JP2006008979A - Method for producing polyphenylene ether - Google Patents

Method for producing polyphenylene ether Download PDF

Info

Publication number
JP2006008979A
JP2006008979A JP2005047003A JP2005047003A JP2006008979A JP 2006008979 A JP2006008979 A JP 2006008979A JP 2005047003 A JP2005047003 A JP 2005047003A JP 2005047003 A JP2005047003 A JP 2005047003A JP 2006008979 A JP2006008979 A JP 2006008979A
Authority
JP
Japan
Prior art keywords
ether
polyphenylene ether
producing
reaction
dihydroxydiphenyl
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2005047003A
Other languages
Japanese (ja)
Inventor
Takayuki Odajima
貴之 小田島
Misao Uohama
操 魚濱
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
DIC Corp
Original Assignee
Dainippon Ink and Chemicals Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dainippon Ink and Chemicals Co Ltd filed Critical Dainippon Ink and Chemicals Co Ltd
Priority to JP2005047003A priority Critical patent/JP2006008979A/en
Publication of JP2006008979A publication Critical patent/JP2006008979A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Polyethers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a method for producing a linear polyphenylene ether imparting high heat resistance to a polyester resin, an epoxy resin, etc., by introduction thereinto and having hydroxy groups having reactivity at the terminals and a narrow molecular weight distribution. <P>SOLUTION: The method for producing the polyphenylene ether is characterized as follows. An alkali metal salt (a1) of 4,4'-dihydroxydiphenyl ether is reacted with a 4,4'-dihalogenated diphenyl ether (a2) in the presence of a transition metal catalyst (X) in an organic solvent (Y). <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、超高耐熱性樹脂原料として好適に用いることが出来るポリフェニレンエーテルの製造方法に関するものである。   The present invention relates to a method for producing polyphenylene ether that can be suitably used as an ultra-high heat resistant resin material.

無置換の芳香環をエーテル基で連結した構造を有する4,4’−ジヒドロキシジフェニルエーテルの重合体であるポリフェニレンエーテルは、酸化劣化を受けにくく超高耐熱性樹脂原料として期待される化合物である。従来、該ポリフェニレンエーテルを得る製法としては、(1)鉄錯体触媒の存在下に酸化剤として過酸化物を用いて4,4’−ジヒドロキシジフェニルエーテルを酸化重合する方法(例えば、特許文献1参照。)、(2)遷移金属錯体触媒及び酸化剤存在下に4,4’−ジヒドロキシジフェニルエーテルを酸化する方法(例えば、特許文献2参照。)、(3)p−ハロゲン化フェノールと4,4’−ジヒドロキシジフェニルエーテルとをCu(I)ハロゲン化物の存在下、極性非プロトン性溶媒中で反応させる方法(例えば、特許文献3参照)等が知られている。   Polyphenylene ether, which is a polymer of 4,4'-dihydroxydiphenyl ether having a structure in which an unsubstituted aromatic ring is linked by an ether group, is a compound that is less susceptible to oxidative degradation and is expected as an ultra-high heat resistant resin material. Conventionally, as a production method for obtaining the polyphenylene ether, (1) a method in which 4,4′-dihydroxydiphenyl ether is oxidatively polymerized using a peroxide as an oxidizing agent in the presence of an iron complex catalyst (see, for example, Patent Document 1). ), (2) a method of oxidizing 4,4′-dihydroxydiphenyl ether in the presence of a transition metal complex catalyst and an oxidizing agent (see, for example, Patent Document 2), (3) p-halogenated phenol and 4,4′- A method of reacting dihydroxydiphenyl ether with a polar aprotic solvent in the presence of a Cu (I) halide is known (for example, see Patent Document 3).

しかしながら、前記特許文献1に記載されている手法では得られる重合体の分子量の制御が困難で分子量分布の広い重合体しか得ることができず、例えば、該文献1中の実施例5で合成されているポリフェニレンエーテルの分子量分布は5.3であり、有機溶媒に均一に溶解しない為、取り扱いにくいものであった。また、前記特許文献2に記載されている手法では、オルト位の分岐が生じており、例えば、該文献2の実施例で合成されているポリフェニレンエーテルのオルト位結合とパラ位結合との比が0.3〜0.4と記載されており、ポリエステル樹脂やエポキシ樹脂等への導入時にその使用量が制限され、目的とする超高耐熱性樹脂が得にくいという問題があった。更に、前記特許文献3に記載されている手法では、得られる重合体の分子量分布が広いものであり、ポリエステル樹脂やエポキシ樹脂等への導入時にそれらの樹脂の分子量を調整することが困難であった。   However, it is difficult to control the molecular weight of the polymer obtained by the method described in Patent Document 1 and only a polymer having a wide molecular weight distribution can be obtained. For example, the polymer synthesized in Example 5 of Document 1 is synthesized. The polyphenylene ether has a molecular weight distribution of 5.3 and is difficult to handle because it does not dissolve uniformly in an organic solvent. Further, in the method described in Patent Document 2, ortho-position branching occurs. For example, the ratio between the ortho-position bond and the para-position bond of the polyphenylene ether synthesized in the Example of the Document 2 is There is a problem that the amount of use is limited at the time of introduction into a polyester resin or an epoxy resin, and it is difficult to obtain a desired ultra-high heat resistance resin. Furthermore, in the technique described in Patent Document 3, the molecular weight distribution of the obtained polymer is wide, and it is difficult to adjust the molecular weight of these resins when introduced into a polyester resin or an epoxy resin. It was.

