reaching the conductor layer; and (b) a pulse width longer than 100 ns on the bottom surface of the hole, and an energy density per pulse at the bottom surface of the hole. Irradiating a pulse laser beam of 1.5 J / cm 2 or more to melt the surface of the conductor layer; (c) removing the smear remaining on the bottom surface of the hole after the step (b); A laser processing method is provided.

穴の底面に露出した導体層の表面が溶融して、平坦化される。平坦化された穴の底面に残留したスミアは、平坦でない穴の底面に残留したスミアに比べて除去しやすい。   The surface of the conductor layer exposed at the bottom of the hole is melted and flattened. The smear remaining on the bottom surface of the flattened hole is easier to remove than the smear remaining on the bottom surface of the non-flat hole.

図1(A)〜図1(C)を参照して、本発明の実施例によるレーザ加工方法について説明する。図1(A)に示すように、例えばガラスエポキシ樹脂からなるコア基板1の表面に、例えば銅からなる内層導体層2が形成されている。内層導体層2を覆うように、コア基板1の表面に、樹脂層3が形成されている。樹脂層3は、例えばベンゾシクロブテン(BCB)樹脂からなり、その厚さは例えば25〜30μmである。内層導体層2の、樹脂層3に接する表面は、粗化処理されている。内層導体層2の粗い表面の凹部に、樹脂層3が食い込むことにより、内層導体層2と樹脂層3との密着性が高められる。コア基板1、内層導体層2、及び樹脂層3が加工基板6を構成する。   With reference to FIGS. 1A to 1C, a laser processing method according to an embodiment of the present invention will be described. As shown in FIG. 1A, an inner conductor layer 2 made of, for example, copper is formed on the surface of a core substrate 1 made of, for example, glass epoxy resin. A resin layer 3 is formed on the surface of the core substrate 1 so as to cover the inner conductor layer 2. The resin layer 3 is made of, for example, benzocyclobutene (BCB) resin and has a thickness of, for example, 25 to 30 μm. The surface of the inner conductor layer 2 in contact with the resin layer 3 is roughened. The adhesiveness between the inner conductor layer 2 and the resin layer 3 is enhanced by the resin layer 3 biting into the recesses on the rough surface of the inner conductor layer 2. The core substrate 1, the inner conductor layer 2, and the resin layer 3 constitute a processed substrate 6.

次に、図1(B)に示すように、加工基板6の、内層導体層2と樹脂層3とが積層されている部分の表面にパルスレーザビームLを照射する。パルスレーザビームLとして、例えばYAGレーザの第3高調波(波長355nm)が用いられる。パルスレーザビームLのパルス幅は、例えば300nsであり、加工基板6の表面における1パルス当たりのエネルギ密度は、例えば2.1J/cmである。 Next, as shown in FIG. 1B, the surface of the processed substrate 6 where the inner conductor layer 2 and the resin layer 3 are laminated is irradiated with a pulsed laser beam L. As the pulse laser beam L, for example, the third harmonic (wavelength 355 nm) of a YAG laser is used. The pulse width of the pulse laser beam L is, for example, 300 ns, and the energy density per pulse on the surface of the processed substrate 6 is, for example, 2.1 J / cm 2 .

パルスレーザビームLの照射を開始すると、樹脂層3が除去され、樹脂層3に穴4が形成される。照射されるショット数が増えるにつれ、穴4が深くなり、その底面が内層導体層2の表面まで到達する。穴4の底面が内層導体層2の表面まで到達すると、それ以後に照射されるパルスが、内層導体層2の表層で吸収される。これにより、内層導体層2の表面が溶融して、平坦化される。内層導体層2の表面を溶融させることが可能な程度に、パルスレーザビームLが内層導体層2に吸収されるように、パルスレーザビームLの波長が選択される。1つの穴4を形成するために、例えば20〜100ショット程度のパルスが照射される。レーザ照射で形成された穴4の底面に、樹脂層3の残渣であるスミア5が残留する。   When the irradiation with the pulse laser beam L is started, the resin layer 3 is removed, and a hole 4 is formed in the resin layer 3. As the number of irradiated shots increases, the hole 4 becomes deeper and the bottom surface reaches the surface of the inner conductor layer 2. When the bottom surface of the hole 4 reaches the surface of the inner conductor layer 2, pulses irradiated thereafter are absorbed by the surface layer of the inner conductor layer 2. Thereby, the surface of the inner conductor layer 2 is melted and flattened. The wavelength of the pulse laser beam L is selected so that the pulse laser beam L is absorbed by the inner layer conductor layer 2 to the extent that the surface of the inner layer conductor layer 2 can be melted. In order to form one hole 4, for example, a pulse of about 20 to 100 shots is irradiated. Smear 5 that is a residue of the resin layer 3 remains on the bottom surface of the hole 4 formed by laser irradiation.

