WO2021132046A1 - Gasification system - Google Patents

Gasification system Download PDF

Info

Publication number
WO2021132046A1
WO2021132046A1 PCT/JP2020/047316 JP2020047316W WO2021132046A1 WO 2021132046 A1 WO2021132046 A1 WO 2021132046A1 JP 2020047316 W JP2020047316 W JP 2020047316W WO 2021132046 A1 WO2021132046 A1 WO 2021132046A1
Authority
WO
WIPO (PCT)
Prior art keywords
tar
pyrolysis gas
unit
gas
pyrolysis
Prior art date
Application number
PCT/JP2020/047316
Other languages
French (fr)
Japanese (ja)
Inventor
枝里子 杉村
祥嗣 水関
直幸 川本
Original Assignee
日立造船株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日立造船株式会社 filed Critical 日立造船株式会社
Publication of WO2021132046A1 publication Critical patent/WO2021132046A1/en

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • CCHEMISTRY; METALLURGY
    • C10PETROLEUM, GAS OR COKE INDUSTRIES; TECHNICAL GASES CONTAINING CARBON MONOXIDE; FUELS; LUBRICANTS; PEAT
    • C10JPRODUCTION OF PRODUCER GAS, WATER-GAS, SYNTHESIS GAS FROM SOLID CARBONACEOUS MATERIAL, OR MIXTURES CONTAINING THESE GASES; CARBURETTING AIR OR OTHER GASES
    • C10J3/00Production of combustible gases containing carbon monoxide from solid carbonaceous fuels
    • C10J3/02Fixed-bed gasification of lump fuel
    • C10J3/06Continuous processes
    • C10J3/10Continuous processes using external heating
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P20/00Technologies relating to chemical industry
    • Y02P20/10Process efficiency

