JP2006009113A - Method for producing fine metal ball - Google Patents

Method for producing fine metal ball Download PDF

Info

Publication number
JP2006009113A
JP2006009113A JP2004190595A JP2004190595A JP2006009113A JP 2006009113 A JP2006009113 A JP 2006009113A JP 2004190595 A JP2004190595 A JP 2004190595A JP 2004190595 A JP2004190595 A JP 2004190595A JP 2006009113 A JP2006009113 A JP 2006009113A
Authority
JP
Japan
Prior art keywords
plasma
gas
fine metal
heat
cooling
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004190595A
Other languages
Japanese (ja)
Inventor
Nobuhiko Chiwata
伸彦 千綿
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Proterial Ltd
Original Assignee
Hitachi Metals Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Metals Ltd filed Critical Hitachi Metals Ltd
Priority to JP2004190595A priority Critical patent/JP2006009113A/en
Publication of JP2006009113A publication Critical patent/JP2006009113A/en
Pending legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide spherical metal powder having high spheroidizing ratio which can be used for electronic devices, or the like. <P>SOLUTION: In a method for producing fine metal balls for obtaining the spherical particles by a heat-plasma treatment, by which raw material metal pieces are charged into the heat-plasma and melted, and the molten drips are solidified at the outside of the heat-plasma, solidification is performed by bringing the drips into contact with gas atmosphere having ≥50 KPa containing hydrogen gas. Further, in this method for producing the fine metal balls for obtaining the spherical particles by the heat-plasma treatment, by which the raw material pieces are charged into the heat-plasma and melted and the molten drips are solidified at the outside of the heat-plasma, hydrogen gas is added to the plasma acting gas of the heat-plasma, and the solidification is performed by bringing the drips into contact with the gas atmosphere having ≥50 KPa containing the hydrogen gas. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、電子デバイスなどの用途に使用可能な、真球度が高く、粒径の揃った微小金属球を得る製造方法に関するものである。   The present invention relates to a production method for obtaining fine metal spheres having high sphericity and uniform particle diameter that can be used for applications such as electronic devices.

近年、真球度が高く、粒径の揃った微小金属球が様々な分野で要求されている。例えば電子機器の製造分野では、BGA(Ball Grid Array)やCSP(Chip Size Package)と呼ばれる形態の接合方法が広く行われるようになっており、こられの接合方法では微小金属球が用いられる。BGA、CSPは何れもパッケージの裏面に入出力用のパッドを並べたICパッケージであり、金属球を予め搭載しているパッケージを、実装基板上に設置し、一括リフローによりパッケージと実装基板との接合を行う技術である。   In recent years, fine metal spheres having a high sphericity and a uniform particle size are required in various fields. For example, in the field of manufacturing electronic devices, a bonding method called BGA (Ball Grid Array) or CSP (Chip Size Package) is widely used, and in these bonding methods, micro metal spheres are used. Both BGA and CSP are IC packages in which input / output pads are arranged on the back side of the package. A package in which metal balls are mounted in advance is placed on the mounting substrate, and the package and the mounting substrate are separated by batch reflow. This is a technique for joining.

電子機器の高性能化に伴い、BGA、CSP等により電子機器を構成する各部品を接合する際には、高精度な接合寸法が要求されている。従来、要求される接合寸法は、縦、横の平面方向についてであったが、一部の電子機器に用いられる電子部品では、平面方向に加え、高さ方向、すなわち部品を接合する基板と部品との間隔についても高精度な接合寸法が要求されるようになっている。言い換えると、このような電子機器では、接合部は単に電気的な導通部としての機能のみならず、スペーサとしての機能も要求されるようになっている。   Along with the improvement in performance of electronic devices, high-accuracy bonding dimensions are required when the components constituting the electronic device are bonded by BGA, CSP, or the like. Conventionally, the required bonding dimensions have been in the vertical and horizontal plane directions. However, in the case of electronic components used in some electronic devices, in addition to the plane direction, the height direction, that is, the substrate and the component to be bonded With respect to the distance between them, a highly accurate joint dimension is required. In other words, in such an electronic device, the bonding part is required not only to function as an electrical conduction part but also as a spacer.

