JP2006016470A - Gas purifier and method for reclaiming removing agent used in the same - Google Patents

Gas purifier and method for reclaiming removing agent used in the same Download PDF

Info

Publication number
JP2006016470A
JP2006016470A JP2004194804A JP2004194804A JP2006016470A JP 2006016470 A JP2006016470 A JP 2006016470A JP 2004194804 A JP2004194804 A JP 2004194804A JP 2004194804 A JP2004194804 A JP 2004194804A JP 2006016470 A JP2006016470 A JP 2006016470A
Authority
JP
Japan
Prior art keywords
gas
bed type
activated carbon
tar
layer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004194804A
Other languages
Japanese (ja)
Other versions
JP4534629B2 (en
Inventor
Toshihiko Iwasaki
敏彦 岩崎
Mitsuhiro Tada
光宏 多田
Keiji Tomura
啓二 戸村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Engineering Corp
Original Assignee
JFE Engineering Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Engineering Corp filed Critical JFE Engineering Corp
Priority to JP2004194804A priority Critical patent/JP4534629B2/en
Publication of JP2006016470A publication Critical patent/JP2006016470A/en
Application granted granted Critical
Publication of JP4534629B2 publication Critical patent/JP4534629B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To obtain a gas purifier that can attain the scale miniaturization and the cost saving of a biomass gas purifier and can efficiently remove the tar in the biomass gas. <P>SOLUTION: This gas purifier is for removing the tar in the gas produced by thermochemical gasification of biomass and has a removing layer that is filled with the removing agent for removing tar in the biomass gas passing through the layer and is equipped with a moving layer type remover 5 for allowing the removing agent layer to move for reclamation and a fixed bed type remover 7 is arranged on the downstream side of the moving layer type remover 5. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、バイオマスを熱化学的にガス化して得られるガスからタールを除去するガス精製装置及び該ガス精製装置で使用された除去剤の再生方法に関する。
バイオマスとは、生物由来の有機資源をいい、例えば森林資源、海洋生物資源(魚介類、海藻)、農産物、畜産物そのもの、あるいはこれらを利用した後の有機性廃棄物(木屑、間伐材、籾殻、パーム空果房、パーム油残渣、建設発生木材等)をいう。
また、本明細書においてバイオマスという場合には、上記バイオマス単体のみならず、バイオマスと一般廃棄物、産業廃棄物、汚泥、石炭、RDF・RPF等の固体燃料、灯油・重油等の液体燃料、又は天然ガス等のガス燃料等との混合物をも含むものとする。
The present invention relates to a gas purification apparatus that removes tar from a gas obtained by thermochemical gasification of biomass and a method for regenerating a removing agent used in the gas purification apparatus.
Biomass refers to organic resources derived from living organisms, such as forest resources, marine biological resources (fishery products, seaweed), agricultural products, livestock products themselves, or organic waste (wood waste, thinned wood, rice husks) after using them. , Palm empty fruit bunch, palm oil residue, construction generated wood, etc.).
In addition, in the present specification, the term “biomass” refers not only to the above-mentioned biomass alone but also to biomass and general waste, industrial waste, sludge, coal, solid fuel such as RDF / RPF, liquid fuel such as kerosene / heavy oil, or It also includes mixtures with gas fuels such as natural gas.

近年バイオマス資源をエネルギーや工業原材料等に変換するバイオマス変換技術の開発が進んでいる。
なかでもバイオマスの熱化学的なガス化に関する開発が進んでいる。本発明ではバイオマスの熱化学的なガス化、すなわちバイオマスの熱分解反応や部分酸化反応等によるガス化によって得られるガスをバイオマスガスと呼ぶ。
In recent years, development of biomass conversion technology that converts biomass resources into energy, industrial raw materials, and the like has been progressing.
In particular, development related to thermochemical gasification of biomass is advancing. In the present invention, a gas obtained by thermochemical gasification of biomass, that is, gasification by biomass pyrolysis reaction, partial oxidation reaction or the like is referred to as biomass gas.

バイオマスガスを利用する場合に最も問題になるのは、バイオマスガスにはタールが多量に含まれているため、これを取り除かないと、ガス利用装置にタールが付着して装置の機能低下や目詰まり等の原因となることである。例えば、ガス利用装置としてガスエンジンを用いる場合には、ガスエンジンへの燃料供給配管の閉塞、ピストンの焼付、潤滑油の性能劣化、点火プラグへのカーボン付着などのトラブルが発生する。
したがって、バイオマスガスからタールを除去することは、バイオマスガスを利用するための前提となる重要な技術である。
しかしながら、バイオマスガスからタールを除去する技術については国内においてはほとんど提案されておらず、海外においてもその例は少ない。
The biggest problem when using biomass gas is that biomass gas contains a large amount of tar, so if it is not removed, tar will adhere to the gas utilization device, causing the device to deteriorate or become clogged. It is to cause. For example, when a gas engine is used as the gas utilization device, troubles such as blockage of fuel supply piping to the gas engine, piston burning, deterioration of the performance of the lubricating oil, and carbon adhesion to the spark plug occur.
Therefore, removal of tar from biomass gas is an important technology that is a prerequisite for using biomass gas.
However, few technologies have been proposed in Japan for removing tar from biomass gas, and there are few examples overseas.

発明者の調査したところによると、外国における例として、木質バイオマスをガス化して、ガスエンジンに供給して発電するものにおいて、ガス中のタールをクリーニングするものがある。ここに示された例は、ガス化炉で生成されたバイオマスガスを2段のサイクロンに導入して粒径の大きいダストを除去した後、湿式スクラバーで洗浄してさらにダストとタールを除去するとともに温度を下げて湿式電気集塵器にてさらにタールを除去するという湿式除去装置である(非特許文献1参照)。
Gas engine operation on fuel gas from CFBbiomass gasifer,L.P.L.M.Rabou,Contributions ECN biomass to the “12thEuropean conference and Technology exhibition on biomass for energy,industryand climate protection”,Amsterdam,2002,p12
According to the inventor's investigation, as an example in a foreign country, there is one in which wood biomass is gasified and supplied to a gas engine to generate electricity, and tar in the gas is cleaned. In the example shown here, biomass gas generated in a gasifier is introduced into a two-stage cyclone to remove dust having a large particle size, and then washed with a wet scrubber to further remove dust and tar. This is a wet removal device that lowers the temperature and further removes tar with a wet electric dust collector (see Non-Patent Document 1).
Gas engine operation on fuel gas from CFBbiomass gasifer, LPLMRabou, Contributions ECN biomass to the “12thEuropean conference and Technology exhibition on biomass for energy, industry and climate protection”, Amsterdam, 2002, p12

非特許文献1に示されたもののように、ガス化炉で生成されたバイオマスガスを湿式スクラバーで洗浄してダストやタールを除去することにすると、タールを含んだ洗浄排水の処理が必要となり、この廃水処理の負荷が大きくガス精製設備全体が大規模となり、この結果、設備費用、設置面積、設備の維持管理等の面から設備コストや運転コストが嵩むという問題がある。
また、上記の方法では、タールの除去については一定の効果はあると思われるが、バイオマスガス成分のうちのガス燃料になる混合ガス成分や、液体燃料合成に有用な混合ガス成分をも除去してしまうという問題もある。
As shown in Non-Patent Document 1, when the biomass gas generated in the gasifier is washed with a wet scrubber to remove dust and tar, it is necessary to treat the waste water containing tar. The wastewater treatment load is large and the entire gas purification facility becomes large. As a result, there is a problem that the facility cost and the operation cost increase from the viewpoint of facility cost, installation area, facility maintenance, and the like.
In addition, the above method seems to have a certain effect on the removal of tar, but it also removes mixed gas components that become gas fuels among biomass gas components and mixed gas components that are useful for liquid fuel synthesis. There is also a problem that it ends up.

本発明はかかる課題を解決するためになされたものであり、その主たる目的はバイオマスガス精製装置の小型化、低コスト化が可能で、バイオマスガス中のタールを効率的に除去することができるガス精製装置を得ることにある。   The present invention has been made to solve such a problem, and its main purpose is to reduce the size and cost of the biomass gas refining device, and to efficiently remove tar in the biomass gas. It is to obtain a purification apparatus.