Definitions

  • the present invention relates to a gasification system.
  • the present application claims the priority benefit from the Japanese patent application JP2019-238546 filed on December 27, 2019, and all disclosures of such application are incorporated herein by reference.
  • waste containing organic substances is separated into a pyrolysis gas and a dry distillation residue by carbonization.
  • the high molecular weight hydrocarbon component in the pyrolysis gas is thermally decomposed by the heat generated by the oxidation reaction of the oxidizing component in the pyrolysis gas, and a modified gas containing low molecular weight hydrocarbons is obtained.
  • the carbonization residue is solidified by cooling, then pulverized and sorted to obtain a pyrolysis char composed of a carbonized organic substance and an inorganic component.
  • Fuel and oxygen are mixed with the pyrolysis char and burned at high temperature to obtain a gasified gas containing low molecular weight hydrocarbons.
  • the reformed gas and the gasified gas are cooled and refined as a mixed gas and supplied to the gas engine.
  • the pyrolysis gas generated by heating the object to be processed is used for power generation using, for example, a gas engine. In this case, it is required to remove tar contained in the pyrolysis gas in advance in order to prevent the operation of the gas engine from being hindered.
  • the present invention is directed to a gasification system that gasifies an object to be treated, and an object of the present invention is to remove tar contained in a pyrolysis gas and improve the energy efficiency of gasification in the gasification system. ..
  • a preferred gasification system is a gasification device that generates a pyrolysis gas by heating an object to be treated, and the pyrolysis gas by supplying a liquid containing water to the pyrolysis gas.
  • a tar removing section for removing tar contained in the tar, a tar extracting section for extracting tar from the liquid discharged from the tar removing section, and tar extracted in the tar extracting section are burned, and the combustion exhaust gas is used as a heat source.
  • a combustion furnace for supplying the gasifier is provided.
  • tar contained in the pyrolysis gas can be removed and the energy efficiency of gasification can be improved.
  • At least a part of the liquid in the tar removing portion contains an alkaline agent.
  • the gasification system further includes an unwanted substance removing section that returns the liquid to the tar removing section after removing unwanted substances from the liquid discharged from the tar extracting section.
  • the char recovered in the gasifier is supplied to the combustion furnace.
  • the gasification system is provided in the flow path of the pyrolysis gas between the gasification device and the tar removing unit, and a dust collector for collecting the char of the powder contained in the pyrolysis gas is provided. Further, the char of the powder collected in the dust collector is supplied to the combustion furnace.
  • the gasifier includes a pyrolysis unit that generates the pyrolysis gas from the object to be treated, and a reforming unit that reforms the pyrolysis gas sent from the pyrolysis unit, and the combustion.
  • the combustion exhaust gas in the furnace is used for heating the object to be treated in the pyrolysis section and heating the pyrolysis gas in the reforming section.
  • FIG. 1 is a diagram showing a configuration of a gasification system 1 according to an embodiment of the present invention.
  • the gasification system 1 is a system that gasifies an object to be treated such as biomass and uses it for power generation or the like.
  • the gasification system 1 includes a gasification device 2, a tar removing unit 3, a tar extracting unit 4, a combustion furnace 5, an unnecessary substance removing unit 6, a gas engine 72, and a control unit (not shown).
  • the control unit is a computer having a CPU or the like, and is responsible for overall control of the gasification system 1.
  • the gasifier 2 is a rotary kiln and includes an inner cylinder 21, a first outer cylinder 23, a second outer cylinder 24, a thermal decomposition unit 25, and a reforming unit 26.
  • the inner cylinder 21 has a tubular shape centered on the central axis J1, and is formed of, for example, a metal material (including an alloy; the same applies hereinafter).
  • the cross-sectional shape of the inner cylinder 21 perpendicular to the central axis J1 is circular.
  • the cross-sectional shape may be a polygon or the like when it is considered to be substantially circular.
  • the inner cylinder 21 is rotated about the central axis J1 by the rotation mechanism 29.
  • an input port 211 is provided at one end in the axial direction parallel to the central axis J1, and a discharge port 212 is provided at the other end.
  • the object to be processed is charged into the inner cylinder 21 from the charging port 211.
  • the object to be treated is, for example, general waste, industrial waste, sewage sludge, woody biomass and the like.
  • the object to be processed is supplied into the inner cylinder 21 by, for example, a screw feeder or the like.
  • a stirring blade or the like (not shown) is provided on the inner peripheral surface, and the object to be processed is sent from the input port 211 toward the discharge port 212 while being agitated.
  • pyrolysis gas and char are generated from the object to be treated and discharged from the discharge port 212.
  • the central axis J1 may be parallel to the horizontal direction or may be inclined with respect to the horizontal direction.
  • Each outer cylinder 23, 24 has a tubular shape centered on the central axis J1.
  • the first outer cylinder 23 and the second outer cylinder 24 surround the inner cylinder 21 on the input port 211 side and the discharge port 212 side, respectively.
  • the outer cylinders 23 and 24 are also formed of, for example, a metal material.
  • Each of the outer cylinders 23 and 24 forms a tubular space with the outer peripheral surface of the inner cylinder 21. In the radial direction centered on the central axis J1, the width between the inner cylinder 21 and the outer cylinders 23 and 24, that is, the width of the tubular space is substantially constant over the entire length of the outer cylinders 23 and 24.
  • annular walls are provided at both ends of the outer cylinders 23 and 24 in the axial direction.
  • the annular wall is a substantially circular ring centered on the central axis J1 and projects from the ends of the outer cylinders 23 and 24 toward the inner cylinder 21.
  • the end surface of the annular wall on the inner cylinder 21 side comes into contact with the outer peripheral surface of the inner cylinder 21 via, for example, a sliding member.
  • a seal structure is formed between the outer peripheral surface of the rotating inner cylinder 21 and the annular wall of the non-rotating outer cylinders 23 and 24.
  • an outflow port 221 is provided near the end on the inlet 211 side, and an inflow port 222 is provided near the end on the discharge port 212 side.
  • the outflow port 221 and the inflow port 222 are connected to the tubular space inside the outer cylinders 23 and 24.
  • the heat source fluid is supplied from the combustion furnace 5 to the inflow port 222 of the second outer cylinder 24 located on the discharge port 212 side.
  • the temperature of the heat source fluid is, for example, 900 ° C. or higher and 1400 ° C. or lower.
  • the heat source fluid flows through the tubular space of the second outer cylinder 24 and is discharged from the outflow port 221.
  • the outflow port 221 of the second outer cylinder 24 is connected to the inflow port 222 of the first outer cylinder 23, and the heat source fluid discharged from the second outer cylinder 24 is supplied into the first outer cylinder 23.
  • the heat source fluid flows through the tubular space of the first outer cylinder 23 and is discharged from the outflow port 221.
  • spiral guide blades are provided at positions facing the outer cylinders 23 and 24, and the heat source fluid supplied from the inflow port 222 flows toward the outflow port 221 toward the inner cylinder 21. It may be spirally flowed around the.
  • the heat source fluid flows in the direction opposite to the feeding direction of the object to be processed in the inner cylinder 21, and heat exchange is performed with the inner cylinder 21.
  • the inside of the portion of the inner cylinder 21 facing the first outer cylinder 23 is a thermal decomposition portion 25, and the object to be processed is heated by the heat source fluid flowing through the first outer cylinder 23.
  • the thermal decomposition section 25 the object to be treated is heated at, for example, a temperature of 400 ° C. or higher (preferably 700 ° C. or lower). As a result, thermal decomposition of the object to be processed occurs, and thermal decomposition gas and char are generated.
  • the discharge port 212 is decompressed by an attraction fan or the like (not shown), and the pyrolysis gas flows toward the discharge port 212.
  • the pyrolysis gas may include tar vapor (which is a liquid at room temperature), powder char, and the like.
  • the relatively large char, which is not contained in the pyrolysis gas, remains at the bottom of the inner cylinder 21 (the bottom in the cross section perpendicular to the central axis J1), and is discharged by, for example, the object to be processed being supplied from the input port 211. It is pushed out to the outlet 212 side (the reforming portion 26 side described later).
  • the char may be sent to the discharge port 212 side as the inner cylinder 21 rotates by a stirring blade or the like provided on the inner peripheral surface of the inner cylinder 21.
  • char simply means char that is not contained in the pyrolysis gas. If the object to be treated contains a non-combustible material such as metal, the non-combustible material also moves with the char.
  • the inside of the portion of the inner cylinder 21 facing the second outer cylinder 24 is the reforming portion 26, and the pyrolysis gas and the char are heated to a higher temperature than the thermal decomposition portion 25 by the heat source fluid flowing through the second outer cylinder 24.
  • the temperature of the pyrolysis gas and the char in the reforming section 26 is, for example, 700 ° C. or higher, preferably 800 ° C. or higher. The temperature is, for example, 1100 ° C. or lower.
  • an introduction pipe 261 extending along the central axis J1 is provided so as to penetrate the discharge port 212, and the ejection port of the introduction pipe 261 is on the input port 211 side (heat) of the reforming unit 26. It is arranged near the end of the disassembly unit 25 side). Steam is supplied to the introduction pipe 261 from the boiler 83 described later, and steam is ejected from the outlet.
  • the hydrocarbon gas or the like contained in the pyrolysis gas is converted into a gas such as hydrogen (H 2) or carbon monoxide (CO) by the steam reforming reaction. That is, the pyrolysis gas is steam reformed.
  • the tar and powder chars contained in the pyrolysis gas and the chars present at the bottom of the inner cylinder 21 are also steam reformed.
  • the pyrolysis gas and char sent from the pyrolysis section 25 are reformed.
  • the reformed pyrolysis gas is discharged from the inner cylinder 21 via the discharge port 212.
  • the pyrolysis gas may be reformed using a catalyst. In the reforming of the pyrolysis gas using a catalyst, the pyrolysis gas is heated to a lower temperature than the steam reforming.
  • the discharge port 212 is connected to the separation unit 27.
  • the separating portion 27 is a pipe extending in the vertical direction. In the separation unit 27, the pyrolysis gas flows upward and flows into the first connection flow path 11. The char that is not contained in the pyrolysis gas falls toward the lower part of the separating portion 27 and is recovered.
  • the char collected in the separation unit 27 is referred to as a “collected char”. In reality, the recovered char also includes incombustibles, ash and the like.
  • the recovery char is sent to the magnetic separator 81. In the magnetic separator 81, magnetic material (mainly metal) is removed from the recovery char using magnetic force and discharged to the incombustible material pit 82. The rest of the recovered char from which the magnetic material has been removed (mainly char and ash) is supplied to the combustion furnace 5 as fuel.
  • the tar removing section 3 is a gas cooler (quenching tower), and is a removing section main body 31, a first spray section 32, a filling layer 33, a second spray section 34, a circulating water tank 35, and a caustic soda tank 36. And.
  • the removing portion main body 31 has a substantially cylindrical shape, for example, and extends in the vertical direction.
  • the inflow port 311 is provided in the lower part of the removing portion main body 31, and the outflow port 312 is provided in the upper part.
  • the inflow port 311 is connected to the first connection flow path 11, and the outflow port 312 is connected to the second connection flow path 12.
  • the pyrolysis gas generated by the gasification device 2 flows into the inside of the removal unit main body 31 via the first connection flow path 11 and the inflow port 311.
  • the pyrolysis gas flows inside the removal unit main body 31 toward the outlet 312 and is discharged to the second connection flow path 12.
  • the first spray unit 32 has, for example, at least one ejection pipe provided with a plurality of ejection ports.
  • Water is supplied from the circulating water tank 35 to the first spray unit 32 via the pump 371, and the water is sprayed (supplied) into the inside of the removal unit main body 31.
  • the temperature of the water is, for example, room temperature (5 to 35 ° C.). In the example of FIG. 1, water is sprayed downward from the spout of the first spraying unit 32. The temperature of the pyrolysis gas is lowered by the water sprayed from the first spraying unit 32.
  • the tar vapor contained in the pyrolysis gas becomes liquid (condenses). Further, the char of the powder contained in the pyrolysis gas is collected in the sprayed water. In this way, tar and powder char are removed from the pyrolysis gas. The liquid tar and powder chars fall together with water to the bottom of the removal unit main body 31 and are stored.
  • the filling layer 33 is a layer filled with a filling material, and spreads over substantially the entire inside of the removing portion main body 31 on a plane substantially perpendicular to the vertical direction.
  • the filling is, for example, an irregular filling or a regular filling, and is formed of a resin, a metal, a ceramic, or the like.
  • the filling is supported from below by a plate-shaped member (not shown) having a plurality of through holes formed therein.
  • the second spray unit 34 has, for example, at least one ejection pipe provided with a plurality of ejection ports, and is connected to the circulating water tank 35 and the caustic soda tank 36 via a pump 372.
  • Water containing caustic soda is supplied to the second spraying section 34, and is sprayed inside the removing section main body 31.
  • water containing caustic soda is sprayed from the ejection port of the second spraying portion 34 toward the packed bed 33.
  • the temperature of water containing caustic soda is, for example, room temperature (5 to 35 ° C.).
  • Water containing an alkaline agent other than caustic soda (for example, magnesium hydroxide, calcium hydroxide, etc.) may be sprayed on the second spraying unit 34.
  • alkaline water water containing alkaline chemicals
  • the surface of the filling becomes wet with alkaline water, and high contact efficiency between the pyrolysis gas and alkaline water is realized.
  • the acid gas (sulfur oxide, hydrogen chloride, etc.) contained in the pyrolysis gas is removed.
  • the temperature of the pyrolysis gas is further lowered.
  • the tar vapor remaining in the pyrolysis gas becomes a liquid, and the powder char is collected in alkaline water.
  • the liquid tar and powder chars removed from the pyrolysis gas are stored at the bottom of the removal unit main body 31.
  • pre-extraction liquid may contain ash and the like.
  • the second spraying unit 34 may spray alkaline water. That is, all of the liquid supplied to the pyrolysis gas may contain an alkaline chemical. Further, when the filling of the filling layer 33 is made of metal or the like and tar or the like adheres to the surface of the filling and the differential pressure between the upstream side and the downstream side of the filling layer 33 becomes a predetermined value or more. , Tar and the like on the surface may be removed by temporarily burning the filling material.
  • the pyrolysis gas that has reached the outlet 312 is discharged to the second connection flow path 12.
  • the second connection flow path 12 is connected to the gas storage tank 71 via an attraction fan or the like (not shown), and the pyrolysis gas is stored in the gas storage tank 71.
  • a gas refining unit may be provided in the second connection flow path 12, and the pyrolysis gas from which unnecessary substances have been removed by the gas refining unit may be stored in the gas storage tank 71.
  • the temperature of the pyrolysis gas supplied to the gas storage tank 71 is, for example, about 50 ° C. As will be described later, the pyrolysis gas in the gas storage tank 71 is used for power generation using the gas engine 72.
  • the tar extraction unit 4 includes a stirring tank 41 and a vibrating sieving machine 42.
  • the stirring tank 41 is a tank provided with a stirrer inside, and the pre-extraction liquid is supplied to the stirring tank 41 from the removal unit main body 31. In the stirring tank 41, the pre-extraction liquid is stirred. Since char is more likely to adsorb oil than ash (because the oil is highly wettable), tar and char aggregate in the pre-extraction liquid by stirring.
  • the pre-extraction liquid containing the agglomerates of tar and char is supplied to the vibrating sieve 42, and agglomerates of a predetermined size or larger are taken out using a screen (net).
  • the tar extraction unit 4 extracts tar and char from the pre-extraction liquid discharged from the tar removal unit 3.
  • the above treatment in the tar extraction unit 4 can be regarded as granulation of tar and char. If necessary, a part of the recovery char may be mixed in the stirring tank 41.
  • the agglomerates are supplied to the combustion furnace 5 as fuel.
  • the liquid that has passed through the screen that is, the remaining liquid after the agglomerates have been extracted, hereinafter referred to as “post-extraction liquid” is supplied to the unnecessary substance removing unit 6.
  • the unnecessary substance removing unit 6 is, for example, a microfloat type ash water separator, which includes a processing tank and a microbubble generating unit.
  • the liquid after extraction is supplied into the processing tank.
  • the micro-bubble generating part generates micro-bubbles in the liquid after extraction in the processing tank.
  • the liquid after extraction can be regarded as a dispersion solution (emulsion) in which the remaining tar is used as a dispersoid and water is used as a dispersion medium, and the supply of microbubbles promotes the floating (emulsification) of the dispersoid tar. .. In reality, ash and the like contained in the liquid after extraction also surface.
  • a discharge section is provided around the treatment tank, and the floating matter (mainly tar and ash) overflows from the treatment tank together with the liquid after extraction and is discharged to the outside through the discharge section.
  • the floating material may be scraped off by a member that moves along the liquid surface of the liquid after extraction.
  • the processing tank In the processing tank, char and salt remaining in the liquid after extraction settle to the bottom. A sediment discharge part is provided at the bottom, and the sediment is discharged to the outside by the sediment discharge part and discarded.
  • the after-extraction liquid (mainly water) from which the floating matter and the precipitate have been removed is supplied to the circulating water tank 35, stored, and reused in the tar removing unit 3.
  • a liquid containing a floating substance (a liquid containing tar) is heated by a boiler 83 or the like to generate steam, and the steam may be used for steam reforming in the reforming section 26.
  • the recovery char is supplied from the gasifier 2 to the combustion furnace 5 via the magnetic separator 81, and the agglomerates are supplied from the tar extraction unit 4.
  • a pulverized coal burner is used to burn the recovered char and the agglomerate.
  • high-temperature combustion exhaust gas is generated.
  • the preferred combustion furnace 5 is also connected to the gas storage tank 71 via a connecting pipe (not shown).
  • the supply amount of the recovered char and the agglomerate is also measured, and when the control unit determines that the supply amount of the recovered char and the agglomerate is insufficient with respect to the required amount, the pyrolysis gas Is supplied to the combustion furnace 5 via the connecting pipe and burned.
  • a fixed amount of pyrolysis gas may be supplied to the combustion furnace 5 regardless of the supply amount.
  • the combustion furnace 5 is connected to the inflow port 222 of the second outer cylinder 24 in the gasifier 2 via the third connection flow path 13.
  • the combustion exhaust gas generated in the combustion furnace 5 is supplied to the inside of the second outer cylinder 24 (cylindrical space) as a heat source fluid.
  • the combustion exhaust gas flowing in the second outer cylinder 24 is used for indirect heating of the pyrolysis gas and the char in the reforming section 26.
  • the combustion exhaust gas flows into the first outer cylinder 23 and is used for indirect heating of the object to be processed in the thermal decomposition unit 25.
  • the combustion exhaust gas that has passed through the first outer cylinder 23 is discharged from the outflow port 221 and flows into the boiler 83 via the fourth connection flow path 14.
  • the boiler 83 water vapor is obtained by heat exchange between the water circulating inside and the combustion exhaust gas.
  • the steam is used for reforming the pyrolysis gas in the reforming section 26.
  • a part of the steam may be used for driving a steam turbine or the like.
  • the combustion exhaust gas that has passed through the boiler 83 is discharged to the atmosphere through the chimney 84.
  • the gas engine 72 is connected to the gas storage tank 71, and power is generated using the pyrolysis gas in the gas storage tank 71 as fuel.
  • the exhaust gas obtained by burning the pyrolysis gas in the gas engine 72 is mixed with the combustion exhaust gas in the fourth connection flow path 14, for example.
  • the exhaust gas of the gas engine 72 is used together with the combustion exhaust gas to generate water vapor in the boiler 83, and is discharged to the atmosphere through the chimney 84.
  • the pyrolysis gas is generated by heating the object to be processed in the gasification device 2.
  • the tar removing unit 3 removes the tar contained in the pyrolysis gas by supplying a liquid containing water to the pyrolysis gas.
  • the tar extraction unit 4 extracts tar from the liquid discharged from the tar removal unit 3.
  • the combustion furnace 5 the extracted tar is burned, and the combustion exhaust gas is supplied to the gasifier 2 as a heat source.
  • tar contained in the pyrolysis gas can be removed, and the tar can be used to improve the energy efficiency of gasification.
  • the efficiency of power generation using the pyrolysis gas in the gasification system 1 can be improved.
  • the energy efficiency of gasification can be further improved.
  • the combustion exhaust gas in the combustion furnace 5 is used for heating the object to be processed in the pyrolysis unit 25 and heating the pyrolysis gas in the reforming unit 26. This makes it possible to improve the energy efficiency of gasification while reforming the pyrolysis gas. Further, in the gasification device 2, no oxidizing agent is supplied to the inside, and the pyrolysis gas is generated and reformed in a substantially oxygen-free state. As a result, it becomes possible to generate a preferable pyrolysis gas having a high concentration of flammable gas.
  • the tar removing unit 3 at least a part of the liquid supplied to the pyrolysis gas contains an alkaline chemical.
  • the pyrolysis gas can be desulfurized and desalted in addition to removing tar, and a high-quality pyrolysis gas can be produced.
  • an unnecessary substance removing section 6 is provided, and after removing unwanted substances from the liquid discharged from the tar extracting section 4, the liquid is returned to the tar removing section 3. In this way, water saving can be realized by reusing the water used for removing tar from the pyrolysis gas.
  • the gasification system 1 can be modified in various ways.
  • the gasifier 2 that heats the object to be processed to generate a pyrolysis gas may be realized by a method other than a rotary kiln.
  • the gasification device 2 which is a rotary kiln since the object to be processed is agitated inside, the char of the powder is easily mixed with the pyrolysis gas discharged from the gasification device 2. Even in such a case, in the gasification system 1 of FIG. 1, the char of the powder is recovered together with the tar and burned in the combustion furnace 5. This makes it possible to improve the quality of the pyrolysis gas and the energy efficiency of gasification.
  • the gasification system 1 may be provided with a dedicated dust collector that collects the char of the powder contained in the pyrolysis gas.
  • FIG. 2 is a diagram showing a part of another example of the gasification system 1.
  • a cyclone type dust collector 9 is provided in the flow path of the pyrolysis gas between the gasification device 2 and the tar removing unit 3.
  • the dust collector 9 includes an introduction port 91, an upper discharge port 92, a lower discharge port 93, and a separation chamber 95.
  • the separation chamber 95 includes a cylindrical portion 96 and a conical portion 97.
  • the cylindrical portion 96 has a lidded and bottomless cylindrical shape.
  • the conical portion 97 is a tubular member whose upper portion is continuous from the cylindrical portion 96, and its diameter gradually decreases downward.
  • the introduction port 91 is provided on the side wall of the cylindrical portion 96.
  • the first connection flow path 11 is connected to the introduction port 91.
  • the upper discharge port 92 is provided on the lid portion of the cylindrical portion 96.
  • the upper discharge port 92 has a cylindrical portion that protrudes toward the inside of the cylindrical portion 96.
  • the upper discharge port 92 is connected to the inflow port 311 (see FIG. 1) of the tar removing unit 3 via a flow path.
  • the lower discharge port 93 is provided below the conical portion 97.
  • the lower discharge port 93 is connected to the combustion furnace 5 via a transfer mechanism such as a screw feeder.
  • the transport mechanism transports the char of the powder discharged from the lower discharge port 93 to the combustion furnace 5.
  • the transport path between the lower discharge port 93 and the combustion furnace 5 is a substantially sealed space, and the char of the powder being transported is prevented from coming into contact with oxygen (air).
  • the transport path may be filled with an inert gas such as nitrogen gas.
  • the pyrolysis gas discharged from the gasifier 2 is blown into the separation chamber 95 through the introduction port 91 along the inner peripheral surface of the cylindrical portion 96. Centrifugal force and gravity act on the char of the powder contained in the pyrolysis gas, and the powder falls to the lower discharge port 93 while swirling along the inner peripheral surfaces of the cylindrical portion 96 and the conical portion 97.
  • the char of the powder collected at the lower discharge port 93 is supplied (conveyed) to the combustion furnace 5 by the above-mentioned transport mechanism and burned.
  • the pyrolysis gas After reaching the lower part of the conical portion 97, the pyrolysis gas reverses upward, passes near the central axis of the separation chamber 95, and reaches the upper discharge port 92.
  • the pyrolysis gas discharged from the upper discharge port 92 is introduced into the inflow port 311 of the tar removing unit 3.
  • the tar removing unit 3 mainly removes tar.
  • the char of the powder contained in the pyrolysis gas can be efficiently recovered.
  • the energy efficiency of gasification can be further improved by utilizing the char of the powder.
  • a heat insulating portion 98 (indicated by a broken line in FIG. 2) may be provided around the separation chamber 95.
  • the heat insulating portion 98 is, for example, a heat insulating member, and may be a heater or the like utilizing waste heat.
  • the dust collector 9 may be a non-cyclone type, for example, a bug filter. When using a bag filter, it is preferable to use an oxygen-free gas (for example, nitrogen gas or water vapor) when removing the char from the filter cloth.
  • the pyrolysis unit 25 and the modification unit 26 do not necessarily have to be provided in the internal space of the same member, and the pyrolysis unit 25 and the modification unit 26 may be provided separately. Further, the combustion exhaust gas in the combustion furnace 5 may be used only by one of the pyrolysis unit 25 and the reforming unit 26. Depending on the design of the gasification system 1, the reforming unit 26 may be omitted.
  • the heating of the object to be processed in the gasification device 2 is not limited to indirect heating, and depending on the quality required for the pyrolysis gas, even if the object to be processed is heated by supplying the combustion exhaust gas into the inner cylinder 21. Good.
  • the tar removing unit 3 is not limited to the configuration shown in FIG. 1, and may be realized by other configurations.
  • a first processing tower 31a and a second processing tower 31b are provided in the tar removing section 3a of FIG. 3.
  • the first treatment tower 31a is provided with a first spray unit 32
  • the second treatment tower 31b is provided with a packing layer 33 and a second spray unit 34.
  • the pyrolysis gas from the gasification device 2 flows into the first processing tower 31a.
  • the tar and powder chars contained in the pyrolysis gas are collected by the water sprayed from the first spray unit 32 and stored together with the water at the bottom of the first treatment tower 31a.
  • the pyrolysis gas that has passed through the first treatment tower 31a flows into the second treatment tower 31b, and desulfurization and desalting are performed by the alkaline water sprayed from the second spray unit 34.
  • the pyrolysis gas that has passed through the second treatment tower 31b is stored in the gas storage tank 71.
  • the liquid stored in the first treatment tower 31a is supplied to the tar extraction unit 4 as a pre-extraction liquid.
  • the liquid stored in the second processing tower 31b may also be supplied to the tar extraction unit 4. Desulfurization and desalting with alkaline water may be omitted depending on the quality required for the pyrolysis gas.
  • the dust collector 9 of FIG. 2 may be provided in the flow path of the pyrolysis gas between the gasification device 2 and the tar removing unit 3a.
  • an adsorbent that adsorbs tar may be mixed with the pre-extraction liquid in order to promote the extraction of tar from the pre-extraction liquid.
  • the adsorbent may be burned together with the tar in the combustion furnace 5.
  • the tar extraction unit 4 can be realized by a device other than the stirring tank 41 and the vibrating sieving machine 42.
  • a plurality of baffle plates 44 that stand upright in the tank 43 are arranged in one horizontal direction. The plurality of baffle plates 44 are alternately attached to the lid portion 432 and the bottom portion 431 of the tank 43.
  • an inflow port 433 is provided at one end in the one direction, and an outflow port 434 is provided at the other end.
  • the pre-extraction liquid supplied from the inflow port 433 into the tank 43 passes between each baffle plate 44 and the bottom 431 or the lid 432 of the tank 43 and heads for the outflow port 434.
  • the tar floats on the liquid surface and the char is settled on the bottom 431.
  • the tar extraction unit 4a tar near the liquid surface is recovered and supplied to the combustion furnace 5. Further, the char settled on the bottom 431 is also recovered by a predetermined method and supplied to the combustion furnace 5.
  • the above method capable of obtaining a low-temperature pyrolysis gas by supplying a liquid containing water in the tar removing unit 3 is particularly suitable for a gasification system 1 including a gas engine 72 that requires a low-temperature pyrolysis gas.
  • the power generation unit that generates power using the pyrolysis gas may be a gas turbine type or a fuel cell type (solid oxide fuel cell (SOFC) or the like) type.
  • the pyrolysis gas may be used as a fuel gas for various purposes, and may be further used as a liquid fuel by converting it into a liquid.