そして、通常、BGA、CSP等の接続では、融点の低いSn基のはんだ合金からなる微小金属球が用いられているが、スペーサとしての機能が要求される上記の用途では、はんだ合金と比べて融点の高いCu等の微小金属球にはんだ合金を被覆したものが用いられている。   Usually, in the connection of BGA, CSP, etc., a fine metal sphere made of a Sn-based solder alloy having a low melting point is used. However, in the above-mentioned use requiring a function as a spacer, compared with a solder alloy. In this case, a metal alloy such as Cu having a high melting point coated with a solder alloy is used.

例示したこれらの用途に用いられる微小金属球では、粒径が小さいのみならず、真球度が高く、粒径のばらつきが小さいことが併せて要求される。現在、このような微小金属球は、定尺に切断された金属細片を、上部がこの金属細片の融点より高く、下部が同融点より低い油中の上部から投入し、表面張力を利用して球状化させる油中冷却法や、縦配列された炉芯管内で、金属細片を自由落下させながら金属細片をその融点以上に加熱して、球状化させる方法(例えば特許文献1、2参照。)などにより製造されている。
特開平4−066601号公報 特開平8−295905号公報
The fine metal spheres used for these exemplified applications are required not only to have a small particle size but also to have a high sphericity and a small variation in particle size. Currently, such a fine metal sphere uses a surface of the metal strip that has been cut to a fixed length from the top of the oil in the oil whose upper part is higher than the melting point of this metal piece and whose lower part is lower than the same melting point. In the oil cooling method to make the spheroids, or a method in which the metal strips are heated to the melting point or higher while freely dropping the metal strips in the vertically arranged furnace core tubes (for example, Patent Document 1, 2).
Japanese Patent Laid-Open No. 4-066601 JP-A-8-295905

上述の方法は、定量に分断された金属片を溶解し、表面張力により球状化した後、凝固させるので、真球度が高く、粒径が揃った微小金属球を製造することが出来る。 In the above-described method, a metal piece divided in a fixed amount is dissolved, spheroidized by surface tension, and then solidified, so that a fine metal sphere having a high sphericity and a uniform particle size can be produced.

しかしながら、油中冷却法は、はんだ等の低融点の金属、換言すると融点が油の沸点より低い金属球の製造にしか適用することが出来ない為、Cuや、W、Mo等の融点の高い金属を球状化することは不可能である。また、油の脱脂工程には有機溶剤が一般的に利用されており、その際に排出される油が溶け込んだ有機溶剤そのものが環境負荷となりやすい。   However, the oil-in-water cooling method can only be applied to the production of low melting point metals such as solder, in other words, metal spheres whose melting point is lower than the boiling point of oil, so that the melting point of Cu, W, Mo, etc. is high. It is impossible to spheroidize the metal. In addition, an organic solvent is generally used in the oil degreasing process, and the organic solvent itself in which the oil discharged at that time is dissolved easily becomes an environmental burden.

そして、特許文献1、2に記載の方法は、油中冷却法と比べると金属片を高温に加熱することが可能であるものの、炉中を自由落下させる為、金属片は炉の高温部分を短時間で通過し、十分な加熱が出来ない場合がある。また、大きな金属片を加熱溶融した場合、溶融した金属の凝固には十分な長さの冷却ゾーンが必要であるから、加熱と冷却を兼ね備えた設備は得たい金属球の体積に比例して大規模な設備とならざるを得ず、結果として、実現の難しい設備も出てくる。   And although the method of patent documents 1 and 2 can heat a metal piece to high temperature compared with the cooling method in oil, in order to make it fall freely in a furnace, a metal piece is a hot part of a furnace. It may pass in a short time and may not be heated sufficiently. In addition, when a large piece of metal is heated and melted, a sufficiently long cooling zone is required for solidification of the molten metal, so a facility that combines heating and cooling is proportional to the volume of the metal sphere to be obtained. It must be a large-scale facility, and as a result, there are some facilities that are difficult to realize.