(1)本発明に係るガス精製装置は、バイオマスを熱化学的にガス化して得られるバイオマスガス中のタールを除去する装置であって、バイオマスガスを通過させてタールを除去する除去剤を充填してなる除去剤層を有し、該除去剤層を移動させて前記除去剤層を更新する移動層式除去装置と、該除去剤層が固定された固定層式除去装置とからなり、前記移動層式除去装置の下流側に前記固定層式除去装置を配置したことを特徴とするものである。
なお、移動層式除去装置と固定層式除去装置はそれぞれ個別の装置である必要はなく、一つの装置の中に移動層式除去装置と固定層式除去装置が含まれるような構成でもよい。
(1) A gas purification apparatus according to the present invention is an apparatus for removing tar in biomass gas obtained by thermochemical gasification of biomass, and is filled with a remover that passes the biomass gas and removes tar. And a moving bed type removal device that renews the removal agent layer by moving the removal agent layer, and a fixed bed type removal device to which the removal agent layer is fixed. The fixed bed type removal device is arranged downstream of the moving bed type removal device.
Note that the moving bed type removal device and the fixed bed type removal device do not have to be separate devices, and the moving bed type removal device and the fixed bed type removal device may be included in one device.

(2)また、上記(1)における除去剤は、炭素剤であることを特徴とするものである。 (2) Moreover, the removal agent in said (1) is a carbon agent, It is characterized by the above-mentioned.

(3)また、上記(1)における除去剤は活性炭であり、移動層式除去装置には粒径が2〜10mmの活性炭を使用し、固定層式除去装置には粒径が1〜3mmの活性炭を使用することを特徴とするものである。 (3) Moreover, the removal agent in said (1) is activated carbon, activated carbon with a particle size of 2 to 10 mm is used for the moving bed type removal device, and a particle size of 1 to 3 mm is used for the fixed bed type removal device. It is characterized by using activated carbon.

(4)また、上記(1)又は(3)における除去剤は活性炭であり、該活性炭の比表面積が250m/g以上、及び/又は平均細孔径が0.1nm以上であり、除去剤層の雰囲気温度が130〜500℃であることを特徴とするものである。 (4) Moreover, the removing agent in the above (1) or (3) is activated carbon, and the activated carbon has a specific surface area of 250 m 2 / g or more and / or an average pore diameter of 0.1 nm or more, and a removing agent layer. The atmospheric temperature is 130 to 500 ° C.

(5)また、上記(4)におけるガス精製装置は、固定層式除去装置の除去剤層の雰囲気温度を、移動層式除去装置の除去剤層の雰囲気温度より低く設定することを特徴とするものである。 (5) Moreover, the gas purification apparatus in said (4) sets the atmosphere temperature of the removal agent layer of a fixed bed type removal apparatus lower than the atmosphere temperature of the removal agent layer of a moving bed type removal apparatus, It is characterized by the above-mentioned. Is.

(6)本発明に係る使用済み除去剤の再生方法は、上記(1)〜(5)のいずれかに記載の固定層式除去装置に使用した使用済み除去剤の再生方法であって、該使用済み除去剤を不活性ガス中又は減圧下で、タールを除去した際の温度以上に加熱することにより前記使用済み除去剤に吸着されたタールを前記除去剤から脱着させることを特徴とするものである。 (6) A regeneration method of a used remover according to the present invention is a regeneration method of a used remover used in the fixed-bed removal device according to any one of (1) to (5) above, The used removing agent is desorbed from the removing agent by heating the used removing agent in an inert gas or under reduced pressure to a temperature higher than the temperature at which the tar is removed. It is.

本発明においては、バイオマスガスの精製に際して、上流に移動層式除去装置を配置し、下流側に固定層式除去装置を配置するようにしたので、従来のように湿式除去装置を設置した場合のような大量の洗浄水の処理が不要となり、乾式であることから設備規模も小規模小型化、低コスト化が実現される。
また、上流側に移動層式除去装置を配置したことにより、タール除去能が低下した活性炭を更新できるので、上流側で多量のタールを除去しても目詰まりを生ずることなく円滑な運転ができる。
In the present invention, when purifying biomass gas, a moving bed type removal device is arranged upstream, and a fixed bed type removal device is arranged downstream, so when a wet removal device is installed as in the past Such treatment of a large amount of washing water is not required, and since it is a dry type, the equipment scale is reduced in size and cost is reduced.
In addition, since the moving bed type removal device is arranged on the upstream side, the activated carbon whose tar removal ability is reduced can be renewed, so even if a large amount of tar is removed on the upstream side, smooth operation can be performed without causing clogging. .

[実施の形態1]
図1は本発明の一実施の形態に係るガス精製装置の全体を説明する説明図である。本実施の形態に係るガス精製装置は、図1に示すように、ガス化炉1によって生成されたバイオマスガスの温度を所定の温度範囲になるように減温調整する温度調整装置2と、バイオマスガスに含まれるダストを除去する除塵装置3と、該除塵装置3の下流側に設けられてバイオマスガス中のタールを除去する移動層式除去装置5と、該移動層式除去装置5のさらに下流側に設けられてバイオマスガス中のタールをさらに除去する固定層式除去装置7とを備えている。固定層式除去装置7でタールが除去されたバイオマスガスは必要に応じて冷却器8で適切な温度に調整されてガス利用設備9に供給される。
以下、各構成をさらに詳細に説明する。
[Embodiment 1]
FIG. 1 is an explanatory view for explaining the entire gas purification apparatus according to an embodiment of the present invention. As shown in FIG. 1, the gas purification apparatus according to the present embodiment includes a temperature adjustment device 2 that adjusts the temperature of biomass gas generated by the gasification furnace 1 so as to fall within a predetermined temperature range, and biomass. A dust removing device 3 for removing dust contained in the gas, a moving bed type removing device 5 provided on the downstream side of the dust removing device 3 for removing tar in biomass gas, and further downstream of the moving bed type removing device 5 And a fixed bed type removing device 7 provided on the side for further removing tar in the biomass gas. The biomass gas from which tar has been removed by the fixed-bed removal device 7 is adjusted to an appropriate temperature by the cooler 8 as needed and supplied to the gas utilization facility 9.
Hereinafter, each configuration will be described in more detail.

<ガス化炉>
ガス化炉としてはその形式を限定するものではなく種々のものを利用でき、例えば、固定層、流動層、循環流動層、回転炉、移動層、噴流床、間接加熱ガス化炉及びこれらを組合せたもの等がある。バイオマスに水蒸気、空気、酸素等を供給しながら加熱し、熱分解や部分酸化等の熱化学反応によって水素、CO、炭化水素等のガスを発生させる。
<温度調整装置>
温度調整装置2は例えば減温塔、熱交換器、水冷壁又は空冷壁を有する冷却室等からなり、下流側の移動層式除去装置5及び固定層式除去装置7に導入されるバイオマスガスの温度を所定の温度になるように調整する。所定の温度とは、バイオマスガスによって移動層式除去装置内及び固定層式除去装置内の除去剤層の雰囲気温度が130℃〜500℃になるような温度であり、より好ましくは除去剤層の雰囲気温度が200℃〜400℃になるような温度であり、さらにより好ましくは除去剤層の雰囲気温度が300℃になるような温度である。除去剤層の雰囲気温度範囲を130℃〜500℃とするのは、除去剤層の雰囲気温度が130℃より低いとタールが凝縮して装置内に付着しトラブルが発生する可能性が高く、他方500℃より高いと活性炭のタール除去能が低下するからである。また、除去剤層の雰囲気温度範囲をより好ましくは200℃〜400℃とし、さらにより好ましくは300℃とするのは、この温度範囲において活性炭のタール除去能が十分に高く、またバイオマスガスの有用ガス成分への影響がないからである。
<Gasification furnace>
The gasification furnace is not limited in its form, and various types can be used. For example, a fixed bed, a fluidized bed, a circulating fluidized bed, a rotary furnace, a moving bed, a spouted bed, an indirect heating gasification furnace, and combinations thereof There are things. The biomass is heated while supplying steam, air, oxygen, etc., and gas such as hydrogen, CO, hydrocarbons, etc. is generated by a thermochemical reaction such as thermal decomposition or partial oxidation.
<Temperature control device>
The temperature adjusting device 2 includes, for example, a temperature-decreasing tower, a heat exchanger, a cooling chamber having a water cooling wall or an air cooling wall, and the like, and the biomass gas introduced into the moving bed type removing device 5 and the fixed bed type removing device 7 on the downstream side. The temperature is adjusted to a predetermined temperature. The predetermined temperature is a temperature at which the atmospheric temperature of the removal agent layer in the moving bed type removal device and the fixed bed type removal device is 130 ° C. to 500 ° C. by the biomass gas, and more preferably the removal agent layer The temperature is such that the atmospheric temperature is 200 ° C. to 400 ° C., and more preferably the temperature is such that the atmospheric temperature of the remover layer is 300 ° C. The reason that the atmospheric temperature range of the remover layer is set to 130 ° C. to 500 ° C. is that if the atmospheric temperature of the remover layer is lower than 130 ° C., the tar is condensed and is likely to adhere to the inside of the apparatus and cause trouble This is because when the temperature is higher than 500 ° C., the tar removing ability of the activated carbon is lowered. Also, the atmospheric temperature range of the remover layer is more preferably 200 ° C. to 400 ° C., and even more preferably 300 ° C. The tar removal ability of activated carbon is sufficiently high in this temperature range, and the usefulness of biomass gas This is because there is no influence on the gas component.