すなわち従来提供されている手法では、分子量分布が狭く直鎖状のポリフェニレンエーテルを得る事は困難であった。   That is, it has been difficult to obtain linear polyphenylene ether with a narrow molecular weight distribution by a conventionally provided method.

特開2000−080162号公報(第2−3頁及び実施例5)JP 2000-080162 A (Page 2-3 and Example 5) 特開平10−324743号公報(第3頁)Japanese Patent Laid-Open No. 10-324743 (page 3) 特開平2−214724号公報(第2−3頁及び実施例1、2)JP-A-2-214724 (page 2-3 and Examples 1 and 2)

上記のような実情に鑑み、本発明の課題は、分子量分布が狭く、かつ直鎖状のポリフェニレンエーテルの製造方法を提供することにある。   In view of the above circumstances, an object of the present invention is to provide a method for producing a linear polyphenylene ether having a narrow molecular weight distribution.

本発明者らは上記課題を解決すべく鋭意研究を重ねた結果、4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩と4,4’−ジハロゲン化ジフェニルエーテルを遷移金属触媒の存在下に有機溶媒中で反応させることで分子量分布が狭く、かつ直鎖状のポリフェニレンエーテルを得ることが可能であることを見出し、本発明を完成するに至った。   As a result of intensive studies to solve the above problems, the present inventors have determined that an alkali metal salt of 4,4′-dihydroxydiphenyl ether and 4,4′-dihalogenated diphenyl ether in an organic solvent in the presence of a transition metal catalyst. It has been found that by reacting it, it is possible to obtain a linear polyphenylene ether having a narrow molecular weight distribution, and the present invention has been completed.

すなわち、本発明は、直鎖状の構造を有し分子量分布の狭いポリフェニレンエーテルの製造方法を提供するものである。   That is, the present invention provides a method for producing a polyphenylene ether having a linear structure and a narrow molecular weight distribution.

本発明によれば、直鎖状の構造を有し分子量分布の狭いポリフェニレンエーテルの製造方法を提供することができる。本発明では比較的低分子量のものを効率よく製造でき、得られるポリフェニレンエーテルが有機溶媒に可溶であることから、ポリエステル樹脂やエポキシ樹脂等の原料として好適に用いられ、超高耐熱性を付与することが可能であり、また、末端の水酸基による反応性を有していることから機能性樹脂原料としても好適に用いることが出来る。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of polyphenylene ether which has a linear structure and narrow molecular weight distribution can be provided. In the present invention, those having a relatively low molecular weight can be efficiently produced, and since the resulting polyphenylene ether is soluble in an organic solvent, it is suitably used as a raw material for polyester resins and epoxy resins, and imparts ultrahigh heat resistance. Moreover, since it has the reactivity by the hydroxyl group of a terminal, it can be used suitably also as a functional resin raw material.

以下、本発明を詳細に説明する。
本発明の製造方法としては、原料として4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)と4,4’−ジハロゲン化ジフェニルエーテル(a2)とを遷移金属触媒(X)の存在下に有機溶媒(Y)中で反応させてポリフェニレンエーテルを得る以外に、特に制限されるものではないが、高分子量のポリフェニレンエーテルは有機溶媒に溶解しにくいため取り扱いが困難であり、更に前記反応時に析出しやすいことから反応収率が低くなることを鑑みると、ポリフェニレンエーテルの数平均分子量が300〜1000の範囲であるものを製造することが好ましい。
Hereinafter, the present invention will be described in detail.
In the production method of the present invention, 4,4′-dihydroxydiphenyl ether alkali metal salt (a1) and 4,4′-dihalogenated diphenyl ether (a2) are used as raw materials in the presence of a transition metal catalyst (X). There is no particular limitation other than obtaining polyphenylene ether by reacting in (Y), but high molecular weight polyphenylene ether is difficult to handle because it is difficult to dissolve in an organic solvent, and more likely to precipitate during the reaction. In view of the fact that the reaction yield is low, it is preferable to produce a polyphenylene ether having a number average molecular weight in the range of 300 to 1,000.

また、得られるポリフェニレンエーテルを樹脂原料として用いる際には、末端が反応性を有する水酸基であることが好ましい。本発明の製造方法を用いることによって、分子両末端が水酸基であり、かつ、低分子量で有機溶媒に可溶のポリフェニレンエーテルを効率よく製造することが可能である。   Moreover, when using the obtained polyphenylene ether as a resin raw material, it is preferable that the terminal is a reactive hydroxyl group. By using the production method of the present invention, it is possible to efficiently produce polyphenylene ether having both molecular ends at hydroxyl groups and having a low molecular weight and soluble in an organic solvent.