この場合、冷却効率を上げる方法として、オイルなどの液体を冷却剤として用いることも出来るが、引け巣の原因となる上、溶剤へ接触した際に変形し真球度が低下する懸念がある。さらに金属球の表面に付着したオイルは完全に除去することが難しく、洗浄を行ったとしても、大量の洗浄液が排出され処理が問題となる。さらに溶剤によっては、金属表面に酸化皮膜が形成されるために、酸処理などの酸化皮膜除去工程を別途設ける必要がある。   In this case, as a method for increasing the cooling efficiency, a liquid such as oil can be used as a coolant. However, this causes a shrinkage nest, and there is a concern that the sphericity may be reduced by contact with the solvent. Furthermore, it is difficult to completely remove the oil adhering to the surface of the metal sphere, and even if cleaning is performed, a large amount of cleaning liquid is discharged and the treatment becomes a problem. Further, depending on the solvent, an oxide film is formed on the metal surface, and therefore an oxide film removal step such as acid treatment needs to be provided separately.

本発明の目的は、上記の表面張力による球状化手段に熱プラズマ技術を用いることを前提にして、その凝固時の冷却効率を上昇させることで、SnAg合金のような低融点のものから、CuやMo,Wのような融点の高い金属球であっても、そして、微小金属球のうちでは例えば粒径が800μmにも及ぶ大きな金属球であっても、真球度が高く、粒径の揃ったものを製造できる方法を提供することである。   The object of the present invention is to increase the cooling efficiency at the time of solidification on the premise that a thermal plasma technique is used for the spheroidizing means by the above surface tension. Even a metal sphere with a high melting point such as Mo, W, and a large metal sphere having a particle size of, for example, 800 μm among micro metal spheres has a high sphericity and a particle size of It is to provide a method capable of producing a complete product.

本発明者は、上記の課題を解決できる微小金属球の製造方法について検討を行った。その結果、前段の溶融・球状化過程においては、熱効率に優れた熱プラズマ技術を適用することで、高温かつ大きな原料金属片であってもスムーズな溶融・球状化が達成できる知見を得た。そして後段の凝固過程においては、球状化した液滴を接触させる冷媒にガス環境を採用して、その圧力および雰囲気を制御することで、冷却ゾーンを大幅に減少できることを見出し、本発明に到達した。   The present inventor has studied a method of manufacturing a fine metal sphere that can solve the above-described problems. As a result, in the previous melting and spheroidizing process, we obtained the knowledge that smooth melting and spheronization can be achieved even with high temperature and large raw metal pieces by applying thermal plasma technology with excellent thermal efficiency. In the subsequent solidification process, the present inventors have found that the cooling zone can be greatly reduced by adopting a gas environment as a refrigerant to be contacted with the spheroidized droplets, and controlling the pressure and atmosphere. .

すなわち、本発明は、原料金属片を熱プラズマ中に投入して溶融させ、溶融した液滴を熱プラズマ外で凝固させる熱プラズマ処理により球状粒子を得る微小金属球の製造方法であって、凝固は水素を含む50kPa以上のガス環境に液滴を接触させて行うことを特徴とする微小金属球の製造方法である。   That is, the present invention is a method for producing fine metal spheres in which spherical particles are obtained by thermal plasma treatment in which raw metal pieces are put into thermal plasma and melted, and molten droplets are solidified outside the thermal plasma. Is a method for producing a fine metal sphere, which is performed by bringing a droplet into contact with a gas environment containing hydrogen of 50 kPa or more.

また、本発明は、原料金属片を熱プラズマ中に投入して溶融させ、溶融した液滴を熱プラズマ外で凝固させる熱プラズマ処理により球状粒子を得る微小金属球の製造方法であって、熱プラズマのプラズマ動作ガスには水素ガスを添加し、凝固は水素を含む50kPa以上のガス環境に液滴を接触させて行うことを特徴とする微小金属球の製造方法である。   Further, the present invention is a method for producing fine metal spheres, in which raw metal pieces are put into thermal plasma and melted, and spherical particles are obtained by thermal plasma treatment in which the molten droplets are solidified outside the thermal plasma, A method for producing a micro metal sphere is characterized in that hydrogen gas is added to a plasma operating gas of plasma, and solidification is performed by bringing droplets into contact with a gas environment containing hydrogen of 50 kPa or more.

本発明によれば、例えば電子デバイスに用いられる微小金属球を、高い球状化率でかつ安定して量産することが可能となる。   According to the present invention, it is possible to stably mass-produce, for example, fine metal spheres used in electronic devices with a high spheroidization rate.