なお、温度調整装置2における上記の温度制御は、移動層式除去装置5及び固定層式除去装置7に該装置内の除去剤層の雰囲気温度を検出する温度検出装置を設置して、これによって検出される温度に基づいて行うようにすればよい。
なお、ガス化炉に水冷壁や熱回収ボイラ等、バイオマスガスの温度を所定の温度になるように減温して調整する装置が設けられている場合や、発生するバイオマスガスの温度を所定の温度になるようにガス化操業する場合には、温度調整装置はかならずしも必要ではない。
The temperature control in the temperature adjusting device 2 is performed by installing a temperature detecting device for detecting the ambient temperature of the removing agent layer in the moving bed type removing device 5 and the fixed bed type removing device 7, thereby What is necessary is just to make it based on the detected temperature.
In addition, when the gasification furnace is provided with a device for reducing and adjusting the temperature of the biomass gas so as to be a predetermined temperature, such as a water cooling wall or a heat recovery boiler, When the gasification operation is performed so as to reach the temperature, the temperature adjusting device is not always necessary.

<除塵装置>
除塵装置3はバイオマスガス中のダストを除去するものであり、具体的にはサイクロン、フィルタ、移動層型の除塵装置等がある。
なお、除塵装置3の下流側に設置する移動層式除去装置5には除塵能力が備わっているので、ガス中のダストはこの移動層式除去装置5によって除塵することができる。したがって、移動層式除去装置5の上流に除塵装置3を別途設けることは必須ではない。しかし、除塵装置3を別途設けることで、移動層式除去装置5のダストによる目詰を防止でき、ダストによる目詰まりに起因するタール除去効率の低下を防止できるという効果が得られる。
また、バイオマスの性状やガス化炉の形式によってバイオマスガス中にダストがほとんど発生しない場合には、除塵装置を設ける必要はない。
<Dust remover>
The dust remover 3 removes dust in biomass gas, and specifically includes a cyclone, a filter, a moving bed type dust remover, and the like.
In addition, since the moving bed type removal device 5 installed on the downstream side of the dust removing device 3 has a dust removing capability, dust in the gas can be removed by the moving bed type removing device 5. Therefore, it is not essential to separately provide the dust removing device 3 upstream of the moving bed type removing device 5. However, by providing the dust removing device 3 separately, it is possible to prevent clogging due to dust of the moving bed type removing device 5 and to prevent a reduction in tar removal efficiency due to clogging due to dust.
Further, when almost no dust is generated in the biomass gas due to the properties of the biomass and the type of the gasification furnace, it is not necessary to provide a dust removing device.

<移動層式除去装置>
移動層式除去装置5は除塵装置3の下流側に設けられてバイオマスガス中のタールを除去するものである。
移動層式除去装置5は、図2に示すように、筒状の本体11と、その内部に形成された除去剤層としての活性炭層13を主な構成要素としている。本体11の下側面部にはガス入口15が形成され、本体11の上側面部にはガス出口17が形成されている。また、本体11の上端部には活性炭を導入するための活性炭導入口19が設けられ、本体11の下端部にはタールを除去した活性炭を排出するための活性炭排出口21が設けられている。つまり、活性炭層13を形成する活性炭は下方のものから順次排出され新たな活性炭が上方に供給される構造になっている。つまり、活性炭層13は排出と供給によって層が順次下方に移動する移動層となっている。
活性炭層13は本体内におけるガス入口15とガス出口17の間に形成されており、この活性炭層13の直下にはガス入口15から導入されたガスを分散して活性炭層13を通過させるための分散器23が設けられている。
<Moving bed type removal device>
The moving bed type removal device 5 is provided on the downstream side of the dust removal device 3 to remove tar in the biomass gas.
As shown in FIG. 2, the moving bed type removing device 5 includes a cylindrical main body 11 and an activated carbon layer 13 as a removing agent layer formed inside thereof as main components. A gas inlet 15 is formed on the lower side surface of the main body 11, and a gas outlet 17 is formed on the upper side surface of the main body 11. An activated carbon inlet 19 for introducing activated carbon is provided at the upper end of the main body 11, and an activated carbon outlet 21 for discharging activated carbon from which tar has been removed is provided at the lower end of the main body 11. That is, the activated carbon forming the activated carbon layer 13 is sequentially discharged from the lower one, and new activated carbon is supplied upward. That is, the activated carbon layer 13 is a moving layer in which the layer sequentially moves downward by discharge and supply.
The activated carbon layer 13 is formed between the gas inlet 15 and the gas outlet 17 in the main body, and a gas introduced from the gas inlet 15 is dispersed immediately below the activated carbon layer 13 so as to pass through the activated carbon layer 13. A disperser 23 is provided.

なお、活性炭層13を形成する活性炭はその粒径が2〜10mmの活性炭を使用することが好ましい。なぜなら、バイオマスガスに含まれるタールのうち大部分が重質タールであり、重質タールを効率的に除去するには上記の性状の活性炭が好ましいからである。
移動層式除去装置5はタール除去工程の上流側にあって、バイオマスガスに多量に含まれる重質タール除去を主目的としたものであり、そのために適した性状の活性炭と、目詰まり等を考慮して移動層式としているのである。
なお、重質タールとは、露点温度が比較的高く多環芳香族化合物類を主体としたものをいう。
The activated carbon forming the activated carbon layer 13 is preferably activated carbon having a particle size of 2 to 10 mm. This is because most of the tar contained in the biomass gas is heavy tar, and activated carbon having the above-described properties is preferable for efficiently removing heavy tar.
The moving bed type removal device 5 is located upstream of the tar removal process, and is mainly intended to remove heavy tar contained in a large amount of biomass gas. Activated carbon with suitable properties, clogging, etc. Considering the moving bed type.
In addition, heavy tar means a thing with a relatively high dew point temperature and mainly polycyclic aromatic compounds.

なお、活性炭層13の活性炭はその比表面積が250m/g以上とすることが好ましい。比表面積が250m/gより小さいとバイオマスガス中のタール除去能が十分でない。また活性炭層13の活性炭はその平均細孔径が0.1nm以上とすることが好ましい。平均細孔径が0.1nmより小さいと細孔径が小さ過ぎるので、タールのような分子量の大きなものは細孔内に入ることができない。
また、温度調整装置2によってバイオマスガス温度を調整することにより活性炭層13の雰囲気温度が前述したように130℃〜500℃とすることが好ましく、200℃〜400℃がより好ましい。このような条件を満たす活性炭層13であれば、バイオマスガス中に含まれるタールのみが効果的に除去されて、タールをほとんど含まない精製されたガスを製造することができる。また、活性炭層13が上記条件を満たす場合には、バイオマスガスに含まれるHやCOや炭化水素は、活性炭層13の空隙を素通りするので、有用なガスが減少することがない。
除去剤層の雰囲気温度の調整は、上記のように除去剤層に導入するバイオマスガスの温度を調整することの他、除去剤層の周囲にジャケットを設けたり、除去剤層内部に熱交換器を設けて、除去剤層を外部あるいは内部から加熱したり冷却することによって行うこともできる。
The activated carbon of the activated carbon layer 13 preferably has a specific surface area of 250 m 2 / g or more. When the specific surface area is smaller than 250 m 2 / g, the tar removing ability in the biomass gas is not sufficient. The activated carbon of the activated carbon layer 13 preferably has an average pore size of 0.1 nm or more. If the average pore diameter is smaller than 0.1 nm, the pore diameter is too small, so that a large molecular weight such as tar cannot enter the pores.
Moreover, it is preferable that the atmospheric temperature of the activated carbon layer 13 shall be 130 to 500 degreeC as above-mentioned by adjusting biomass gas temperature with the temperature control apparatus 2, and 200 to 400 degreeC is more preferable. If the activated carbon layer 13 satisfies such conditions, only the tar contained in the biomass gas is effectively removed, and a purified gas containing almost no tar can be produced. In addition, when the activated carbon layer 13 satisfies the above conditions, H 2 , CO, and hydrocarbons contained in the biomass gas pass through the voids of the activated carbon layer 13, so that useful gas does not decrease.
In addition to adjusting the temperature of the biomass gas introduced into the remover layer as described above, a jacket is provided around the remover layer, or a heat exchanger is installed inside the remover layer. The removal agent layer may be provided by heating or cooling from the outside or the inside.