なお、例えば、パルス幅が300nsで、被加工位置での1パルス当たりのエネルギ密度が2.1J/cmのパルスレーザビームLを照射するとき、内層導体層2の表面に過剰なショット数のパルスを照射したとしても、内層導体層2の表層が除去されることはない。 For example, when a pulse laser beam L having a pulse width of 300 ns and an energy density per pulse at a processing position of 2.1 J / cm 2 is irradiated, an excessive number of shots are formed on the surface of the inner conductor layer 2. Even if the pulse is irradiated, the surface layer of the inner conductor layer 2 is not removed.

次に、図1(C)に示すように、穴開けが終了した加工基板6を、O及びCFの混合ガスのプラズマP1に晒し、その後、さらにArのプラズマP2に晒して、穴4の底面に残留したスミア5を除去する。スミア5の除去後、穴4及び樹脂層3の上面に、例えば銅からなる配線を形成する。配線と内層導体層2が電気的に接続される。 Next, as shown in FIG. 1C, the drilled substrate 6 is exposed to a plasma P1 of a mixed gas of O 2 and CF 4 , and then further exposed to an Ar plasma P2 to form holes 4 The smear 5 remaining on the bottom surface of the substrate is removed. After the smear 5 is removed, wiring made of, for example, copper is formed on the upper surface of the hole 4 and the resin layer 3. The wiring and the inner conductor layer 2 are electrically connected.

上述したレーザ加工方法では、穴4の底面に露出した内層導体層2の表面が、レーザビームにより溶融され、平坦化される。これにより、穴4の底面に残留したスミア5が、穴4の底面が粗い場合に比べて除去されやすくなる。スミア除去のために、内層導体層2の表層まで一緒に除去する必要がない。スミアが充分に除去されることにより、内層導体層2と配線との電気的接触を良好にできる。   In the laser processing method described above, the surface of the inner conductor layer 2 exposed on the bottom surface of the hole 4 is melted and flattened by the laser beam. As a result, the smear 5 remaining on the bottom surface of the hole 4 is more easily removed than when the bottom surface of the hole 4 is rough. It is not necessary to remove even the surface layer of the inner conductor layer 2 for removing smear. By sufficiently removing smear, the electrical contact between the inner conductor layer 2 and the wiring can be improved.

図2のグラフに、銅の光吸収率の波長依存性を示す。横軸がμm単位で表した波長を示し、縦軸が光吸収率を示す。光吸収率は、波長が10μmから0.7μm(700nm)までは10%程度以下であるが、波長が700nm以下になると急激に増加する。波長355nmの光は、50〜60%程度が吸収される。   The graph of FIG. 2 shows the wavelength dependence of the light absorption rate of copper. The horizontal axis indicates the wavelength expressed in μm, and the vertical axis indicates the light absorption rate. The light absorptance is about 10% or less from a wavelength of 10 μm to 0.7 μm (700 nm), but increases rapidly when the wavelength is 700 nm or less. About 50 to 60% of light having a wavelength of 355 nm is absorbed.

上述の実施例では、パルスレーザビームLの波長を355nmとしたが、内層導体層が銅であるとき、パルスレーザビームLの波長を、例えば700nm以下で200nm以上の範囲内から選ぶことができる。なお、現在のところ、200nmより短い波長を有し、かつ銅を溶融させるほどのパワーを有するレーザ光源を作製することは容易でない。   In the embodiment described above, the wavelength of the pulse laser beam L is 355 nm. However, when the inner conductor layer is copper, the wavelength of the pulse laser beam L can be selected from a range of 700 nm or less and 200 nm or more, for example. At present, it is not easy to produce a laser light source having a wavelength shorter than 200 nm and having a power sufficient to melt copper.