Abstract

In this gasification system (1), pyrolysis gas is generated by heating an object to be processed in a gasification device (2). In a tar removing part (3), a liquid containing water is supplied to the pyrolysis gas to remove tar contained in the pyrolysis gas. In a tar extracting part (4), the tar is extracted from the liquid discharged from the tar removing part (3). In a combustion furnace (5), the extracted tar is combusted, and the combustion exhaust gas is supplied as a heat source to the gasification device (2). Thus, it is possible to remove tar contained in pyrolysis gas and to improve the energy efficiency of gasification.

Description

ガス化システムGasification system
 本発明は、ガス化システムに関する。
[関連出願の参照]
 本願は、2019年12月27日に出願された日本国特許出願JP2019-238546からの優先権の利益を主張し、当該出願の全ての開示は、本願に組み込まれる。
The present invention relates to a gasification system.
[Refer to related applications]
The present application claims the priority benefit from the Japanese patent application JP2019-238546 filed on December 27, 2019, and all disclosures of such application are incorporated herein by reference.
 従来、有機物を含む被処理物をガス化することが行われている。例えば、特許第4154029号公報の廃棄物処理装置では、有機物を含む廃棄物が乾留により熱分解ガスと乾留残さとに分離される。熱分解ガス中の酸化性成分の酸化反応によって発生した熱により、熱分解ガス中の高分子炭化水素成分が熱分解され、低分子の炭化水素を含有する改質ガスが得られる。また、乾留残さは冷却により固形化された後、粉砕および選別され、炭化有機物と無機質成分とからなる熱分解チャーが得られる。熱分解チャーに燃料および酸素を混合させて高温燃焼が行われ、低分子の炭化水素を含有するガス化ガスが得られる。改質ガスおよびガス化ガスは、混合ガスとして冷却および精製され、ガスエンジンに供給される。 Conventionally, gasification of an object to be treated containing an organic substance has been performed. For example, in the waste treatment apparatus of Japanese Patent No. 4154029, waste containing organic substances is separated into a pyrolysis gas and a dry distillation residue by carbonization. The high molecular weight hydrocarbon component in the pyrolysis gas is thermally decomposed by the heat generated by the oxidation reaction of the oxidizing component in the pyrolysis gas, and a modified gas containing low molecular weight hydrocarbons is obtained. Further, the carbonization residue is solidified by cooling, then pulverized and sorted to obtain a pyrolysis char composed of a carbonized organic substance and an inorganic component. Fuel and oxygen are mixed with the pyrolysis char and burned at high temperature to obtain a gasified gas containing low molecular weight hydrocarbons. The reformed gas and the gasified gas are cooled and refined as a mixed gas and supplied to the gas engine.
 なお、特許第3370866号公報では、熱分解炉において都市ごみを還元性雰囲気中で加熱して、熱分解ガスと熱分解残査とに熱分解し、熱分解炉から取り出された熱分解残査中のメタル分を磁選機により分離する手法が開示されている。 In Japanese Patent No. 3370866, urban waste is heated in a reducing atmosphere in a pyrolysis furnace, pyrolyzed into a pyrolysis gas and a pyrolysis residue, and the pyrolysis residue is taken out from the pyrolysis furnace. A method of separating the metal content inside by a magnetic separator is disclosed.
 ところで、被処理物をガス化するガス化システムでは、ガス化のエネルギー効率を向上することが常に求められている。また、ガス化システムでは、被処理物を加熱して生成される熱分解ガスが、例えば、ガスエンジンを用いた発電に利用される。この場合、ガスエンジンの動作に支障が生じることを防止するため、熱分解ガスに含まれるタールを予め除去することが求められる。 By the way, in a gasification system that gasifies an object to be treated, it is always required to improve the energy efficiency of gasification. Further, in the gasification system, the pyrolysis gas generated by heating the object to be processed is used for power generation using, for example, a gas engine. In this case, it is required to remove tar contained in the pyrolysis gas in advance in order to prevent the operation of the gas engine from being hindered.
 本発明は、被処理物をガス化するガス化システムに向けられており、ガス化システムにおいて、熱分解ガスに含まれるタールを除去するとともに、ガス化のエネルギー効率を向上することを目的としている。 The present invention is directed to a gasification system that gasifies an object to be treated, and an object of the present invention is to remove tar contained in a pyrolysis gas and improve the energy efficiency of gasification in the gasification system. ..
 本発明に係る好ましいガス化システムは、被処理物を加熱することにより熱分解ガスを生成するガス化装置と、前記熱分解ガスに対して水を含む液体を供給することにより、前記熱分解ガスに含まれるタールを除去するタール除去部と、前記タール除去部から排出される前記液体からタールを抽出するタール抽出部と、前記タール抽出部において抽出されるタールを燃焼させるとともに、燃焼排ガスを熱源として前記ガス化装置に供給する燃焼炉とを備える。 A preferred gasification system according to the present invention is a gasification device that generates a pyrolysis gas by heating an object to be treated, and the pyrolysis gas by supplying a liquid containing water to the pyrolysis gas. A tar removing section for removing tar contained in the tar, a tar extracting section for extracting tar from the liquid discharged from the tar removing section, and tar extracted in the tar extracting section are burned, and the combustion exhaust gas is used as a heat source. A combustion furnace for supplying the gasifier is provided.
 本発明によれば、ガス化システムにおいて、熱分解ガスに含まれるタールを除去するとともに、ガス化のエネルギー効率を向上することができる。 According to the present invention, in the gasification system, tar contained in the pyrolysis gas can be removed and the energy efficiency of gasification can be improved.
 好ましくは、前記タール除去部における前記液体の少なくとも一部が、アルカリ薬剤を含む。 Preferably, at least a part of the liquid in the tar removing portion contains an alkaline agent.
 好ましくは、ガス化システムが、前記タール抽出部から排出される前記液体から不要物を除去後、前記液体を前記タール除去部へと戻す不要物除去部をさらに備える。 Preferably, the gasification system further includes an unwanted substance removing section that returns the liquid to the tar removing section after removing unwanted substances from the liquid discharged from the tar extracting section.
 好ましくは、前記ガス化装置において回収されたチャーが前記燃焼炉に供給される。好ましくは、ガス化システムが、前記ガス化装置と前記タール除去部との間における前記熱分解ガスの流路に設けられ、前記熱分解ガスに含まれる粉体のチャーを回収する集塵装置をさらに備え、前記集塵装置において回収された粉体のチャーが前記燃焼炉に供給される。 Preferably, the char recovered in the gasifier is supplied to the combustion furnace. Preferably, the gasification system is provided in the flow path of the pyrolysis gas between the gasification device and the tar removing unit, and a dust collector for collecting the char of the powder contained in the pyrolysis gas is provided. Further, the char of the powder collected in the dust collector is supplied to the combustion furnace.
 好ましくは、前記ガス化装置が、前記被処理物から前記熱分解ガスを生成する熱分解部と、前記熱分解部から送られる前記熱分解ガスを改質する改質部とを備え、前記燃焼炉における前記燃焼排ガスが、前記熱分解部における前記被処理物の加熱、および、前記改質部における前記熱分解ガスの加熱に利用される。 Preferably, the gasifier includes a pyrolysis unit that generates the pyrolysis gas from the object to be treated, and a reforming unit that reforms the pyrolysis gas sent from the pyrolysis unit, and the combustion. The combustion exhaust gas in the furnace is used for heating the object to be treated in the pyrolysis section and heating the pyrolysis gas in the reforming section.
 上述の目的および他の目的、特徴、態様および利点は、添付した図面を参照して以下に行うこの発明の詳細な説明により明らかにされる。 The above-mentioned purpose and other purposes, features, aspects and advantages will be clarified by the detailed description of the invention described below with reference to the accompanying drawings.
ガス化システムの構成を示す図である。It is a figure which shows the structure of the gasification system. ガス化システムの他の例の一部を示す図である。It is a figure which shows a part of another example of a gasification system. タール除去部の他の例を示す図である。It is a figure which shows another example of a tar removal part. タール抽出部の他の例を示す図である。It is a figure which shows another example of a tar extraction part.
 図1は、本発明の一の実施の形態に係るガス化システム1の構成を示す図である。ガス化システム1は、バイオマス等の被処理物をガス化して、発電等に利用するシステムである。ガス化システム1は、ガス化装置2と、タール除去部3と、タール抽出部4と、燃焼炉5と、不要物除去部6と、ガスエンジン72と、制御部(図示省略)とを備える。制御部は、CPU等を有するコンピュータであり、ガス化システム1の全体制御を担う。 FIG. 1 is a diagram showing a configuration of a gasification system 1 according to an embodiment of the present invention. The gasification system 1 is a system that gasifies an object to be treated such as biomass and uses it for power generation or the like. The gasification system 1 includes a gasification device 2, a tar removing unit 3, a tar extracting unit 4, a combustion furnace 5, an unnecessary substance removing unit 6, a gas engine 72, and a control unit (not shown). .. The control unit is a computer having a CPU or the like, and is responsible for overall control of the gasification system 1.
 ガス化装置2は、ロータリーキルンであり、内筒21と、第1外筒23と、第2外筒24と、熱分解部25と、改質部26とを備える。内筒21は、中心軸J1を中心とする筒状であり、例えば金属材料(合金を含む。以下同様。)により形成される。典型的には、中心軸J1に垂直な内筒21の断面形状は、円形である。当該断面形状は、ほぼ円形と捉えられる場合には、多角形等であってもよい。内筒21は、回転機構29により中心軸J1を中心として回転する。 The gasifier 2 is a rotary kiln and includes an inner cylinder 21, a first outer cylinder 23, a second outer cylinder 24, a thermal decomposition unit 25, and a reforming unit 26. The inner cylinder 21 has a tubular shape centered on the central axis J1, and is formed of, for example, a metal material (including an alloy; the same applies hereinafter). Typically, the cross-sectional shape of the inner cylinder 21 perpendicular to the central axis J1 is circular. The cross-sectional shape may be a polygon or the like when it is considered to be substantially circular. The inner cylinder 21 is rotated about the central axis J1 by the rotation mechanism 29.
 内筒21において、中心軸J1に平行な軸方向における一端には、投入口211が設けられ、他端には、排出口212が設けられる。内筒21には、被処理物が投入口211から投入される。被処理物は、例えば、一般廃棄物、産業廃棄物、下水汚泥、木質バイオマス等である。被処理物は、例えばスクリューフィーダ等により内筒21内に供給される。内筒21では、例えば、攪拌羽根等(図示省略)が内周面に設けられ、被処理物が攪拌されつつ、投入口211から排出口212に向かって送られる。後述するように、内筒21の内部では、被処理物から熱分解ガスおよびチャーが生成され、排出口212から排出される。中心軸J1は、水平方向に平行であってもよく、水平方向に対して傾斜してもよい。 In the inner cylinder 21, an input port 211 is provided at one end in the axial direction parallel to the central axis J1, and a discharge port 212 is provided at the other end. The object to be processed is charged into the inner cylinder 21 from the charging port 211. The object to be treated is, for example, general waste, industrial waste, sewage sludge, woody biomass and the like. The object to be processed is supplied into the inner cylinder 21 by, for example, a screw feeder or the like. In the inner cylinder 21, for example, a stirring blade or the like (not shown) is provided on the inner peripheral surface, and the object to be processed is sent from the input port 211 toward the discharge port 212 while being agitated. As will be described later, inside the inner cylinder 21, pyrolysis gas and char are generated from the object to be treated and discharged from the discharge port 212. The central axis J1 may be parallel to the horizontal direction or may be inclined with respect to the horizontal direction.
 各外筒23,24は、中心軸J1を中心とする筒状である。第1外筒23および第2外筒24は、それぞれ投入口211側および排出口212側において内筒21の周囲を囲む。外筒23,24も、内筒21と同様に、例えば金属材料により形成される。各外筒23,24は、内筒21の外周面との間に筒状空間を形成する。中心軸J1を中心とする径方向において、内筒21と外筒23,24との間の幅、すなわち筒状空間の幅は、外筒23,24の全長に亘ってほぼ一定である。軸方向における外筒23,24の両端部には、環状壁が設けられる。環状壁は、中心軸J1を中心とする略円環状であり、外筒23,24の端部から内筒21に向かって突出する。環状壁における内筒21側の端面は、例えば摺動部材を介して内筒21の外周面と接する。これにより、回転する内筒21の外周面と、回転しない外筒23,24の環状壁との間に、シール構造が形成される。 Each outer cylinder 23, 24 has a tubular shape centered on the central axis J1. The first outer cylinder 23 and the second outer cylinder 24 surround the inner cylinder 21 on the input port 211 side and the discharge port 212 side, respectively. Like the inner cylinder 21, the outer cylinders 23 and 24 are also formed of, for example, a metal material. Each of the outer cylinders 23 and 24 forms a tubular space with the outer peripheral surface of the inner cylinder 21. In the radial direction centered on the central axis J1, the width between the inner cylinder 21 and the outer cylinders 23 and 24, that is, the width of the tubular space is substantially constant over the entire length of the outer cylinders 23 and 24. An annular walls are provided at both ends of the outer cylinders 23 and 24 in the axial direction. The annular wall is a substantially circular ring centered on the central axis J1 and projects from the ends of the outer cylinders 23 and 24 toward the inner cylinder 21. The end surface of the annular wall on the inner cylinder 21 side comes into contact with the outer peripheral surface of the inner cylinder 21 via, for example, a sliding member. As a result, a seal structure is formed between the outer peripheral surface of the rotating inner cylinder 21 and the annular wall of the non-rotating outer cylinders 23 and 24.