<固定層式除去装置>
固定層式除去装置7は、移動層式除去装置5によって主として重質タールが除去されたバイオマスガスから、さらに軽質タールと移動層式除去装置5によって除去されなかった重質タールの残存分を除去してガス利用設備9での利用が支障なくできるようにするものである。固定層式除去装置7の例としては、図3に示すように、本体25の内部に活性炭カートリッジ27を設置した構造のものがある。活性炭カートリッジ27は、図4に示すように、その内部に活性炭が充填されて形成される活性炭層29と処理ガスの導入空間31を有しており、これら活性炭層29と導入空間31が平面視で千鳥状に配置されている。
活性炭層29は固定層であり、活性炭の充填率は移動層式除去装置5の充填率より高くなっている。また、活性炭層29を形成する活性炭の粒径は1〜3mmであることが好ましい。その理由は固定層式除去装置7では移動層式除去装置5で完全に除去できなかった重質タールの残存分と軽質タールを除去することを目的としており、この目的達成のためには上記性状の活性炭が好ましいのである。
なお、軽質タールとは、露点温度が比較的低くヘトロ環化合物類、芳香族化合物類を主体としたものをいう。
<Fixed bed removal device>
The fixed bed type removal device 7 further removes light tar and the remaining heavy tar that has not been removed by the moving bed type removal device 5 from the biomass gas from which the heavy tar has been mainly removed by the moving bed type removal device 5. Thus, the use in the gas utilization facility 9 can be performed without any trouble. As an example of the fixed bed type removal device 7, there is a structure in which an activated carbon cartridge 27 is installed inside a main body 25 as shown in FIG. 3. As shown in FIG. 4, the activated carbon cartridge 27 includes an activated carbon layer 29 formed by filling activated carbon therein and a treatment gas introduction space 31, and the activated carbon layer 29 and the introduction space 31 are viewed in plan view. It is arranged in a staggered pattern.
The activated carbon layer 29 is a fixed layer, and the filling rate of the activated carbon is higher than the filling rate of the moving bed type removing device 5. Moreover, it is preferable that the particle size of the activated carbon which forms the activated carbon layer 29 is 1-3 mm. The reason is that the fixed bed removal device 7 is intended to remove the remaining heavy tar and light tar that could not be completely removed by the moving bed removal device 5. The activated carbon is preferred.
The light tar has a relatively low dew point temperature and is mainly composed of hetrocyclic compounds and aromatic compounds.

また、移動層式除去装置5で説明したようにバイオマスガス中に含まれるタールのみが効果的に除去されるようにするために、固定層式除去装置7においても活性炭層29はその比表面積が250m/g以上、平均細孔径が0.1nm以上で、かつ活性炭層29の雰囲気温度が130℃〜500℃とすることが好ましく、200℃〜400℃がより好ましい。
また、固定層式除去装置7の活性炭層29の雰囲気温度を、移動層式除去装置5の活性炭層13の雰囲気温度より低く調整することによって、露点温度領域の異なるタールをそれぞれの除去装置で有効に除去することができるので、好ましい。
Further, as described in the moving bed type removing device 5, in order to effectively remove only tar contained in the biomass gas, the fixed layer type removing device 7 also has a specific surface area of the activated carbon layer 29. 250 m 2 / g or more, the average pore diameter is 0.1 nm or more, and the atmosphere temperature of the activated carbon layer 29 is preferably 130 ° C. to 500 ° C., more preferably 200 ° C. to 400 ° C.
Moreover, by adjusting the atmospheric temperature of the activated carbon layer 29 of the fixed bed type removing device 7 to be lower than the atmospheric temperature of the activated carbon layer 13 of the moving bed type removing device 5, tars having different dew point temperature regions can be effectively used in each removing device. It can be removed easily.

上記のように構成された固定層式除去装置7においては、移動層式除去装置5で大部分のタールが除去されたガスは本体25のガス入口25aから本体内に導入され、活性炭カートリッジ27の導入空間31を経由して活性炭層29を通過し、残存するタールが除去され、ガス出口25bから排出される(図4参照)。
また、固定層式除去装置として上記のカートリッジ式固定層式除去装置以外のものを用いてもよい。例えば図2に示す移動層式除去装置5において、活性炭層13を連続的に移動させず固定層として用いてもよい。活性炭層13の下部側から上部側に向かってガスを流して、活性炭によりタールを除去し、所定の時間タール除去が行われたら、活性炭排出口21からタール除去能の低下した活性炭を排出し、排出相当分の新たな活性炭を活性炭導入口19から導入して活性炭層13を更新させる。
In the fixed bed type removal device 7 configured as described above, the gas from which most of the tar has been removed by the moving bed type removal device 5 is introduced into the main body from the gas inlet 25a of the main body 25, and the activated carbon cartridge 27 Passing through the activated carbon layer 29 through the introduction space 31, the remaining tar is removed and discharged from the gas outlet 25b (see FIG. 4).
Moreover, you may use things other than said cartridge type fixed bed type removal apparatus as a fixed bed type removal apparatus. For example, in the moving bed type removal apparatus 5 shown in FIG. 2, the activated carbon layer 13 may be used as a fixed layer without continuously moving. A gas is flowed from the lower side of the activated carbon layer 13 toward the upper side, tar is removed by activated carbon, and when tar removal is performed for a predetermined time, activated carbon with reduced tar removing ability is discharged from the activated carbon outlet 21; The activated carbon layer 13 is renewed by introducing new activated carbon corresponding to the discharge from the activated carbon inlet 19.

<ガス利用設備>
ガス利用設備はタールの除去されたバイオマスガスをガス燃料として利用する設備であり、例えばガスエンジン、ガスタービン、ボイラ、工業炉に用いるバーナ燃焼器又は燃料電池等が挙げられる。
固定層式除去装置7の後流に精製されたバイオマスガスを冷却する冷却器8を必要に応じ設けて、ガス利用設備に適した温度に調整する。
<Gas equipment>
A gas utilization facility is a facility that uses biomass gas from which tar has been removed as gas fuel, and examples thereof include a gas engine, a gas turbine, a boiler, a burner combustor used in an industrial furnace, a fuel cell, and the like.
A cooler 8 that cools the purified biomass gas downstream of the fixed bed removal device 7 is provided as necessary, and adjusted to a temperature suitable for the gas utilization facility.

以上のように構成された本実施の形態においては、ガス化炉1において発生したバイオマスガスが温度調節装置2によって所定の温度に減温される。このときの温度は移動層式除去装置5及び固定層式除去装置7内の除去剤層雰囲気温度が200℃〜400℃になるようにするのが好ましい。温度調節装置2によって所定の温度に減温されたバイオマスガスは除塵装置3によってダストが除去される。除塵装置3によってダストが除去されたバイオマスガスはガス入口15から移動層式除去装置5に導入される。移動層式除去装置5に導入されたバイオマスガスは分散器23によって分散されて活性炭層13を通過する。このとき、活性炭層13の活性炭は比表面積が250m/g以上で、且つ平均細孔径が0.1nm以上に設定され、さらには除去剤層雰囲気温度が約300℃に調整されることで、バイオマスガス中に含まれるタールのみが活性炭層13に除去されて効果的に精製される。 In the present embodiment configured as described above, the biomass gas generated in the gasification furnace 1 is reduced to a predetermined temperature by the temperature control device 2. The temperature at this time is preferably set so that the atmosphere of the removing agent layer in the moving bed type removing device 5 and the fixed bed type removing device 7 is 200 ° C. to 400 ° C. The dust removed by the dust removing device 3 is removed from the biomass gas whose temperature has been reduced to a predetermined temperature by the temperature adjusting device 2. The biomass gas from which the dust has been removed by the dust removing device 3 is introduced into the moving bed type removing device 5 from the gas inlet 15. The biomass gas introduced into the moving bed type removal device 5 is dispersed by the disperser 23 and passes through the activated carbon layer 13. At this time, the activated carbon of the activated carbon layer 13 has a specific surface area of 250 m 2 / g or more, an average pore diameter of 0.1 nm or more, and further, the removal layer atmosphere temperature is adjusted to about 300 ° C. Only the tar contained in the biomass gas is removed by the activated carbon layer 13 and purified effectively.