本発明の特徴は、比較的大きな粒径域にある微小金属球であっても、高い真球度と量産性、そして安定性をもって製造するために、上記の溶融・球状化プロセスには熱プラズマ処理技術を導入したところにある。すなわち、出発原料となる金属片(粒子)をプラズマ炎中に投入して溶融・凝固させるプロセスである。そして、前記プロセスにより球状化された液滴の凝固過程でこそ、その冷却効率を向上させたところに更なる特徴がある。   The feature of the present invention is that the above melting and spheronization process includes a thermal plasma in order to produce even a small metal sphere having a relatively large particle size range with high sphericity, mass productivity, and stability. The processing technology is just in place. That is, it is a process in which metal pieces (particles) as starting materials are put into a plasma flame and melted and solidified. A further characteristic is that the cooling efficiency is improved only by the solidification process of the droplets spheroidized by the process.

本発明の微小金属球の製造方法も、そのプロセスの流れ自体は、目的とする金属球に応じて大きさを調整した金属片を出発原料として、それを溶融し、表面張力による球状化を経て、最後には凝固させるものである。しかし、本発明では、その溶融プロセスにプラズマという高温度場でありかつ高い熱伝導率を持つ強力な熱源を使用することで、金属球を効率よく加熱し、瞬時の溶融を達成する。そして、熱プラズマから脱した溶滴が凝固することで、表面張力を利用した球状粒子を達成できるのである。プラズマを用いることにより、金属系に限定されず、セラミックスやシリコンといった高融点、高反応性の物質の瞬時溶融も可能である。   The manufacturing method of the fine metal spheres of the present invention also has a process flow itself in which a metal piece whose size is adjusted according to the target metal sphere is used as a starting material, melted, and spheroidized by surface tension. Finally, it will solidify. However, in the present invention, a powerful heat source having a high temperature field called plasma and high thermal conductivity is used for the melting process, whereby the metal sphere is efficiently heated to achieve instantaneous melting. Then, the droplets removed from the thermal plasma are solidified to achieve spherical particles utilizing surface tension. By using plasma, it is not limited to a metal system, and it is possible to instantaneously melt a high melting point and highly reactive substance such as ceramics or silicon.

ここで、本発明に従った微小金属球の製造装置として、その一例を示す。図1は該製造装置の構成を示すものである。熱源としては、上記の通りのプラズマ装置を採用するところ、図1では高周波プラズマの例を示すが、直流プラズマにも適用可能である。但し、直流プラズマはプラズマの速度が速いために、原料金属片のプラズマ滞在時間が短く、溶融を促進するためには高周波プラズマを使用することが好ましい。原料金属片1を、原料給粉機2から高周波プラズマトーチ3により発生させた熱プラズマ4中へ投入して溶融させる。そして、熱プラズマ4外へ脱した溶滴が、下記に述べる冷却ガス6に接触しながら落下・凝固して微小金属球7となり、チャンバ8の底部回収容器9から被処理物として回収される。プラズマ動作ガス5は導入口10および11から導入される。冷却ガス6は導入口12から導入される。ガスは排気ポンプ13を通じて排気される。   Here, an example is shown as a manufacturing apparatus of the fine metal sphere according to the present invention. FIG. 1 shows the structure of the manufacturing apparatus. As the heat source, when the plasma apparatus as described above is adopted, FIG. 1 shows an example of high-frequency plasma, but it can also be applied to DC plasma. However, since the plasma speed of DC plasma is high, the plasma residence time of the raw metal piece is short, and it is preferable to use high-frequency plasma to promote melting. The raw metal piece 1 is charged from the raw material feeder 2 into the thermal plasma 4 generated by the high frequency plasma torch 3 and melted. Then, the droplets removed from the thermal plasma 4 fall and solidify in contact with the cooling gas 6 described below to form the fine metal spheres 7 and are recovered from the bottom recovery container 9 of the chamber 8 as the object to be processed. Plasma operating gas 5 is introduced from inlets 10 and 11. The cooling gas 6 is introduced from the inlet 12. The gas is exhausted through the exhaust pump 13.