 各外筒23,24において、投入口211側の端部近傍には、流出口221が設けられ、排出口212側の端部近傍には、流入口222が設けられる。流出口221および流入口222は、外筒23,24内の筒状空間に接続する。後述するように、排出口212側に位置する第2外筒24の流入口222には、燃焼炉5から熱源流体が供給される。熱源流体の温度は、例えば900℃以上であり、1400℃以下である。熱源流体は、第2外筒24の筒状空間を流れて流出口221から排出される。第2外筒24の流出口221は、第1外筒23の流入口222に接続されており、第2外筒24から排出された熱源流体が、第1外筒23内に供給される。熱源流体は、第1外筒23の筒状空間を流れて流出口221から排出される。なお、内筒21の外周面において、各外筒23,24に対向する位置に螺旋状の案内羽根が設けられ、流入口222から供給される熱源流体が、流出口221に向かって内筒21の周囲を螺旋状に流されてもよい。 In each of the outer cylinders 23 and 24, an outflow port 221 is provided near the end on the inlet 211 side, and an inflow port 222 is provided near the end on the discharge port 212 side. The outflow port 221 and the inflow port 222 are connected to the tubular space inside the outer cylinders 23 and 24. As will be described later, the heat source fluid is supplied from the combustion furnace 5 to the inflow port 222 of the second outer cylinder 24 located on the discharge port 212 side. The temperature of the heat source fluid is, for example, 900 ° C. or higher and 1400 ° C. or lower. The heat source fluid flows through the tubular space of the second outer cylinder 24 and is discharged from the outflow port 221. The outflow port 221 of the second outer cylinder 24 is connected to the inflow port 222 of the first outer cylinder 23, and the heat source fluid discharged from the second outer cylinder 24 is supplied into the first outer cylinder 23. The heat source fluid flows through the tubular space of the first outer cylinder 23 and is discharged from the outflow port 221. On the outer peripheral surface of the inner cylinder 21, spiral guide blades are provided at positions facing the outer cylinders 23 and 24, and the heat source fluid supplied from the inflow port 222 flows toward the outflow port 221 toward the inner cylinder 21. It may be spirally flowed around the.
 各外筒23,24の筒状空間では、内筒21内における被処理物の送り方向とは反対の方向に熱源流体が流れ、内筒21との間で熱交換が行われる。内筒21において第1外筒23と対向する部位の内部は、熱分解部25であり、第1外筒23を流れる熱源流体により被処理物が加熱される。熱分解部25では、被処理物が、例えば400℃以上の温度(好ましくは、700℃以下)で加熱される。これにより、被処理物の熱分解が発生し、熱分解ガスおよびチャーが生成される。 In the tubular space of each of the outer cylinders 23 and 24, the heat source fluid flows in the direction opposite to the feeding direction of the object to be processed in the inner cylinder 21, and heat exchange is performed with the inner cylinder 21. The inside of the portion of the inner cylinder 21 facing the first outer cylinder 23 is a thermal decomposition portion 25, and the object to be processed is heated by the heat source fluid flowing through the first outer cylinder 23. In the thermal decomposition section 25, the object to be treated is heated at, for example, a temperature of 400 ° C. or higher (preferably 700 ° C. or lower). As a result, thermal decomposition of the object to be processed occurs, and thermal decomposition gas and char are generated.
 図示省略の誘引ファン等により排出口212は減圧されており、熱分解ガスは、排出口212に向かって流れる。熱分解ガスは、タールの蒸気(常温では、液体である。)および粉体のチャー等を含んでもよい。熱分解ガスに含まれない、比較的大きいチャーは、内筒21の底部(中心軸J1に垂直な断面における底部)に残存し、例えば投入口211から被処理物が供給されることにより、排出口212側(後述の改質部26側)へと押し出される。当該チャーは、内筒21の内周面に設けられる攪拌羽根等により、内筒21の回転に伴って排出口212側へと送られてもよい。以下の説明では、単に「チャー」という場合は、熱分解ガスに含まれないチャーを意味するものとする。なお、被処理物に金属等の不燃物が含まれる場合には、当該不燃物もチャーと共に移動する。 The discharge port 212 is decompressed by an attraction fan or the like (not shown), and the pyrolysis gas flows toward the discharge port 212. The pyrolysis gas may include tar vapor (which is a liquid at room temperature), powder char, and the like. The relatively large char, which is not contained in the pyrolysis gas, remains at the bottom of the inner cylinder 21 (the bottom in the cross section perpendicular to the central axis J1), and is discharged by, for example, the object to be processed being supplied from the input port 211. It is pushed out to the outlet 212 side (the reforming portion 26 side described later). The char may be sent to the discharge port 212 side as the inner cylinder 21 rotates by a stirring blade or the like provided on the inner peripheral surface of the inner cylinder 21. In the following description, the term "char" simply means char that is not contained in the pyrolysis gas. If the object to be treated contains a non-combustible material such as metal, the non-combustible material also moves with the char.
 内筒21において第2外筒24と対向する部位の内部は、改質部26であり、第2外筒24を流れる熱源流体により熱分解ガスおよびチャーが熱分解部25よりも高温に加熱される。改質部26における熱分解ガスおよびチャーの温度は、例えば700℃以上であり、好ましくは800℃以上である。当該温度は、例えば1100℃以下である。また、ガス化装置2では、中心軸J1に沿って延びる導入管261が排出口212を貫通して設けられており、導入管261の噴出口が、改質部26の投入口211側(熱分解部25側)の端部近傍に配置される。導入管261には、後述のボイラ83から水蒸気が供給され、上記噴出口から水蒸気が噴出される。 The inside of the portion of the inner cylinder 21 facing the second outer cylinder 24 is the reforming portion 26, and the pyrolysis gas and the char are heated to a higher temperature than the thermal decomposition portion 25 by the heat source fluid flowing through the second outer cylinder 24. To. The temperature of the pyrolysis gas and the char in the reforming section 26 is, for example, 700 ° C. or higher, preferably 800 ° C. or higher. The temperature is, for example, 1100 ° C. or lower. Further, in the gasification device 2, an introduction pipe 261 extending along the central axis J1 is provided so as to penetrate the discharge port 212, and the ejection port of the introduction pipe 261 is on the input port 211 side (heat) of the reforming unit 26. It is arranged near the end of the disassembly unit 25 side). Steam is supplied to the introduction pipe 261 from the boiler 83 described later, and steam is ejected from the outlet.
 これにより、熱分解ガスに含まれる炭化水素ガス等が、水蒸気改質反応により、水素(H)や一酸化炭素(CO)等のガスに転換される。すなわち、熱分解ガスが水蒸気改質される。熱分解ガスに含まれるタールおよび粉体のチャー、並びに、内筒21の底部に存在するチャーも、水蒸気改質される。以上のように、改質部26では、熱分解部25から送られる熱分解ガスおよびチャーが改質される。改質された熱分解ガスは、排出口212を介して内筒21から排出される。なお、改質部26では、触媒を利用して熱分解ガスが改質されてもよい。触媒を利用した熱分解ガスの改質では、水蒸気改質に比べて低い温度に熱分解ガスが加熱される。 As a result, the hydrocarbon gas or the like contained in the pyrolysis gas is converted into a gas such as hydrogen (H 2) or carbon monoxide (CO) by the steam reforming reaction. That is, the pyrolysis gas is steam reformed. The tar and powder chars contained in the pyrolysis gas and the chars present at the bottom of the inner cylinder 21 are also steam reformed. As described above, in the reforming section 26, the pyrolysis gas and char sent from the pyrolysis section 25 are reformed. The reformed pyrolysis gas is discharged from the inner cylinder 21 via the discharge port 212. In the reforming section 26, the pyrolysis gas may be reformed using a catalyst. In the reforming of the pyrolysis gas using a catalyst, the pyrolysis gas is heated to a lower temperature than the steam reforming.
 排出口212は、分離部27に接続される。分離部27は、上下方向に延びる管である。分離部27では、熱分解ガスは上方に向かって流れ、第1接続流路11に流入する。熱分解ガスに含まれないチャーは、分離部27の下部に向かって落下し、回収される。以下の説明では、分離部27において回収されるチャーを、「回収チャー」という。実際には、回収チャーは、不燃物や灰等も含む。回収チャーは、磁選機81へと送られる。磁選機81では、磁力を利用して回収チャーから磁性物(主として金属)が取り除かれ、不燃物ピット82に排出される。磁性物が取り除かれた回収チャーの残り(主としてチャーおよび灰)は、燃料として燃焼炉5に供給される。 The discharge port 212 is connected to the separation unit 27. The separating portion 27 is a pipe extending in the vertical direction. In the separation unit 27, the pyrolysis gas flows upward and flows into the first connection flow path 11. The char that is not contained in the pyrolysis gas falls toward the lower part of the separating portion 27 and is recovered. In the following description, the char collected in the separation unit 27 is referred to as a “collected char”. In reality, the recovered char also includes incombustibles, ash and the like. The recovery char is sent to the magnetic separator 81. In the magnetic separator 81, magnetic material (mainly metal) is removed from the recovery char using magnetic force and discharged to the incombustible material pit 82. The rest of the recovered char from which the magnetic material has been removed (mainly char and ash) is supplied to the combustion furnace 5 as fuel.
 タール除去部3は、ガス冷却器(急冷塔)であり、除去部本体31と、第1噴霧部32と、充填層33と、第2噴霧部34と、循環水タンク35と、苛性ソーダタンク36とを備える。除去部本体31は、例えば略円筒状であり、上下方向に延びる。図1の例では、除去部本体31の下部に流入口311が設けられ、上部に流出口312が設けられる。流入口311は、第1接続流路11に接続し、流出口312は、第2接続流路12に接続する。ガス化装置2にて生成された熱分解ガスは、第1接続流路11および流入口311を介して除去部本体31の内部に流入する。当該熱分解ガスは、除去部本体31の内部を流出口312に向かって流れ、第2接続流路12へと排出される。 The tar removing section 3 is a gas cooler (quenching tower), and is a removing section main body 31, a first spray section 32, a filling layer 33, a second spray section 34, a circulating water tank 35, and a caustic soda tank 36. And. The removing portion main body 31 has a substantially cylindrical shape, for example, and extends in the vertical direction. In the example of FIG. 1, the inflow port 311 is provided in the lower part of the removing portion main body 31, and the outflow port 312 is provided in the upper part. The inflow port 311 is connected to the first connection flow path 11, and the outflow port 312 is connected to the second connection flow path 12. The pyrolysis gas generated by the gasification device 2 flows into the inside of the removal unit main body 31 via the first connection flow path 11 and the inflow port 311. The pyrolysis gas flows inside the removal unit main body 31 toward the outlet 312 and is discharged to the second connection flow path 12.
 除去部本体31の内部では、第1噴霧部32、充填層33および第2噴霧部34が、流入口311から流出口312に向かって順に配置される。第1噴霧部32は、例えば、複数の噴出口が設けられた少なくとも1つの噴出管を有する。第1噴霧部32には、循環水タンク35からポンプ371を介して水が供給され、当該水が除去部本体31の内部に噴霧(供給)される。当該水の温度は、例えば常温(5~35℃)である。図1の例では、第1噴霧部32の噴出口から下方に向かって水が噴霧される。第1噴霧部32から噴霧された水により、熱分解ガスの温度が低下する。また、熱分解ガスに含まれるタールの蒸気が液体となる(凝縮する)。さらに、熱分解ガスに含まれる粉体のチャーが、噴霧された水に捕集される。このようにして、熱分解ガスからタールおよび粉体のチャーが除去される。液状のタールおよび粉体のチャーは、水と共に除去部本体31の底部に落下し、貯留される。 Inside the removal unit main body 31, the first spray unit 32, the filling layer 33, and the second spray unit 34 are arranged in order from the inflow port 311 toward the outflow port 312. The first spray unit 32 has, for example, at least one ejection pipe provided with a plurality of ejection ports. Water is supplied from the circulating water tank 35 to the first spray unit 32 via the pump 371, and the water is sprayed (supplied) into the inside of the removal unit main body 31. The temperature of the water is, for example, room temperature (5 to 35 ° C.). In the example of FIG. 1, water is sprayed downward from the spout of the first spraying unit 32. The temperature of the pyrolysis gas is lowered by the water sprayed from the first spraying unit 32. In addition, the tar vapor contained in the pyrolysis gas becomes liquid (condenses). Further, the char of the powder contained in the pyrolysis gas is collected in the sprayed water. In this way, tar and powder char are removed from the pyrolysis gas. The liquid tar and powder chars fall together with water to the bottom of the removal unit main body 31 and are stored.
 充填層33は、充填物が充填された層であり、上下方向に略垂直な面上において除去部本体31の内部の略全体に広がる。充填物は、例えば、不規則充填物または規則充填物であり、樹脂、金属、セラミック等により形成される。充填物は、複数の貫通孔が形成された板状部材(図示省略)により下側から支持される。第2噴霧部34は、例えば、複数の噴出口が設けられた少なくとも1つの噴出管を有し、ポンプ372を介して循環水タンク35および苛性ソーダタンク36に接続される。第2噴霧部34には苛性ソーダを含む水が供給され、除去部本体31の内部に噴霧される。図1の例では、第2噴霧部34の噴出口から充填層33に向かって苛性ソーダを含む水が噴霧される。苛性ソーダを含む水の温度は、例えば常温(5~35℃)である。第2噴霧部34では、苛性ソーダ以外のアルカリ薬剤(例えば、水酸化マグネシウム、水酸化カルシウム等)を含む水が噴霧されてもよい。以下の説明では、アルカリ薬剤を含む水を「アルカリ水」という。 The filling layer 33 is a layer filled with a filling material, and spreads over substantially the entire inside of the removing portion main body 31 on a plane substantially perpendicular to the vertical direction. The filling is, for example, an irregular filling or a regular filling, and is formed of a resin, a metal, a ceramic, or the like. The filling is supported from below by a plate-shaped member (not shown) having a plurality of through holes formed therein. The second spray unit 34 has, for example, at least one ejection pipe provided with a plurality of ejection ports, and is connected to the circulating water tank 35 and the caustic soda tank 36 via a pump 372. Water containing caustic soda is supplied to the second spraying section 34, and is sprayed inside the removing section main body 31. In the example of FIG. 1, water containing caustic soda is sprayed from the ejection port of the second spraying portion 34 toward the packed bed 33. The temperature of water containing caustic soda is, for example, room temperature (5 to 35 ° C.). Water containing an alkaline agent other than caustic soda (for example, magnesium hydroxide, calcium hydroxide, etc.) may be sprayed on the second spraying unit 34. In the following description, water containing alkaline chemicals is referred to as "alkaline water".
 充填層33では、充填物の表面がアルカリ水に濡れた状態となり、熱分解ガスとアルカリ水との高い接触効率が実現される。これにより、熱分解ガスに含まれる酸性ガス(硫黄酸化物、塩化水素等)が除去される。また、熱分解ガスの温度がさらに低下する。さらに、熱分解ガスに残存するタールの蒸気が液体となり、粉体のチャーがアルカリ水に捕集される。熱分解ガスから除去された液状のタールおよび粉体のチャーは、除去部本体31の底部にて貯留される。後述するように、除去部本体31の底部に貯留される液体から、タール抽出部4によりタール等が抽出されるため、当該液体を、以下、「抽出前液」という。抽出前液には、灰等が含まれてもよい。 In the packing layer 33, the surface of the filling becomes wet with alkaline water, and high contact efficiency between the pyrolysis gas and alkaline water is realized. As a result, the acid gas (sulfur oxide, hydrogen chloride, etc.) contained in the pyrolysis gas is removed. In addition, the temperature of the pyrolysis gas is further lowered. Further, the tar vapor remaining in the pyrolysis gas becomes a liquid, and the powder char is collected in alkaline water. The liquid tar and powder chars removed from the pyrolysis gas are stored at the bottom of the removal unit main body 31. As will be described later, since tar and the like are extracted by the tar extraction unit 4 from the liquid stored in the bottom of the removal unit main body 31, the liquid is hereinafter referred to as “pre-extraction liquid”. The pre-extraction liquid may contain ash and the like.