移動層式除去装置3においては、活性炭層13の下部側から上部側に向かってガスが流れるので、下部側の活性炭から順にタールを除去していく。そこで、活性炭排出口21からタール除去能の低下した活性炭を排出し、排出相当分の新たな活性炭を活性炭導入口19から導入して活性炭層13を順次下方へ移動させる。このようにすることで、活性炭層13は常に所定の層厚みを保持しながら移動層を形成し、しかもタール除去能を減じることがない。
このように、上流側に移動層式除去装置5を設置したことにより、バイオマスガス中の重質タールを、除去層に目詰まりを生ずることなく効果的に除去できる。
なお、移動層式除去装置5から排出されるタール除去能の低下した活性炭は、燃料又は還元剤として用いるようにすることで、資源の有効利用が図れる。燃料としての用途としては、例えばキュポラ、電気炉等の製鉄炉、工業炉、バーナ加熱炉がある。
In the moving bed type removal apparatus 3, since the gas flows from the lower side to the upper side of the activated carbon layer 13, tar is sequentially removed from the lower side activated carbon. Therefore, the activated carbon having a reduced tar removing ability is discharged from the activated carbon discharge port 21, and new activated carbon corresponding to the discharge is introduced from the activated carbon introduction port 19 to sequentially move the activated carbon layer 13 downward. By doing so, the activated carbon layer 13 always forms a moving layer while maintaining a predetermined layer thickness, and does not reduce the tar removal ability.
Thus, by installing the moving bed type removal device 5 on the upstream side, heavy tar in the biomass gas can be effectively removed without causing clogging of the removal layer.
In addition, the activated carbon with reduced tar removal ability discharged from the moving bed type removal device 5 can be used effectively as a resource by using it as a fuel or a reducing agent. Applications for fuel include, for example, iron furnaces such as cupolas and electric furnaces, industrial furnaces, and burner heating furnaces.

移動層式除去装置5によってタールがほとんど除去されたバイオマスガスは、固定層式除去装置7に導入されて軽質タールと移動層式除去装置5で完全に除去できなかった重質タールの残存分の除去がなされる。
なお、固定層式除去装置7内においてタール除去能の低下した活性炭は、活性炭カートリッジ27を取り出し、加熱再生して除去剤として再利用するのが好ましい。
加熱再生方法としては、不活性ガス中又は減圧下で、タールを除去した際の温度以上に加熱することによりタールを除去剤から脱着させるようにすればよい。
固定層式除去装置7に用いる活性炭を再生して再利用することで運転コストを低減できるという効果がある。
固定層式除去装置7によってタール除去が行われた後、バイオマスガスは必要に応じて冷却器8で温度調整されガス利用設備9に導入されてガス利用設備9でガス燃料等として利用される。
The biomass gas from which tar has been almost removed by the moving bed type removing device 5 is introduced into the fixed bed type removing device 7 and the remaining light tar and the remaining heavy tar that could not be completely removed by the moving bed type removing device 5. Removal is done.
In addition, it is preferable to remove the activated carbon cartridge 27 from the activated carbon whose tar removing ability is reduced in the fixed bed type removing apparatus 7, recycle it by heating, and reuse it as a removing agent.
As a heat regeneration method, the tar may be desorbed from the removing agent by heating to a temperature equal to or higher than the temperature at which the tar was removed in an inert gas or under reduced pressure.
There is an effect that the operation cost can be reduced by regenerating and reusing the activated carbon used in the fixed bed type removing device 7.
After tar removal is performed by the fixed bed type removal device 7, the biomass gas is temperature-adjusted by the cooler 8 as necessary, introduced into the gas utilization facility 9, and used as gas fuel or the like by the gas utilization facility 9.

以上のように、本実施の形態においては、バイオマスガスの精製に際して、上流に移動層式除去装置5を配置し、下流側に固定層式除去装置7を配置する構成を採用したので、従来のように湿式除去装置でタール除去した場合のような大量の洗浄水の処理が不要となり、乾式であることから設備規模も小規模小型化、低コスト化が実現される。
また、上流側に移動層式除去装置5を配置したことにより、タール除去能が低下した活性炭を更新できるので、上流側の多量のタールの除去においても目詰まりを生ずることなく円滑な運転ができる。
As described above, in the present embodiment, when purifying biomass gas, since the moving bed type removal device 5 is arranged upstream and the fixed bed type removal device 7 is arranged downstream, the conventional configuration is adopted. Thus, treatment of a large amount of washing water as in the case where tar is removed by a wet removal apparatus becomes unnecessary, and since it is a dry type, the scale of equipment can be reduced in size and cost.
Further, since the moving bed type removing device 5 is arranged on the upstream side, the activated carbon whose tar removing ability is reduced can be renewed, so that smooth operation can be performed without clogging even in the removal of a large amount of tar on the upstream side. .

また、移動層式除去装置5の活性炭層13を形成する活性炭をその粒径が2〜10mmのものを使用し、固定層式除去装置7の活性炭層29を形成する活性炭をその粒径が1〜3mmのものを使用するようにしたので、上流側の移動層式除去装置5では重質タールが効果的に除去され、下流側の固定層式除去装置7では軽質タールと重質タールの残存分が効果的に除去され、全体として効率的なタール除去ができる。
このように、タール性状に適した除去装置の組み合わせをしたことにより、それぞれ単独では重質タールと軽質タール両方を除去するには設備が大きくなってしまうのを、小規模、コンパクトな装置で実現できる。
また、活性炭層の活性炭の比表面積が250m/g以上で、平均細孔径が0.1nm以上で、且つ活性炭層の雰囲気温度が約300℃になるように調整したので、バイオマスガス中に含まれるタールのみが活性炭層で除去されて効果的に精製される。
Moreover, the activated carbon which forms the activated carbon layer 13 of the moving bed type removal apparatus 5 has a particle diameter of 2 to 10 mm, and the activated carbon which forms the activated carbon layer 29 of the fixed bed type removal apparatus 7 has a particle diameter of 1 Since the ˜3 mm one is used, heavy tar is effectively removed by the moving bed type removing device 5 on the upstream side, and light tar and heavy tar remain in the fixed bed type removing device 7 on the downstream side. Minutes are effectively removed, and overall tar removal can be efficiently performed.
In this way, the combination of removal devices suitable for tar properties makes it possible to remove both heavy tar and light tar by using a small and compact device. it can.
In addition, since the specific surface area of the activated carbon of the activated carbon layer is 250 m 2 / g or more, the average pore diameter is 0.1 nm or more, and the atmosphere temperature of the activated carbon layer is adjusted to about 300 ° C., it is included in the biomass gas. Only the tar is removed by the activated carbon layer and effectively purified.

なお、移動層式除去装置5の例として、上記の実施の形態においては、図2に示したように、活性炭を一層状態で充填したものを示した。しかし、本発明はこれに限られるものではなく、例えば図5に示すように本体11内に、網またはルーバーによって側面を仕切られた筒状の空間に活性炭を充填した移動層を2層設け、上流側移動層13aと下流側移動層13bとするようなものでもよい。図5においては、図2に示した移動層式除去装置5と同一又は相当する部分に同一の符号を付している。ガス入口15から導入されたバイオマスガスは上流側移動層13aを透過し、さらに下流側移動層13bを透過してガス出口17から排出される。このような2層構造にした場合には、上流側移動層13aは除塵を主体として、活性炭の切り出し速度を速くして活性炭の更新を円滑に行い、下流側移動層13bはタール除去を主体として、活性炭の切り出し速度を遅くするのが好ましい。また、このように2層構造にした場合には、上流側移動層13aはもっぱら除塵機能に特化させて、充填剤として砂やスラグ粒子やセラミック粒子などを用いるようにしてもよい。   As an example of the moving bed type removal device 5, in the above embodiment, as shown in FIG. 2, the activated carbon is filled in a single layer. However, the present invention is not limited to this. For example, as shown in FIG. 5, two moving layers filled with activated carbon are provided in a cylindrical space whose side is partitioned by a net or louver, as shown in FIG. The upstream moving layer 13a and the downstream moving layer 13b may be used. In FIG. 5, the same reference numerals are given to the same or corresponding parts as those of the moving bed type removing device 5 shown in FIG. 2. The biomass gas introduced from the gas inlet 15 passes through the upstream moving bed 13a, further passes through the downstream moving bed 13b, and is discharged from the gas outlet 17. In the case of such a two-layer structure, the upstream moving layer 13a mainly focuses on dust removal, and the activated carbon cutting speed is increased to smoothly renew the activated carbon. The downstream moving layer 13b mainly focuses on tar removal. It is preferable to slow down the cutting speed of activated carbon. In addition, when the two-layer structure is used in this way, the upstream moving layer 13a may be specialized exclusively for the dust removal function, and sand, slag particles, ceramic particles, or the like may be used as the filler.

