JP2006007546A - Molding transfer method - Google Patents

Molding transfer method Download PDF

Info

Publication number
JP2006007546A
JP2006007546A JP2004186967A JP2004186967A JP2006007546A JP 2006007546 A JP2006007546 A JP 2006007546A JP 2004186967 A JP2004186967 A JP 2004186967A JP 2004186967 A JP2004186967 A JP 2004186967A JP 2006007546 A JP2006007546 A JP 2006007546A
Authority
JP
Japan
Prior art keywords
pattern
curved surface
mold
molding
master
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004186967A
Other languages
Japanese (ja)
Inventor
Akira Inoue
章 井上
Mikio Masui
幹生 桝井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Electric Works Co Ltd
Original Assignee
Matsushita Electric Works Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Works Ltd filed Critical Matsushita Electric Works Ltd
Priority to JP2004186967A priority Critical patent/JP2006007546A/en
Publication of JP2006007546A publication Critical patent/JP2006007546A/en
Withdrawn legal-status Critical Current

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To manufacture a molded product having a fine stripe shaped pattern applied to its almost arbitrary curved surface having a large area by molding transfer in a molding transfer method. <P>SOLUTION: The molding transfer method for manufacturing the molded product including at least a curved surface and having a predetermined fine stripe shaped pattern applied to its curved surface by molding transfer includes a surface dividing process S1 for dividing the curved surface into surface elements, a curved surface master molding process S2 for molding a curved surface master having the same shape as a molded product having no pattern but having the curved surface, a divided pattern transfer process S3 for transferring the patterns to the regions corresponding to the respective surface elements of the curved surface master using a split mold having the pattern shapes in the regions corresponding to the surface elements, a mold forming process S4 for forming a mold using an electrocasting method on the basis of the curved surface master to which the patterns are transferred, a pattern transfer molding process S5 for performing the transfer molding of the molded product having the curved surface and the pattern thereon using the mold and a release process S6 for releasing the molded product from the mold, as fundamental processes. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、表面に微細パターンを転写した成形品を製造する成形転写方法に関する。   The present invention relates to a molding transfer method for manufacturing a molded product having a fine pattern transferred to a surface.

近年、光学部品や照明部品などの主として中小成形品からなる導光板、拡散板、防汚・撥水構造体など、また住設部品などの主として大型部品樹脂成形品からなる防汚・撥水構造体などに新たな光学機能や耐環境性を付与するため、成形品表面に凹凸をもつ微細な形状を形成する技術が検討され、開発されている。このような技術として、例えば、ナノオーダの微細形状を有する型を用いてプレス成形によりパターン転写を行うナノインプリント法が知られている(例えば、特許文献1参照)。また、同じくパターン転写を用いて、表面に微細凹凸形状を一体に形成したレンチキュラーレンズシートを製造する方法が知られている(例えば、特許文献2参照)。
米国特許第5772905号明細書 特開平9−311204号公報
In recent years, light guide plates, diffuser plates, antifouling / water repellent structures mainly composed of small and medium molded products such as optical components and lighting components, and antifouling / water repellent structures composed mainly of resin molded products such as housing parts In order to impart a new optical function and environmental resistance to the body and the like, a technique for forming a fine shape with irregularities on the surface of the molded product has been studied and developed. As such a technique, for example, a nanoimprint method is known in which pattern transfer is performed by press molding using a mold having a nano-order fine shape (see, for example, Patent Document 1). Similarly, a method of manufacturing a lenticular lens sheet in which fine irregularities are integrally formed on the surface by using pattern transfer is known (see, for example, Patent Document 2).
US Pat. No. 5,772,905 JP-A-9-311204

しかしながら、上述した特許文献1に示されるような微細形状の形成技術は、微小面積かつ平板からなる対象物への適用に限られており、また、特許文献2に示されるような平板以外の対象物への微細形状の形成技術においても、略任意の一般的な曲面を有する対象物表面に微細形状を形成することができない。   However, the technology for forming a fine shape as described in Patent Document 1 described above is limited to application to an object having a small area and a flat plate, and targets other than the flat plate as shown in Patent Document 2 Even in the technology for forming a fine shape on an object, it is not possible to form a fine shape on the surface of an object having a substantially arbitrary general curved surface.