 タール除去部3では、第2噴霧部34のみならず、第1噴霧部32がアルカリ水を噴霧してもよい。すなわち、熱分解ガスに供給する液体の全部が、アルカリ薬剤を含んでもよい。また、充填層33の充填物が金属等である場合に、充填物の表面にタール等が付着して充填層33の上流側と下流側との間における差圧が所定値以上となったときには、充填物を一時的に燃焼させることにより、当該表面のタール等が除去されてもよい。 In the tar removing unit 3, not only the second spraying unit 34 but also the first spraying unit 32 may spray alkaline water. That is, all of the liquid supplied to the pyrolysis gas may contain an alkaline chemical. Further, when the filling of the filling layer 33 is made of metal or the like and tar or the like adheres to the surface of the filling and the differential pressure between the upstream side and the downstream side of the filling layer 33 becomes a predetermined value or more. , Tar and the like on the surface may be removed by temporarily burning the filling material.
 流出口312に到達した熱分解ガスは、第2接続流路12へと排出される。第2接続流路12は、図示省略の誘引ファン等を介してガス貯留タンク71に接続されており、熱分解ガスがガス貯留タンク71に貯留される。第2接続流路12にガス精製部が設けられ、ガス精製部により不要物が除去された熱分解ガスが、ガス貯留タンク71に貯留されてもよい。ガス貯留タンク71に供給される熱分解ガスの温度は、例えば50℃程度である。後述するように、ガス貯留タンク71内の熱分解ガスは、ガスエンジン72を用いた発電に利用される。 The pyrolysis gas that has reached the outlet 312 is discharged to the second connection flow path 12. The second connection flow path 12 is connected to the gas storage tank 71 via an attraction fan or the like (not shown), and the pyrolysis gas is stored in the gas storage tank 71. A gas refining unit may be provided in the second connection flow path 12, and the pyrolysis gas from which unnecessary substances have been removed by the gas refining unit may be stored in the gas storage tank 71. The temperature of the pyrolysis gas supplied to the gas storage tank 71 is, for example, about 50 ° C. As will be described later, the pyrolysis gas in the gas storage tank 71 is used for power generation using the gas engine 72.
 タール抽出部4は、攪拌タンク41と、振動ふるい機42とを備える。攪拌タンク41は、内部に攪拌機が設けられたタンクであり、攪拌タンク41には除去部本体31から抽出前液が供給される。攪拌タンク41では、抽出前液が攪拌される。チャーは灰よりも油を吸着させやすいため(油の濡れ性が高いため)、攪拌により抽出前液においてタールおよびチャーが凝集する。タールおよびチャーの凝集体を含む抽出前液は、振動ふるい機42に供給され、スクリーン(網)を用いて所定サイズ以上の凝集体が取り出される。以上のように、タール抽出部4では、タール除去部3から排出される抽出前液からタールおよびチャーが抽出される。タール抽出部4における上記処理は、タールおよびチャーの造粒と捉えることが可能である。必要に応じて、回収チャーの一部が攪拌タンク41内に混合されてもよい。凝集体は、燃焼炉5に燃料として供給される。一方、スクリーンを通過した液(すなわち、凝集体が抽出された後の残りの液であり、以下、「抽出後液」という。)は、不要物除去部6に供給される。 The tar extraction unit 4 includes a stirring tank 41 and a vibrating sieving machine 42. The stirring tank 41 is a tank provided with a stirrer inside, and the pre-extraction liquid is supplied to the stirring tank 41 from the removal unit main body 31. In the stirring tank 41, the pre-extraction liquid is stirred. Since char is more likely to adsorb oil than ash (because the oil is highly wettable), tar and char aggregate in the pre-extraction liquid by stirring. The pre-extraction liquid containing the agglomerates of tar and char is supplied to the vibrating sieve 42, and agglomerates of a predetermined size or larger are taken out using a screen (net). As described above, the tar extraction unit 4 extracts tar and char from the pre-extraction liquid discharged from the tar removal unit 3. The above treatment in the tar extraction unit 4 can be regarded as granulation of tar and char. If necessary, a part of the recovery char may be mixed in the stirring tank 41. The agglomerates are supplied to the combustion furnace 5 as fuel. On the other hand, the liquid that has passed through the screen (that is, the remaining liquid after the agglomerates have been extracted, hereinafter referred to as “post-extraction liquid”) is supplied to the unnecessary substance removing unit 6.
 不要物除去部6は、例えば、マイクロフロート式の灰水分離器であり、処理タンクと、マイクロバブル発生部とを備える。処理タンク内には抽出後液が供給される。マイクロバブル発生部は、処理タンク内の抽出後液にマイクロバブルを発生させる。抽出後液は、残存するタールを分散質とし、水を分散媒とする分散溶液(エマルジョン)と捉えることができ、マイクロバブルの供給により分散質であるタールの浮上(解乳化)が促進される。実際には、抽出後液に含まれる灰等も浮上する。処理タンクの周囲には排出部が設けられており、浮上物(主としてタールおよび灰)は、抽出後液と共に処理タンクからオーバーフローし、排出部を介して外部に排出される。浮上物は、抽出後液の液面に沿って移動する部材により掻き取られてもよい。 The unnecessary substance removing unit 6 is, for example, a microfloat type ash water separator, which includes a processing tank and a microbubble generating unit. The liquid after extraction is supplied into the processing tank. The micro-bubble generating part generates micro-bubbles in the liquid after extraction in the processing tank. The liquid after extraction can be regarded as a dispersion solution (emulsion) in which the remaining tar is used as a dispersoid and water is used as a dispersion medium, and the supply of microbubbles promotes the floating (emulsification) of the dispersoid tar. .. In reality, ash and the like contained in the liquid after extraction also surface. A discharge section is provided around the treatment tank, and the floating matter (mainly tar and ash) overflows from the treatment tank together with the liquid after extraction and is discharged to the outside through the discharge section. The floating material may be scraped off by a member that moves along the liquid surface of the liquid after extraction.
 処理タンクでは、抽出後液に残存するチャーおよび塩等は底部に沈殿する。当該底部には、沈殿物排出部が設けられており、沈殿物は沈殿物排出部により外部に排出され、廃棄される。浮上物および沈殿物が除去された抽出後液(主として水)は、循環水タンク35に供給されて貯留され、タール除去部3において再利用される。不要物除去部6では、浮上物を含む液(タールを含む液)がボイラ83等により加熱されて水蒸気が生成され、当該水蒸気が改質部26における水蒸気改質に利用されてもよい。 In the processing tank, char and salt remaining in the liquid after extraction settle to the bottom. A sediment discharge part is provided at the bottom, and the sediment is discharged to the outside by the sediment discharge part and discarded. The after-extraction liquid (mainly water) from which the floating matter and the precipitate have been removed is supplied to the circulating water tank 35, stored, and reused in the tar removing unit 3. In the unnecessary substance removing unit 6, a liquid containing a floating substance (a liquid containing tar) is heated by a boiler 83 or the like to generate steam, and the steam may be used for steam reforming in the reforming section 26.
 既述のように、燃焼炉5には、ガス化装置2から磁選機81を介して回収チャーが供給され、タール抽出部4から凝集体が供給される。燃焼炉5の内部では、例えば微粉炭バーナを用いて上記回収チャーおよび凝集体が燃焼される。これにより、高温の燃焼排ガスが発生する。好ましい燃焼炉5は、接続管(図示省略)を介してガス貯留タンク71にも接続される。ガス化システム1では、回収チャーおよび凝集体の供給量も測定されており、制御部において、回収チャーおよび凝集体の供給量が必要量に対して不足すると判定される場合には、熱分解ガスが接続管を介して燃焼炉5に供給され、燃焼される。ガス化システム1では、上記供給量にかかわらず、一定量の熱分解ガスが、燃焼炉5に供給されてもよい。 As described above, the recovery char is supplied from the gasifier 2 to the combustion furnace 5 via the magnetic separator 81, and the agglomerates are supplied from the tar extraction unit 4. Inside the combustion furnace 5, for example, a pulverized coal burner is used to burn the recovered char and the agglomerate. As a result, high-temperature combustion exhaust gas is generated. The preferred combustion furnace 5 is also connected to the gas storage tank 71 via a connecting pipe (not shown). In the gasification system 1, the supply amount of the recovered char and the agglomerate is also measured, and when the control unit determines that the supply amount of the recovered char and the agglomerate is insufficient with respect to the required amount, the pyrolysis gas Is supplied to the combustion furnace 5 via the connecting pipe and burned. In the gasification system 1, a fixed amount of pyrolysis gas may be supplied to the combustion furnace 5 regardless of the supply amount.
 燃焼炉5は、第3接続流路13を介してガス化装置2における第2外筒24の流入口222に接続される。燃焼炉5において発生した燃焼排ガスは、熱源流体として第2外筒24内(筒状空間)に供給される。既述のように、第2外筒24内を流れる燃焼排ガスは、改質部26における熱分解ガスおよびチャーの間接加熱に利用される。続いて、燃焼排ガスは、第1外筒23内に流入し、熱分解部25における被処理物の間接加熱に利用される。第1外筒23を通過した燃焼排ガスは、流出口221から排出され、第4接続流路14を介してボイラ83に流入する。ボイラ83では、内部を流通する水と燃焼排ガスとの熱交換により、水蒸気が得られる。当該水蒸気は、既述のように、改質部26における熱分解ガスの改質に利用される。水蒸気の一部は、蒸気タービンの駆動等に利用されてもよい。ボイラ83を通過した燃焼排ガスは、煙突84を介して大気へ排出される。 The combustion furnace 5 is connected to the inflow port 222 of the second outer cylinder 24 in the gasifier 2 via the third connection flow path 13. The combustion exhaust gas generated in the combustion furnace 5 is supplied to the inside of the second outer cylinder 24 (cylindrical space) as a heat source fluid. As described above, the combustion exhaust gas flowing in the second outer cylinder 24 is used for indirect heating of the pyrolysis gas and the char in the reforming section 26. Subsequently, the combustion exhaust gas flows into the first outer cylinder 23 and is used for indirect heating of the object to be processed in the thermal decomposition unit 25. The combustion exhaust gas that has passed through the first outer cylinder 23 is discharged from the outflow port 221 and flows into the boiler 83 via the fourth connection flow path 14. In the boiler 83, water vapor is obtained by heat exchange between the water circulating inside and the combustion exhaust gas. As described above, the steam is used for reforming the pyrolysis gas in the reforming section 26. A part of the steam may be used for driving a steam turbine or the like. The combustion exhaust gas that has passed through the boiler 83 is discharged to the atmosphere through the chimney 84.
 ガスエンジン72は、ガス貯留タンク71に接続され、ガス貯留タンク71内の熱分解ガスを燃料として発電が行われる。ガスエンジン72において熱分解ガスを燃焼させて得られる排ガスは、例えば、第4接続流路14において上記燃焼排ガスに混合される。ガスエンジン72の排ガスは、上記燃焼排ガスと共に、ボイラ83における水蒸気の生成に利用され、煙突84を介して大気へ排出される。 The gas engine 72 is connected to the gas storage tank 71, and power is generated using the pyrolysis gas in the gas storage tank 71 as fuel. The exhaust gas obtained by burning the pyrolysis gas in the gas engine 72 is mixed with the combustion exhaust gas in the fourth connection flow path 14, for example. The exhaust gas of the gas engine 72 is used together with the combustion exhaust gas to generate water vapor in the boiler 83, and is discharged to the atmosphere through the chimney 84.
 以上に説明したように、ガス化システム1では、ガス化装置2において被処理物を加熱することにより熱分解ガスが生成される。タール除去部3では、熱分解ガスに対して水を含む液体を供給することにより、熱分解ガスに含まれるタールが除去される。タール抽出部4では、タール除去部3から排出される当該液体からタールが抽出される。燃焼炉5では、抽出されたタールが燃焼され、燃焼排ガスが熱源としてガス化装置2に供給される。これにより、熱分解ガスに含まれるタールを除去するとともに、当該タールを利用してガス化のエネルギー効率を向上することができる。その結果、ガス化システム1における、熱分解ガスを利用した発電の効率も向上することができる。また、ガス化装置2において回収されたチャーが燃焼炉5に供給されることにより、ガス化のエネルギー効率をさらに向上することができる。 As described above, in the gasification system 1, the pyrolysis gas is generated by heating the object to be processed in the gasification device 2. The tar removing unit 3 removes the tar contained in the pyrolysis gas by supplying a liquid containing water to the pyrolysis gas. The tar extraction unit 4 extracts tar from the liquid discharged from the tar removal unit 3. In the combustion furnace 5, the extracted tar is burned, and the combustion exhaust gas is supplied to the gasifier 2 as a heat source. As a result, tar contained in the pyrolysis gas can be removed, and the tar can be used to improve the energy efficiency of gasification. As a result, the efficiency of power generation using the pyrolysis gas in the gasification system 1 can be improved. Further, by supplying the char recovered in the gasification device 2 to the combustion furnace 5, the energy efficiency of gasification can be further improved.
 ガス化装置2では、燃焼炉5における燃焼排ガスが、熱分解部25における被処理物の加熱、および、改質部26における熱分解ガスの加熱に利用される。これにより、熱分解ガスを改質しつつ、ガス化のエネルギー効率を向上することができる。また、ガス化装置2では、内部に酸化剤が供給されず、ほぼ無酸素状態で熱分解ガスの生成および改質が行われる。その結果、可燃性ガスの濃度が高い好ましい熱分解ガスを生成することが可能となる。 In the gasification device 2, the combustion exhaust gas in the combustion furnace 5 is used for heating the object to be processed in the pyrolysis unit 25 and heating the pyrolysis gas in the reforming unit 26. This makes it possible to improve the energy efficiency of gasification while reforming the pyrolysis gas. Further, in the gasification device 2, no oxidizing agent is supplied to the inside, and the pyrolysis gas is generated and reformed in a substantially oxygen-free state. As a result, it becomes possible to generate a preferable pyrolysis gas having a high concentration of flammable gas.
 タール除去部3では、熱分解ガスに供給する液体の少なくとも一部が、アルカリ薬剤を含む。これにより、熱分解ガスに対して、タールの除去に加えて、脱硫および脱塩を行うことができ、高品質の熱分解ガスを生成することができる。ガス化システム1では、不要物除去部6が設けられ、タール抽出部4から排出される液体から不要物を除去後、当該液体がタール除去部3へと戻される。このように、熱分解ガスからのタールの除去に利用する水を再利用することにより、節水を実現することができる。 In the tar removing unit 3, at least a part of the liquid supplied to the pyrolysis gas contains an alkaline chemical. As a result, the pyrolysis gas can be desulfurized and desalted in addition to removing tar, and a high-quality pyrolysis gas can be produced. In the gasification system 1, an unnecessary substance removing section 6 is provided, and after removing unwanted substances from the liquid discharged from the tar extracting section 4, the liquid is returned to the tar removing section 3. In this way, water saving can be realized by reusing the water used for removing tar from the pyrolysis gas.
 上記ガス化システム1では様々な変形が可能である。 The gasification system 1 can be modified in various ways.