また、上記実施の形態においては固定層式除去装置7を一つのラインに1台設けた例を示したが、図6に示すように、一つのラインに複数台の固定層式除去装置7を設け、一つの固定層式除去装置7のタール除去能が低下したら他の固定層式除去装置7にガス流れを切り替えて使用するようにしてもよい。このようにすることで、固定式除去装置7の活性炭の交換時においても処理を中断することがなくなる。
また、図6に示すように、固定層式除去装置7内における活性炭層7aの周囲に加熱器7bを設け、加熱器7bに精製ガスの一部を導入してこれを燃料ガスとしてバーナで燃焼させ、不活性ガス雰囲気又は減圧下で活性炭層7aを加熱してタールを脱着させ、これをガス化炉1に導きガス化させて有用ガスとして用いるようにしてもよい。このようにすれば、活性炭の交換が不要になるか、あるいはその頻度が減り、さらに脱着したタールを有効利用できる。
Further, in the above embodiment, an example in which one fixed-bed type removing device 7 is provided in one line is shown. However, as shown in FIG. 6, a plurality of fixed-bed type removing devices 7 are provided in one line. If the tar removal ability of one fixed bed type removal device 7 is reduced, the gas flow may be switched to another fixed bed type removal device 7 for use. By doing so, the process is not interrupted even when the activated carbon of the stationary removal device 7 is replaced.
Further, as shown in FIG. 6, a heater 7b is provided around the activated carbon layer 7a in the fixed bed removal device 7, and a part of the purified gas is introduced into the heater 7b and burned with a burner as a fuel gas. Alternatively, the activated carbon layer 7a may be heated in an inert gas atmosphere or under reduced pressure to desorb tar, which may be led to the gasification furnace 1 to be gasified and used as a useful gas. In this way, it is unnecessary to replace the activated carbon or the frequency thereof is reduced, and the desorbed tar can be used effectively.

上記実施の形態においては、タールを除去するための炭素剤として活性炭を例にあげたが、活性炭の他に、活性コークス、石炭、コークス、木炭、グラファイト、カーボンブラック、フラーレン、カーボンナノチューブ、有機物由来の炭化物などが利用可能である。   In the above embodiment, activated carbon is taken as an example of the carbon agent for removing tar, but in addition to activated carbon, activated coke, coal, coke, charcoal, graphite, carbon black, fullerene, carbon nanotube, derived from organic matter Can be used.

上記の実施の形態に示した装置を用いてバイオマスガスのタール除去を行った結果を示す。なお、移動層式除去装置5と固定層式除去装置7の仕様は上記実施の形態で示したもので、使用する活性炭はその比表面積が250m/g以上のものであり、また活性炭層13の雰囲気温度が移動層式除去装置5では330℃であり、固定層式除去装置7では270℃である。
移動層式除去装置5に導入されるバイオマスガス中のタール濃度は20g/Nm3であったが、移動層式除去装置5から排出されるガス中のタール濃度は2g/Nm3であり、移動層式除去装置5によって90%のタールを除去できた。
また、固定層式除去装置7に導入されたタール濃度が2g/Nm3のバイオマスガスは固定層式除去装置7の出口側ではタール濃度が0.01g/Nm3となり、ガスエンジン用燃料として問題のない濃度にまで除去できた。
The result of having performed tar removal of biomass gas using the device shown in the above-mentioned embodiment is shown. The specifications of the moving bed type removal device 5 and the fixed bed type removal device 7 are those shown in the above embodiment. The activated carbon used has a specific surface area of 250 m 2 / g or more, and the activated carbon layer 13 Is 330 ° C. for the moving bed type removing device 5 and 270 ° C. for the fixed bed type removing device 7.
The tar concentration in the biomass gas introduced into the moving bed type removal device 5 was 20 g / Nm 3 , but the tar concentration in the gas discharged from the moving bed type removal device 5 was 2 g / Nm 3 , 90% of tar was able to be removed by the layer type removing device 5.
In addition, the biomass gas having a tar concentration of 2 g / Nm 3 introduced into the fixed bed removal device 7 has a tar concentration of 0.01 g / Nm 3 at the outlet side of the fixed bed removal device 7, which is a problem as a gas engine fuel. It was able to be removed even to a concentration without any.

本発明の一実施の形態に係るガス精製装置の全体構成を説明する説明図である。It is explanatory drawing explaining the whole structure of the gas purification apparatus which concerns on one embodiment of this invention. 図1に示したガス精製装置の一部である移動層式除去装置の説明図である。It is explanatory drawing of the moving bed type | mold removal apparatus which is a part of gas purification apparatus shown in FIG. 図1に示したガス精製装置の一部である固定層式除去装置の説明図である。It is explanatory drawing of the fixed bed type | mold removal apparatus which is a part of gas purification apparatus shown in FIG. 図3に示した固定層式除去装置の要部の説明図である。It is explanatory drawing of the principal part of the fixed bed type removal apparatus shown in FIG. 図1に示したガス精製装置の一部である移動層式除去装置の他の例の説明図である。It is explanatory drawing of the other example of the moving bed type | mold removal apparatus which is a part of gas purification apparatus shown in FIG. 図1に示したガス精製装置の他の例の説明図である。It is explanatory drawing of the other example of the gas purification apparatus shown in FIG.

符号の説明Explanation of symbols

1 ガス化炉
2 温度調整装置
3 除塵装置
5 移動層式除去装置
7 固定層式除去装置
DESCRIPTION OF SYMBOLS 1 Gasification furnace 2 Temperature control device 3 Dust removal device 5 Moving bed type removal device 7 Fixed bed type removal device

Claims (6)

バイオマスを熱化学的にガス化して得られるガス中のタールを除去する装置であって、
前記ガスを通過させてタールを除去する除去剤を充填してなる除去剤層を有し、該除去剤層を移動させて前記除去剤層を更新する移動層式除去装置と、該除去剤層が固定された固定層式除去装置とからなり、
前記移動層式除去装置の下流側に前記固定層式除去装置を配置したことを特徴とするガス精製装置。
An apparatus for removing tar in gas obtained by thermochemical gasification of biomass,
A moving bed type removing device that has a removing agent layer filled with a removing agent that removes tar by passing the gas, and that moves the removing agent layer to renew the removing agent layer; and the removing agent layer Consists of a fixed bed type removal device,
A gas purification device, wherein the fixed bed type removal device is arranged downstream of the moving bed type removal device.
除去剤は、炭素剤であることを特徴とする請求項1に記載のガス精製装置。 The gas purifier according to claim 1, wherein the removing agent is a carbon agent. 除去剤は活性炭であり、移動層式除去装置には粒径が2〜10mmの活性炭を使用し、固定層式除去装置には粒径が1〜3mmの活性炭を使用することを特徴とする請求項1に記載のガス精製装置。 The removing agent is activated carbon, activated carbon having a particle size of 2 to 10 mm is used for the moving bed type removing device, and activated carbon having a particle size of 1 to 3 mm is used for the fixed bed type removing device. Item 2. The gas purifier according to Item 1. 除去剤は活性炭であり、該活性炭の比表面積が250m/g以上、及び/又は平均細孔径が0.1nm以上であり、除去剤層の雰囲気温度が130〜500℃であることを特徴とする請求項1又は3記載のガス精製装置。 The removing agent is activated carbon, wherein the activated carbon has a specific surface area of 250 m 2 / g or more and / or an average pore diameter of 0.1 nm or more, and an atmosphere temperature of the removing agent layer is 130 to 500 ° C. The gas purifier according to claim 1 or 3. 固定層式除去装置の除去剤層の雰囲気温度を、移動層式除去装置の除去剤層の雰囲気温度より低く設定することを特徴とする請求項4記載のガス精製装置。 The gas purifier according to claim 4, wherein the atmosphere temperature of the remover layer of the fixed bed type removal device is set lower than the atmosphere temperature of the remover layer of the moving bed type removal device. 請求項1〜5のいずれかに記載の固定層式除去装置に使用した使用済み除去剤の再生方法であって、該使用済み除去剤を不活性ガス中又は減圧下で、タールを除去した際の温度以上に加熱することにより前記使用済み除去剤に吸着されたタールを前記除去剤から脱着させることを特徴とする使用済み除去剤の再生方法。 A regeneration method of a used removing agent used in the fixed bed type removing device according to any one of claims 1 to 5, wherein the tar is removed from the used removing agent in an inert gas or under reduced pressure. A method for regenerating a used removal agent, wherein the tar adsorbed on the used removal agent is desorbed from the removal agent by heating to a temperature equal to or greater than
JP2004194804A 2004-06-30 2004-06-30 Gas purification device and method for regenerating removal agent used in the gas purification device Active JP4534629B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004194804A JP4534629B2 (en) 2004-06-30 2004-06-30 Gas purification device and method for regenerating removal agent used in the gas purification device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004194804A JP4534629B2 (en) 2004-06-30 2004-06-30 Gas purification device and method for regenerating removal agent used in the gas purification device

Publications (2)

