JP2006008453A - Hydrogen production system and hydrogen production method - Google Patents

Hydrogen production system and hydrogen production method Download PDF

Info

Publication number
JP2006008453A
JP2006008453A JP2004188716A JP2004188716A JP2006008453A JP 2006008453 A JP2006008453 A JP 2006008453A JP 2004188716 A JP2004188716 A JP 2004188716A JP 2004188716 A JP2004188716 A JP 2004188716A JP 2006008453 A JP2006008453 A JP 2006008453A
Authority
JP
Japan
Prior art keywords
steam
steam reforming
raw material
hydrogen
carbon monoxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004188716A
Other languages
Japanese (ja)
Inventor
Masahiko Uchiyama
賢彦 内山
Hiroyuki Taniguchi
浩之 谷口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Kakoki Kaisha Ltd
Original Assignee
Mitsubishi Kakoki Kaisha Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Kakoki Kaisha Ltd filed Critical Mitsubishi Kakoki Kaisha Ltd
Priority to JP2004188716A priority Critical patent/JP2006008453A/en
Publication of JP2006008453A publication Critical patent/JP2006008453A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a hydrogen production system which enables easy control of reforming reactor outlet gas temperature, i.e. CO transformer feed gas temperature, eliminates the need of pure water preheater to be established outside a heating furnace by incorporating the pure water preheater into a reforming reactor and makes effective use of the space inside the heating furnace by aggregating heat-exchange means of the hydrogen production system. <P>SOLUTION: The hydrogen production system has a steam reforming means equipped with a steam reforming tube filled with a steam reforming catalyst. The steam reforming tube has a double-tube structure comprising outer and inner tubes, and an annular part formed by the inner and outer tubes is filled with the steam reforming catalyst to serve as a steam reforming part. The inner tube serves as a part for extracting hydrogen-containing gas produced at the steam reforming part. A heating means for generating heated water or steam to be mixed into a material hydrocarbon is located inside the inner tube. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、炭化水素に水蒸気を混合して触媒改質反応により水素を製造する装置とその方法に関するものである。   The present invention relates to an apparatus and a method for producing hydrogen by catalytic reforming by mixing water vapor with hydrocarbon.

炭化水素に水蒸気を混合して触媒改質反応による水素製造装置においては、原料炭化水素に水蒸気を加え改質反応器において改質反応を行って生成した改質ガスは、主に水素からなるが一酸化炭素(以下[CO]ともいう)を含んでいるため、前記COを水素に変成するCO変成器に送られる。このCO変成反応温度は、約800℃前後の改質反応温度に対し200〜500℃で、好ましくは300〜400℃程度の比較的低い温度範囲のため、改質反応器を出た後、CO変成器へ送られるまでに前記変成反応温度範囲まで冷却される。その方法は改質反応器を二重管構造とし、改質反応によって得られた高温の改質ガスを内管内側に通しながら、外管と内管で形成された環状部に充填した水蒸気改質触媒層と熱交換することにより450〜600℃まで冷却し、さらに別の熱交換器を用いて冷却される(特許文献1、特許文献2)
前記水蒸気改質反応は、次のとおりである。
+mHO→mCO+(m+n/2)H・・・・(1)
CO+3H←→CH+HO ・・・・・・・・(2)
また、前記CO変成反応は、以下のとおりである。
CO+HO←→CO+H ・・・・・・・・(3)
In a hydrogen production apparatus based on a catalytic reforming reaction by mixing steam with hydrocarbons, the reformed gas produced by adding steam to the raw material hydrocarbons and performing the reforming reaction in the reforming reactor is mainly composed of hydrogen. Since it contains carbon monoxide (hereinafter also referred to as [CO]), it is sent to a CO converter that converts the CO into hydrogen. This CO shift reaction temperature is 200 to 500 ° C., preferably about 300 to 400 ° C. with respect to a reforming reaction temperature of about 800 ° C., and therefore, after leaving the reforming reactor, CO It is cooled to the shift reaction temperature range before being sent to the shifter. In this method, the reforming reactor has a double-pipe structure, and a steam reformer filled in an annular portion formed by the outer tube and the inner tube while passing the high-temperature reformed gas obtained by the reforming reaction inside the inner tube. The catalyst is cooled to 450 to 600 ° C. by exchanging heat with the porous catalyst layer, and further cooled using another heat exchanger (Patent Document 1, Patent Document 2).
The steam reforming reaction is as follows.
C m H n + mH 2 O → mCO + (m + n / 2) H 2 ... (1)
CO + 3H 2 ← → CH 4 + H 2 O (2)
The CO shift reaction is as follows.
CO + H 2 O ← → CO 2 + H 2 (3)

石油系炭化水素を原料とする場合は、原料中に硫黄分が含有されているため、原料に含有される硫黄分を除去する脱硫方法として、水素を混合して(以下「水添」という)Co-Mo/アルミナやNi-Mo/アルミナなどの水素化触媒と接触させて硫黄分を硫化水素としたのち、ZnOなどの硫化水素吸着剤と接触させて硫化水素を吸着除去する水添脱硫方法が知られており、該水添脱硫方法では、常圧〜5MPaの圧力下、200〜400℃の温度範囲で反応が行われる。しかし、水添脱硫を行うためには反応用の水素を供給する必要があり、その水素源としては、一般に製品水素の一部をリサイクルする方法がとられており、製品水素を消耗するばかりか水素供給手段としてコンプレッサーなどを必要とし、水素製造装置のエネルギー効率を低下させる原因となっている。
前記水素化反応は、以下のとおりである。
S+H→HS+C ・・・・・・・(4)
また、脱硫反応の一例は、以下のとおりである。
S+ZnO→ZnS+HO ・・・・・・・(5)
When petroleum-based hydrocarbons are used as raw materials, since sulfur is contained in the raw materials, hydrogen is mixed as a desulfurization method for removing sulfur contained in the raw materials (hereinafter referred to as “hydrogenation”). A hydrodesulfurization method in which hydrogen sulfide such as ZnO is brought into contact with a hydrogenation catalyst such as Co-Mo / alumina or Ni-Mo / alumina and then contacted with a hydrogen sulfide adsorbent such as ZnO to adsorb and remove hydrogen sulfide. In the hydrodesulfurization method, the reaction is carried out in a temperature range of 200 to 400 ° C. under a pressure of normal pressure to 5 MPa. However, in order to perform hydrodesulfurization, it is necessary to supply hydrogen for reaction, and as a hydrogen source, a method of recycling a part of product hydrogen is generally taken, and not only product hydrogen is consumed. A compressor or the like is required as the hydrogen supply means, which is a cause of reducing the energy efficiency of the hydrogen production apparatus.
The hydrogenation reaction is as follows.
C m H n S + H 2 → H 2 S + C m H n (4)
An example of the desulfurization reaction is as follows.
H 2 S + ZnO → ZnS + H 2 O (5)