 被処理物を加熱して熱分解ガスを生成するガス化装置2は、ロータリーキルン以外により実現されてもよい。一方、ロータリーキルンであるガス化装置2では、内部で被処理物を攪拌するため、ガス化装置2から排出される熱分解ガスに粉体のチャーが混ざりやすくなる。このような場合でも、図1のガス化システム1では、タールと共に粉体のチャーが回収されて、燃焼炉5において燃焼される。これにより、熱分解ガスの品質、および、ガス化のエネルギー効率を向上することが可能となる。 The gasifier 2 that heats the object to be processed to generate a pyrolysis gas may be realized by a method other than a rotary kiln. On the other hand, in the gasification device 2 which is a rotary kiln, since the object to be processed is agitated inside, the char of the powder is easily mixed with the pyrolysis gas discharged from the gasification device 2. Even in such a case, in the gasification system 1 of FIG. 1, the char of the powder is recovered together with the tar and burned in the combustion furnace 5. This makes it possible to improve the quality of the pyrolysis gas and the energy efficiency of gasification.
 ガス化システム1では、熱分解ガスに含まれる粉体のチャーを回収する専用の集塵装置が設けられてもよい。図2は、ガス化システム1の他の例の一部を示す図である。図2のガス化システム1では、サイクロン式の集塵装置9が、ガス化装置2とタール除去部3との間における熱分解ガスの流路に設けられる。 The gasification system 1 may be provided with a dedicated dust collector that collects the char of the powder contained in the pyrolysis gas. FIG. 2 is a diagram showing a part of another example of the gasification system 1. In the gasification system 1 of FIG. 2, a cyclone type dust collector 9 is provided in the flow path of the pyrolysis gas between the gasification device 2 and the tar removing unit 3.
 集塵装置9は、導入口91と、上排出口92と、下排出口93と、分離室95とを備える。分離室95は、円筒部96と、円錐部97とを備える。円筒部96は、有蓋かつ無底の円筒状である。円錐部97は、上部が円筒部96から連続する筒状部材であり、下方に向かって直径が漸次減少する。導入口91は、円筒部96の側壁に設けられる。導入口91には、第1接続流路11が接続される。上排出口92は、円筒部96の蓋部に設けられる。上排出口92は、円筒部96の内部に向かって突出する円筒状の部位を有する。上排出口92は、流路を介してタール除去部3の流入口311(図1参照)に接続される。下排出口93は、円錐部97の下部に設けられる。下排出口93は、スクリューフィーダ等の搬送機構を介して燃焼炉5に接続される。後述するように、搬送機構は、下排出口93から排出される粉体のチャーを燃焼炉5に搬送する。好ましくは、下排出口93と燃焼炉5との間の搬送経路がおよそ密閉された空間であり、搬送中の粉体のチャーが酸素(空気)に触れることが防止される。当該搬送経路に、窒素ガス等の不活性ガスが充填されてもよい。 The dust collector 9 includes an introduction port 91, an upper discharge port 92, a lower discharge port 93, and a separation chamber 95. The separation chamber 95 includes a cylindrical portion 96 and a conical portion 97. The cylindrical portion 96 has a lidded and bottomless cylindrical shape. The conical portion 97 is a tubular member whose upper portion is continuous from the cylindrical portion 96, and its diameter gradually decreases downward. The introduction port 91 is provided on the side wall of the cylindrical portion 96. The first connection flow path 11 is connected to the introduction port 91. The upper discharge port 92 is provided on the lid portion of the cylindrical portion 96. The upper discharge port 92 has a cylindrical portion that protrudes toward the inside of the cylindrical portion 96. The upper discharge port 92 is connected to the inflow port 311 (see FIG. 1) of the tar removing unit 3 via a flow path. The lower discharge port 93 is provided below the conical portion 97. The lower discharge port 93 is connected to the combustion furnace 5 via a transfer mechanism such as a screw feeder. As will be described later, the transport mechanism transports the char of the powder discharged from the lower discharge port 93 to the combustion furnace 5. Preferably, the transport path between the lower discharge port 93 and the combustion furnace 5 is a substantially sealed space, and the char of the powder being transported is prevented from coming into contact with oxygen (air). The transport path may be filled with an inert gas such as nitrogen gas.
 ガス化装置2から排出される熱分解ガスは、導入口91を介して円筒部96の内周面に沿って分離室95内に吹き込まれる。熱分解ガスに含まれる粉体のチャーには、遠心力および重力が作用し、円筒部96および円錐部97の内周面に沿って旋回しつつ下排出口93へと落下する。下排出口93にて回収された粉体のチャーは、上記搬送機構により燃焼炉5に供給(搬送)され、燃焼される。熱分解ガスは、円錐部97の下部へと到達した後、上向きに反転し、分離室95の中心軸近傍を通過して上排出口92に到達する。上排出口92から排出された熱分解ガスは、タール除去部3の流入口311に導入される。タール除去部3では、主としてタールが除去される。 The pyrolysis gas discharged from the gasifier 2 is blown into the separation chamber 95 through the introduction port 91 along the inner peripheral surface of the cylindrical portion 96. Centrifugal force and gravity act on the char of the powder contained in the pyrolysis gas, and the powder falls to the lower discharge port 93 while swirling along the inner peripheral surfaces of the cylindrical portion 96 and the conical portion 97. The char of the powder collected at the lower discharge port 93 is supplied (conveyed) to the combustion furnace 5 by the above-mentioned transport mechanism and burned. After reaching the lower part of the conical portion 97, the pyrolysis gas reverses upward, passes near the central axis of the separation chamber 95, and reaches the upper discharge port 92. The pyrolysis gas discharged from the upper discharge port 92 is introduced into the inflow port 311 of the tar removing unit 3. The tar removing unit 3 mainly removes tar.
 以上のように、図2のガス化システム1では、専用の集塵装置9を設けることにより、熱分解ガスに含まれる粉体のチャーを効率よく回収することができる。また、当該粉体のチャーを利用してガス化のエネルギー効率をさらに向上することができる。集塵装置9では、分離室95の周囲に保温部98(図2中に破線にて示す。)が設けられてもよい。これにより、熱分解ガスに含まれるタールが、分離室95の内面に付着することを抑制することができる。保温部98は、例えば断熱部材であり、廃熱を利用したヒータ等であってもよい。上記集塵装置9は、サイクロン式以外であってもよく、例えば、バグフィルタであってもよい。バグフィルタを用いる場合に、ろ布からチャーを払い落とす際には、酸素を含まないガス(例えば、窒素ガスや水蒸気)を利用することが好ましい。 As described above, in the gasification system 1 of FIG. 2, by providing the dedicated dust collector 9, the char of the powder contained in the pyrolysis gas can be efficiently recovered. In addition, the energy efficiency of gasification can be further improved by utilizing the char of the powder. In the dust collector 9, a heat insulating portion 98 (indicated by a broken line in FIG. 2) may be provided around the separation chamber 95. As a result, it is possible to prevent tar contained in the pyrolysis gas from adhering to the inner surface of the separation chamber 95. The heat insulating portion 98 is, for example, a heat insulating member, and may be a heater or the like utilizing waste heat. The dust collector 9 may be a non-cyclone type, for example, a bug filter. When using a bag filter, it is preferable to use an oxygen-free gas (for example, nitrogen gas or water vapor) when removing the char from the filter cloth.
 ガス化装置2では、必ずしも熱分解部25および改質部26が同一の部材の内部空間に設けられる必要はなく、熱分解部25と改質部26とが個別に設けられてもよい。また、燃焼炉5における燃焼排ガスは、熱分解部25または改質部26の一方のみで利用されてもよい。ガス化システム1の設計によっては、改質部26が省略されてもよい。ガス化装置2における被処理物の加熱は、間接加熱に限定されず、熱分解ガスに求められる品質によっては、燃焼排ガスが内筒21内に供給されることにより被処理物が加熱されてもよい。 In the gasification device 2, the pyrolysis unit 25 and the modification unit 26 do not necessarily have to be provided in the internal space of the same member, and the pyrolysis unit 25 and the modification unit 26 may be provided separately. Further, the combustion exhaust gas in the combustion furnace 5 may be used only by one of the pyrolysis unit 25 and the reforming unit 26. Depending on the design of the gasification system 1, the reforming unit 26 may be omitted. The heating of the object to be processed in the gasification device 2 is not limited to indirect heating, and depending on the quality required for the pyrolysis gas, even if the object to be processed is heated by supplying the combustion exhaust gas into the inner cylinder 21. Good.
 タール除去部3は、図1の構成には限定されず、他の構成により実現されてもよい。例えば、図3のタール除去部3aでは、第1処理塔31aおよび第2処理塔31bが設けられる。第1処理塔31aには第1噴霧部32が設けられ、第2処理塔31bには充填層33および第2噴霧部34が設けられる。ガス化装置2からの熱分解ガスは、第1処理塔31a内に流入する。第1噴霧部32から噴霧される水により、熱分解ガスに含まれるタールおよび粉体のチャーが捕集され、水と共に第1処理塔31aの底部に貯留される。第1処理塔31aを通過した熱分解ガスは、第2処理塔31b内に流入し、第2噴霧部34から噴霧されるアルカリ水により、脱硫および脱塩が行われる。第2処理塔31bを通過した熱分解ガスは、ガス貯留タンク71に貯留される。図3の例では、第1処理塔31aに貯留される液体が、抽出前液としてタール抽出部4に供給される。第2処理塔31bに貯留される液体も、タール抽出部4に供給されてもよい。熱分解ガスに求められる品質によっては、アルカリ水を用いた脱硫および脱塩が省略されてもよい。もちろん、図2の集塵装置9が、ガス化装置2とタール除去部3aとの間における熱分解ガスの流路に設けられてもよい。 The tar removing unit 3 is not limited to the configuration shown in FIG. 1, and may be realized by other configurations. For example, in the tar removing section 3a of FIG. 3, a first processing tower 31a and a second processing tower 31b are provided. The first treatment tower 31a is provided with a first spray unit 32, and the second treatment tower 31b is provided with a packing layer 33 and a second spray unit 34. The pyrolysis gas from the gasification device 2 flows into the first processing tower 31a. The tar and powder chars contained in the pyrolysis gas are collected by the water sprayed from the first spray unit 32 and stored together with the water at the bottom of the first treatment tower 31a. The pyrolysis gas that has passed through the first treatment tower 31a flows into the second treatment tower 31b, and desulfurization and desalting are performed by the alkaline water sprayed from the second spray unit 34. The pyrolysis gas that has passed through the second treatment tower 31b is stored in the gas storage tank 71. In the example of FIG. 3, the liquid stored in the first treatment tower 31a is supplied to the tar extraction unit 4 as a pre-extraction liquid. The liquid stored in the second processing tower 31b may also be supplied to the tar extraction unit 4. Desulfurization and desalting with alkaline water may be omitted depending on the quality required for the pyrolysis gas. Of course, the dust collector 9 of FIG. 2 may be provided in the flow path of the pyrolysis gas between the gasification device 2 and the tar removing unit 3a.
 タール抽出部4の攪拌タンク41では、抽出前液からのタールの抽出を促進するために、タールを吸着する吸着剤が抽出前液に混合されてもよい。この場合に、当該吸着剤がタールと共に燃焼炉5において燃焼されてもよい。また、タール抽出部4は、攪拌タンク41および振動ふるい機42以外により実現することも可能である。例えば、図4のタール抽出部4aでは、タンク43内において直立する複数の邪魔板44が、水平な一の方向に配列される。当該複数の邪魔板44は、タンク43の蓋部432および底部431に交互に取り付けられる。また、タンク43において当該一の方向の一方の端部に流入口433が設けられ、他方の端部に流出口434が設けられる。流入口433からタンク43内に供給される抽出前液は、各邪魔板44とタンク43の底部431または蓋部432との間を通過して流出口434へと向かう。このとき、タールは液面に浮上し、チャーは底部431に沈殿する。タール抽出部4aでは、液面近傍のタールが回収され、燃焼炉5へと供給される。また、底部431に沈殿したチャーも所定の手法により回収され、燃焼炉5へと供給される。 In the stirring tank 41 of the tar extraction unit 4, an adsorbent that adsorbs tar may be mixed with the pre-extraction liquid in order to promote the extraction of tar from the pre-extraction liquid. In this case, the adsorbent may be burned together with the tar in the combustion furnace 5. Further, the tar extraction unit 4 can be realized by a device other than the stirring tank 41 and the vibrating sieving machine 42. For example, in the tar extraction unit 4a of FIG. 4, a plurality of baffle plates 44 that stand upright in the tank 43 are arranged in one horizontal direction. The plurality of baffle plates 44 are alternately attached to the lid portion 432 and the bottom portion 431 of the tank 43. Further, in the tank 43, an inflow port 433 is provided at one end in the one direction, and an outflow port 434 is provided at the other end. The pre-extraction liquid supplied from the inflow port 433 into the tank 43 passes between each baffle plate 44 and the bottom 431 or the lid 432 of the tank 43 and heads for the outflow port 434. At this time, the tar floats on the liquid surface and the char is settled on the bottom 431. In the tar extraction unit 4a, tar near the liquid surface is recovered and supplied to the combustion furnace 5. Further, the char settled on the bottom 431 is also recovered by a predetermined method and supplied to the combustion furnace 5.
 タール除去部3における水を含む液体の供給により、低温の熱分解ガスを得ることが可能な上記手法は、低温の熱分解ガスが必要なガスエンジン72を含むガス化システム1に特に適しているが、熱分解ガスを用いた発電を行う発電部は、ガスタービン式、または、燃料電池(固体酸化物形燃料電池(SOFC)等)式のものであってもよい。また、熱分解ガスは、燃料ガスとして様々な用途に用いられてよく、さらに、液体に変換することにより液体燃料として用いられてもよい。 The above method capable of obtaining a low-temperature pyrolysis gas by supplying a liquid containing water in the tar removing unit 3 is particularly suitable for a gasification system 1 including a gas engine 72 that requires a low-temperature pyrolysis gas. However, the power generation unit that generates power using the pyrolysis gas may be a gas turbine type or a fuel cell type (solid oxide fuel cell (SOFC) or the like) type. Further, the pyrolysis gas may be used as a fuel gas for various purposes, and may be further used as a liquid fuel by converting it into a liquid.
 上記実施の形態および各変形例における構成は、相互に矛盾しない限り適宜組み合わされてよい。 The above-described embodiment and the configurations in each modification may be appropriately combined as long as they do not conflict with each other.
 発明を詳細に描写して説明したが、既述の説明は例示的であって限定的なものではない。したがって、本発明の範囲を逸脱しない限り、多数の変形や態様が可能であるといえる。 Although the invention has been described in detail, the above description is exemplary and not limited. Therefore, it can be said that many modifications and modes are possible as long as they do not deviate from the scope of the present invention.
 1  ガス化システム
 2  ガス化装置
 3,3a  タール除去部
 4,4a  タール抽出部
 5  燃焼炉
 6  不要物除去部
 9  集塵装置
 25  熱分解部
 26  改質部
1 Gasification system 2 Gasification equipment 3,3a Tar removal unit 4,4a Tar extraction unit 5 Combustion furnace 6 Waste removal unit 9 Dust collector 25 Pyrolysis unit 26 Modification unit