図1のような装置にあって、熱源にプラズマを採用する有効性は上記の通りである。しかし、微小金属球であっても、例えば粒径が300μm以上の、800μmにも及ぶ、特に大径の粒子作製になってくると、原料片が溶融から凝固までの落下に要する距離が著しく長くなり、凝固が完了する前に容器や堆積した被処理物と接触してしまうと球状を維持できなかったり、極端な場合には融着して回収が出来なかったりする。これを回避するためには冷却チャンバ8の胴長を長くする手段があるが、それこそ粒径が大きくなると数十mに及ぶ落下塔が必要となり、現実的に利用することは非常に困難である。   In the apparatus as shown in FIG. 1, the effectiveness of adopting plasma as the heat source is as described above. However, even if it is a micro metal sphere, for example, when a particle having a particle diameter of 300 μm or more and as large as 800 μm is produced, particularly a large-sized particle, the distance required for the raw material piece to drop from melting to solidification is remarkably long. Therefore, if it comes into contact with the container or the accumulated processing object before the solidification is completed, the spherical shape cannot be maintained, or in extreme cases, it cannot be fused and recovered. In order to avoid this, there is a means for increasing the length of the cooling chamber 8. However, if the particle size becomes large, a falling tower of several tens of meters is required, and it is very difficult to use in practice. is there.

そこで、本発明では、水素の高い冷却能力と圧力に着目し、冷却環境を、水素を導入したガス雰囲気とすれば冷却効率が高まること、しかも熱源にプラズマを使用する本発明にとってこそ都合のよい手段であることを見出した。この水素の冷却能力には二通りの意味がある。ひとつは、単純に冷却ガスとして添加した場合で、水素を用いた場合は熱伝導率が大きくなるために冷却速度が高まるという、本発明の根幹効果である。そして、もうひとつは、プラズマ動作ガスとして用いた場合で、プラズマ中で解離した水素イオンないしは、水素原子が持つ極めて高い熱伝達能力が働き、高い加熱効果を発揮するというものである。   Therefore, in the present invention, paying attention to the high cooling capacity and pressure of hydrogen, if the cooling environment is a gas atmosphere into which hydrogen is introduced, the cooling efficiency increases, and it is also convenient for the present invention that uses plasma as a heat source. I found out that it was a means. This hydrogen cooling capacity has two meanings. One is a basic effect of the present invention in which the cooling rate is increased when hydrogen is used because the thermal conductivity increases when hydrogen is simply used. The other is when used as a plasma working gas, which is a high heat transfer capability of hydrogen ions or hydrogen atoms dissociated in plasma, and exhibits a high heating effect.

そして、プラズマ動作ガス中に水素ガスを添加しても、図1のようなプラズマ域と冷却域が連続した空間で構成された装置を用いれば、プラズマ状態でなくなった水素ガスがチャンバ内に満たされ、結果として、それは冷却環境に水素を導入したことに等しく、やはり高い冷却効率が得られる。すなわち、冷却ガスに水素を含ませる本発明の形態は、図1のような装置を使用すれば、水素をプラズマ動作ガス中に添加するのみでも達成が可能であり、高い加熱効果と冷却効果とを同時に得られる。   Even if hydrogen gas is added to the plasma operating gas, if a device configured with a space in which the plasma region and the cooling region are continuous as shown in FIG. 1 is used, the hydrogen gas that is no longer in the plasma state fills the chamber. As a result, it is equivalent to introducing hydrogen into the cooling environment, which also provides high cooling efficiency. In other words, the embodiment of the present invention in which hydrogen is included in the cooling gas can be achieved only by adding hydrogen to the plasma operating gas if an apparatus as shown in FIG. 1 is used. Can be obtained at the same time.

しかしながら、冷却環境(チャンバ)内に充満した冷却ガスの圧力が低ければ、冷却ガスの密度そのものが低くなるため、いくら水素を導入したとしても十分な冷却速度が得られない。したがって、冷却環境である、例えば図1のチャンバ内圧を上げることによって、水素による冷却効率が高まり、結果、高い球状化率を達成することが可能となる。さらに、冷却チャンバの高さをも低くすることができる。すなわち、本発明の微小金属の製造方法は、その冷却・凝固工程に水素を含んだ圧力50kPa以上のガス環境に液滴を接触させて行うものである。そして、この効果を達成するのに好ましくは、冷却ガスは、水素を1vol%以上含むものであり、これは図1のような装置構成を用いて、プラズマ動作ガスからの水素導入も可能である。   However, if the pressure of the cooling gas filled in the cooling environment (chamber) is low, the density of the cooling gas itself becomes low, and a sufficient cooling rate cannot be obtained no matter how much hydrogen is introduced. Therefore, by increasing the chamber internal pressure in FIG. 1, which is a cooling environment, for example, the cooling efficiency by hydrogen increases, and as a result, a high spheroidization rate can be achieved. Furthermore, the height of the cooling chamber can be reduced. That is, the method for producing a fine metal of the present invention is performed by bringing a droplet into contact with a gas environment containing hydrogen and having a pressure of 50 kPa or more in the cooling and solidification process. In order to achieve this effect, the cooling gas preferably contains 1 vol% or more of hydrogen, which can be introduced from the plasma operating gas using the apparatus configuration shown in FIG. .