一方、前記脱硫方法として、近年、吸着脱硫触媒のは性能が改善されていることから、水添反応せずに脱硫を行う方法が開発され、比較的低温で行えるため適用されるケースが増えている。
この方法ではLPG、ナフサや灯油などの炭化水素に含有される硫黄分を除去するために、吸着脱硫触媒を常温から400℃、好ましくは触媒活性の高い150〜250℃程度に温度調節する(特許文献3)。
On the other hand, as the desulfurization method, since the performance of the adsorptive desulfurization catalyst has been improved in recent years, a method for desulfurization without a hydrogenation reaction has been developed, and since it can be performed at a relatively low temperature, the number of cases applied is increasing. Yes.
In this method, in order to remove sulfur contained in hydrocarbons such as LPG, naphtha and kerosene, the temperature of the adsorptive desulfurization catalyst is adjusted from room temperature to 400 ° C., preferably about 150 to 250 ° C. having high catalytic activity (patent) Reference 3).

特開平9−309703号公報JP-A-9-309703 特開平11−323355号公報JP-A-11-323355 特開2003−290660号公報JP 2003-290660 A

前記したように、原料炭化水素に水蒸気を混合して触媒改質反応による水素製造装置においては、原料炭化水素に水蒸気を加え改質反応器において改質反応を行い、主に水素からなる改質ガスを生成し、改質ガスに含有されるCOを水蒸気と反応させて水素に変成するためのCO変成器へ送られるが、前記改質反応器での改質反応温度が約800℃前後に対し、CO変成器における変成反応温度は、300〜400℃程度の比較的低い温度範囲で行なわれるため、改質反応器を出た改質ガスは、CO変成器へ送られるまでの間に前記変成温度範囲まで冷却する必要がある。その冷却方法は、改質反応器から導出された改質ガスを後段に熱交換器を設けて所定の温度まで冷却するものである。
本発明が解決しようとする課題は、前記の方法では、改質反応器とCO変成器とが別個の機器であることや改質反応器とCO変成器との間の器外に熱回収のための熱交換器を設ける必要があるため装置全体が過大となり、装置の製造費用を増大させるばかりでなく、機器および機器接続配管類からの熱損失により水素製造装置のエネルギー効率を低下させる原因となることである。
As described above, in a hydrogen production apparatus based on a catalytic reforming reaction by mixing steam with a raw material hydrocarbon, steam is added to the raw material hydrocarbon and a reforming reaction is performed in a reforming reactor. The gas is generated and sent to the CO converter for converting the CO contained in the reformed gas into hydrogen by reacting with steam, and the reforming reaction temperature in the reforming reactor is about 800 ° C. On the other hand, since the shift reaction temperature in the CO converter is performed in a relatively low temperature range of about 300 to 400 ° C., the reformed gas exiting the reformer reactor is sent to the CO converter before being sent to the CO converter. It is necessary to cool to the transformation temperature range. The cooling method is to cool the reformed gas derived from the reforming reactor to a predetermined temperature by providing a heat exchanger in the subsequent stage.
The problem to be solved by the present invention is that, in the above-described method, the reforming reactor and the CO converter are separate apparatuses, and heat recovery is performed outside the apparatus between the reforming reactor and the CO converter. As a result, it is necessary to provide a heat exchanger for the equipment, resulting in an excessively large apparatus, which not only increases the manufacturing cost of the apparatus, but also reduces the energy efficiency of the hydrogen production apparatus due to heat loss from equipment and equipment connection piping. It is to become.

さらに、石油系炭化水素より水素を製造する場合は、原料炭化水素に含有される硫黄分を吸着触媒で脱硫する吸着脱硫器において、脱硫触媒反応温度を触媒活性の高い温度範囲に調節する必要があるが、その温度範囲は比較的狭く、確実な温度調節を行う必要があることである。前記温度範囲を調節するにあたり、従来は、熱交換器により熱媒を用いて、原料炭化水素を脱硫器外部で温度調節しているために装置が過大となり、また、前記熱媒への熱供給手段も別途必要となり、装置の製造費用および運転費用が増大することである。   Furthermore, when hydrogen is produced from petroleum hydrocarbons, it is necessary to adjust the desulfurization catalyst reaction temperature to a temperature range where the catalytic activity is high in an adsorption desulfurizer that desulfurizes sulfur contained in the raw material hydrocarbon with an adsorption catalyst. However, the temperature range is relatively narrow, and it is necessary to perform reliable temperature control. In adjusting the temperature range, conventionally, since the temperature of the raw material hydrocarbon is adjusted outside the desulfurizer using a heat medium by a heat exchanger, the apparatus becomes excessive, and the heat supply to the heat medium is also performed. Means are also required, which increases the manufacturing and operating costs of the device.