本発明で用いる前記4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)としては、4,4’−ジヒドロキシジフェニルエーテルと水酸化ナトリウム、水酸化カリウム、水酸化リチウム等のアルカリ金属の水酸化物とを溶媒中で反応させることにより容易に得ることができる。   Examples of the alkali metal salt (a1) of 4,4′-dihydroxydiphenyl ether used in the present invention include 4,4′-dihydroxydiphenyl ether and alkali metal hydroxides such as sodium hydroxide, potassium hydroxide and lithium hydroxide. Can be easily obtained by reacting in a solvent.

前記4,4’−ジヒドロキシジフェニルエーテルとしては、その製造方法に関して特に限定されるものではないが、例えばハイドロキノンを触媒の存在下に水と共沸可能な有機溶媒中で脱水二量化する方法、4,4’−ジハロゲン化ジフェニルエーテルを触媒の存在下に加水分解する方法等が挙げられる。   The 4,4′-dihydroxydiphenyl ether is not particularly limited as to its production method. For example, hydroquinone is dehydrated and dimerized in an organic solvent azeotropic with water in the presence of a catalyst, Examples thereof include a method of hydrolyzing 4′-dihalogenated diphenyl ether in the presence of a catalyst.

また、前記アルカリ金属の水酸化物の使用量としては、特に限定されないが、後述する4,4’−ジハロゲン化ジフェニルエーテル(a2)との反応性が良好である点から、4,4’−ジヒドロキシジフェニルエーテルの両末端水酸基の60%以上をアルカリ金属塩に出来る量で用いることが好ましく、具体的には4,4’−ジヒドロキシジフェニルエーテル1モルに対して2.0〜4.0モルの範囲で用いることが好ましい。   The amount of the alkali metal hydroxide used is not particularly limited, but is 4,4′-dihydroxy because of its good reactivity with the 4,4′-dihalogenated diphenyl ether (a2) described later. It is preferable to use 60% or more of both terminal hydroxyl groups of diphenyl ether in an amount capable of forming an alkali metal salt. Specifically, it is used in the range of 2.0 to 4.0 moles per mole of 4,4′-dihydroxydiphenyl ether. It is preferable.

4,4’−ジヒドロキシジフェニルエーテルとアルカリ金属の水酸化物との反応における溶媒としては、アルカリ金属の水酸化物を溶解できるものであることが好ましい点から、水又はメタノール、エタノール等の低級アルコールを用いることが好ましく、特に反応物質である4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)の溶解度が高く、かつ反応後の除去が容易である点からメタノールが好適である。   As a solvent in the reaction of 4,4′-dihydroxydiphenyl ether and an alkali metal hydroxide, water or a lower alcohol such as methanol or ethanol is preferably used because it can dissolve the alkali metal hydroxide. Methanol is preferred because it is highly soluble in the alkali metal salt (a1) of 4,4′-dihydroxydiphenyl ether, which is a reactant, and can be easily removed after the reaction.

上記の反応で得られる4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)としては、単離することなくそのまま後述する4,4’−ジハロゲン化ジフェニルエーテル(a2)との反応に用いることも可能であり、また一旦反応液から単離した後4,4’−ジハロゲン化ジフェニルエーテル(a2)との反応に用いてもよい。いずれの場合においても、未反応のアルカリ金属の水酸化物が残存していても問題はなく、除去することなしに次工程の原料として用いることが可能である。   The alkali metal salt (a1) of 4,4′-dihydroxydiphenyl ether obtained by the above reaction can be used for the reaction with 4,4′-dihalogenated diphenyl ether (a2) described later without isolation. In addition, after being isolated from the reaction solution, it may be used for the reaction with 4,4′-dihalogenated diphenyl ether (a2). In any case, there is no problem even if an unreacted alkali metal hydroxide remains, and it can be used as a raw material for the next step without being removed.

4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)を反応液から単離する場合には、例えば、4,4’−ジヒドロキシジフェニルエーテルとアルカリ金属の水酸化物との反応終了後、溶媒を留去し、得られた固体を減圧または常圧で乾燥させる方法が挙げられる。単離した4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)は空気中でも安定であり、長期間保存しておくことも可能である。   When isolating the alkali metal salt (a1) of 4,4′-dihydroxydiphenyl ether from the reaction solution, for example, after completion of the reaction between 4,4′-dihydroxydiphenyl ether and an alkali metal hydroxide, the solvent is distilled off. And a method of drying the obtained solid under reduced pressure or normal pressure. The isolated alkali metal salt (a1) of 4,4'-dihydroxydiphenyl ether is stable in air and can be stored for a long period of time.

本発明で用いる4,4’−ジハロゲン化ジフェニルエーテル(a2)としては、4,4’−ジクロロジフェニルエーテル、4,4’−ジブロモジフェニルエーテル、4,4’−ジヨウドジフェニルエーテル等が挙げられるが、反応の容易性、価格及び工業的入手が容易である点から4,4’−ジブロモジフェニルエーテルが好適である。   Examples of the 4,4′-dihalogenated diphenyl ether (a2) used in the present invention include 4,4′-dichlorodiphenyl ether, 4,4′-dibromodiphenyl ether, 4,4′-diiododiphenyl ether, and the like. 4,4′-dibromodiphenyl ether is preferred because of its ease, cost, and industrial availability.

4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)と4,4’−ジハロゲン化ジフェニルエーテル(a2)との使用割合としては、所望のポリフェニレンエーテルの分子量によって適宜選択されるものであるが、有機溶媒に可溶なポリフェニレンエーテルを目的とする場合には、数平均分子量として300〜1,000の範囲の生成物を所望することが好ましく、反応が速やかに進行して収率が高く、且つ、生成するポリフェニレンエーテルの末端等に結合して残存するハロゲン原子の含有量を低くすることが出来る点から、4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)1モルに対して4,4’−ジハロゲン化ジフェニルエーテル(a2)を0.05〜20モル、特に0.1〜10の範囲で用いることが好ましい。   The proportion of the alkali metal salt of 4,4′-dihydroxydiphenyl ether (a1) and 4,4′-dihalogenated diphenyl ether (a2) is appropriately selected depending on the molecular weight of the desired polyphenylene ether. When the purpose is a polyphenylene ether soluble in a solvent, it is preferable that a product having a number average molecular weight in the range of 300 to 1,000 is desired, the reaction proceeds rapidly and the yield is high, and From the point that the content of the halogen atom remaining by bonding to the terminal of the polyphenylene ether to be produced can be lowered, 4,4 ′ relative to 1 mol of 4,4′-dihydroxydiphenyl ether alkali metal salt (a1). -Using dihalogenated diphenyl ether (a2) in the range of 0.05 to 20 mol, especially 0.1 to 10 It is preferable.

本発明で用いる遷移金属錯体触媒(X)としては、4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)と4,4’−ジハロゲン化ジフェニルエーテル(a2)との反応を促進させることが可能な遷移金属錯体であれば特に制限されるものではないが、第一系列遷移金属の化合物を用いることが好ましく、銅のハロゲン化物(x1)であることが特に好ましく、例えば、塩化第一銅、臭化第一銅、ヨウ化第一銅、フッ化第一銅等が挙げられる。   As the transition metal complex catalyst (X) used in the present invention, the reaction between the alkali metal salt of 4,4′-dihydroxydiphenyl ether (a1) and 4,4′-dihalogenated diphenyl ether (a2) can be promoted. Although not particularly limited as long as it is a transition metal complex, it is preferable to use a compound of a first series transition metal, particularly preferably a copper halide (x1), for example, cuprous chloride, odor Cuprous iodide, cuprous iodide, cuprous fluoride and the like.

前記遷移金属触媒(X)の使用量としては、触媒の種類、反応温度、用いる4,4’−ジハロゲン化ジフェニルエーテル(a2)の種類及び4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)と4,4’−ジハロゲン化ジフェニルエーテル(a2)との使用割合等によって異なるが、適度な反応速度が得られ、かつ反応終了後の除去が容易である点から、4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)1モルに対して0.001〜0.10モル、好適には0.005〜0.05モルである。   The amount of the transition metal catalyst (X) used includes the type of catalyst, the reaction temperature, the type of 4,4′-dihalogenated diphenyl ether (a2) used, and the alkali metal salt (a1) of 4,4′-dihydroxydiphenyl ether. Alkaline of 4,4′-dihydroxydiphenyl ether, although it varies depending on the ratio of use with 4,4′-dihalogenated diphenyl ether (a2), etc., in that an appropriate reaction rate is obtained and removal after the completion of the reaction is easy. It is 0.001-0.10 mol with respect to 1 mol of metal salts (a1), Preferably it is 0.005-0.05 mol.

本発明で用いる有機溶媒(Y)としては、原料化合物の4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)及び4,4’−ジハロゲン化ジフェニルエーテル(a2)を均一に溶解することができ、反応に関与しないものであれば特に制限されないが、得られるポリフェニレンエーテルの溶解性に優れる点から、水溶性極性有機溶媒(y1)を用いることが好ましく、例えば、テトラヒドロフラン、ジメチルホルムアミド、ジメチルスルホキシド、スルホラン、N−メチルピロリドン等の非プロトン性極性溶媒が挙げられ、る。   As the organic solvent (Y) used in the present invention, the alkali metal salt (a1) of 4,4′-dihydroxydiphenyl ether and 4,4′-dihalogenated diphenyl ether (a2) of the raw material compound can be uniformly dissolved, Although it will not be restrict | limited especially if it does not participate in reaction, From the point which is excellent in the solubility of polyphenylene ether obtained, it is preferable to use a water-soluble polar organic solvent (y1), for example, tetrahydrofuran, dimethylformamide, dimethyl sulfoxide, sulfolane. And aprotic polar solvents such as N-methylpyrrolidone.

前記反応時の反応温度としては、用いる触媒、有機溶媒、反応原料の使用割合、目的とするポリフェニレンエーテルの分子量等によって異なるが、通常50〜300℃、好ましくは100〜200℃である。   The reaction temperature during the reaction varies depending on the catalyst to be used, the organic solvent, the use ratio of the reaction raw materials, the molecular weight of the target polyphenylene ether, etc., but is usually 50 to 300 ° C., preferably 100 to 200 ° C.

本発明で得られるポリフェニレンエーテルの分子量を調節するためには、特に4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)と4,4’−ジハロゲン化ジフェニルエーテル(a2)との使用割合、反応温度、反応時間を適切に設定することが好ましい。   In order to adjust the molecular weight of the polyphenylene ether obtained in the present invention, in particular, the use ratio of 4,4′-dihydroxydiphenyl ether alkali metal salt (a1) and 4,4′-dihalogenated diphenyl ether (a2), reaction temperature It is preferable to set the reaction time appropriately.

反応終了後の生成したポリフェニレンエーテルの単離精製方法は特に制限されるものでなく、種々の手法が用いられるが、例えば反応混合物を酸性水溶液中に注ぎ、析出した固体を洗浄・乾燥することによってポリフェニレンエーテルを高収率で得ることができる。   The method for isolating and purifying the produced polyphenylene ether after completion of the reaction is not particularly limited, and various techniques can be used. For example, the reaction mixture is poured into an acidic aqueous solution, and the precipitated solid is washed and dried. Polyphenylene ether can be obtained in high yield.

本発明におけるポリフェニレンエーテルは、様々な樹脂の原料、あるいは、添加剤として使用することができる。例えば、ポリエステル、ポリエーテルエーテルケトン、ポリエーテルサルホンの原料であるジヒドロキシ化合物の一部あるいは全部として、本発明におけるポリフェニレンエーテルを使用することで、耐熱性、低誘電特性、低吸水性にすぐれた樹脂が得られる。特に、成型温度の極めて高い液晶性ポリエステルの場合、その原料であるジヒドロキシ化合物の一部として、本発明におけるポリフェニレンエーテル使用することで、耐熱性を損なうことなく融点を下げ、成形性を向上することができる。また、エポキシ樹脂の原料であるジヒドロキシ化合物の一部あるいは全部として、本発明におけるポリフェニレンエーテルを使用することで、耐熱性、低誘電率、耐湿性、柔軟性、成形性、防食性能に優れたエポキシ樹脂が得られる。また、ポリカーボネートのジヒドロキシ化合物の一部あるいは全部として、本発明におけるポリフェニレンエーテルを使用することで耐熱性、耐摩耗性に優れた樹脂が得られる。また、感熱紙用顕色剤として使用することで、耐光性、感度、保存性に優れた感熱紙が得られる。また、本発明におけるポリフェニレンエーテルの粒子を、ポリエステル、ポリアミド、ポリフェニレンサルファイドの重合時あるいは混練時に少量添加することで耐熱性、柔軟性、低吸湿性、寸法安定性に優れた樹脂が得られる。また、シクロオレフィンポリマー、ポリエチレンテレフタレート、トリアセチルセルロース、ポリカーボネート等の光学用途に使用される樹脂のフィルム、あるいはシートに本発明におけるポリフェニレンエーテルを添加することによって、耐透湿性、複屈折等の光学特性の制御、あるいは強度の向上が発現する。   The polyphenylene ether in the present invention can be used as a raw material or additive for various resins. For example, by using the polyphenylene ether of the present invention as a part or all of the dihydroxy compound that is a raw material for polyester, polyether ether ketone, and polyether sulfone, it has excellent heat resistance, low dielectric properties, and low water absorption. A resin is obtained. In particular, in the case of liquid crystalline polyester having a very high molding temperature, by using the polyphenylene ether in the present invention as a part of the dihydroxy compound that is a raw material, the melting point is lowered without impairing the heat resistance and the moldability is improved. Can do. Moreover, by using the polyphenylene ether in the present invention as part or all of the dihydroxy compound that is a raw material of the epoxy resin, an epoxy having excellent heat resistance, low dielectric constant, moisture resistance, flexibility, moldability, and anticorrosion performance A resin is obtained. Moreover, the resin excellent in heat resistance and abrasion resistance is obtained by using the polyphenylene ether in the present invention as a part or all of the dihydroxy compound of polycarbonate. Further, when used as a developer for thermal paper, thermal paper excellent in light resistance, sensitivity, and storage stability can be obtained. Further, a resin excellent in heat resistance, flexibility, low moisture absorption and dimensional stability can be obtained by adding a small amount of the polyphenylene ether particles in the present invention at the time of polymerization or kneading of polyester, polyamide and polyphenylene sulfide. In addition, by adding the polyphenylene ether of the present invention to a film or sheet of a resin used for optical applications such as cycloolefin polymer, polyethylene terephthalate, triacetyl cellulose, polycarbonate, etc., optical properties such as moisture permeation resistance and birefringence Control or improvement in strength is manifested.

以下に本発明のポリフェニレンエーテルの製造方法について、実施例及び比較例を用いて具体的に説明するが、以下の実施例は、本発明の方法を限定するものではない。   Although the manufacturing method of the polyphenylene ether of this invention is demonstrated concretely using an Example and a comparative example below, the following Examples do not limit the method of this invention.

合成例1
4,4’−ジヒドロキシジフェニルエーテルの合成
水分離装置、温度計を付けた1000mlの4つ口フラスコに、ハイドロキノン100g(0.91モル)、メシチレン200g及び反応触媒として活性白土K−500(日本活性白土社製)17gを入れ、脱水操作を実施しながら160℃で4時間攪拌して、脱水二量化反応を行った。
Synthesis example 1
Synthesis of 4,4′-dihydroxydiphenyl ether Into a 1000 ml four-necked flask equipped with a water separator and a thermometer, hydroquinone 100 g (0.91 mol), mesitylene 200 g, and activated clay K-500 (Japan activated clay) 17 g) was added, and the mixture was stirred at 160 ° C. for 4 hours while dehydrating, and a dehydration dimerization reaction was performed.

脱水反応終了後、60℃の水200gを加え、系内を攪拌下80℃まで加熱して未反応のハイドロキノンと反応物を溶解させた後、80℃で濾過して活性白土をろ別し、ろ液を20℃まで冷却した。析出した結晶をろ過して採取し、水で洗浄後、減圧乾燥を行って4,4’−ジヒドロキシジフェニルエーテルを得た。ガスクロマトグラフで測定したハイドロキノンの転化率は56.4モル%で、4,4’−ジヒドロキシジフェニルエーテルの選択率は87.6%であった。   After completion of the dehydration reaction, 200 g of water at 60 ° C. was added, and the system was heated to 80 ° C. with stirring to dissolve unreacted hydroquinone and the reaction product, followed by filtration at 80 ° C. to separate active clay. The filtrate was cooled to 20 ° C. The precipitated crystals were collected by filtration, washed with water, and then dried under reduced pressure to obtain 4,4'-dihydroxydiphenyl ether. The conversion rate of hydroquinone measured by gas chromatography was 56.4 mol%, and the selectivity of 4,4'-dihydroxydiphenyl ether was 87.6%.

上記で得られた未精製の4,4’−ジヒドロキシジフェニルエーテル45.4gに、酢酸ブチル45.4g及びキシレン90.8gを加え、80℃に加熱して溶解させた後、20℃まで冷却した。析出した4,4’−ジヒドロキシジフェニルエーテルの結晶をろ過して採取後、減圧乾燥することにより精製を行った。得られた4,4’−ジヒドロキシジフェニルエーテルの収量は44.6g(収率48.5モル%、純度99.3重量%:GPC法)であった。また、ハイドロキノン含有量は、800ppm(GC法)であった。   45.4 g of butyl acetate and 90.8 g of xylene were added to 45.4 g of the unpurified 4,4'-dihydroxydiphenyl ether obtained above, and the mixture was heated to 80 ° C for dissolution, and then cooled to 20 ° C. The precipitated 4,4′-dihydroxydiphenyl ether crystals were collected by filtration and then purified by drying under reduced pressure. The yield of 4,4′-dihydroxydiphenyl ether obtained was 44.6 g (yield 48.5 mol%, purity 99.3% by weight: GPC method). Moreover, hydroquinone content was 800 ppm (GC method).

実施例1
300mlの4つ口フラスコに水酸化カリウム22.4g(0.4モル)とエタノール89.8gを入れ、撹拌した。発熱反応の後、20分後に完全に溶解した。この溶液に合成例1で合成した4,4’−ジヒドロキシジフェニルエーテル40.4g(0.2モル)を加え、1時間加熱還流した。
Example 1
A 300 ml four-necked flask was charged with 22.4 g (0.4 mol) of potassium hydroxide and 89.8 g of ethanol and stirred. After the exothermic reaction, it was completely dissolved after 20 minutes. To this solution, 40.4 g (0.2 mol) of 4,4′-dihydroxydiphenyl ether synthesized in Synthesis Example 1 was added and heated to reflux for 1 hour.

エタノ−ル及び水を留去した残滓を80℃で一晩乾燥して4,4’−ジヒドロキシジフェニルエーテルのカリウム塩55.7g(収率100%)を得た。   The residue obtained by distilling off ethanol and water was dried at 80 ° C. overnight to obtain 55.7 g (yield 100%) of potassium salt of 4,4′-dihydroxydiphenyl ether.