ここで、上記の冷却ガスの圧力は、その上限について特に定めるものではなく、これは例えば使用する冷却環境(チャンバ)の維持できる圧力性能に依存すればよい。そして、図1のような装置を用いるのであれば、その時の熱プラズマの温度は圧力に比例して上昇し、それに応じて熱プラズマを維持するためのエネルギーが増大する。したがって、上記の冷却ガスの圧力は、高すぎると熱プラズマの維持そのものができなくなるから、好ましくは150kPa以下とすることが望ましい。これらの圧力は、ガスの導入流量と排気条件の調整により所定値に制御が可能である。   Here, the pressure of the cooling gas is not particularly defined with respect to the upper limit, and this may depend on, for example, the pressure performance that can be maintained by the cooling environment (chamber) to be used. If the apparatus as shown in FIG. 1 is used, the temperature of the thermal plasma at that time rises in proportion to the pressure, and the energy for maintaining the thermal plasma increases accordingly. Therefore, if the pressure of the cooling gas is too high, it is impossible to maintain the thermal plasma itself, so it is preferable to set the pressure to 150 kPa or less. These pressures can be controlled to predetermined values by adjusting the gas introduction flow rate and the exhaust conditions.

そして、高い加熱効果を得るための、プラズマ動作ガスへの水素の添加について述べておけば、熱プラズマのプラズマ動作ガスには、例えばアルゴン、ヘリウム、窒素から選ばれる1種以上のプラズマ動作ガスが使用でき、これに1vol%以上の水素ガスを添加することが好ましい。   If the addition of hydrogen to the plasma operating gas to obtain a high heating effect is described, the plasma operating gas of the thermal plasma includes, for example, one or more plasma operating gases selected from argon, helium, and nitrogen. It is preferable to add 1 vol% or more of hydrogen gas to this.

以上により、本発明は、液滴の冷却には液体冷却剤を使用しなくてもよく、そして真球度に高い微小金属球、具体的には球状化率が80%以上の微小金属球を製造することができる。なお、この球状化率とは、次式で定義する個々の金属球の真球度である。つまり個々の金属球の断面において、(最大径/断面積から算出される円相当径)×100(%)で算出される値であり、この値が大きい程、真球度が高い。   As described above, the present invention does not require the use of a liquid coolant for cooling the droplets, and a fine metal sphere having a high sphericity, specifically, a fine metal sphere having a spheroidization rate of 80% or more. Can be manufactured. The spheroidization rate is the sphericity of each metal sphere defined by the following formula. That is, in the cross section of each metal sphere, it is a value calculated by (maximum diameter / circle equivalent diameter calculated from the cross-sectional area) × 100 (%), and the larger this value, the higher the sphericity.

図1の装置(チャンバ長1.5m)を使用して、Cu微小金属球を作製した。投入する原料金属片としては、平均粒径400μmの金属粉末を用いた。そして、これらの原料粉末を、流量2NL/minのArガスと混合した状態で、毎分10gづつ熱プラズマ中に投入した。熱プラズマの発生には、出力100kWの高周波プラズマ発生装置を用い、動作ガスと冷却チャンバ内には水素を導入して、そしてチャンバ内圧力を変化させて、実験を実施した。   Cu fine metal spheres were prepared using the apparatus of FIG. 1 (chamber length 1.5 m). As raw material metal pieces to be introduced, metal powder having an average particle diameter of 400 μm was used. These raw material powders were charged into thermal plasma at a rate of 10 g per minute in a state of being mixed with Ar gas having a flow rate of 2 NL / min. For the generation of the thermal plasma, a high-frequency plasma generator with an output of 100 kW was used, hydrogen was introduced into the working gas and the cooling chamber, and the pressure in the chamber was changed, and the experiment was performed.