請求項1記載の発明は、原料炭化水素に加熱水または水蒸気を混合したのち水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質手段と、該水蒸気改質手段で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成手段を少なくとも備えた水素製造装置において、前記水蒸気改質手段は水蒸気改質触媒を充填する水蒸気改質管を備え、前記水蒸気改質管を外管と内管の二重管構造とし、前記外管と前記内管で形成された環状部に水蒸気改質触媒を充填した水蒸気改質部と、前記内管を前記水蒸気改質部で生成した水素含有ガスの抜出部とし、前記内管内に原料炭化水素に混合する加熱水または水蒸気を発生させる加熱手段を配設したことを特徴とする水素製造装置に関する。
請求項2記載の発明は、前記加熱手段と前記内管とで形成された間隙部の少なくとも一部に一酸化炭素変成触媒層を形成して一酸化炭素変成手段とした請求項1に記載の水素製造装置である。
請求項3に記載の発明は、前記内管の前記加熱手段の後段に一酸化炭素変成触媒層を形成して一酸化炭素変成手段とした請求項1に記載の水素製造装置に関する。
請求項4に記載の発明は、原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換し、原料炭化水素を脱硫触媒と接触させて原料炭化水素中の硫黄分を除去する熱交換型脱硫手段を付設した請求項1〜3いずれかに記載の水素製造装置に関する。
請求項5に記載の発明は、原料炭化水素に加熱水または水蒸気を混合したのち水蒸気改質管に充填した水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質手段と、該水蒸気改質手段で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成手段を少なくとも備えた水素製造装置において、該水蒸気改質手段の前に、該水素製造装置に水添反応することなく原料炭化水素中の硫黄分を除去する脱硫手段を付設し、該脱硫手段を原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換する熱交換型脱硫手段としたことを特徴とする水素製造装置に関する。
次に、請求項6に記載の発明は、原料炭化水素に加熱水または水蒸気を混合し、水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質工程と、前記水蒸気改質工程で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成工程を少なくとも備えた水素製造方法において、該水蒸気改質工程の前に、原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換し、前記原料炭化水素を脱硫触媒と接触させて原料炭化水素中の硫黄分を除去する熱交換型脱硫工程を設け、加熱水または水蒸気により原料炭化水素の予熱と熱交換型脱硫工程における反応温度を調節することを特徴とする水素製造方法に関する。
The invention according to claim 1 is a steam reforming means for mixing a raw material hydrocarbon with heated water or steam and then bringing it into contact with a steam reforming catalyst to produce a hydrogen-containing gas, and hydrogen obtained by the steam reforming means In the hydrogen production apparatus having at least carbon monoxide conversion means for converting carbon monoxide to hydrogen by bringing carbon monoxide and steam in the contained gas into contact with a carbon monoxide conversion catalyst, the steam reforming means is steam reforming A steam reforming pipe for filling the catalyst, the steam reforming pipe has a double pipe structure of an outer pipe and an inner pipe, and a steam reforming catalyst is filled in an annular portion formed by the outer pipe and the inner pipe A steam reforming section and an extraction section for the hydrogen-containing gas produced in the steam reforming section are used as the inner pipe, and heating means for generating heated water or steam to be mixed with the raw material hydrocarbon is disposed in the inner pipe. Hydrogen production characterized by On location.
The invention according to claim 2 is the carbon monoxide conversion means according to claim 1, wherein a carbon monoxide conversion catalyst layer is formed in at least a part of a gap formed by the heating means and the inner pipe. This is a hydrogen production device.
A third aspect of the present invention relates to the hydrogen production apparatus according to the first aspect, wherein a carbon monoxide shift catalyst layer is formed after the heating means of the inner pipe to form a carbon monoxide shift means.
The invention according to claim 4 is a heat which heat-exchanges heating water or steam mixed with raw material hydrocarbon, and raw material hydrocarbon, and makes raw material hydrocarbon contact with a desulfurization catalyst, and removes sulfur content in raw material hydrocarbon. It is related with the hydrogen production apparatus in any one of Claims 1-3 which attached the exchange-type desulfurization means.
According to a fifth aspect of the present invention, there is provided a steam reforming means for producing a hydrogen-containing gas by mixing a raw material hydrocarbon with heated water or steam and then bringing it into contact with a steam reforming catalyst filled in a steam reforming tube, and the steam In a hydrogen production apparatus comprising at least carbon monoxide conversion means for contacting carbon monoxide and water vapor in a hydrogen-containing gas obtained by the reforming means with a carbon monoxide conversion catalyst to convert carbon monoxide to hydrogen, Before the steam reforming means, a desulfurization means for removing sulfur content in the raw material hydrocarbon without hydrogenating reaction is attached to the hydrogen production device, and the desulfurization means is mixed with the heated hydrocarbon or steam mixed with the raw material hydrocarbon. The present invention relates to a hydrogen production apparatus characterized by a heat exchange type desulfurization means for exchanging heat with a raw material hydrocarbon.
Next, the invention according to claim 6 includes a steam reforming step of mixing a raw material hydrocarbon with heated water or steam and bringing it into contact with a steam reforming catalyst to generate a hydrogen-containing gas, and the steam reforming step. In the hydrogen production method comprising at least a carbon monoxide conversion step of contacting carbon monoxide and steam in the obtained hydrogen-containing gas with a carbon monoxide conversion catalyst to convert carbon monoxide into hydrogen, the steam reforming step Heat exchange type desulfurization process in which heated water or water vapor mixed with the raw material hydrocarbon is exchanged with the raw material hydrocarbon and the raw material hydrocarbon is brought into contact with a desulfurization catalyst to remove sulfur in the raw material hydrocarbon. And a reaction temperature in the pre-heating of the raw material hydrocarbon and the heat exchange desulfurization process is adjusted with heated water or steam.

原料炭化水素に加熱水または水蒸気を混合(以下「改質原料」という)し、水蒸気改質触媒と接触させて水素を主成分とする改質ガスを生成する改質反応器において、原料炭化水素に混合される加熱水または水蒸気用に用いる純水などの加熱を行うと共に改質反応器出口ガス温度、すなわちCO変成器供給ガス温度を容易に調節することができる。さらに、純水予熱器を改質反応器内部に組み込むことで、加熱炉外部に設置する純水予熱器を省き、水素製造装置の熱交換手段を集約することで加熱炉内のスペースを有効に利用できる。また、CO変成手段を改質反応器内部に組み込み一体化することで、機器や機器接続配管からの放熱による熱損失を消滅させ、水素製造装置のエネルギー効率を高めることができる。
また、本発明では、水添反応せずに吸着脱硫触媒のみで脱硫する脱硫器にあっては、熱交換型脱硫器としたことにより、原料炭化水素に混合される加熱水または水蒸気による脱硫器での直接的な熱交換により、脱硫触媒反応の最適な温度範囲内に容易に調節することができる。
さらに、前記改質反応器において純水などの加熱を行うと共に、脱硫器を前記熱交換型脱硫器とすることで、水素製造装置のエネルギー効率をより一段と高めることができる。
In a reforming reactor in which heated water or steam is mixed with raw material hydrocarbon (hereinafter referred to as “reforming raw material”) and brought into contact with a steam reforming catalyst to produce a reformed gas mainly composed of hydrogen, the raw material hydrocarbon The heating water to be mixed with the pure water used for steam or the like, and the reforming reactor outlet gas temperature, that is, the CO converter supply gas temperature can be easily adjusted. Furthermore, by incorporating a pure water preheater inside the reforming reactor, the pure water preheater installed outside the heating furnace can be omitted, and the heat exchange means of the hydrogen production equipment can be consolidated to make space in the heating furnace effective. Available. Further, by integrating the CO conversion means into the reforming reactor and integrating it, it is possible to eliminate the heat loss due to heat radiation from the equipment and equipment connection piping, and to increase the energy efficiency of the hydrogen production apparatus.
In the present invention, the desulfurizer that performs desulfurization using only the adsorptive desulfurization catalyst without performing a hydrogenation reaction is a heat exchange type desulfurizer, so that a desulfurizer using heated water or steam mixed with raw material hydrocarbons is used. By direct heat exchange at, the temperature can be easily adjusted within the optimum temperature range for the desulfurization catalytic reaction.
Furthermore, by heating the reforming reactor with pure water or the like and using the desulfurizer as the heat exchange desulfurizer, the energy efficiency of the hydrogen production apparatus can be further increased.

以下、図面を用いて、本発明を具体的に説明する。   Hereinafter, the present invention will be specifically described with reference to the drawings.

図1は、本発明の水素製造装置の系統図である。以下、図1を参照しながら、本発明の作用および効果を説明する。
1は脱硫手段である熱交換型脱硫器、2は原料加熱器、3は水蒸気改質手段である改質反応器、31は改質反応器外管と内管との間の環状部、32は水蒸気改質触媒、33は改質反応器外管、34は改質反応器内管、35は改質反応器出口、36は改質反応器外管内管連通部、4は一酸化炭素変成手段であるCO変成器、5はPSA装置、6は純水予熱器、7は加熱手段である水蒸気発生器、71は水蒸気発生器伝熱管、8は熱交換器、9は冷却器、10は加熱炉、11は純水供給ポンプ、12は空気供給ブロワ、13は流量調節弁、14はオフガスホルダである。
FIG. 1 is a system diagram of the hydrogen production apparatus of the present invention. Hereinafter, the operation and effect of the present invention will be described with reference to FIG.
1 is a heat exchange type desulfurizer that is a desulfurization means, 2 is a raw material heater, 3 is a reforming reactor that is a steam reforming means, 31 is an annular portion between the outer tube and the inner tube of the reforming reactor, 32 Is a steam reforming catalyst, 33 is a reforming reactor outer pipe, 34 is a reforming reactor inner pipe, 35 is a reforming reactor outlet, 36 is a reforming reactor outer pipe inner pipe communication portion, and 4 is carbon monoxide transformation. CO converter as means, 5 PSA device, 6 as pure water preheater, 7 as steam generator as heating means, 71 as steam generator heat transfer tube, 8 as heat exchanger, 9 as cooler, 10 as A heating furnace, 11 is a pure water supply pump, 12 is an air supply blower, 13 is a flow control valve, and 14 is an off-gas holder.

熱交換型脱硫器1は、シェル・アンド・チューブ式熱交換型脱硫器であり、チューブ内にセラミックスボールなどの予熱担体および脱硫触媒を充填して原料炭化水素の流路とし、シェル側を原料炭化水素に混合する加熱水または水蒸気の流路として形成されている。   The heat exchange type desulfurizer 1 is a shell-and-tube type heat exchange type desulfurizer, in which a tube is filled with a preheating carrier such as ceramic balls and a desulfurization catalyst to form a raw material hydrocarbon flow path, and the shell side is a raw material. It is formed as a flow path for heated water or steam mixed with hydrocarbons.

原料加熱器2、改質反応器3および純水予熱器6は、加熱炉10内に配設され、原料加熱器2および改質反応器3と純水予熱器6は仕切り壁により区画配置されている。また、加熱炉10は燃焼排ガスと燃焼用空気とが熱交換して燃焼排ガスの熱量を回収する熱交換型バーナにより加熱される構成となっている。   The raw material heater 2, the reforming reactor 3 and the pure water preheater 6 are disposed in a heating furnace 10, and the raw material heater 2, the reforming reactor 3 and the pure water preheater 6 are partitioned by a partition wall. ing. The heating furnace 10 is configured to be heated by a heat exchange burner that recovers the amount of heat of the combustion exhaust gas by exchanging heat between the combustion exhaust gas and the combustion air.

改質反応器3は、外管33と内管34との二重管構造であり、外管33と内管34との間の環状部31に水蒸気改質触媒32が充填され、改質原料が水蒸気改質触媒32と接触して改質反応し、水素を主成分とする改質ガスを生成する。生成した改質ガスを外管33の下端部の外管内管連通部36を経て内管34から改質反応器外に排出する構成となっており、また、内管34にはコイル状構造の水蒸気発生器7が挿入配設されている。なお、水蒸気発生器7は、改質反応器内管34内に配設できる熱回収構造であれば、板状体や直管などであってもよい。   The reforming reactor 3 has a double tube structure of an outer tube 33 and an inner tube 34, and an annular portion 31 between the outer tube 33 and the inner tube 34 is filled with a steam reforming catalyst 32, and a reforming raw material is formed. Comes into contact with the steam reforming catalyst 32 and undergoes a reforming reaction to generate a reformed gas mainly composed of hydrogen. The generated reformed gas is discharged from the inner tube 34 to the outside of the reforming reactor through the outer tube inner tube communication portion 36 at the lower end portion of the outer tube 33, and the inner tube 34 has a coiled structure. A steam generator 7 is inserted and disposed. The steam generator 7 may be a plate or a straight pipe as long as it has a heat recovery structure that can be disposed in the reforming reactor inner pipe 34.

原料炭化水素は、含有する硫黄分を吸着除去する脱硫触媒が充填された熱交換型脱硫器1により原料炭化水素に混合される加熱水または水蒸気と熱交換されながら触媒反応温度調節が行われ脱硫される。ここで、熱交換する前記加熱水または水蒸気は、CO変成器4の後段に設けられた熱交換器8および加熱炉10内に設けられた純水予熱器6を経て、適宜沸点以上に加熱されて熱交換型脱硫器1に供給され、吸着脱硫触媒を加熱し、吸着脱硫に適した温度に制御する。熱交換型脱硫器1により脱硫された脱硫済みの原料炭化水素に熱交換後の加熱水または水蒸気が混合されて改質原料となり、加熱炉10内に設けられた原料加熱器2に供給され完全に気化される。改質反応器3に供給された改質原料は、改質反応器外管と内管との間の環状部31に充填された水蒸気改質触媒32と接触して改質反応が行われ、この反応によって生成した改質ガスは外管33の下端部の外管内管連通部36で流れ方向を上向きに転換され内管34に沿って改質反応器出口35へと流通し外部に送出される。この改質反応器3の内管34の出口35付近に配設された水蒸気発生器7に改質反応で用いる純水の一部を流すことで、原料炭化水素に混合される加熱水または水蒸気を発生させるとともに、改質ガスを後段のCO変成器4におけるCO変成触媒反応に最適な温度範囲まで冷却する。なお、原料炭化水素が硫黄分を含まないメタノールやGTL(GAS TO LIQUID)などの場合は、脱硫器1は不要となる。   The raw material hydrocarbon is desulfurized by adjusting the catalytic reaction temperature while heat exchanged with heated water or steam mixed with the raw material hydrocarbon by the heat exchange type desulfurizer 1 filled with a desulfurization catalyst that adsorbs and removes the sulfur content. Is done. Here, the heated water or water vapor to be heat-exchanged is appropriately heated to a boiling point or higher through a heat exchanger 8 provided in the rear stage of the CO converter 4 and a pure water preheater 6 provided in the heating furnace 10. The heat exchange desulfurizer 1 is supplied to heat the adsorptive desulfurization catalyst to control the temperature suitable for adsorptive desulfurization. Heated water or steam after heat exchange is mixed with the desulfurized raw material hydrocarbon desulfurized by the heat exchange desulfurizer 1 to form a reformed raw material, which is supplied to the raw material heater 2 provided in the heating furnace 10 and completely Vaporized. The reforming raw material supplied to the reforming reactor 3 is brought into contact with the steam reforming catalyst 32 filled in the annular portion 31 between the outer tube and the inner tube of the reforming reactor, and the reforming reaction is performed. The reformed gas generated by this reaction is changed in the flow direction upward at the outer pipe / inner pipe communication portion 36 at the lower end of the outer pipe 33, flows along the inner pipe 34 to the reforming reactor outlet 35, and is sent to the outside. The A portion of pure water used in the reforming reaction is caused to flow through a steam generator 7 disposed in the vicinity of the outlet 35 of the inner pipe 34 of the reforming reactor 3, thereby heating water or steam mixed with the raw material hydrocarbons. And the reformed gas is cooled to a temperature range optimum for the CO shift catalytic reaction in the subsequent CO shift converter 4. Note that the desulfurizer 1 is not required when the raw material hydrocarbon is methanol or GTL (GAS TO LIQUID) that does not contain sulfur.