次に、図3(A)〜図3(F)の電子顕微鏡写真を参照して、加工基板に照射するパルスレーザビームの、加工基板表面における1パルス当たりのエネルギ密度を変化させ、銅からなる内層導体層の表面の溶融状態がどのように変化するか調べた実験について説明する。実験において、パルスレーザビームの波長を355nmとし、パルス幅を300nsとした。   Next, referring to the electron micrographs of FIGS. 3A to 3F, the energy density per pulse of the pulsed laser beam applied to the processed substrate on the surface of the processed substrate is changed to be made of copper. An experiment for examining how the melting state of the surface of the inner conductor layer changes will be described. In the experiment, the wavelength of the pulse laser beam was 355 nm, and the pulse width was 300 ns.

図3(A)及び(B)が、パルスエネルギ密度が2.1J/cmの場合の結果を示し、図3(C)及び(D)が、パルスエネルギ密度が1.6J/cmの場合の結果を示し、図3(E)及び(F)が、パルスエネルギ密度が1.1J/cmの場合の結果を示す。図3(A)、(C)及び(E)が、レーザ照射で形成された穴を加工基板の上方から見た写真であり、各写真とも、円形の開口の内部が穴の底面を示す。図3(B)、(D)及び(F)がそれぞれ、図3(A)、(C)及び(E)に示す穴の底面の拡大写真である。 3A and 3B show the results when the pulse energy density is 2.1 J / cm 2 , and FIGS. 3C and 3D show the pulse energy density of 1.6 J / cm 2 . FIG. 3E and FIG. 3F show the results when the pulse energy density is 1.1 J / cm 2 . 3A, 3C, and 3E are photographs of holes formed by laser irradiation as viewed from above the processed substrate. In each photograph, the inside of the circular opening indicates the bottom surface of the hole. 3B, 3D and 3F are enlarged photographs of the bottom surfaces of the holes shown in FIGS. 3A, 3C and 3E, respectively.

図3(A)及び(B)に示すように、1パルス当たりのエネルギ密度が2.1J/cmの場合は、内層導体層の表面が充分に溶融し、穴の底面が平坦化された。図3(C)及び(D)に示すように、1パルス当たりのエネルギ密度が1.6J/cmの場合は、内層導体層の表面がやや溶融し、穴の底面がやや平坦化された。図3(E)及び(F)に示すように、1パルス当たりのエネルギ密度が1.1J/cmの場合は、内層導体層の表面が溶融せず、穴の底面は粗かった。なお、どの場合においても、穴の底面を覆うように、スミアが残留している。 As shown in FIGS. 3A and 3B, when the energy density per pulse is 2.1 J / cm 2 , the surface of the inner conductor layer is sufficiently melted and the bottom surface of the hole is flattened. . As shown in FIGS. 3C and 3D, when the energy density per pulse was 1.6 J / cm 2 , the surface of the inner conductor layer was slightly melted and the bottom surface of the hole was slightly flattened. . As shown in FIGS. 3E and 3F, when the energy density per pulse was 1.1 J / cm 2 , the surface of the inner conductor layer did not melt and the bottom of the hole was rough. In any case, smear remains so as to cover the bottom surface of the hole.

この実験から、加工基板の表面における1パルス当たりのエネルギ密度が1.5J/cm程度以上であれば、内層導体層の表面が溶融し、穴の底面が平坦化される作用が期待できることがわかった。穴の底面が少しでも平坦化されれば、内層導体層が溶融せずに穴の底面が粗い場合に比べて、スミアの除去が容易になる。 From this experiment, if the energy density per pulse on the surface of the processed substrate is about 1.5 J / cm 2 or more, it can be expected that the surface of the inner conductor layer is melted and the bottom surface of the hole is flattened. all right. If the bottom surface of the hole is evenly flattened, smear can be easily removed as compared with the case where the inner conductor layer is not melted and the bottom surface of the hole is rough.

なお、上述の実験は、パルス幅が300nsのパルスレーザビームを用いて行ったが、パルス幅が100nsより長く1000nsより短いパルスレーザビームであれば、内層導体層の表面を溶融させて平坦化させる加工が行えるであろう。   The above experiment was performed using a pulse laser beam having a pulse width of 300 ns. However, if the pulse width is longer than 100 ns and shorter than 1000 ns, the surface of the inner conductor layer is melted and flattened. Processing will be possible.

なお、例えば銅を主成分とする合金やアルミニウム等の金属からなる内層導体層に対しても、加工基板表面での1パルス当たりのエネルギ密度を1.5J/cm程度以上に設定してレーザ照射を行うことにより、内層導体層の表面を溶融させて平坦化させる加工が行えるであろう。 For example, for an inner conductor layer made of an alloy mainly composed of copper or a metal such as aluminum, the energy density per pulse on the processed substrate surface is set to about 1.5 J / cm 2 or more and laser By performing the irradiation, the surface of the inner conductor layer may be melted and flattened.

なお、1パルス当たりのエネルギ密度が5J/cm以上になると、樹脂層が良好に加工されなくなり、所望の開口形状を有する穴の形成が困難となる。加工基板表面における1パルス当たりのエネルギ密度は、樹脂層が良好に加工できる程度の高さに止めることが好ましい。 When the energy density per pulse is 5 J / cm 2 or more, the resin layer is not processed well, and it becomes difficult to form a hole having a desired opening shape. The energy density per pulse on the surface of the processed substrate is preferably stopped at such a height that the resin layer can be processed satisfactorily.

次に、底面の内層導体層が溶融した穴に形成した配線と、底面の内層導体層が溶融していない穴に形成した配線とで、電気的接続の信頼性を比較した実験について説明する。被加工位置における1パルス当たりのエネルギ密度を約2J/cmとして穴を形成した加工基板と、被加工位置における1パルス当たりのエネルギ密度を約1J/cmとして穴を形成した加工基板とを、それぞれ複数個準備した。前者の加工基板は、穴底の内層導体層の表面が溶融しており、後者の加工基板は、穴底の内層導体層の表面が溶融していない。 Next, an experiment will be described in which the reliability of electrical connection is compared between a wiring formed in a hole in which the bottom inner conductor layer is melted and a wiring formed in a hole in which the bottom inner conductor layer is not melted. A processing substrate provided with the hole of the energy density of about 2J / cm 2 per pulse at the work location, and a processing substrate provided with the hole energy density per pulse in the work position as about 1 J / cm 2 A plurality of each was prepared. In the former processed substrate, the surface of the inner layer conductor layer at the bottom of the hole is melted, and in the latter processed substrate, the surface of the inner layer conductor layer at the bottom of the hole is not melted.

全加工基板に対して同一の条件で、上述したプラズマ処理を行うことにより、穴の底面に残留したスミアを除去した。その後、穴の底面に露出した内層導体層に接続する配線を形成した。このようにして作製した試料に対して、室温と260℃との間の熱衝撃試験を行った。30サイクルの温度変化を経たときの導通を、良不良の判断基準とした。内層導体層の表面が溶融した方の試料はすべて、30サイクル以上の温度変化を経ても導通が良好であった。一方、内層導体層の表面が溶融していない方の試料は、30サイクルに達しないうちに導通が不良になるものがあった。   By performing the above-described plasma treatment on all the processed substrates under the same conditions, smear remaining on the bottom surface of the hole was removed. Thereafter, a wiring connected to the inner conductor layer exposed at the bottom of the hole was formed. Thus, the thermal shock test between room temperature and 260 degreeC was done with respect to the produced sample. The continuity after 30 cycles of temperature change was used as a criterion for determining good or bad. All of the samples in which the surface of the inner conductor layer was melted had good conductivity even after undergoing a temperature change of 30 cycles or more. On the other hand, some samples in which the surface of the inner conductor layer was not melted had poor conductivity before reaching 30 cycles.

この実験から、内層導体層の表面を溶融して平坦化することにより、スミアの除去が良好に行われ、内層導体層と配線との電気的接続の信頼性を向上できることがわかった。   From this experiment, it was found that by removing the surface of the inner conductor layer and flattening it, smear can be removed well and the reliability of the electrical connection between the inner conductor layer and the wiring can be improved.

なお、上述の実施例では、コア基板1上に内層導体層2と樹脂層3とが形成された加工対象物に穴を形成する例を説明したが、上述したレーザ加工方法は、コア基板がなく、導体層と樹脂層とが積層された加工対象物の樹脂層に穴を形成する加工に応用しても構わない。   In the above-described embodiment, an example has been described in which holes are formed in the object to be processed in which the inner conductor layer 2 and the resin layer 3 are formed on the core substrate 1. Alternatively, the present invention may be applied to processing for forming a hole in a resin layer of a processing object in which a conductor layer and a resin layer are laminated.

以上実施例に沿って本発明を説明したが、本発明はこれらに制限されるものではない。例えば、種々の変更、改良、組み合わせ等が可能なことは当業者に自明であろう。   Although the present invention has been described with reference to the embodiments, the present invention is not limited thereto. It will be apparent to those skilled in the art that various modifications, improvements, combinations, and the like can be made.

図1(A)〜図1(C)は、加工基板の断面図である。1A to 1C are cross-sectional views of a processed substrate. 銅の光吸収率の波長依存性を示すグラフである。It is a graph which shows the wavelength dependence of the optical absorptance of copper. 図3(A)は、加工基板に形成された穴の電子顕微鏡写真である。FIG. 3A is an electron micrograph of holes formed in the processed substrate. 図3(B)は、加工基板に形成された穴の電子顕微鏡写真である。FIG. 3B is an electron micrograph of holes formed in the processed substrate. 図3(C)は、加工基板に形成された穴の電子顕微鏡写真である。FIG. 3C is an electron micrograph of holes formed in the processed substrate. 図3(D)は、加工基板に形成された穴の電子顕微鏡写真である。FIG. 3D is an electron micrograph of a hole formed in the processed substrate. 図3(E)は、加工基板に形成された穴の電子顕微鏡写真である。FIG. 3E is an electron micrograph of holes formed in the processed substrate. 図3(F)は、加工基板に形成された穴の電子顕微鏡写真である。FIG. 3F is an electron micrograph of a hole formed in the processed substrate.

符号の説明Explanation of symbols

1 コア基板
2 内層導体層
3 樹脂層
4 穴
5 スミア
L パルスレーザビーム
P1、P2 プラズマ
6 加工基板
DESCRIPTION OF SYMBOLS 1 Core substrate 2 Inner layer conductor layer 3 Resin layer 4 Hole 5 Smear L Pulse laser beam P1, P2 Plasma 6 Processed substrate

Claims (6)

(a)導体層と樹脂層とが積層された構造を含む加工対象物の、該導体層と該樹脂層とが積層された構造にレーザビームを照射して、該樹脂層を除去し、底面が該導体層に達する穴を形成する工程と、
(b)前記穴の底面に、パルス幅が100nsより長く、前記穴の底面における1パルス当たりのエネルギ密度が1.5J/cm以上のパルスレーザビームを照射し、前記導体層の表面を溶融させる工程と、
(c)前記工程(b)の後、前記穴の底面に残留したスミアを除去する工程と
を有するレーザ加工方法。
(A) A processing object including a structure in which a conductor layer and a resin layer are laminated, and a structure in which the conductor layer and the resin layer are laminated is irradiated with a laser beam to remove the resin layer, Forming a hole reaching the conductor layer;
(B) The bottom surface of the hole is irradiated with a pulsed laser beam having a pulse width longer than 100 ns and an energy density per pulse at the bottom surface of the hole of 1.5 J / cm 2 or more to melt the surface of the conductor layer. A process of
(C) A laser processing method including a step of removing smear remaining on the bottom surface of the hole after the step (b).
前記工程(a)でレーザビームが照射される前記加工対象物において、前記導体層の前記樹脂層と接する表面は粗化処理されている請求項1に記載のレーザ加工方法。 2. The laser processing method according to claim 1, wherein a surface of the conductor layer that is in contact with the resin layer is subjected to a roughening treatment in the object to be irradiated with the laser beam in the step (a). 前記導体層が銅からなり、前記工程(b)で照射されるレーザビームの波長は、200nm以上700nm以下である請求項1または2に記載のレーザ加工方法。 The laser processing method according to claim 1 or 2, wherein the conductor layer is made of copper, and the wavelength of the laser beam irradiated in the step (b) is 200 nm or more and 700 nm or less. 前記工程(a)及び(b)で照射されるレーザビームの、パルス幅、前記加工対象物の表面における1パルス当たりのエネルギ密度、及び波長が等しい請求項1〜3のいずれかに記載のレーザ加工方法。 The laser according to any one of claims 1 to 3, wherein the laser beam irradiated in the steps (a) and (b) has the same pulse width, energy density per pulse on the surface of the workpiece, and wavelength. Processing method. 前記工程(c)において、前記穴の底面をプラズマに晒すことによりスミアを除去する請求項1〜4に記載のレーザ加工方法。 The laser processing method according to claim 1, wherein in the step (c), smear is removed by exposing a bottom surface of the hole to plasma. 導体層と樹脂層とが積層された構造を含む加工対象物の、該導体層と該樹脂層とが積層された構造に、パルス幅が100nsより長く、該加工対象物の表面における1パルス当たりのエネルギ密度が1.5J/cm以上のパルスレーザビームを、該樹脂層が貫通して該導体層の表面の一部が露出し、かつ該導体層の露出した部分の表層が溶融するまで照射する工程と、
前記導体層の露出した表面に残留するスミアを除去する工程と
を有するレーザ加工方法。
A processing object including a structure in which a conductor layer and a resin layer are stacked, and a structure in which the conductor layer and the resin layer are stacked has a pulse width longer than 100 ns, and per pulse on the surface of the processing object. Until the resin layer penetrates a pulse laser beam having an energy density of 1.5 J / cm 2 or more until a part of the surface of the conductor layer is exposed and the surface layer of the exposed part of the conductor layer is melted Irradiating, and
Removing the smear remaining on the exposed surface of the conductor layer.
JP2004203488A 2004-07-09 2004-07-09 Laser processing method Expired - Fee Related JP4252939B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004203488A JP4252939B2 (en) 2004-07-09 2004-07-09 Laser processing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004203488A JP4252939B2 (en) 2004-07-09 2004-07-09 Laser processing method