本発明は、上記課題を解消するものであって、大面積、かつ略任意の曲面に微細形状パターンを成形転写した成形品を製造する成形転写方法を提供することを目的とする。   SUMMARY OF THE INVENTION An object of the present invention is to solve the above-mentioned problems and to provide a molding transfer method for manufacturing a molded product in which a fine shape pattern is molded and transferred on an almost arbitrary curved surface with a large area.

上記課題を達成するために、請求項1の発明は、少なくとも曲面を備え、当該曲面に所定の微細形状パターンを成形転写した成形品を製造する成形転写方法において、前記曲面を微小な面要素に分割する面分割工程と、前記パターンを備えることなく前記曲面を備えて前記成形品と同一形状を有する曲面マスタを成形する曲面マスタ成形工程と、前記各面要素に対応する部位における前記パターン形状を備えた分割型を用いて、前記曲面マスタの前記各面要素に対応する部位に当該パターンを転写する分割パターン転写工程と、前記パターンが転写された曲面マスタをもとに電気鋳造法を用いて成形型を作成する成形型作成工程と、前記工程により作成された成形型を用いて、前記曲面及び当該曲面に前記パターンを備えた成形品を転写成形するパターン転写成形工程と、前記工程により転写成形された成形品を離型する離型工程と、を含むものである。   In order to achieve the above object, the invention of claim 1 is a molding transfer method for manufacturing a molded product having at least a curved surface, and molding and transferring a predetermined fine shape pattern on the curved surface. A surface dividing step for dividing, a curved surface master forming step for forming a curved surface master having the same shape as the molded product without providing the pattern, and the pattern shape at a portion corresponding to each surface element. A divided pattern transfer step of transferring the pattern to a portion corresponding to each surface element of the curved surface master using the divided mold provided, and using an electroforming method based on the curved surface master to which the pattern is transferred Using a mold creating step for creating a mold and the mold created in the above step, the curved surface and a molded product having the pattern on the curved surface are transferred and molded. A pattern transfer molding process that is intended to include, a releasing step of releasing the molded article is transferred molded by the process.

請求項2の発明は、請求項1に記載の成形転写方法において、前記面分割工程は、成形品の3次元形状モデルを用いて前記面要素への分割を行うとともに、前記離型工程における離型に際し前記成形型の離型方向に対する前記パターンの形状がアンダーカットの関係にならないように前記分割を決定する工程を含むものである。   According to a second aspect of the present invention, in the molding transfer method according to the first aspect, the surface dividing step divides the molded product into the surface elements using a three-dimensional shape model of the molded product, and the separation in the releasing step. The method includes a step of determining the division so that the shape of the pattern with respect to the mold releasing direction of the mold does not have an undercut relationship.

請求項3の発明は、請求項1又は請求項2に記載の成形転写方法において、前記面分割工程は、前記各面要素に含まれるパターンが当該面要素に隣接する面要素に含まれるパターンに連続するように、各パターンの位置及び方向を決定する工程を含むものである。   A third aspect of the present invention is the molding transfer method according to the first or second aspect, wherein the surface dividing step is performed such that a pattern included in each surface element is included in a surface element adjacent to the surface element. A step of determining the position and direction of each pattern so as to be continuous is included.

請求項4の発明は、請求項1乃至請求項3のいずれかに記載の成形転写方法において、前記曲面マスタ成形工程とパターン転写成形工程は、それぞれ少なくとも2つの型を用いて行われ、各工程で用いられる型のうち1つは両工程において共用されるものである。   According to a fourth aspect of the present invention, in the molding transfer method according to any one of the first to third aspects, each of the curved surface master molding step and the pattern transfer molding step is performed using at least two molds. One of the molds used in is shared by both processes.

請求項5の発明は、請求項1乃至請求項3のいずれかに記載の成形転写方法において、前記曲面マスタ成形工程は、樹脂を前記曲面マスタの形状に切削加工する工程を含むものである。   A fifth aspect of the present invention is the molding transfer method according to any one of the first to third aspects, wherein the curved surface master molding step includes a step of cutting a resin into the shape of the curved surface master.

請求項6の発明は、請求項1乃至請求項5のいずれかに記載の成形転写方法において、前記分割パターン転写工程は、前記曲面マスタを形成する材料として熱可塑性樹脂を用いるとともに前記分割型を形成する材料として透明体を用い、前記透明体からなる分割型を透過して前記熱可塑性樹脂からなる曲面マスタにエネルギ線を照射することにより前記曲面マスタを部分的に加熱するとともに当該加熱部分に前記分割型により前記パターンを転写する工程を含むものである。   A sixth aspect of the present invention is the molding transfer method according to any one of the first to fifth aspects, wherein the divided pattern transfer step uses a thermoplastic resin as a material for forming the curved surface master and the divided mold. A transparent body is used as a material to be formed, and the curved surface master is partially heated by passing through a split mold made of the transparent body and irradiating the curved surface master made of the thermoplastic resin with energy rays. The method includes a step of transferring the pattern by the split mold.

請求項7の発明は、請求項1乃至請求項5のいずれかに記載の成形転写方法において、前記分割パターン転写工程は、前記曲面マスタを形成する材料として透明な熱可塑性樹脂を用い、前記透明な曲面マスタを透過してエネルギ線を照射することにより前記曲面マスタの表面を部分的に加熱するとともに当該加熱部分に前記分割型により前記パターンを転写する工程を含むものである。   The invention according to claim 7 is the molding transfer method according to any one of claims 1 to 5, wherein the divided pattern transfer step uses a transparent thermoplastic resin as a material for forming the curved surface master, and the transparent A step of partially heating the surface of the curved surface master by passing through a curved surface master and irradiating energy rays, and transferring the pattern to the heated portion by the split mold.

請求項8の発明は、請求項1乃至請求項5のいずれかに記載の成形転写方法において、前記分割パターン転写工程は、前記曲面マスタを光造形により作成するとともに前記曲面マスタの表層にUV硬化性樹脂をコーティングし、前記曲面マスタのコーティング層に前記分割型を加圧するとともにUV光により前記コーティング層を硬化させる工程を含むものである。   The invention according to claim 8 is the molding transfer method according to any one of claims 1 to 5, wherein the division pattern transfer step creates the curved surface master by stereolithography and UV-cures the surface layer of the curved surface master. Coating a functional resin, pressurizing the split mold onto the coating layer of the curved surface master, and curing the coating layer with UV light.

請求項9の発明は、請求項1乃至請求項7のいずれかに記載の成形転写方法において、前記分割パターン転写工程は、前記分割型によるパターン転写に際し、前記パターン転写成形工程において前記成形型とともに用いられるコア側の型を、前記分割型による加圧力を受ける下型として用いる工程を含むものである。   A ninth aspect of the present invention is the molding transfer method according to any one of the first to seventh aspects, wherein the divided pattern transfer step is performed together with the molding die in the pattern transfer molding step during pattern transfer by the divided mold. This includes a step of using the core-side mold to be used as a lower mold that receives the pressure applied by the split mold.

請求項10の発明は、請求項1乃至請求項9のいずれかに記載の成形転写方法において、前記分割パターン転写工程は、前記分割型によるパターン転写後の分割型の離型に際し、前記分割型を超音波振動させながら離型する工程を含むものである。   A tenth aspect of the present invention is the molding transfer method according to any one of the first to ninth aspects, wherein the divided pattern transfer step is performed when the divided mold is released after pattern transfer by the divided mold. This includes a step of releasing the mold while ultrasonically vibrating.

請求項11の発明は、請求項1乃至請求項10のいずれかに記載の成形転写方法において、前記離型工程は、前記成形型と成形品の離型に際し、前記成形型を超音波振動させながら離型する工程を含むものである。   The invention of claim 11 is the molding transfer method according to any one of claims 1 to 10, wherein in the mold releasing step, the mold is ultrasonically vibrated when the mold is released from the molded product. It includes a step of releasing the mold.

請求項12の発明は、請求項1乃至請求項11のいずれかに記載の成形転写方法において、前記パターン転写成形工程は、成形品の前記パターン部分を当該成形品の他の部分と異なる材料を用いて形成する工程を含むものである。   The invention according to claim 12 is the molding transfer method according to any one of claims 1 to 11, wherein the pattern transfer molding step uses a material in which the pattern portion of the molded product is different from other portions of the molded product. The process of using and forming is included.

本発明によれば、曲面を微小な面要素に分割するとともに、パターンなし状態の曲面を備えて成形品と同一形状に成形した曲面マスタの各面要素部位に、分割型を用いてパターンを転写するので、曲面の任意の位置に成形品の微細形状パターンを備えた曲面マスタを容易かつ確実に形成できる。さらに、このパターン付きの曲面マスタをもとにして電気鋳造法を用いて、成形品の曲面とパターンを備えた成形型を容易に作成でき、この成形型により所望の曲面と曲面上の微細形状パターンを転写した成形品を容易に製造することができる。このような成形転写方法によると、大面積、かつ略任意の曲面に微細形状パターンを成形転写した成形品を容易にかつ効率良く製造することができる。曲面上の任意の位置に微細形状パターンを転写できるので、表面に微細形状を有する大面積サイズかつ自由曲面を有する構造体や樹脂成形品に新たな機能の発現や機能付加・向上ができる。   According to the present invention, a curved surface is divided into minute surface elements, and a pattern is transferred to each surface element portion of a curved surface master having a curved surface without a pattern and formed into the same shape as a molded product using a divided mold. Therefore, it is possible to easily and reliably form a curved surface master having a fine shape pattern of a molded product at an arbitrary position on the curved surface. Furthermore, it is possible to easily create a mold having a curved surface and a pattern of a molded product by using an electroforming method based on the curved surface master with the pattern. A molded product to which the pattern is transferred can be easily produced. According to such a molding transfer method, a molded product in which a fine shape pattern is molded and transferred onto a large area and a substantially arbitrary curved surface can be easily and efficiently manufactured. Since the fine shape pattern can be transferred to an arbitrary position on the curved surface, a new function can be developed, or a function can be added or improved in a structure or resin molded product having a large area size having a fine shape on the surface and a free curved surface.

以下、本発明の一実施形態に係る成形転写方法について、図面を参照して説明する。図1は、成形転写方法の工程フローの例を示す。本発明の成形転写方法は、少なくとも曲面を含むとともに、その曲面に所定の微細形状パターン(以下、パターン)が成形転写された成形品を製造する成形転写方法である。成形品は、少なくとも曲面を含めば、勿論平面を含んでいてもよい。この成形転写方法は、曲面を微小な面要素に分割する面分割工程(S1)と、パターンを備えることなく曲面を備えて成形品と同一形状を有する曲面マスタを成形する曲面マスタ成形工程(S2)と、各面要素に対応する部位におけるパターン形状を備えた分割型を用いて、曲面マスタの各面要素に対応する部位に当該パターンを転写する分割パターン転写工程(S3)と、パターンが転写された曲面マスタをもとに電気鋳造法を用いて成形型を作成する成形型作成工程(S4)と、作成された成形型を用いて、曲面及びその曲面上のパターンを備えた成形品を転写成形するパターン転写成形工程(S5)と、転写成形された成形品を成形型から離型する離型工程(S6)と、を基本的な工程として含んでいる。以下、これらの工程に沿って成形転写方法を説明する。   Hereinafter, a molding transfer method according to an embodiment of the present invention will be described with reference to the drawings. FIG. 1 shows an example of a process flow of a molding transfer method. The molding transfer method of the present invention is a molding transfer method for manufacturing a molded product including at least a curved surface and having a predetermined fine shape pattern (hereinafter referred to as a pattern) molded and transferred on the curved surface. The molded article may include a flat surface as long as it includes at least a curved surface. This molding transfer method includes a surface dividing step (S1) for dividing a curved surface into minute surface elements, and a curved surface master forming step (S2) for forming a curved surface master having the same shape as the molded product without providing a pattern. ) And a divided pattern transfer step (S3) for transferring the pattern to a portion corresponding to each surface element of the curved surface master using a divided mold having a pattern shape at a portion corresponding to each surface element, and the pattern is transferred A mold creation step (S4) for creating a mold using an electroforming method based on the curved surface master, and a molded product having a curved surface and a pattern on the curved surface using the created mold A pattern transfer molding step (S5) for transfer molding and a mold release step (S6) for releasing the transfer molded product from the mold are included as basic steps. Hereinafter, the molding transfer method will be described along these steps.

上述の各工程に沿って図2〜図15を参照して成形転写方法を説明する。ここで、図2〜図4は面分割工程(S1)、図5、図6は曲面マスタ成形工程(S2)、図7〜図10は分割パターン転写工程(S3)、図11〜図13は成形型作成工程(S4)、図14はパターン転写成形工程(S5)と離型工程(S6)、図15は製造された成形品を示す。   The molding transfer method will be described along the above-described steps with reference to FIGS. 2 to 4 are the surface dividing step (S1), FIGS. 5 and 6 are the curved surface master forming step (S2), FIGS. 7 to 10 are the divided pattern transfer step (S3), and FIGS. FIG. 14 shows a mold forming step (S4), FIG. 14 shows a pattern transfer molding step (S5) and a mold releasing step (S6), and FIG. 15 shows a manufactured molded product.

(面分割工程S1)
本成形転写方法により形成される成形品の1例として、例えば、図2(a)示す成形品の3次元形状モデル11のように、ドーム状の曲面を有する成形品を取り上げる。その曲面からなる上部外表面には、図2(b)に示すように、断面が三角形の線状に連続する微細なパターン10が互いに隣り合って規則的に曲面Sの上に形成される。この構造は、例えば、3次元形状モデル11のドーム内部に光源を備える場合、その光源からの光を光学的に処理して光強度分布を一様化したり特定の分布にするために用いられる。
(Surface division process S1)
As an example of a molded product formed by the present molding transfer method, a molded product having a dome-shaped curved surface is taken up as a three-dimensional shape model 11 of the molded product shown in FIG. As shown in FIG. 2B, a fine pattern 10 whose cross section is continuous in a triangular shape is regularly formed on the curved surface S adjacent to each other on the upper outer surface formed of the curved surface. For example, when a light source is provided inside the dome of the three-dimensional shape model 11, this structure is used for optically processing the light from the light source to make the light intensity distribution uniform or to have a specific distribution.

上述の曲面Sは、例えば、表面から突出したパターン10の部分を除去した成形品の表面として定義される。曲面Sの他の定義方法として、パターン10による凹凸を平均化することにより得られる曲面としてもよい。図3(a)(b)は、パターン10を備えることなく曲面Sを備えた(大域的な意味で)成形品と同一形状を有する曲面形状体12を示す。   The above-described curved surface S is defined as the surface of a molded product from which the portion of the pattern 10 protruding from the surface is removed, for example. As another definition method of the curved surface S, a curved surface obtained by averaging the unevenness due to the pattern 10 may be used. 3 (a) and 3 (b) show a curved surface body 12 having the same shape as a molded product having a curved surface S (in a global sense) without having a pattern 10. FIG.

本発明の成形転写方法は、曲面形状体12を構成する曲面Sが、例えば、回転対称性や並進対称性などの対称性を有さない一般的な曲面(いわゆる自由曲面)などの場合、曲面Sの全域に亘って、例えば光学的に意味のある規則的なパターン10を確実にかつ比較的安価に形成する方法である。本方法では、図4(a)(b)に示すように、面要素13aの概念を導入し、面分割工程S1において、例えば三角形状の平面からなる面要素13aを用いて曲面Sを分割する。面要素13aのサイズは、パターン10のサイズにもよるが、光学用途の場合、例えば、20mm平方以下の微小要素からなる。以下において、光学的機能を発現するパターンを備えた光学用途の成形品を前提に説明を行う。   In the molding and transfer method of the present invention, when the curved surface S constituting the curved surface body 12 is a general curved surface (so-called free curved surface) having no symmetry such as rotational symmetry or translational symmetry, for example, a curved surface For example, the optically meaningful regular pattern 10 is reliably and relatively inexpensively formed over the entire area of S. In this method, as shown in FIGS. 4 (a) and 4 (b), the concept of the surface element 13a is introduced, and in the surface dividing step S1, the curved surface S is divided using, for example, a surface element 13a composed of a triangular plane. . Although the size of the surface element 13a depends on the size of the pattern 10, in the case of an optical application, for example, the surface element 13a is composed of minute elements of 20 mm square or less. The following description will be made on the premise of a molded article for optical use having a pattern that exhibits an optical function.

曲面形状体12は、上述の面要素13aの集合として再構成され、その結果が曲面再構成体13として定義される。パターン10は、各面要素13aに付随して分割され、各面要素13a上のパターンに分割される。面分割工程S1は、例えば、CAD上において成形品の3次元形状モデル11を用いて行われる。   The curved surface shape body 12 is reconfigured as a set of the above surface elements 13 a, and the result is defined as the curved surface reconstruction body 13. The pattern 10 is divided in association with each surface element 13a, and is divided into patterns on each surface element 13a. The surface division step S1 is performed using, for example, a three-dimensional shape model 11 of a molded product on CAD.

(曲面マスタ成形工程S2)
CAD上において曲面形状体12を面要素13aにより分割再構成して生成した上述の曲面再構成体13は、図5、図6に示すように、曲面マスタ成形工程S2において曲面マスタ14、として実体が与えられる。すなわち、曲面再構成体13のCADデータに基づいて、図5に示すように、上型22、下型21から成る曲面マスタ成形型2が形成され、この曲面マスタ成形型2を用いて、図6(a)(b)に示す曲面マスタ14が樹脂成形される。成形樹脂としてPMMA(メタクリル樹脂)、PC(ポリカーボネイト)、PS(ポリスチレン)、PP(ポリプロピレン)などの汎用的な熱可塑性樹脂が用いられる。光学用途には、特に、透明性樹脂が用いられる。
(Curved surface master forming step S2)
The above-described curved surface reconstruction body 13 generated by dividing and reconstructing the curved surface shape body 12 by the surface element 13a on the CAD is actual as the curved surface master 14 in the curved surface master forming step S2, as shown in FIGS. Is given. That is, based on the CAD data of the curved surface reconstructed body 13, as shown in FIG. 5, a curved surface master mold 2 composed of an upper mold 22 and a lower mold 21 is formed. The curved surface master 14 shown in 6 (a) and 6 (b) is resin-molded. A general-purpose thermoplastic resin such as PMMA (methacrylic resin), PC (polycarbonate), PS (polystyrene), PP (polypropylene) or the like is used as the molding resin. For optical applications, in particular, a transparent resin is used.

(分割パターン転写工程S3)
上述の曲面マスタ14は、この分割パターン転写工程S3においてパターンが付与される。パターンの付与は、図7(a)(b)に示す分割型3を用いて前述の面要素13a毎に転写により行われる。分割型3は、前述のように、各面要素13aに付随したパターンとして分割されたパターン10を反転した反転パターン10aを備えている。分割型3は、各面要素13aの形状や、面要素13aに付随した反転パターン10aの配置の組合せに基づいて複数が製作される。
(Division pattern transfer step S3)
The curved surface master 14 is provided with a pattern in this divided pattern transfer step S3. The application of the pattern is performed by transfer for each of the surface elements 13a described above using the split mold 3 shown in FIGS. As described above, the split mold 3 includes the reversal pattern 10a obtained by reversing the pattern 10 divided as a pattern associated with each surface element 13a. A plurality of split molds 3 are manufactured based on the combination of the shape of each surface element 13a and the arrangement of the inversion pattern 10a associated with the surface element 13a.