改質反応器3で生成した改質ガスをCO変成器4に送り、改質ガス中のCOを触媒反応で水素に変成する。この反応は200〜500℃の温度範囲で行うが、主に変成触媒としては、300℃〜500℃の範囲のときは鉄−クロム系の触媒、200〜300℃の範囲のときは銅−亜鉛系の触媒が用いられる。   The reformed gas generated in the reforming reactor 3 is sent to the CO converter 4, and CO in the reformed gas is converted to hydrogen by a catalytic reaction. This reaction is carried out in a temperature range of 200 to 500 ° C. The main conversion catalyst is an iron-chromium catalyst in the range of 300 ° C. to 500 ° C., and copper-zinc in the range of 200 to 300 ° C. System catalysts are used.

改質ガスから高純度水素を製造する場合は、CO変成工程の後に、PSA装置5や水素分離膜装置(図示せず)などを配置して水素を分離精製する。PSA装置5を用いる場合は、CO変成器4の後段に熱交換器8を設け、改質ガスを改質反応に用いる純水などと熱交換して冷却し、さらに冷却器9により常温まで冷却してからPSA装置5に送られる。また、PSA装置5から発生するオフガスは、加熱炉10の燃料として用いられる。また、PSA装置5に代えて有機高分子系の水素分離膜により水素を透過分離する水素分離膜装置を用いる場合もPSA装置と同様な操作が行われる。しかし、無機系の水素分離膜により水素を透過分離する水素分離膜装置などを用いる場合には、高温状態で分離操作が行われるため、CO変成器4の後段に無機水素分離膜装置を設置し、改質ガスの冷却を行うことなく分離操作が行われる。無機水素分離膜で精製した水素やオフガスはともに高温のため、それぞれ熱交換器を設けて、改質反応で用いる純水などと熱交換して熱回収が図られる。   In the case of producing high-purity hydrogen from the reformed gas, the PSA device 5 and a hydrogen separation membrane device (not shown) are disposed and purified after the CO conversion step. When the PSA device 5 is used, a heat exchanger 8 is provided at the subsequent stage of the CO converter 4, the reformed gas is cooled by exchanging heat with pure water used for the reforming reaction, and further cooled to room temperature by the cooler 9. Then, it is sent to the PSA device 5. Further, the off-gas generated from the PSA device 5 is used as fuel for the heating furnace 10. Further, when using a hydrogen separation membrane device that permeates and separates hydrogen with an organic polymer hydrogen separation membrane instead of the PSA device 5, the same operation as the PSA device is performed. However, when using a hydrogen separation membrane device that permeates and separates hydrogen using an inorganic hydrogen separation membrane, the separation operation is performed at a high temperature. Therefore, an inorganic hydrogen separation membrane device is installed after the CO converter 4. The separation operation is performed without cooling the reformed gas. Since both hydrogen and off-gas purified by the inorganic hydrogen separation membrane are high in temperature, a heat exchanger is provided for heat recovery by exchanging heat with pure water used in the reforming reaction.

図2は、水蒸気発生器7と内管3とで形成された間隙部の少なくとも一部にCO変成触媒層を形成し、図1の装置のCO変成器4を改質反応器3内部に一体化した系統図である。   FIG. 2 shows that a CO conversion catalyst layer is formed in at least a part of a gap formed by the steam generator 7 and the inner pipe 3, and the CO converter 4 of the apparatus of FIG. FIG.

なお、原料炭化水素と純水から改質ガスが生成されるまでの装置の構成と工程は前記と同様であるので、ここでは説明を省略し、改質反応器内部に設置したCO変成手段の構成、作用および効果についてのみ説明する。   Since the configuration and process of the apparatus until the reformed gas is generated from the raw material hydrocarbon and pure water are the same as described above, the description is omitted here, and the CO conversion means installed in the reforming reactor is omitted. Only the structure, operation, and effect will be described.

53は水蒸気改質手段の改質反応器、531は改質反応器外管と内管との間の環状部、532は水蒸気改質触媒、533は改質反応器外管、534は改質反応器内管、535は改質反応器出口、536改質反応器外管内管連通部、57は加熱手段の水蒸気発生器、571は水蒸気発生器伝熱管、54は一酸化炭素変成手段のCO変成触媒層であり、水蒸気発生器57と内管534とで形成された間隙部の少なくとも一部に触媒が充填されている。   53 is a reforming reactor of steam reforming means, 531 is an annular portion between the reforming reactor outer pipe and inner pipe, 532 is a steam reforming catalyst, 533 is a reforming reactor outer pipe, and 534 is reforming. Reactor inner pipe, 535 is a reforming reactor outlet, 536 reforming reactor outer pipe inner pipe communication part, 57 is a steam generator of heating means, 571 is a steam generator heat transfer pipe, and 54 is CO of CO conversion means. It is a shift catalyst layer, and at least a part of the gap formed by the steam generator 57 and the inner pipe 534 is filled with the catalyst.

前記構成の水素製造装置において、改質原料は、改質反応器53において改質反応器外管533と内管534との間の環状部31に充填された水蒸気改質触媒32と接触して改質反応が行われ、改質反応によって生成した改質ガスは、二重管構造の改質反応器外管533の下端部の外管内管連通部536で流れ方向を上向きに転換され内管534に沿って改質反応器出口535へと流通する間に、内管の環状部531に充填された水蒸気改質触媒と熱交換されながら送出されるが、この改質反応器出口535付近に水蒸気発生器57を設置し、この水蒸気発生器57に改質反応で用いる純水の一部を流すことで、改質ガスにより加熱して水蒸気を発生させるとともに、改質ガスをCO変成工程におけるCO変成触媒反応に最適な温度範囲まで冷却し、改質反応器内管534内側と水蒸気発生器伝熱管571との間の一部に充填されたCO変成触媒層54において改質ガス中のCOを触媒反応により水素に変成する。CO変成器4が改質反応器3内部に組み込まれ一体化された構成となるので、加熱炉60外部にCO変成器を別に設置する必要がなく、したがってCO変成器の容器と機器接続配管からの放熱による熱損失は皆無となり、水素製造装置のエネルギー効率を高めることができる。また、図示しないが、CO変成触媒層は水蒸気発生器伝熱管571と改質反応器出口535との間に設置することもできる。   In the hydrogen production apparatus configured as described above, the reforming raw material comes into contact with the steam reforming catalyst 32 filled in the annular portion 31 between the reforming reactor outer tube 533 and the inner tube 534 in the reforming reactor 53. The reforming reaction is performed, and the reformed gas generated by the reforming reaction is changed in the flow direction upward by the outer tube inner tube communication portion 536 at the lower end of the reformer reactor outer tube 533 having a double tube structure, and the inner tube While flowing to the reforming reactor outlet 535 along the line 534, the heat is exchanged with the steam reforming catalyst filled in the annular portion 531 of the inner tube, and is sent to the vicinity of the reforming reactor outlet 535. A steam generator 57 is installed, and a portion of pure water used in the reforming reaction is caused to flow through the steam generator 57 to generate steam by heating with the reformed gas, and the reformed gas is used in the CO conversion process. To the optimum temperature range for CO conversion catalytic reaction And retirement, to denature the CO in the reformed gas in the CO shift catalyst layer 54 filled in the portion between the reformer reactor tube 534 inside and steam generator tubes 571 to the hydrogen by a catalytic reaction. Since the CO converter 4 is integrated and integrated in the reforming reactor 3, it is not necessary to install a separate CO converter outside the heating furnace 60. Therefore, from the CO converter container and the equipment connection pipe There is no heat loss due to heat dissipation, and the energy efficiency of the hydrogen production apparatus can be improved. Although not shown, the CO shift catalyst layer can be installed between the steam generator heat transfer tube 571 and the reforming reactor outlet 535.

水素製造装置における運転条件は、例えば、改質反応圧力を0.5〜1.0MPaで運転する改質反応では、純水予熱器6における純水の沸点はおよそ160〜180℃になる。この温度範囲は原料炭化水素中の硫黄成分の触媒吸着反応に適するものであり、したがって熱交換型脱硫器1に供給する純水の量は、出口温度が沸点を下回らないように供給量を調節することが好ましい。この場合、熱源として水の蒸発潜熱を利用するためその熱容量は大きく、広範囲な原料炭化水素の供給量に対応でき、かつ過熱することなく容易に安定した脱硫触媒反応を行うことができる。前記反応温度範囲は150〜250℃が好ましい。なお、改質反応圧力は、例えばメタノールやアンモニア合成用途などに水素または合成ガスを製造する場合には数十MPaで反応させて本装置および製造方法を適用することができる。   For example, in the reforming reaction in which the reforming reaction pressure is operated at a reforming reaction pressure of 0.5 to 1.0 MPa, the boiling point of pure water in the pure water preheater 6 is approximately 160 to 180 ° C. This temperature range is suitable for the catalytic adsorption reaction of the sulfur component in the raw material hydrocarbon. Therefore, the amount of pure water supplied to the heat exchange desulfurizer 1 is adjusted so that the outlet temperature does not fall below the boiling point. It is preferable to do. In this case, since the latent heat of vaporization of water is used as a heat source, the heat capacity thereof is large, it is possible to cope with a wide range of feed amounts of raw material hydrocarbons, and a stable desulfurization catalytic reaction can be easily performed without overheating. The reaction temperature range is preferably 150 to 250 ° C. For example, when producing hydrogen or synthesis gas for methanol or ammonia synthesis, the apparatus and the production method can be applied by reacting at a reforming reaction pressure of several tens of MPa.

<実験例1>
図1の装置を用い、水蒸気改質工程における運転操作について検討した結果を以下に述べる。改質原料の改質反応器3入口温度が300℃以上で、改質ガスの改質反応器3出口温度範囲が300〜500℃で、純水予熱器6と水蒸気発生器7出口の純水温度が水の沸点以上になるよう改質反応器3入口管路の途中に設けられた流量調節弁13で純水流量を調節した。なお、純水の圧力は改質反応圧力条件に従い、特に調節せずに供給し、また、改質反応器内管34内側の改質ガスの流路に設けた水蒸気発生器伝熱管71に水蒸気改質反応で用いる純水の一部を常温で供給した。その結果、改質ガスの改質反応器3からの出口温度は純水を流通させる前には550℃であったのに対して、流通させた後には350℃に冷却された。さらに、温度調節することなくこの改質ガスをCO変成器4に送り、従来と同じ反応ガス組成を得ることができた。このとき、水蒸気発生器伝熱管71出口の水蒸気温度は380℃となり、これを熱交換型脱硫器1により別途発生させた水蒸気と混合したときの温度は350℃であり、また、改質ガスも従来と同じ組成のガスが得られ、改質反応器内管34内側に水蒸気発生器7を設置し、省スペース化を図ることができることが確認された。
<Experimental example 1>
The result of examining the operation in the steam reforming process using the apparatus of FIG. 1 will be described below. The reforming raw material reforming reactor 3 inlet temperature is 300 ° C. or higher, the reforming gas reforming reactor 3 outlet temperature range is 300 to 500 ° C., and pure water from the pure water preheater 6 and the steam generator 7 outlet. The pure water flow rate was adjusted by a flow rate control valve 13 provided in the middle of the reforming reactor 3 inlet pipe so that the temperature was equal to or higher than the boiling point of water. The pressure of pure water is supplied without any particular adjustment according to the reforming reaction pressure condition, and steam is supplied to the steam generator heat transfer pipe 71 provided in the reformed gas flow path inside the reforming reactor inner pipe 34. A portion of pure water used in the reforming reaction was supplied at room temperature. As a result, the outlet temperature of the reformed gas from the reforming reactor 3 was 550 ° C. before flowing pure water, but was cooled to 350 ° C. after flowing. Furthermore, this reformed gas was sent to the CO converter 4 without adjusting the temperature, and the same reaction gas composition as before could be obtained. At this time, the steam temperature at the outlet of the steam generator heat transfer pipe 71 is 380 ° C., and when this is mixed with steam separately generated by the heat exchange desulfurizer 1, the temperature is 350 ° C. It was confirmed that a gas having the same composition as the conventional gas was obtained, and that the water vapor generator 7 was installed inside the reforming reactor inner pipe 34 to save space.