Claims (6)

  1.  被処理物をガス化するガス化システムであって、
     被処理物を加熱することにより熱分解ガスを生成するガス化装置と、
     前記熱分解ガスに対して水を含む液体を供給することにより、前記熱分解ガスに含まれるタールを除去するタール除去部と、
     前記タール除去部から排出される前記液体からタールを抽出するタール抽出部と、
     前記タール抽出部において抽出されるタールを燃焼させるとともに、燃焼排ガスを熱源として前記ガス化装置に供給する燃焼炉と、
    を備える。
    It is a gasification system that gasifies the object to be processed.
    A gasifier that generates a pyrolysis gas by heating the object to be treated,
    A tar removing unit that removes tar contained in the pyrolysis gas by supplying a liquid containing water to the pyrolysis gas.
    A tar extraction unit that extracts tar from the liquid discharged from the tar removal unit, and a tar extraction unit.
    A combustion furnace that burns the tar extracted in the tar extraction unit and supplies the combustion exhaust gas as a heat source to the gasifier.
    To be equipped.
  2.  請求項1に記載のガス化システムであって、
     前記タール除去部における前記液体の少なくとも一部が、アルカリ薬剤を含む。
    The gasification system according to claim 1.
    At least a part of the liquid in the tar removing part contains an alkaline agent.
  3.  請求項1または2に記載のガス化システムであって、
     前記タール抽出部から排出される前記液体から不要物を除去後、前記液体を前記タール除去部へと戻す不要物除去部をさらに備える。
    The gasification system according to claim 1 or 2.
    After removing unnecessary substances from the liquid discharged from the tar extraction section, an unnecessary substance removing section for returning the liquid to the tar removing section is further provided.
  4.  請求項1ないし3のいずれか1つに記載のガス化システムであって、
     前記ガス化装置において回収されたチャーが前記燃焼炉に供給される。
    The gasification system according to any one of claims 1 to 3.
    The char recovered in the gasifier is supplied to the combustion furnace.
  5.  請求項1ないし4のいずれか1つに記載のガス化システムであって、
     前記ガス化装置と前記タール除去部との間における前記熱分解ガスの流路に設けられ、前記熱分解ガスに含まれる粉体のチャーを回収する集塵装置をさらに備え、
     前記集塵装置において回収された粉体のチャーが前記燃焼炉に供給される。
    The gasification system according to any one of claims 1 to 4.
    Further provided is a dust collector provided in the flow path of the pyrolysis gas between the gasification device and the tar removing unit and collecting the char of the powder contained in the pyrolysis gas.
    The char of the powder recovered in the dust collector is supplied to the combustion furnace.
  6.  請求項1ないし5のいずれか1つに記載のガス化システムであって、
     前記ガス化装置が、
     前記被処理物から前記熱分解ガスを生成する熱分解部と、
     前記熱分解部から送られる前記熱分解ガスを改質する改質部と、
    を備え、
     前記燃焼炉における前記燃焼排ガスが、前記熱分解部における前記被処理物の加熱、および、前記改質部における前記熱分解ガスの加熱に利用される。
    The gasification system according to any one of claims 1 to 5.
    The gasifier
    A pyrolysis unit that generates the pyrolysis gas from the object to be treated,
    A reforming unit that reforms the pyrolysis gas sent from the pyrolysis unit, and a reforming unit.
    With
    The combustion exhaust gas in the combustion furnace is used for heating the object to be treated in the pyrolysis section and heating the pyrolysis gas in the reforming section.
PCT/JP2020/047316 2019-12-27 2020-12-18 Gasification system WO2021132046A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2019238546 2019-12-27
JP2019-238546 2019-12-27