Publication Number Publication Date
JP2006016470A true JP2006016470A (en) 2006-01-19
JP4534629B2 JP4534629B2 (en) 2010-09-01

Family

ID=35791029

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004194804A Active JP4534629B2 (en) 2004-06-30 2004-06-30 Gas purification device and method for regenerating removal agent used in the gas purification device

Country Status (1)

Country Link
JP (1) JP4534629B2 (en)

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204558A (en) * 2006-01-31 2007-08-16 National Institute Of Advanced Industrial & Technology Apparatus for producing liquid fuel from biomass
JP2007296513A (en) * 2006-04-07 2007-11-15 Nippon Steel Corp Purification method and purification apparatus for gasified gas
JP2008189704A (en) * 2007-01-31 2008-08-21 National Institute Of Advanced Industrial & Technology Apparatus for producing liquid fuel from biomass
JP2008222882A (en) * 2007-03-13 2008-09-25 Nippon Steel Engineering Co Ltd Method for purifying gasified gas and purifying apparatus
JP2008222877A (en) * 2007-03-13 2008-09-25 Nippon Steel Engineering Co Ltd Method for cleaning gasified gas
JP2008222867A (en) * 2007-03-13 2008-09-25 Nippon Steel Engineering Co Ltd Method for cleaning gasified gas and device for the same
WO2008142772A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment system
JP2008308535A (en) * 2007-06-13 2008-12-25 Nippon Steel Engineering Co Ltd Method for purifying gasified gas and apparatus for purifying the gasified gas
JP2008308536A (en) * 2007-06-13 2008-12-25 Nippon Steel Engineering Co Ltd Apparatus for purifying gasified gas and method for purifying the gasified gas
JP2008308534A (en) * 2007-06-13 2008-12-25 Nippon Steel Engineering Co Ltd Method for purifying gasified gas and apparatus for purifying the gasified gas
JP2011521773A (en) * 2008-04-30 2011-07-28 エクソンモービル アップストリーム リサーチ カンパニー Method and apparatus for removing oil from a utility gas stream
WO2012020685A1 (en) 2010-08-09 2012-02-16 三菱重工業株式会社 Biomass gasification gas purification system and method, and methanol production system and method
WO2012020684A1 (en) 2010-08-09 2012-02-16 三菱重工業株式会社 Biomass gasification gas purification system and method, and methanol production system and method
JP2012111913A (en) * 2010-11-26 2012-06-14 Mitsubishi Heavy Ind Ltd Biomass gasification system and purification method of biomass gasification gas
US8906138B2 (en) 2007-11-12 2014-12-09 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
US8921637B2 (en) 2010-11-15 2014-12-30 Exxonmobil Upstream Research Company Kinetic fractionators, and cycling processes for fractionation of gas mixtures
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9034079B2 (en) 2011-03-01 2015-05-19 Exxonmobil Upstream Research Company Methods of removing contaminants from hydrocarbon stream by swing adsorption and related apparatus and systems
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
US9120049B2 (en) 2011-03-01 2015-09-01 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
US9168485B2 (en) 2011-03-01 2015-10-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
US9352269B2 (en) 2011-03-01 2016-05-31 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9358493B2 (en) 2011-03-01 2016-06-07 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
CN106807155A (en) * 2017-03-26 2017-06-09 从江县胜达活性炭有限公司 A kind of air cleaner for being convenient for changing activated carbon
US9675925B2 (en) 2014-07-25 2017-06-13 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
US9713787B2 (en) 2014-12-10 2017-07-25 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
US9744521B2 (en) 2014-12-23 2017-08-29 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US9751041B2 (en) 2015-05-15 2017-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US9861929B2 (en) 2015-05-15 2018-01-09 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10080992B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220346B2 (en) 2015-10-27 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220345B2 (en) 2015-09-02 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10322365B2 (en) 2015-10-27 2019-06-18 Exxonmobil Upstream Reseach Company Apparatus and system for swing adsorption processes related thereto
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
US10427091B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10427088B2 (en) 2016-03-18 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10427089B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10549230B2 (en) 2016-12-21 2020-02-04 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10603626B2 (en) 2016-09-01 2020-03-31 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US10675615B2 (en) 2014-11-11 2020-06-09 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
US10710053B2 (en) 2016-12-21 2020-07-14 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10744449B2 (en) 2015-11-16 2020-08-18 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11413567B2 (en) 2018-02-28 2022-08-16 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243770A (en) * 1975-10-04 1977-04-06 Nitsukuu Kogyo Kk Method of treating high temperature exhaust gas containing tar mist, e tc.
JPS56106993A (en) * 1980-01-29 1981-08-25 Babcock Hitachi Kk Method for dust removal and cooling of coal decomposition gas
JPS58168877A (en) * 1982-03-31 1983-10-05 日本酸素株式会社 Method of refining gas
JPS5932922A (en) * 1982-08-14 1984-02-22 Nippon Sanso Kk Adsorbing bed for purifying gas containing sulfur compound

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5243770A (en) * 1975-10-04 1977-04-06 Nitsukuu Kogyo Kk Method of treating high temperature exhaust gas containing tar mist, e tc.
JPS56106993A (en) * 1980-01-29 1981-08-25 Babcock Hitachi Kk Method for dust removal and cooling of coal decomposition gas
JPS58168877A (en) * 1982-03-31 1983-10-05 日本酸素株式会社 Method of refining gas
JPS5932922A (en) * 1982-08-14 1984-02-22 Nippon Sanso Kk Adsorbing bed for purifying gas containing sulfur compound