<実験例2>
熱交換器のチューブ内にニッケル系脱硫触媒を充填した脱硫器1のシェル側に、180℃に予熱した気液混相状態の純水を供給してチューブ側を加熱した。一方、チューブ側に改質原料として常温の灯油を0.8MPaで供給した。出口温度はチューブ側の灯油、シェル側の純水ともに180℃で熱交換したとき、原料灯油中の硫黄濃度は30ppmから0.05ppm未満に減少した。これは、前記の背景技術に記載した従来の水添脱硫方式と同等の脱硫性能であった。
<Experimental example 2>
Pure water in a gas-liquid mixed phase preheated to 180 ° C. was supplied to the shell side of the desulfurizer 1 in which the nickel-based desulfurization catalyst was filled in the tube of the heat exchanger, and the tube side was heated. On the other hand, normal temperature kerosene was supplied to the tube side as a reforming raw material at 0.8 MPa. When the outlet temperature was heat exchanged at 180 ° C. for both the kerosene on the tube side and the pure water on the shell side, the sulfur concentration in the raw kerosene decreased from 30 ppm to less than 0.05 ppm. This was a desulfurization performance equivalent to the conventional hydrodesulfurization method described in the background art.

前記実験例により、改質反応器の改質管内に水蒸気発生器7を設置して一体化し加熱炉外部に設置する純水予熱器を省略できるとともに、改質ガスをCO変成反応に適した温度に調整できることが明確となり、また、水添反応せずに吸着脱硫触媒のみで脱硫する脱硫器にあっては、熱交換型脱硫器とすることにより、原料炭化水素に混合される加熱水または水蒸気による脱硫器での直接的な熱交換により、脱硫触媒反応の最適な温度範囲内に容易に調節することができることが明確となった。従って、それら改質反応器および脱硫器を組み合わせることにより、最大の効果が得られることは明確である。   According to the above experimental example, it is possible to omit the pure water preheater which is installed and integrated outside the heating furnace by installing the steam generator 7 in the reforming tube of the reforming reactor, and the reformed gas has a temperature suitable for the CO shift reaction. In addition, in a desulfurizer that desulfurizes only with an adsorptive desulfurization catalyst without performing a hydrogenation reaction, a heat exchange type desulfurizer is used so that heated water or steam mixed with raw material hydrocarbons is used. It was clarified that direct heat exchange in the desulfurizer can easily be adjusted within the optimum temperature range of the desulfurization catalytic reaction. Therefore, it is clear that the maximum effect can be obtained by combining the reforming reactor and the desulfurizer.

本発明の水素製造装置の系統図(実施例1)System diagram of hydrogen production apparatus of the present invention (Example 1) 本発明のCO変成触媒層を改質反応器内部に組み込み一体化した系統図(実施例2)System diagram in which the CO conversion catalyst layer of the present invention is integrated and integrated in the reforming reactor (Example 2)

符号の説明Explanation of symbols

1 :熱交換型脱硫器
2 :原料加熱器
3 :改質反応器
31 :改質反応器外管と内管との間の環状部
32 :水蒸気改質触媒
33 :改質反応器外管
34 :改質反応器内管
35 :改質反応器出口
36 :改質反応器外管内管連通部
4 :CO変成器
5 :PSA装置
6 :純水予熱器
7 :水蒸気発生器
71 :水蒸気発生器伝熱管
8 :熱交換器
9 :冷却器
10 :加熱炉
11 :純水供給ポンプ
12 :空気供給ブロワ
13 :流量調節弁
14 :オフガスホルダ
53 :改質反応器
531:改質反応器外管と内管との間の環状部
532:水蒸気改質触媒
533:改質反応器外管
534:改質反応器内管
535:改質反応器出口
536:改質反応器外管内管連通部
54 :CO変成触媒層
57 :水蒸気発生器
571:水蒸気発生器伝熱管
60 :加熱炉
1: Heat exchange type desulfurizer 2: Raw material heater 3: Reforming reactor 31: Annular part between reforming reactor outer tube and inner tube 32: Steam reforming catalyst 33: Reforming reactor outer tube 34 : Reforming reactor inner pipe 35: Reforming reactor outlet 36: Reforming reactor outer pipe inner pipe communication part 4: CO converter 5: PSA device 6: Pure water preheater 7: Steam generator 71: Steam generator Heat transfer tube 8: Heat exchanger 9: Cooler 10: Heating furnace 11: Pure water supply pump 12: Air supply blower 13: Flow control valve 14: Off gas holder 53: Reforming reactor 531: Reforming reactor outer tube Annular part between the inner pipe 532: Steam reforming catalyst 533: Outer pipe of reforming reactor 534: Inner pipe of reforming reactor 535: Outlet of reforming reactor 536: Inner pipe communicating section of reforming reactor 54: CO conversion catalyst layer 57: Steam generator 571: Steam generator heat transfer tube 60: heating furnace

Claims (6)