Publications (1)

Publication Number Publication Date
WO2021132046A1 true WO2021132046A1 (en) 2021-07-01

Family

ID=76574659

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2020/047316 WO2021132046A1 (en) 2019-12-27 2020-12-18 Gasification system

Country Status (1)

Country Link
WO (1) WO2021132046A1 (en)

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115688A (en) * 2002-09-27 2004-04-15 Jfe Plant & Service Corp Method and apparatus for gasifying waste
JP2004339360A (en) * 2003-05-15 2004-12-02 Mitsubishi Heavy Ind Ltd Method and system for treating biomass and fluid fuel obtained by the method
JP2007039613A (en) * 2005-08-05 2007-02-15 Nippon Steel Corp Method and apparatus for purifying gasified gas
JP2008222978A (en) * 2007-03-15 2008-09-25 Mitsui Eng & Shipbuild Co Ltd Wood charcoal gasification apparatus
WO2010113802A1 (en) * 2009-03-31 2010-10-07 三井造船株式会社 Gasification device, gasification method, and equipment for producing liquid fuel

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004115688A (en) * 2002-09-27 2004-04-15 Jfe Plant & Service Corp Method and apparatus for gasifying waste
JP2004339360A (en) * 2003-05-15 2004-12-02 Mitsubishi Heavy Ind Ltd Method and system for treating biomass and fluid fuel obtained by the method
JP2007039613A (en) * 2005-08-05 2007-02-15 Nippon Steel Corp Method and apparatus for purifying gasified gas
JP2008222978A (en) * 2007-03-15 2008-09-25 Mitsui Eng & Shipbuild Co Ltd Wood charcoal gasification apparatus
WO2010113802A1 (en) * 2009-03-31 2010-10-07 三井造船株式会社 Gasification device, gasification method, and equipment for producing liquid fuel

Similar Documents

Publication Publication Date Title
JP4534629B2 (en) Gas purification device and method for regenerating removal agent used in the gas purification device
RU2287010C2 (en) Environmental safe process for obtaining energy from coal (options)
KR101704597B1 (en) Method and apparatus for processing of carbon-containing feed stock into gasification gas
US11248184B2 (en) Gasification system
CN102459516B (en) Novel method for pyrogasification of organic waste
CN1928028A (en) Method and device for producing synthesis gases by partial oxidation of slurries
CN101611123B (en) Fuel gasification equipment
CA2618000A1 (en) Method for the rapid pyrolysis of lignocellulose
JP2014528975A (en) A tunable universal method for producing synthetic products
CN101918309A (en) Conversion of carbon based material to natural gas and activated carbon
CN113195685A (en) Process for treating carbonaceous material and apparatus therefor
JP4589311B2 (en) Gasification method and apparatus
JP2005207643A (en) Circulating fluidized-bed furnace and its operation method
WO2021132046A1 (en) Gasification system
JP3986335B2 (en) High quality fuel production apparatus and production method from organic waste
WO2014090574A1 (en) Thermal processing system having an auger arrangement and method using it
JP2006021069A (en) Reaction apparatus using supercritical water
WO2013088105A1 (en) Thermal processing system
JP2005068435A (en) Method and plant for producing decontaminated syngas at high efficiency from feedstock rich in organic substance
JP2006231301A (en) Gasification apparatus of waste
JP2011021061A (en) Gasification method, refining method, and gasification apparatus
JP2003171673A (en) Gas generator
JP2002059143A (en) Gasifying equipment for waste and gasification power equipment using the same
EP2666845A1 (en) Gas producing apparatus
EP3505602A1 (en) Gasification system

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 20907485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 20907485

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP