JP2006008453A - 水素製造装置および水素製造方法 - Google Patents

水素製造装置および水素製造方法 Download PDF

Info

Publication number
JP2006008453A
JP2006008453A JP2004188716A JP2004188716A JP2006008453A JP 2006008453 A JP2006008453 A JP 2006008453A JP 2004188716 A JP2004188716 A JP 2004188716A JP 2004188716 A JP2004188716 A JP 2004188716A JP 2006008453 A JP2006008453 A JP 2006008453A
Authority
JP
Japan
Prior art keywords
steam
steam reforming
raw material
hydrogen
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004188716A
Other languages
English (en)
Inventor
Masahiko Uchiyama
賢彦 内山
Hiroyuki Taniguchi
浩之 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2004188716A priority Critical patent/JP2006008453A/ja
Publication of JP2006008453A publication Critical patent/JP2006008453A/ja
Withdrawn legal-status Critical Current

Links

Images

Landscapes

  • Hydrogen, Water And Hydrids (AREA)

Abstract

【課題】改質反応器出口ガス温度、すなわちCO変成器供給ガス温度を容易に調節することができ、また、純水予熱器を改質反応器内部に組み込むことで、加熱炉外部に設置する純水予熱器を省き、水素製造装置の熱交換手段を集約することで加熱炉内のスペースを有効に利用できる水素製造装置を提供する。
【解決手段】水蒸気改質手段は水蒸気改質触媒を充填する水蒸気改質管を備え、前記水蒸気改質管を外管と内管の二重管構造とし、前記外管と前記内管で形成された環状部に水蒸気改質触媒を充填した水蒸気改質部と、前記内管を前記水蒸気改質部で生成した水素含有ガスの抜出部とし、前記内管内に原料炭化水素に混合する加熱水または水蒸気を発生させる加熱手段を配設した水素製造装置。
【選択図】図1

Description

本発明は、炭化水素に水蒸気を混合して触媒改質反応により水素を製造する装置とその方法に関するものである。
炭化水素に水蒸気を混合して触媒改質反応による水素製造装置においては、原料炭化水素に水蒸気を加え改質反応器において改質反応を行って生成した改質ガスは、主に水素からなるが一酸化炭素(以下[CO]ともいう)を含んでいるため、前記COを水素に変成するCO変成器に送られる。このCO変成反応温度は、約800℃前後の改質反応温度に対し200〜500℃で、好ましくは300〜400℃程度の比較的低い温度範囲のため、改質反応器を出た後、CO変成器へ送られるまでに前記変成反応温度範囲まで冷却される。その方法は改質反応器を二重管構造とし、改質反応によって得られた高温の改質ガスを内管内側に通しながら、外管と内管で形成された環状部に充填した水蒸気改質触媒層と熱交換することにより450〜600℃まで冷却し、さらに別の熱交換器を用いて冷却される(特許文献1、特許文献2)
前記水蒸気改質反応は、次のとおりである。
+mHO→mCO+(m+n/2)H・・・・(1)
CO+3H←→CH+HO ・・・・・・・・(2)
また、前記CO変成反応は、以下のとおりである。
CO+HO←→CO+H ・・・・・・・・(3)
石油系炭化水素を原料とする場合は、原料中に硫黄分が含有されているため、原料に含有される硫黄分を除去する脱硫方法として、水素を混合して(以下「水添」という)Co-Mo/アルミナやNi-Mo/アルミナなどの水素化触媒と接触させて硫黄分を硫化水素としたのち、ZnOなどの硫化水素吸着剤と接触させて硫化水素を吸着除去する水添脱硫方法が知られており、該水添脱硫方法では、常圧〜5MPaの圧力下、200〜400℃の温度範囲で反応が行われる。しかし、水添脱硫を行うためには反応用の水素を供給する必要があり、その水素源としては、一般に製品水素の一部をリサイクルする方法がとられており、製品水素を消耗するばかりか水素供給手段としてコンプレッサーなどを必要とし、水素製造装置のエネルギー効率を低下させる原因となっている。
前記水素化反応は、以下のとおりである。
S+H→HS+C ・・・・・・・(4)
また、脱硫反応の一例は、以下のとおりである。
S+ZnO→ZnS+HO ・・・・・・・(5)
一方、前記脱硫方法として、近年、吸着脱硫触媒のは性能が改善されていることから、水添反応せずに脱硫を行う方法が開発され、比較的低温で行えるため適用されるケースが増えている。
この方法ではLPG、ナフサや灯油などの炭化水素に含有される硫黄分を除去するために、吸着脱硫触媒を常温から400℃、好ましくは触媒活性の高い150〜250℃程度に温度調節する(特許文献3)。
特開平9−309703号公報 特開平11−323355号公報 特開2003−290660号公報
前記したように、原料炭化水素に水蒸気を混合して触媒改質反応による水素製造装置においては、原料炭化水素に水蒸気を加え改質反応器において改質反応を行い、主に水素からなる改質ガスを生成し、改質ガスに含有されるCOを水蒸気と反応させて水素に変成するためのCO変成器へ送られるが、前記改質反応器での改質反応温度が約800℃前後に対し、CO変成器における変成反応温度は、300〜400℃程度の比較的低い温度範囲で行なわれるため、改質反応器を出た改質ガスは、CO変成器へ送られるまでの間に前記変成温度範囲まで冷却する必要がある。その冷却方法は、改質反応器から導出された改質ガスを後段に熱交換器を設けて所定の温度まで冷却するものである。
本発明が解決しようとする課題は、前記の方法では、改質反応器とCO変成器とが別個の機器であることや改質反応器とCO変成器との間の器外に熱回収のための熱交換器を設ける必要があるため装置全体が過大となり、装置の製造費用を増大させるばかりでなく、機器および機器接続配管類からの熱損失により水素製造装置のエネルギー効率を低下させる原因となることである。
さらに、石油系炭化水素より水素を製造する場合は、原料炭化水素に含有される硫黄分を吸着触媒で脱硫する吸着脱硫器において、脱硫触媒反応温度を触媒活性の高い温度範囲に調節する必要があるが、その温度範囲は比較的狭く、確実な温度調節を行う必要があることである。前記温度範囲を調節するにあたり、従来は、熱交換器により熱媒を用いて、原料炭化水素を脱硫器外部で温度調節しているために装置が過大となり、また、前記熱媒への熱供給手段も別途必要となり、装置の製造費用および運転費用が増大することである。
請求項1記載の発明は、原料炭化水素に加熱水または水蒸気を混合したのち水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質手段と、該水蒸気改質手段で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成手段を少なくとも備えた水素製造装置において、前記水蒸気改質手段は水蒸気改質触媒を充填する水蒸気改質管を備え、前記水蒸気改質管を外管と内管の二重管構造とし、前記外管と前記内管で形成された環状部に水蒸気改質触媒を充填した水蒸気改質部と、前記内管を前記水蒸気改質部で生成した水素含有ガスの抜出部とし、前記内管内に原料炭化水素に混合する加熱水または水蒸気を発生させる加熱手段を配設したことを特徴とする水素製造装置に関する。
請求項2記載の発明は、前記加熱手段と前記内管とで形成された間隙部の少なくとも一部に一酸化炭素変成触媒層を形成して一酸化炭素変成手段とした請求項1に記載の水素製造装置である。
請求項3に記載の発明は、前記内管の前記加熱手段の後段に一酸化炭素変成触媒層を形成して一酸化炭素変成手段とした請求項1に記載の水素製造装置に関する。
請求項4に記載の発明は、原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換し、原料炭化水素を脱硫触媒と接触させて原料炭化水素中の硫黄分を除去する熱交換型脱硫手段を付設した請求項1〜3いずれかに記載の水素製造装置に関する。
請求項5に記載の発明は、原料炭化水素に加熱水または水蒸気を混合したのち水蒸気改質管に充填した水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質手段と、該水蒸気改質手段で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成手段を少なくとも備えた水素製造装置において、該水蒸気改質手段の前に、該水素製造装置に水添反応することなく原料炭化水素中の硫黄分を除去する脱硫手段を付設し、該脱硫手段を原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換する熱交換型脱硫手段としたことを特徴とする水素製造装置に関する。
次に、請求項6に記載の発明は、原料炭化水素に加熱水または水蒸気を混合し、水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質工程と、前記水蒸気改質工程で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成工程を少なくとも備えた水素製造方法において、該水蒸気改質工程の前に、原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換し、前記原料炭化水素を脱硫触媒と接触させて原料炭化水素中の硫黄分を除去する熱交換型脱硫工程を設け、加熱水または水蒸気により原料炭化水素の予熱と熱交換型脱硫工程における反応温度を調節することを特徴とする水素製造方法に関する。
原料炭化水素に加熱水または水蒸気を混合(以下「改質原料」という)し、水蒸気改質触媒と接触させて水素を主成分とする改質ガスを生成する改質反応器において、原料炭化水素に混合される加熱水または水蒸気用に用いる純水などの加熱を行うと共に改質反応器出口ガス温度、すなわちCO変成器供給ガス温度を容易に調節することができる。さらに、純水予熱器を改質反応器内部に組み込むことで、加熱炉外部に設置する純水予熱器を省き、水素製造装置の熱交換手段を集約することで加熱炉内のスペースを有効に利用できる。また、CO変成手段を改質反応器内部に組み込み一体化することで、機器や機器接続配管からの放熱による熱損失を消滅させ、水素製造装置のエネルギー効率を高めることができる。
また、本発明では、水添反応せずに吸着脱硫触媒のみで脱硫する脱硫器にあっては、熱交換型脱硫器としたことにより、原料炭化水素に混合される加熱水または水蒸気による脱硫器での直接的な熱交換により、脱硫触媒反応の最適な温度範囲内に容易に調節することができる。
さらに、前記改質反応器において純水などの加熱を行うと共に、脱硫器を前記熱交換型脱硫器とすることで、水素製造装置のエネルギー効率をより一段と高めることができる。
以下、図面を用いて、本発明を具体的に説明する。
図1は、本発明の水素製造装置の系統図である。以下、図1を参照しながら、本発明の作用および効果を説明する。
1は脱硫手段である熱交換型脱硫器、2は原料加熱器、3は水蒸気改質手段である改質反応器、31は改質反応器外管と内管との間の環状部、32は水蒸気改質触媒、33は改質反応器外管、34は改質反応器内管、35は改質反応器出口、36は改質反応器外管内管連通部、4は一酸化炭素変成手段であるCO変成器、5はPSA装置、6は純水予熱器、7は加熱手段である水蒸気発生器、71は水蒸気発生器伝熱管、8は熱交換器、9は冷却器、10は加熱炉、11は純水供給ポンプ、12は空気供給ブロワ、13は流量調節弁、14はオフガスホルダである。
熱交換型脱硫器1は、シェル・アンド・チューブ式熱交換型脱硫器であり、チューブ内にセラミックスボールなどの予熱担体および脱硫触媒を充填して原料炭化水素の流路とし、シェル側を原料炭化水素に混合する加熱水または水蒸気の流路として形成されている。
原料加熱器2、改質反応器3および純水予熱器6は、加熱炉10内に配設され、原料加熱器2および改質反応器3と純水予熱器6は仕切り壁により区画配置されている。また、加熱炉10は燃焼排ガスと燃焼用空気とが熱交換して燃焼排ガスの熱量を回収する熱交換型バーナにより加熱される構成となっている。
改質反応器3は、外管33と内管34との二重管構造であり、外管33と内管34との間の環状部31に水蒸気改質触媒32が充填され、改質原料が水蒸気改質触媒32と接触して改質反応し、水素を主成分とする改質ガスを生成する。生成した改質ガスを外管33の下端部の外管内管連通部36を経て内管34から改質反応器外に排出する構成となっており、また、内管34にはコイル状構造の水蒸気発生器7が挿入配設されている。なお、水蒸気発生器7は、改質反応器内管34内に配設できる熱回収構造であれば、板状体や直管などであってもよい。
原料炭化水素は、含有する硫黄分を吸着除去する脱硫触媒が充填された熱交換型脱硫器1により原料炭化水素に混合される加熱水または水蒸気と熱交換されながら触媒反応温度調節が行われ脱硫される。ここで、熱交換する前記加熱水または水蒸気は、CO変成器4の後段に設けられた熱交換器8および加熱炉10内に設けられた純水予熱器6を経て、適宜沸点以上に加熱されて熱交換型脱硫器1に供給され、吸着脱硫触媒を加熱し、吸着脱硫に適した温度に制御する。熱交換型脱硫器1により脱硫された脱硫済みの原料炭化水素に熱交換後の加熱水または水蒸気が混合されて改質原料となり、加熱炉10内に設けられた原料加熱器2に供給され完全に気化される。改質反応器3に供給された改質原料は、改質反応器外管と内管との間の環状部31に充填された水蒸気改質触媒32と接触して改質反応が行われ、この反応によって生成した改質ガスは外管33の下端部の外管内管連通部36で流れ方向を上向きに転換され内管34に沿って改質反応器出口35へと流通し外部に送出される。この改質反応器3の内管34の出口35付近に配設された水蒸気発生器7に改質反応で用いる純水の一部を流すことで、原料炭化水素に混合される加熱水または水蒸気を発生させるとともに、改質ガスを後段のCO変成器4におけるCO変成触媒反応に最適な温度範囲まで冷却する。なお、原料炭化水素が硫黄分を含まないメタノールやGTL(GAS TO LIQUID)などの場合は、脱硫器1は不要となる。
改質反応器3で生成した改質ガスをCO変成器4に送り、改質ガス中のCOを触媒反応で水素に変成する。この反応は200〜500℃の温度範囲で行うが、主に変成触媒としては、300℃〜500℃の範囲のときは鉄−クロム系の触媒、200〜300℃の範囲のときは銅−亜鉛系の触媒が用いられる。
改質ガスから高純度水素を製造する場合は、CO変成工程の後に、PSA装置5や水素分離膜装置(図示せず)などを配置して水素を分離精製する。PSA装置5を用いる場合は、CO変成器4の後段に熱交換器8を設け、改質ガスを改質反応に用いる純水などと熱交換して冷却し、さらに冷却器9により常温まで冷却してからPSA装置5に送られる。また、PSA装置5から発生するオフガスは、加熱炉10の燃料として用いられる。また、PSA装置5に代えて有機高分子系の水素分離膜により水素を透過分離する水素分離膜装置を用いる場合もPSA装置と同様な操作が行われる。しかし、無機系の水素分離膜により水素を透過分離する水素分離膜装置などを用いる場合には、高温状態で分離操作が行われるため、CO変成器4の後段に無機水素分離膜装置を設置し、改質ガスの冷却を行うことなく分離操作が行われる。無機水素分離膜で精製した水素やオフガスはともに高温のため、それぞれ熱交換器を設けて、改質反応で用いる純水などと熱交換して熱回収が図られる。
図2は、水蒸気発生器7と内管3とで形成された間隙部の少なくとも一部にCO変成触媒層を形成し、図1の装置のCO変成器4を改質反応器3内部に一体化した系統図である。
なお、原料炭化水素と純水から改質ガスが生成されるまでの装置の構成と工程は前記と同様であるので、ここでは説明を省略し、改質反応器内部に設置したCO変成手段の構成、作用および効果についてのみ説明する。
53は水蒸気改質手段の改質反応器、531は改質反応器外管と内管との間の環状部、532は水蒸気改質触媒、533は改質反応器外管、534は改質反応器内管、535は改質反応器出口、536改質反応器外管内管連通部、57は加熱手段の水蒸気発生器、571は水蒸気発生器伝熱管、54は一酸化炭素変成手段のCO変成触媒層であり、水蒸気発生器57と内管534とで形成された間隙部の少なくとも一部に触媒が充填されている。
前記構成の水素製造装置において、改質原料は、改質反応器53において改質反応器外管533と内管534との間の環状部31に充填された水蒸気改質触媒32と接触して改質反応が行われ、改質反応によって生成した改質ガスは、二重管構造の改質反応器外管533の下端部の外管内管連通部536で流れ方向を上向きに転換され内管534に沿って改質反応器出口535へと流通する間に、内管の環状部531に充填された水蒸気改質触媒と熱交換されながら送出されるが、この改質反応器出口535付近に水蒸気発生器57を設置し、この水蒸気発生器57に改質反応で用いる純水の一部を流すことで、改質ガスにより加熱して水蒸気を発生させるとともに、改質ガスをCO変成工程におけるCO変成触媒反応に最適な温度範囲まで冷却し、改質反応器内管534内側と水蒸気発生器伝熱管571との間の一部に充填されたCO変成触媒層54において改質ガス中のCOを触媒反応により水素に変成する。CO変成器4が改質反応器3内部に組み込まれ一体化された構成となるので、加熱炉60外部にCO変成器を別に設置する必要がなく、したがってCO変成器の容器と機器接続配管からの放熱による熱損失は皆無となり、水素製造装置のエネルギー効率を高めることができる。また、図示しないが、CO変成触媒層は水蒸気発生器伝熱管571と改質反応器出口535との間に設置することもできる。
水素製造装置における運転条件は、例えば、改質反応圧力を0.5〜1.0MPaで運転する改質反応では、純水予熱器6における純水の沸点はおよそ160〜180℃になる。この温度範囲は原料炭化水素中の硫黄成分の触媒吸着反応に適するものであり、したがって熱交換型脱硫器1に供給する純水の量は、出口温度が沸点を下回らないように供給量を調節することが好ましい。この場合、熱源として水の蒸発潜熱を利用するためその熱容量は大きく、広範囲な原料炭化水素の供給量に対応でき、かつ過熱することなく容易に安定した脱硫触媒反応を行うことができる。前記反応温度範囲は150〜250℃が好ましい。なお、改質反応圧力は、例えばメタノールやアンモニア合成用途などに水素または合成ガスを製造する場合には数十MPaで反応させて本装置および製造方法を適用することができる。
<実験例1>
図1の装置を用い、水蒸気改質工程における運転操作について検討した結果を以下に述べる。改質原料の改質反応器3入口温度が300℃以上で、改質ガスの改質反応器3出口温度範囲が300〜500℃で、純水予熱器6と水蒸気発生器7出口の純水温度が水の沸点以上になるよう改質反応器3入口管路の途中に設けられた流量調節弁13で純水流量を調節した。なお、純水の圧力は改質反応圧力条件に従い、特に調節せずに供給し、また、改質反応器内管34内側の改質ガスの流路に設けた水蒸気発生器伝熱管71に水蒸気改質反応で用いる純水の一部を常温で供給した。その結果、改質ガスの改質反応器3からの出口温度は純水を流通させる前には550℃であったのに対して、流通させた後には350℃に冷却された。さらに、温度調節することなくこの改質ガスをCO変成器4に送り、従来と同じ反応ガス組成を得ることができた。このとき、水蒸気発生器伝熱管71出口の水蒸気温度は380℃となり、これを熱交換型脱硫器1により別途発生させた水蒸気と混合したときの温度は350℃であり、また、改質ガスも従来と同じ組成のガスが得られ、改質反応器内管34内側に水蒸気発生器7を設置し、省スペース化を図ることができることが確認された。
<実験例2>
熱交換器のチューブ内にニッケル系脱硫触媒を充填した脱硫器1のシェル側に、180℃に予熱した気液混相状態の純水を供給してチューブ側を加熱した。一方、チューブ側に改質原料として常温の灯油を0.8MPaで供給した。出口温度はチューブ側の灯油、シェル側の純水ともに180℃で熱交換したとき、原料灯油中の硫黄濃度は30ppmから0.05ppm未満に減少した。これは、前記の背景技術に記載した従来の水添脱硫方式と同等の脱硫性能であった。
前記実験例により、改質反応器の改質管内に水蒸気発生器7を設置して一体化し加熱炉外部に設置する純水予熱器を省略できるとともに、改質ガスをCO変成反応に適した温度に調整できることが明確となり、また、水添反応せずに吸着脱硫触媒のみで脱硫する脱硫器にあっては、熱交換型脱硫器とすることにより、原料炭化水素に混合される加熱水または水蒸気による脱硫器での直接的な熱交換により、脱硫触媒反応の最適な温度範囲内に容易に調節することができることが明確となった。従って、それら改質反応器および脱硫器を組み合わせることにより、最大の効果が得られることは明確である。
本発明の水素製造装置の系統図(実施例1) 本発明のCO変成触媒層を改質反応器内部に組み込み一体化した系統図(実施例2)
符号の説明
1 :熱交換型脱硫器
2 :原料加熱器
3 :改質反応器
31 :改質反応器外管と内管との間の環状部
32 :水蒸気改質触媒
33 :改質反応器外管
34 :改質反応器内管
35 :改質反応器出口
36 :改質反応器外管内管連通部
4 :CO変成器
5 :PSA装置
6 :純水予熱器
7 :水蒸気発生器
71 :水蒸気発生器伝熱管
8 :熱交換器
9 :冷却器
10 :加熱炉
11 :純水供給ポンプ
12 :空気供給ブロワ
13 :流量調節弁
14 :オフガスホルダ
53 :改質反応器
531:改質反応器外管と内管との間の環状部
532:水蒸気改質触媒
533:改質反応器外管
534:改質反応器内管
535:改質反応器出口
536:改質反応器外管内管連通部
54 :CO変成触媒層
57 :水蒸気発生器
571:水蒸気発生器伝熱管
60 :加熱炉

Claims (6)

  1. 原料炭化水素に加熱水または水蒸気を混合したのち水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質手段と、該水蒸気改質手段で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成手段を少なくとも備えた水素製造装置において、前記水蒸気改質手段は水蒸気改質触媒を充填する水蒸気改質管を備え、前記水蒸気改質管を外管と内管の二重管構造とし、前記外管と前記内管で形成された環状部に水蒸気改質触媒を充填した水蒸気改質部と、前記内管を前記水蒸気改質部で生成した水素含有ガスの抜出部とし、前記内管内に原料炭化水素に混合する加熱水または水蒸気を発生させる加熱手段を配設したことを特徴とする水素製造装置。
  2. 前記加熱手段と前記内管とで形成された間隙部の少なくとも一部に一酸化炭素変成触媒層を形成して一酸化炭素変成手段とした請求項1に記載の水素製造装置。
  3. 前記内管の前記加熱手段の後段に一酸化炭素変成触媒層を形成して一酸化炭素変成手段とした請求項1に記載の水素製造装置。
  4. 前記水蒸気改質手段の前に、原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換し、原料炭化水素を脱硫触媒と接触させて原料炭化水素中の硫黄分を除去する熱交換型脱硫手段を付設した請求項1〜3いずれかに記載の水素製造装置。
  5. 原料炭化水素に加熱水または水蒸気を混合したのち水蒸気改質管に充填した水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質手段と、該水蒸気改質手段で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成手段を少なくとも備えた水素製造装置において、該水蒸気改質手段の前に、該水素製造装置に水添反応することなく原料炭化水素中の硫黄分を除去する脱硫手段を付設し、該脱硫手段を原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換する熱交換型脱硫手段としたことを特徴とする水素製造装置。
  6. 原料炭化水素に加熱水または水蒸気を混合し、水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質工程と、前記水蒸気改質工程で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成工程を少なくとも備えた水素製造方法において、該水蒸気改質工程の前に、原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換し、前記原料炭化水素を脱硫触媒と接触させて原料炭化水素中の硫黄分を除去する熱交換型脱硫工程を設け、加熱水または水蒸気により原料炭化水素の予熱と熱交換型脱硫工程における反応温度を調節することを特徴とする水素製造方法。
JP2004188716A 2004-06-25 2004-06-25 水素製造装置および水素製造方法 Withdrawn JP2006008453A (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188716A JP2006008453A (ja) 2004-06-25 2004-06-25 水素製造装置および水素製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188716A JP2006008453A (ja) 2004-06-25 2004-06-25 水素製造装置および水素製造方法

Publications (1)

Publication Number Publication Date
JP2006008453A true JP2006008453A (ja) 2006-01-12

Family

ID=35776102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188716A Withdrawn JP2006008453A (ja) 2004-06-25 2004-06-25 水素製造装置および水素製造方法

Country Status (1)

Country Link
JP (1) JP2006008453A (ja)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234837A (ja) * 2008-03-26 2009-10-15 Nippon Oil Corp 改質原料供給装置及び燃料電池システム
CN108394863A (zh) * 2018-05-16 2018-08-14 张家港氢云新能源研究院有限公司 由高温烟气供热的水蒸气重整制氢装置

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234837A (ja) * 2008-03-26 2009-10-15 Nippon Oil Corp 改質原料供給装置及び燃料電池システム
CN108394863A (zh) * 2018-05-16 2018-08-14 张家港氢云新能源研究院有限公司 由高温烟气供热的水蒸气重整制氢装置

Similar Documents

Publication Publication Date Title
US8926866B2 (en) Hydrogen generating apparatus using steam reforming reaction
EP1977993B1 (en) Catalytic steam reforming with recycle
JP4335535B2 (ja) 単一チャンバーのコンパクトな燃料処理装置
US7964176B2 (en) Process and apparatus for thermally integrated hydrogen generation system
JP2003502812A (ja) 燃料電池用純水素ストリームを提供するための方法
WO2011022167A1 (en) Apparatus, systems, and processes for producing syngas and products therefrom
KR102094646B1 (ko) 수소탈황을 구비한 고효율 스팀 리포밍 수소 제조 장치
JP2009078954A (ja) 改質装置
KR20230029615A (ko) 수소 생성 방법
WO2022100899A1 (en) A process for producing a hydrogen-comprising product gas from a hydrocarbon
JP2014517799A (ja) 非触媒性の復熱式改質装置
US20100176346A1 (en) Process and system for conducting isothermal low-temperature shift reaction using a compact boiler
JP5161621B2 (ja) 燃料電池用改質装置
CN215611423U (zh) 一种甲烷转化***
JP2006008453A (ja) 水素製造装置および水素製造方法
JP6276952B2 (ja) Psaの上流の改良された温度制御を伴う脱硫段階を含む、変性炭化水素供給原料から高純度の水素を製造する方法
JP2016184550A (ja) ガス製造装置
JP4175921B2 (ja) 水素製造装置における熱回収システム
JP2007131500A (ja) 水素製造装置
JP2003306306A (ja) オートサーマルリフォーミング装置
KR102323731B1 (ko) 수소 생산용 다연료 개질 시스템
US20060032137A1 (en) Catalyst coated heat exchanger
JP2012067165A (ja) 排熱エネルギー回収利用方法および回収利用システム
JP2008133144A (ja) 水素製造システム及びこれを用いた排熱回収方法
GB2460689A (en) Method for heating and temperature regulation of a CO clean up reactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904