原料炭化水素に加熱水または水蒸気を混合したのち水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質手段と、該水蒸気改質手段で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成手段を少なくとも備えた水素製造装置において、前記水蒸気改質手段は水蒸気改質触媒を充填する水蒸気改質管を備え、前記水蒸気改質管を外管と内管の二重管構造とし、前記外管と前記内管で形成された環状部に水蒸気改質触媒を充填した水蒸気改質部と、前記内管を前記水蒸気改質部で生成した水素含有ガスの抜出部とし、前記内管内に原料炭化水素に混合する加熱水または水蒸気を発生させる加熱手段を配設したことを特徴とする水素製造装置。   Steam reforming means for producing hydrogen-containing gas by mixing heated hydrocarbons or steam with the raw material hydrocarbon and then contacting with the steam reforming catalyst, and carbon monoxide in the hydrogen-containing gas obtained by the steam reforming means, In a hydrogen production apparatus having at least a carbon monoxide converting means for converting steam to carbon by bringing steam into contact with a carbon monoxide converting catalyst, the steam reforming means is a steam reforming tube filled with a steam reforming catalyst. The steam reforming pipe has a double pipe structure of an outer pipe and an inner pipe, a steam reforming section in which an annular section formed by the outer pipe and the inner pipe is filled with a steam reforming catalyst, and the inner A hydrogen production apparatus characterized in that a pipe is used as an extraction part for the hydrogen-containing gas produced in the steam reforming part, and heating means for generating heated water or steam mixed with the raw material hydrocarbon is disposed in the inner pipe. . 前記加熱手段と前記内管とで形成された間隙部の少なくとも一部に一酸化炭素変成触媒層を形成して一酸化炭素変成手段とした請求項1に記載の水素製造装置。   2. The hydrogen production apparatus according to claim 1, wherein a carbon monoxide conversion catalyst layer is formed in at least a part of a gap formed by the heating unit and the inner pipe to form a carbon monoxide conversion unit. 前記内管の前記加熱手段の後段に一酸化炭素変成触媒層を形成して一酸化炭素変成手段とした請求項1に記載の水素製造装置。   The hydrogen production apparatus according to claim 1, wherein a carbon monoxide conversion catalyst layer is formed at a stage subsequent to the heating unit of the inner pipe to form a carbon monoxide conversion unit. 前記水蒸気改質手段の前に、原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換し、原料炭化水素を脱硫触媒と接触させて原料炭化水素中の硫黄分を除去する熱交換型脱硫手段を付設した請求項1〜3いずれかに記載の水素製造装置。   Before the steam reforming means, heat is exchanged between the heated water or steam mixed with the raw material hydrocarbon and the raw material hydrocarbon, and the raw material hydrocarbon is brought into contact with the desulfurization catalyst to remove sulfur in the raw material hydrocarbon. The hydrogen production apparatus according to any one of claims 1 to 3, further comprising exchange-type desulfurization means. 原料炭化水素に加熱水または水蒸気を混合したのち水蒸気改質管に充填した水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質手段と、該水蒸気改質手段で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成手段を少なくとも備えた水素製造装置において、該水蒸気改質手段の前に、該水素製造装置に水添反応することなく原料炭化水素中の硫黄分を除去する脱硫手段を付設し、該脱硫手段を原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換する熱交換型脱硫手段としたことを特徴とする水素製造装置。   Steam reforming means for generating hydrogen-containing gas by mixing raw material hydrocarbons with heated water or steam and then contacting with a steam reforming catalyst filled in a steam reforming tube, and hydrogen content obtained by the steam reforming means In a hydrogen production apparatus comprising at least carbon monoxide conversion means for contacting carbon monoxide and steam in a gas with a carbon monoxide conversion catalyst to convert carbon monoxide into hydrogen, before the steam reforming means, Heat for exchanging heat between heated water or steam mixed with the raw material hydrocarbon and the raw material hydrocarbon is provided with a desulfurization means for removing sulfur in the raw material hydrocarbon without hydrogenation reaction in the hydrogen production device A hydrogen production apparatus characterized in that it is an exchange-type desulfurization means. 原料炭化水素に加熱水または水蒸気を混合し、水蒸気改質触媒と接触させて水素含有ガスを生成する水蒸気改質工程と、前記水蒸気改質工程で得られた水素含有ガス中の一酸化炭素と水蒸気を一酸化炭素変成触媒と接触させて一酸化炭素を水素に変成する一酸化炭素変成工程を少なくとも備えた水素製造方法において、該水蒸気改質工程の前に、原料炭化水素に混合する加熱水または水蒸気と原料炭化水素とを熱交換し、前記原料炭化水素を脱硫触媒と接触させて原料炭化水素中の硫黄分を除去する熱交換型脱硫工程を設け、加熱水または水蒸気により原料炭化水素の予熱と熱交換型脱硫工程における反応温度を調節することを特徴とする水素製造方法。
A steam reforming step in which heated water or steam is mixed with the raw material hydrocarbon and brought into contact with the steam reforming catalyst to generate a hydrogen-containing gas; and carbon monoxide in the hydrogen-containing gas obtained in the steam reforming step; In a hydrogen production method comprising at least a carbon monoxide conversion step of contacting water vapor with a carbon monoxide conversion catalyst to convert carbon monoxide to hydrogen, heated water mixed with the raw material hydrocarbon before the steam reforming step Alternatively, a heat exchange type desulfurization step is performed in which the steam and the raw material hydrocarbon are subjected to heat exchange, and the raw material hydrocarbon is brought into contact with a desulfurization catalyst to remove sulfur in the raw material hydrocarbon. A hydrogen production method comprising adjusting a reaction temperature in a preheating and heat exchange desulfurization step.
JP2004188716A 2004-06-25 2004-06-25 Hydrogen production system and hydrogen production method Withdrawn JP2006008453A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004188716A JP2006008453A (en) 2004-06-25 2004-06-25 Hydrogen production system and hydrogen production method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004188716A JP2006008453A (en) 2004-06-25 2004-06-25 Hydrogen production system and hydrogen production method

Publications (1)

Publication Number Publication Date
JP2006008453A true JP2006008453A (en) 2006-01-12

Family

ID=35776102

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004188716A Withdrawn JP2006008453A (en) 2004-06-25 2004-06-25 Hydrogen production system and hydrogen production method

Country Status (1)

Country Link
JP (1) JP2006008453A (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234837A (en) * 2008-03-26 2009-10-15 Nippon Oil Corp Apparatus for feeding starting material for reforming and fuel cell system
CN108394863A (en) * 2018-05-16 2018-08-14 张家港氢云新能源研究院有限公司 By the vapor reforming hydrogen production device of high-temperature flue gas heat supply

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009234837A (en) * 2008-03-26 2009-10-15 Nippon Oil Corp Apparatus for feeding starting material for reforming and fuel cell system
CN108394863A (en) * 2018-05-16 2018-08-14 张家港氢云新能源研究院有限公司 By the vapor reforming hydrogen production device of high-temperature flue gas heat supply

Similar Documents

Publication Publication Date Title
US8926866B2 (en) Hydrogen generating apparatus using steam reforming reaction
EP1977993B1 (en) Catalytic steam reforming with recycle
JP4335535B2 (en) Single chamber compact fuel processor
US7964176B2 (en) Process and apparatus for thermally integrated hydrogen generation system
JP2003502812A (en) Method for providing a pure hydrogen stream for a fuel cell
WO2011022167A1 (en) Apparatus, systems, and processes for producing syngas and products therefrom
KR102094646B1 (en) Highly efficient steam reforming hydrogen production apparatus with hydrodesulfurization
JP2009078954A (en) Reforming apparatus
KR20230029615A (en) How to produce hydrogen
WO2022100899A1 (en) A process for producing a hydrogen-comprising product gas from a hydrocarbon
JP2014517799A (en) Non-catalytic recuperation reformer
US20100176346A1 (en) Process and system for conducting isothermal low-temperature shift reaction using a compact boiler
JP5161621B2 (en) Fuel cell reformer
CN215611423U (en) Methane conversion system
JP2006008453A (en) Hydrogen production system and hydrogen production method
JP6276952B2 (en) Process for producing high purity hydrogen from a modified hydrocarbon feed comprising a desulfurization stage with improved temperature control upstream of the PSA
JP2016184550A (en) Gas manufacturing apparatus
JP4175921B2 (en) Heat recovery system in hydrogen production equipment
JP2007131500A (en) Hydrogen production apparatus
JP2003306306A (en) Autothermal reforming apparatus
KR102323731B1 (en) Multi-fuels Reforming system for hydrogen production
US20060032137A1 (en) Catalyst coated heat exchanger
JP2012067165A (en) Method and system for recovering and utilizing waste energy
JP2008133144A (en) Hydrogen production system and exhaust-heat recovery method using the same
GB2460689A (en) Method for heating and temperature regulation of a CO clean up reactor

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904