ついで、300mlの4つ口フラスコに上記反応で得られた4,4’−ジヒドロキシジフェニルエーテルのカリウム塩、4,4’−ジブロモジフェニルエーテル19.7g(0.06モル)、塩化第一銅0.198g(0.002モル)及びN−メチルピロリドン120gを入れ窒素を20ml/分の速度で系内に導入しながら140℃で3時間撹拌した。反応後、40℃以下に冷却して6%塩酸水溶液243gに滴下した。滴下後、室温で1時間撹拌した後、析出した固体をろ取し、水200mlで洗浄後、減圧で乾燥してポリフェニレンエーテル27.5gを得た。得られたポリフェニレンエーテルの組成比を表2に示す。   Subsequently, the potassium salt of 4,4′-dihydroxydiphenyl ether obtained by the above reaction, 19.7 g (0.06 mol) of 4,4′-dibromodiphenyl ether obtained by the above reaction, and 0.198 g of cuprous chloride were added to a 300 ml four-necked flask. (0.002 mol) and 120 g of N-methylpyrrolidone were added, and the mixture was stirred at 140 ° C. for 3 hours while introducing nitrogen into the system at a rate of 20 ml / min. After the reaction, the reaction mixture was cooled to 40 ° C. or lower and added dropwise to 243 g of 6% aqueous hydrochloric acid. After dropping, the mixture was stirred at room temperature for 1 hour, and then the precipitated solid was collected by filtration, washed with 200 ml of water, and dried under reduced pressure to obtain 27.5 g of polyphenylene ether. Table 2 shows the composition ratio of the obtained polyphenylene ether.

実施例2〜7
実施例1で得られた4,4’−ジヒドロキシジフェニルエーテルのカリウム塩を用い、表1に示す4,4’−ジヒドロキシジフェニルエーテルと4,4’−ジブロモジフェニルエーテルの使用割合、触媒化合物(0.002モル)及び溶媒120gを用いた他は実施例1と同様に実験を実施した。結果を表1及び表2に示す。
Examples 2-7
Using the potassium salt of 4,4′-dihydroxydiphenyl ether obtained in Example 1, the use ratio of 4,4′-dihydroxydiphenyl ether and 4,4′-dibromodiphenyl ether shown in Table 1, catalyst compound (0.002 mol) ) And 120 g of solvent were used, and the experiment was performed in the same manner as in Example 1. The results are shown in Tables 1 and 2.

Figure 2006008979
Figure 2006008979

表1の脚注
DHDE:4,4’−ジヒドロキシジフェニルエーテル
DBDE:4,4’−ジブロモジフェニルエーテル
NMP:N−メチルピロリドン
DMSO:ジメチルスルホキシド
Footnotes in Table 1 DHDE: 4,4′-dihydroxydiphenyl ether DBDE: 4,4′-dibromodiphenyl ether NMP: N-methylpyrrolidone DMSO: dimethyl sulfoxide

Figure 2006008979
Figure 2006008979

表2の脚注
表中の数値はGPCスペクトルでの各成分の面積%を表す。
Mw:重量平均分子量
Mn:数平均分子量
Footnotes in Table 2
The numerical values in the table represent the area% of each component in the GPC spectrum.
Mw: weight average molecular weight Mn: number average molecular weight

比較例1 (前記特許文献3にトレース実験)
p−ブロモフェノール25.95g(0.15モル)、4,4’−ジヒドロキシジフェニルエーテル7.58g(0.0375モル)、N,N−ジメチルイミダゾリジン−2−オン80g、トルエン100ml及び40%水酸化カリウム水溶液31.56g(0.22モル)を窒素雰囲気下に攪拌機、温度計、水分離装置及び還流冷却器の付いた500mlの四つ口フラスコに入れ、4時間還流を行って脱水した。塩化第一銅120mgを150℃で加えた後、195℃で4時間攪拌反応させた。室温まで冷却後、5%塩酸水溶液300mlを加えて固体を析出させた。固体をろ過して採取し、洗浄液が中性となるまで水で洗浄を行った後減圧で乾燥した。得られた固体は40.5gで、重量平均分子量は777、数平均分子量は613で、GPC測定から少なくとも10種類以上の分子量の異なる生成物が認められた。
Comparative Example 1 (Trace experiment in Patent Document 3)
25.95 g (0.15 mol) of p-bromophenol, 7.58 g (0.0375 mol) of 4,4′-dihydroxydiphenyl ether, 80 g of N, N-dimethylimidazolidin-2-one, 100 ml of toluene and 40% water 31.56 g (0.22 mol) of an aqueous potassium oxide solution was placed in a 500 ml four-necked flask equipped with a stirrer, a thermometer, a water separator and a reflux condenser under a nitrogen atmosphere and dehydrated by refluxing for 4 hours. After adding 120 mg of cuprous chloride at 150 ° C., the mixture was reacted with stirring at 195 ° C. for 4 hours. After cooling to room temperature, 300 ml of 5% aqueous hydrochloric acid solution was added to precipitate a solid. The solid was collected by filtration, washed with water until the washing solution became neutral, and then dried under reduced pressure. The obtained solid was 40.5 g, the weight average molecular weight was 777, the number average molecular weight was 613, and at least 10 types of products having different molecular weights were recognized by GPC measurement.