冷却ガス中の水素濃度は、プラズマ動作ガスに添加される水素量と、チャンバ内に直接導入した水素量の和で算出される。以上の操業条件により装置を10分間稼動した後、20分間冷却してから金属球を回収し、回収した金属球について粒径分布を測定した。粒径分布については、無作為に200個の金属球を抽出して、個々の投影画像から面積を求めて、円相当径を算出し、これを粒径とした。そして、これを用いての平均粒径と標準偏差、そして上述の式による球状化率を算出した。結果を表1に示す。   The hydrogen concentration in the cooling gas is calculated as the sum of the amount of hydrogen added to the plasma operating gas and the amount of hydrogen introduced directly into the chamber. After operating the apparatus for 10 minutes under the above operating conditions, the metal spheres were recovered after cooling for 20 minutes, and the particle size distribution was measured for the recovered metal spheres. Regarding the particle size distribution, 200 metal spheres were randomly extracted, the area was obtained from each projected image, the equivalent circle diameter was calculated, and this was used as the particle size. And the average particle diameter and standard deviation using this, and the spheroidization rate by the above-mentioned formula were computed. The results are shown in Table 1.

Figure 2006009113
Figure 2006009113

表1の結果より、本発明の製造方法による金属球No.1〜4は、優れた粒径分布を達成していることがわかる。一方、比較例のNo.5,6は、プラズマにより溶融した液滴が、冷却不足により、その溶融状態のままチャンバの底に落下・付着して、フレーク状の形態を呈したものである。フレーク状の比較例No.5,6は、投影面積からの粒径測定の算出が困難で、測定不可能であった。   From the results in Table 1, the metal ball No. 1-4 shows that the outstanding particle size distribution is achieved. On the other hand, no. Nos. 5 and 6 are flake-like shapes in which a droplet melted by plasma falls and adheres to the bottom of the chamber in its molten state due to insufficient cooling. Flaked comparative example No. Nos. 5 and 6 were difficult to calculate because the particle size measurement from the projected area was difficult.

本発明を達成するための、微小金属球の製造装置の構成の一例を示す図である。It is a figure which shows an example of a structure of the manufacturing apparatus of a micro metal sphere for achieving this invention.

符号の説明Explanation of symbols

1 原料金属片、2 原料給粉機、3 (高周波)プラズマトーチ、4 熱プラズマ、5 動作ガス、6 冷却ガス、7 微小金属球、8 チャンバ、9 底部回収容器、10 動作ガス導入口1、11 動作ガス導入口2、12 冷却ガス導入口、13 排気ポンプ DESCRIPTION OF SYMBOLS 1 Raw metal piece, 2 Raw material powder feeder, 3 (High frequency) plasma torch, 4 Thermal plasma, 5 Working gas, 6 Cooling gas, 7 Micro metal ball, 8 Chamber, 9 Bottom collection container, 10 Working gas inlet 1, 11 Working gas inlet 2, 12 Cooling gas inlet, 13 Exhaust pump

Claims (2)

原料金属片を熱プラズマ中に投入して溶融させ、溶融した液滴を熱プラズマ外で凝固させる熱プラズマ処理により球状粒子を得る微小金属球の製造方法であって、凝固は水素を含む50kPa以上のガス環境に液滴を接触させて行うことを特徴とする微小金属球の製造方法。 A method for producing fine metal spheres in which spherical particles are obtained by thermal plasma treatment in which raw material metal pieces are put into thermal plasma and melted, and molten droplets are solidified outside the thermal plasma, and solidification is at least 50 kPa containing hydrogen A method for producing a fine metal sphere, which is performed by bringing a droplet into contact with the gas environment. 原料金属片を熱プラズマ中に投入して溶融させ、溶融した液滴を熱プラズマ外で凝固させる熱プラズマ処理により球状粒子を得る微小金属球の製造方法であって、熱プラズマのプラズマ動作ガスには水素ガスを添加し、凝固は水素を含む50kPa以上のガス環境に液滴を接触させて行うことを特徴とする微小金属球の製造方法。
A method for producing fine metal spheres in which spherical particles are obtained by thermal plasma treatment in which raw metal pieces are put into thermal plasma and melted, and molten droplets are solidified outside the thermal plasma. Is a method for producing a fine metal sphere, wherein hydrogen gas is added and solidification is performed by bringing droplets into contact with a gas environment containing hydrogen of 50 kPa or more.
JP2004190595A 2004-06-29 2004-06-29 Method for producing fine metal ball Pending JP2006009113A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004190595A JP2006009113A (en) 2004-06-29 2004-06-29 Method for producing fine metal ball