Publications (2)

Publication Number Publication Date
JP2006021242A true JP2006021242A (en) 2006-01-26
JP4252939B2 JP4252939B2 (en) 2009-04-08

Family

ID=35794891

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004203488A Expired - Fee Related JP4252939B2 (en) 2004-07-09 2004-07-09 Laser processing method

Country Status (1)

Country Link
JP (1) JP4252939B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068266A (en) * 2006-09-12 2008-03-27 Matsushita Electric Ind Co Ltd Wafer machining method and apparatus
US8288682B2 (en) * 2007-09-28 2012-10-16 Intel Corporation Forming micro-vias using a two stage laser drilling process
JP2014121734A (en) * 2008-10-23 2014-07-03 Sumitomo Electric Ind Ltd Laser processing method

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008068266A (en) * 2006-09-12 2008-03-27 Matsushita Electric Ind Co Ltd Wafer machining method and apparatus
US8288682B2 (en) * 2007-09-28 2012-10-16 Intel Corporation Forming micro-vias using a two stage laser drilling process
JP2014121734A (en) * 2008-10-23 2014-07-03 Sumitomo Electric Ind Ltd Laser processing method

Also Published As

Publication number Publication date
JP4252939B2 (en) 2009-04-08

Similar Documents

Publication Publication Date Title
US8710402B2 (en) Method of and apparatus for laser drilling holes with improved taper
CN101689482B (en) Method of providing patterned embedded conducive layer using laser aided etching of dielectric build-up layer
JP4620713B2 (en) Printed wiring board manufacturing method and electrolytic etching solution used in the manufacturing method
JP4835067B2 (en) Circuit board manufacturing method, printed circuit board manufacturing method, and printed circuit board
JP2005518945A (en) Laser processing method
JP2004351513A (en) Method for machining material by super-short pulse laser beam, printed circuit board, and method for manufacturing the same
JP4252939B2 (en) Laser processing method
KR100661108B1 (en) Laser beam machining method
JP2000202664A (en) Lasder drilling method
JP5109285B2 (en) Manufacturing method of multilayer wiring board
JP3583279B2 (en) Drilling method
JP2006203074A (en) Circuit board and manufacturing method thereof
JP2004074211A (en) Laser beam machining method
JP3869736B2 (en) Laser processing method and multilayer wiring board
JP2004031500A (en) Method for punching multi-layer printed wiring board
JP2021089926A (en) Laser processing method
KR20060131045A (en) Reverse treated foil and pcb manufacturing method thereof
JP2005340785A (en) Printed circuit board, processing method of printed circuit board, and manufacturing method of printed circuit board
JP2001267720A (en) Method for machining laminated film substrate
Brannon Laser-material processing: an industrial view of packaging applications
JP2005349446A (en) Laser beam boring method
JPH09162519A (en) Board with bored hole, and its machining method
JP2004148344A (en) Laser beam machining method
Ogawa et al. Microvia Formation for Multi-Layer PWB by Laser Direct Drilling: Improvement of Hole Quality by Silica Fillers in Build-Up Layer
Zheng et al. A process study of laser micro-drilling vias for wafer-level chip scale packaging

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061115

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090106

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090122

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120130

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130130

Year of fee payment: 4

LAPS Cancellation because of no payment of annual fees