分割型3を得る加工方法として、機械加工、MEMS(Micro Electro Mechanical Systems)加工、LIGA(リソグラフィー電鋳成形)加工等が用いられる。分割型3のサイズは、例えば20mm平方以下である。パターン10、及び反転パターン10aは、特徴形状寸法が1nmから100μmの規則的な凹凸形状からなる。これらのパターンは、図7に示した連続線状のパターンの他に、用途に応じて、例えば、格子形状、プリズム形状、ドット形状、ピラミッド形状などの凹凸形状が用いられ、それぞれ所定の光学的機能を発現するように規則的に、あるいは逆にランダムに配列して構成される。   As a processing method for obtaining the split mold 3, machining, MEMS (Micro Electro Mechanical Systems) processing, LIGA (lithography electroforming) processing, or the like is used. The size of the split mold 3 is, for example, 20 mm square or less. The pattern 10 and the inversion pattern 10a have regular concavo-convex shapes having a feature shape dimension of 1 nm to 100 μm. In addition to the continuous linear pattern shown in FIG. 7, these patterns have, for example, a concavo-convex shape such as a lattice shape, a prism shape, a dot shape, and a pyramid shape, and each has a predetermined optical pattern. In order to express the function, it is arranged regularly or conversely at random.

分割パターンの転写は、図8に示すように、姿勢制御装置、例えば、アーム式のロボット装置4を用いて行われる。ロボット装置4は、制御装置40を備えており、分割型3を保持して分割型3の姿勢と位置を制御・移動させ、例えば面要素13aに垂直に加圧することができる。分割型3は、機械的強度と取扱の便から、より強固な上型32と一体化され、ロボットアームの先端に設けられた加圧装置41のさらに先端に備えられている。また、上型32は、パターン転写の際に用いる加熱装置及び冷却装置を備えている(不図示)。   As shown in FIG. 8, the transfer of the divided pattern is performed using an attitude control device, for example, an arm type robot device 4. The robot apparatus 4 includes a control device 40. The robot apparatus 4 can hold the split mold 3 to control and move the posture and position of the split mold 3, and can press the surface element 13a vertically, for example. The split mold 3 is integrated with a stronger upper mold 32 for mechanical strength and convenience of handling, and is provided at the tip of a pressurizing device 41 provided at the tip of the robot arm. Further, the upper mold 32 includes a heating device and a cooling device (not shown) used for pattern transfer.

曲面マスタ14を保持する下型20は、パターン転写をする際の、10kN〜1000kNの加圧力を受けられる構造を有し、また、曲面マスタ14を構成する樹脂のガラス転移温度より20℃〜30℃低い温度を維持する加熱・冷却機構とを内部に有している。   The lower mold 20 that holds the curved surface master 14 has a structure capable of receiving a pressure of 10 kN to 1000 kN during pattern transfer, and is 20 ° C. to 30 ° C. from the glass transition temperature of the resin constituting the curved surface master 14. It has a heating / cooling mechanism that maintains a low temperature.

曲面マスタ14は、曲面マスタ14を構成する樹脂のガラス転移温度より20℃〜30℃低い温度に設定した下型20にセットされる。この状態で、ロボット装置4は、制御装置40を介して、曲面マスタ14の面要素13aの位置データに基づいて、面要素13aの面角度と中心位置を割り出す。続いて、ロボット装置4は、アームの姿勢制御を行ってアーム先端に保持した分割型3を、パターン転写を行おうとする曲面マスタ14上の面要素13aに正対させ、面要素13aの法線方向L0に沿って移動させる(図9(a))。   The curved surface master 14 is set on the lower mold 20 set to a temperature lower by 20 ° C. to 30 ° C. than the glass transition temperature of the resin constituting the curved surface master 14. In this state, the robot apparatus 4 determines the surface angle and the center position of the surface element 13 a based on the position data of the surface element 13 a of the curved surface master 14 via the control device 40. Subsequently, the robot device 4 controls the posture of the arm and causes the split mold 3 held at the tip of the arm to face the surface element 13a on the curved surface master 14 on which pattern transfer is to be performed, so that the normal line of the surface element 13a is obtained. It is moved along the direction L0 (FIG. 9A).