実施例1で得られたポリフェニレンエーテルのGPCスペクトルである。2 is a GPC spectrum of the polyphenylene ether obtained in Example 1. 比較例1で得られたポリフェニレンエーテルのGPCスペクトルである。2 is a GPC spectrum of polyphenylene ether obtained in Comparative Example 1.

Claims (6)

4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)と4,4’−ジハロゲン化ジフェニルエーテル(a2)を遷移金属触媒(X)の存在下に有機溶媒(Y)中で反応させることを特徴とするポリフェニレンエーテルの製造方法。 Characterized in that an alkali metal salt of 4,4′-dihydroxydiphenyl ether (a1) and 4,4′-dihalogenated diphenyl ether (a2) are reacted in an organic solvent (Y) in the presence of a transition metal catalyst (X). A method for producing polyphenylene ether. 反応温度が50〜300℃である請求項1記載のポリフェニレンエーテルの製造方法。 The method for producing a polyphenylene ether according to claim 1, wherein the reaction temperature is 50 to 300 ° C. 4,4’−ジヒドロキシジフェニルエーテルのアルカリ金属塩(a1)1モルに対して4,4’−ジハロゲン化ジフェニルエーテル(a2)を0.05〜20モル使用する請求項2記載のポリフェニレンエーテルの製造方法。 The method for producing a polyphenylene ether according to claim 2, wherein 0.05 to 20 mol of 4,4'-dihalogenated diphenyl ether (a2) is used per 1 mol of the alkali metal salt (a1) of 4,4'-dihydroxydiphenyl ether. 4,4’−ジハロゲン化ジフェニルエーテル(a2)が4,4’−ジブロモジフェニルエーテルである請求項2記載のポリフェニレンエーテルの製造方法。 The method for producing a polyphenylene ether according to claim 2, wherein the 4,4'-dihalogenated diphenyl ether (a2) is 4,4'-dibromodiphenyl ether. 遷移金属触媒(X)が銅のハロゲン化物(x1)である請求項1記載のポリフェニレンエーテルの製造方法。 The process for producing a polyphenylene ether according to claim 1, wherein the transition metal catalyst (X) is a copper halide (x1). 有機溶媒(Y)が水溶性極性有機溶媒(y1)である請求項1〜5の何れか1項記載のポリフェニレンエーテルの製造方法。 The method for producing a polyphenylene ether according to any one of claims 1 to 5, wherein the organic solvent (Y) is a water-soluble polar organic solvent (y1).
JP2005047003A 2004-05-21 2005-02-23 Method for producing polyphenylene ether Pending JP2006008979A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005047003A JP2006008979A (en) 2004-05-21 2005-02-23 Method for producing polyphenylene ether

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2004151725 2004-05-21
JP2005047003A JP2006008979A (en) 2004-05-21 2005-02-23 Method for producing polyphenylene ether

Publications (1)

Publication Number Publication Date
JP2006008979A true JP2006008979A (en) 2006-01-12

Family

ID=35776571

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005047003A Pending JP2006008979A (en) 2004-05-21 2005-02-23 Method for producing polyphenylene ether

Country Status (1)

Country Link
JP (1) JP2006008979A (en)

Similar Documents

Publication Publication Date Title
JP4844057B2 (en) Polyphenylene sulfide and process for producing the same
KR101562387B1 (en) Polyether ketone its monomer and its phenolate
Zhang et al. Novel hyperbranched poly (phenylene oxide) s with phenolic terminal groups: synthesis, characterization, and modification
JP2010095614A (en) Process for producing polyetheretherketone
RU2466153C2 (en) Polyphenylene ether ketone oximate and method for production thereof
EP1149853B1 (en) Polycyanoaryl ether and method for production thereof
JP2006008979A (en) Method for producing polyphenylene ether
JP2010070658A (en) Method for manufacturing polyether-ether-ketone
JP3736992B2 (en) (2,3,4,5,6-pentafluorobenzoyl) diphenyl ether compound and fluorine-containing aryl ether ketone polymer
JP2006219440A (en) Method for producing aromatic dicarboxylic acid
JP2011093965A (en) Method for producing polyethers
Ueda et al. Synthesis of aromatic poly (thioether ketone)
JPH07116288B2 (en) Novel aromatic polyether sulfone copolymer and method for producing the same
JP4875252B2 (en) Polycyanoaryl ether and process for producing the same
JP2015168790A (en) Molding material and optical member using the same
JP4283658B2 (en) Cross-linked polyether ketone resin
JPS5974123A (en) Production of polyarylene ether
JP7303055B2 (en) Compound having fluorene skeleton and method for producing the same
JPH01306427A (en) Aromatic polyether sulfide and production thereof
JP7113665B2 (en) Composition and method for producing the same
JP3904473B2 (en) Fluorine-containing arylamide ether polymer and process for producing the same
JPS59164326A (en) Aromatic polyether-ketone copolymer
JP4991185B2 (en) Polyarylsulfone polymer and process for producing the same
JP2548009B2 (en) Method for producing reactive polymer compound
JPS6071635A (en) Aromatic polyether and its manufacture