Cited By (78)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007204558A (en) * 2006-01-31 2007-08-16 National Institute Of Advanced Industrial & Technology Apparatus for producing liquid fuel from biomass
JP4644831B2 (en) * 2006-01-31 2011-03-09 独立行政法人産業技術総合研究所 Liquid fuel production equipment from biomass
JP2007296513A (en) * 2006-04-07 2007-11-15 Nippon Steel Corp Purification method and purification apparatus for gasified gas
JP2008189704A (en) * 2007-01-31 2008-08-21 National Institute Of Advanced Industrial & Technology Apparatus for producing liquid fuel from biomass
JP4711980B2 (en) * 2007-01-31 2011-06-29 独立行政法人産業技術総合研究所 Liquid fuel production equipment from biomass
JP4612648B2 (en) * 2007-03-13 2011-01-12 新日鉄エンジニアリング株式会社 Gasification gas purification method
JP2008222867A (en) * 2007-03-13 2008-09-25 Nippon Steel Engineering Co Ltd Method for cleaning gasified gas and device for the same
JP2008222877A (en) * 2007-03-13 2008-09-25 Nippon Steel Engineering Co Ltd Method for cleaning gasified gas
JP2008222882A (en) * 2007-03-13 2008-09-25 Nippon Steel Engineering Co Ltd Method for purifying gasified gas and purifying apparatus
WO2008142772A1 (en) * 2007-05-21 2008-11-27 Global Environment Access Holdings Limited Wastewater treatment system
JP2008308535A (en) * 2007-06-13 2008-12-25 Nippon Steel Engineering Co Ltd Method for purifying gasified gas and apparatus for purifying the gasified gas
JP2008308536A (en) * 2007-06-13 2008-12-25 Nippon Steel Engineering Co Ltd Apparatus for purifying gasified gas and method for purifying the gasified gas
JP2008308534A (en) * 2007-06-13 2008-12-25 Nippon Steel Engineering Co Ltd Method for purifying gasified gas and apparatus for purifying the gasified gas
JP4555319B2 (en) * 2007-06-13 2010-09-29 新日鉄エンジニアリング株式会社 Gasification gas purification method and purification device
JP4598803B2 (en) * 2007-06-13 2010-12-15 新日鉄エンジニアリング株式会社 Gasification gas purification method and purification device
JP4625048B2 (en) * 2007-06-13 2011-02-02 新日鉄エンジニアリング株式会社 Gasification gas purification equipment
US8906138B2 (en) 2007-11-12 2014-12-09 Exxonmobil Upstream Research Company Methods of generating and utilizing utility gas
US9126138B2 (en) 2008-04-30 2015-09-08 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
US10035096B2 (en) 2008-04-30 2018-07-31 Exxonmobil Upstream Research Company Method and apparatus for removal of oil from utility gas stream
JP2011521773A (en) * 2008-04-30 2011-07-28 エクソンモービル アップストリーム リサーチ カンパニー Method and apparatus for removing oil from a utility gas stream
US9067168B2 (en) 2010-05-28 2015-06-30 Exxonmobil Upstream Research Company Integrated adsorber head and valve design and swing adsorption methods related thereto
WO2012020684A1 (en) 2010-08-09 2012-02-16 三菱重工業株式会社 Biomass gasification gas purification system and method, and methanol production system and method
US8946307B2 (en) 2010-08-09 2015-02-03 Mitsubishi Heavy Industries, Ltd. Biomass gasification gas purification system and method and methanol production system and method
US9242907B2 (en) 2010-08-09 2016-01-26 Mitsubishi Heavy Industries, Ltd. Biomass gasification gas purification system and method, and methanol production system and method
WO2012020685A1 (en) 2010-08-09 2012-02-16 三菱重工業株式会社 Biomass gasification gas purification system and method, and methanol production system and method
US8921637B2 (en) 2010-11-15 2014-12-30 Exxonmobil Upstream Research Company Kinetic fractionators, and cycling processes for fractionation of gas mixtures
JP2012111913A (en) * 2010-11-26 2012-06-14 Mitsubishi Heavy Ind Ltd Biomass gasification system and purification method of biomass gasification gas
US9162175B2 (en) 2011-03-01 2015-10-20 Exxonmobil Upstream Research Company Apparatus and systems having compact configuration multiple swing adsorption beds and methods related thereto
US9593778B2 (en) 2011-03-01 2017-03-14 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US10016715B2 (en) 2011-03-01 2018-07-10 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US9168485B2 (en) 2011-03-01 2015-10-27 Exxonmobil Upstream Research Company Methods of removing contaminants from a hydrocarbon stream by swing adsorption and related apparatus and systems
US9034079B2 (en) 2011-03-01 2015-05-19 Exxonmobil Upstream Research Company Methods of removing contaminants from hydrocarbon stream by swing adsorption and related apparatus and systems
US9352269B2 (en) 2011-03-01 2016-05-31 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9358493B2 (en) 2011-03-01 2016-06-07 Exxonmobil Upstream Research Company Apparatus and systems having an encased adsorbent contactor and swing adsorption processes related thereto
US9120049B2 (en) 2011-03-01 2015-09-01 Exxonmobil Upstream Research Company Apparatus and systems having a rotary valve assembly and swing adsorption processes related thereto
US9017457B2 (en) 2011-03-01 2015-04-28 Exxonmobil Upstream Research Company Apparatus and systems having a reciprocating valve head assembly and swing adsorption processes related thereto
US9034078B2 (en) 2012-09-05 2015-05-19 Exxonmobil Upstream Research Company Apparatus and systems having an adsorbent contactor and swing adsorption processes related thereto
US9675925B2 (en) 2014-07-25 2017-06-13 Exxonmobil Upstream Research Company Apparatus and system having a valve assembly and swing adsorption processes related thereto
US10675615B2 (en) 2014-11-11 2020-06-09 Exxonmobil Upstream Research Company High capacity structures and monoliths via paste imprinting
US9713787B2 (en) 2014-12-10 2017-07-25 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
US10464009B2 (en) 2014-12-10 2019-11-05 Exxonmobil Upstream Research Company Adsorbent-incorporated polymer fibers in packed bed and fabric contactors, and methods and devices using same
US9744521B2 (en) 2014-12-23 2017-08-29 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US10512893B2 (en) 2014-12-23 2019-12-24 Exxonmobil Upstream Research Company Structured adsorbent beds, methods of producing the same and uses thereof
US9751041B2 (en) 2015-05-15 2017-09-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US9861929B2 (en) 2015-05-15 2018-01-09 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10293298B2 (en) 2015-09-02 2019-05-21 Exxonmobil Upstream Research Company Apparatus and system for combined temperature and pressure swing adsorption processes related thereto
US10080992B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220345B2 (en) 2015-09-02 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10124286B2 (en) 2015-09-02 2018-11-13 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10080991B2 (en) 2015-09-02 2018-09-25 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10220346B2 (en) 2015-10-27 2019-03-05 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10322365B2 (en) 2015-10-27 2019-06-18 Exxonmobil Upstream Reseach Company Apparatus and system for swing adsorption processes related thereto
US10040022B2 (en) 2015-10-27 2018-08-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US11642619B2 (en) 2015-11-16 2023-05-09 Georgia Tech Research Corporation Adsorbent materials and methods of adsorbing carbon dioxide
US10744449B2 (en) 2015-11-16 2020-08-18 Exxonmobil Upstream Research Company Adsorbent materials and methods of adsorbing carbon dioxide
US11260339B2 (en) 2016-03-18 2022-03-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10427088B2 (en) 2016-03-18 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US11033854B2 (en) 2016-05-31 2021-06-15 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10427089B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11033852B2 (en) 2016-05-31 2021-06-15 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10427091B2 (en) 2016-05-31 2019-10-01 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US10434458B2 (en) 2016-08-31 2019-10-08 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US11110388B2 (en) 2016-08-31 2021-09-07 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes related thereto
US10603626B2 (en) 2016-09-01 2020-03-31 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US11318413B2 (en) 2016-09-01 2022-05-03 Exxonmobil Upstream Research Company Swing adsorption processes using zeolite structures
US10328382B2 (en) 2016-09-29 2019-06-25 Exxonmobil Upstream Research Company Apparatus and system for testing swing adsorption processes
US10549230B2 (en) 2016-12-21 2020-02-04 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US10710053B2 (en) 2016-12-21 2020-07-14 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US11148091B2 (en) 2016-12-21 2021-10-19 Exxonmobil Upstream Research Company Self-supporting structures having active materials
US11707729B2 (en) 2016-12-21 2023-07-25 ExxonMobil Technology and Engineering Company Self-supporting structures having active materials
CN106807155A (en) * 2017-03-26 2017-06-09 从江县胜达活性炭有限公司 A kind of air cleaner for being convenient for changing activated carbon
US11331620B2 (en) 2018-01-24 2022-05-17 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11857913B2 (en) 2018-01-24 2024-01-02 ExxonMobil Technology and Engineering Company Apparatus and system for swing adsorption processes
US11413567B2 (en) 2018-02-28 2022-08-16 Exxonmobil Upstream Research Company Apparatus and system for swing adsorption processes
US11318410B2 (en) 2018-12-21 2022-05-03 Exxonmobil Upstream Research Company Flow modulation systems, apparatus, and methods for cyclical swing adsorption
US11376545B2 (en) 2019-04-30 2022-07-05 Exxonmobil Upstream Research Company Rapid cycle adsorbent bed
US11655910B2 (en) 2019-10-07 2023-05-23 ExxonMobil Technology and Engineering Company Adsorption processes and systems utilizing step lift control of hydraulically actuated poppet valves
US11433346B2 (en) 2019-10-16 2022-09-06 Exxonmobil Upstream Research Company Dehydration processes utilizing cationic zeolite RHO

Also Published As

Publication number Publication date
JP4534629B2 (en) 2010-09-01

Similar Documents

Publication Publication Date Title
JP4534629B2 (en) Gas purification device and method for regenerating removal agent used in the gas purification device
JP4561481B2 (en) Gas purification equipment
JP5877237B2 (en) Method and apparatus for producing low tar synthesis gas from biomass
CN102369236A (en) Environmentally clean process for utilizing pyrolysis products
CA2929976C (en) Process and apparatus for cleaning raw product gas
JP2007246695A (en) Apparatus for gasification of waste
JP6048133B2 (en) Syngas generation system and synthesis gas generation method
JP4662338B2 (en) Waste combined gasification processing system and method
JP2005207643A (en) Circulating fluidized-bed furnace and its operation method
JP3943042B2 (en) Tar-containing gas cleaning method and apparatus, and combustible gas production method and apparatus
JP4723922B2 (en) Manufacturing method of carbonaceous adsorbent, removal method of environmental pollutant using the same, and removal apparatus
JP2008222867A (en) Method for cleaning gasified gas and device for the same
KR20130013385A (en) Apparatus of tar removal and recovery using solid particles
JP2007136396A (en) Waste material treatment method and waste material treatment device
JP4433902B2 (en) Gas purification equipment
JP2011105890A (en) Circulating fluidized bed gasification reactor
JP2010047719A (en) Apparatus and method for removing tar
JP2014024937A (en) System and method for generating gasified gas
JP4651014B2 (en) Material gasification system and material gasification method
JP4868730B2 (en) Biomass gas purification method and apparatus
JP4563129B2 (en) Gasification system
WO2021132046A1 (en) Gasification system
JP2019218526A (en) Gasification equipment and operational method of the same
JP2007269905A (en) Gasification device
CN211570581U (en) Agricultural and forestry discarded object pyrolysis gas clarification plant

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20060807

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100506

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100525

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100607

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130625

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4534629

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140625

Year of fee payment: 4

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

R370 Written measure of declining of transfer procedure

Free format text: JAPANESE INTERMEDIATE CODE: R370

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R371 Transfer withdrawn

Free format text: JAPANESE INTERMEDIATE CODE: R371

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350