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004190595A JP2006009113A (en) 2004-06-29 2004-06-29 Method for producing fine metal ball

Publications (1)

Publication Number Publication Date
JP2006009113A true JP2006009113A (en) 2006-01-12

Family

ID=35776674

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004190595A Pending JP2006009113A (en) 2004-06-29 2004-06-29 Method for producing fine metal ball

Country Status (1)

Country Link
JP (1) JP2006009113A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983681A (en) * 2016-07-08 2016-10-05 无锡刚正精密吸铸有限公司 Die-free steel ball casting device
CN107486560A (en) * 2017-09-04 2017-12-19 北京金航智造科技有限公司 A kind of method that globular metallic powder is prepared in the case where malleation cools down atmosphere
CN108188389A (en) * 2018-04-02 2018-06-22 湖南工业大学 A kind of plasma powder spheroidization device and its methods and applications
CN114247894A (en) * 2020-09-25 2022-03-29 安泰天龙钨钼科技有限公司 Method for preparing large-particle-size spherical tungsten powder by radio frequency plasma method

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105983681A (en) * 2016-07-08 2016-10-05 无锡刚正精密吸铸有限公司 Die-free steel ball casting device
CN107486560A (en) * 2017-09-04 2017-12-19 北京金航智造科技有限公司 A kind of method that globular metallic powder is prepared in the case where malleation cools down atmosphere
CN108188389A (en) * 2018-04-02 2018-06-22 湖南工业大学 A kind of plasma powder spheroidization device and its methods and applications
CN108188389B (en) * 2018-04-02 2023-08-15 湖南工业大学 Plasma powder spheroidizing device and method and application thereof
CN114247894A (en) * 2020-09-25 2022-03-29 安泰天龙钨钼科技有限公司 Method for preparing large-particle-size spherical tungsten powder by radio frequency plasma method

Similar Documents

Publication Publication Date Title
Bhagat et al. Production of hollow germanium alloy quasi-spheres through a coaxial nozzle
JPS61106703A (en) Apparatus and method for producing ultra-fine quickly solidified metal powder
JP2017150005A (en) Manufacturing method of metal particles and manufacturing apparatus
Wang et al. Brief review of nanosilver sintering: manufacturing and reliability
CN106268543A (en) A kind of preparation facilities of infusible compound dusty material and preparation method thereof
JP2004512952A (en) Rapid surface cooling of wax droplets by flash evaporation
JP2006009113A (en) Method for producing fine metal ball
JP3270118B2 (en) Method and apparatus for producing spheroidized particles by high-frequency plasma
JP2005161338A (en) Solder sheet
JP2004232084A (en) Method of producing micro metallic ball
JP4239145B2 (en) Method for producing spherical powder
CN103769596A (en) Method for preparing high-stacking-density oblate powder material
CN2649227Y (en) Metal uniform particle generator
JP2001267730A (en) Solder ball
WO2021032048A1 (en) Device and method for preparing powder
JP2003212572A (en) Method of manufacturing spherical glass powder
JP2005219971A (en) Silicon spherical powder and its manufacturng method
JP3925792B2 (en) Method for producing metal sphere for conductive spacer
CN210359259U (en) Device for preparing metal spherical powder by ultrasonic wave
Li et al. Preparation and solidification process of mono-sized Cu–Ni–Sn microspheres by pulsated orifice ejection method
Mueller et al. The dependence of composition, cooling rate and size on the solidification behaviour of SnAgCu solders
JP2017190516A (en) Method for producing metal particles and apparatus for producing the same
JPS63111101A (en) Spheroidizing method for metal or alloy powder
Yasuda et al. Fabrication of metallic porous media by semisolid processing using laser irradiation
JP2001226705A (en) Method for manufacturing fine metallic ball and apparatus for manufacturing fine metallic ball

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070517

A977 Report on retrieval

Effective date: 20090313

Free format text: JAPANESE INTERMEDIATE CODE: A971007

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090604

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100226