分割型3の移動と同時に、上型32の加熱装置によって分割型3を曲面マスタ14の樹脂のガラス転移温度より20℃〜30℃高い温度にまで昇温する。昇温完了かつ移動完了後、加圧装置41によって分割型3を曲面マスタ14の面要素13aに10kN〜1000kNの荷重で押し当てる。高温になった分割型3の熱により曲面マスタ14の面要素13aの領域が溶融するとともに、加圧によってパターンが転写される。加圧時間は、樹脂の粘弾性特性により変わるが、例えば、PMMAで約1分程度が望ましい。   Simultaneously with the movement of the split mold 3, the split mold 3 is heated to a temperature 20 ° C. to 30 ° C. higher than the glass transition temperature of the resin of the curved surface master 14 by the heating device of the upper mold 32. After completion of temperature rise and movement, the pressurizing device 41 presses the split mold 3 against the surface element 13a of the curved surface master 14 with a load of 10 kN to 1000 kN. The area of the surface element 13a of the curved surface master 14 is melted by the heat of the split mold 3 that has become high temperature, and the pattern is transferred by pressing. The pressing time varies depending on the viscoelastic characteristics of the resin, but for example, about 1 minute is desirable for PMMA.

パターン転写の完了後、上型32の冷却装置によって分割型3を樹脂のガラス転移温度より20℃〜30℃低い温度にまで冷却する。冷却完了後、加圧を止めて、分割型3を曲面マスタ14から離型する。図9(b)は、パターン転写された面要素13aを示す。   After the pattern transfer is completed, the split mold 3 is cooled to a temperature 20 ° C. to 30 ° C. lower than the glass transition temperature of the resin by the cooling device of the upper mold 32. After completion of cooling, the pressurization is stopped and the split mold 3 is released from the curved surface master 14. FIG. 9B shows the surface element 13a to which the pattern has been transferred.

このような分割型3による分割パターン転写を、対象となる面要素13aを変化させるとともに必要に応じて対応する分割型3を交換しながら繰り返すことによって、曲面マスタ14の全ての面要素にパターンを転写し、図10(a)(b)に示すように、曲面上にパターン10を備えたパターン転写曲面マスタ15が得られる。   By repeating such division pattern transfer by the division mold 3 while changing the target surface element 13a and replacing the corresponding division mold 3 as necessary, patterns are applied to all the surface elements of the curved surface master 14. As shown in FIGS. 10A and 10B, the pattern transfer curved surface master 15 having the pattern 10 on the curved surface is obtained.

(成形型作成工程S4)
この成形型作成工程S4において、上述のパターン転写曲面マスタ15をもとにして電気鋳造法を用いて成形型が作成される。まず、図11(a)(b)に示すように、パターン転写曲面マスタ15のパターン10の面上に、パターン10の凹凸が反転した反転パターン16aを備えた入れ子16を電気鋳造層として形成する。パターン転写曲面マスタ15から離型された入れ子16は、図12(a)(b)に示すように、ドーム形状の内部に反転パターン16aを備えている。
(Molding mold making process S4)
In this molding die creation step S4, a molding die is created using the electrocasting method based on the pattern transfer curved surface master 15. First, as shown in FIGS. 11A and 11B, on the surface of the pattern 10 of the pattern transfer curved surface master 15, a nesting 16 having a reversal pattern 16a in which the unevenness of the pattern 10 is reversed is formed as an electroforming layer. . As shown in FIGS. 12A and 12B, the insert 16 released from the pattern transfer curved surface master 15 includes a reverse pattern 16a inside the dome shape.

続いて、図13に示すように、上述の入れ子16をキャビティ内部に備えたパターン型24と、パターン型24のドーム形状部分を大略埋める形状のコア型23とを備えた成形型5を作成する。コア型23は、成形品の離型時に用いられる突き出し棒25aを有する突き出し装置25を備えている。   Subsequently, as shown in FIG. 13, a forming die 5 including a pattern die 24 provided with the above-described insert 16 inside the cavity and a core die 23 shaped so as to substantially fill the dome-shaped portion of the pattern die 24 is produced. . The core mold 23 includes an ejecting device 25 having an ejecting bar 25a used when releasing a molded product.

(パターン転写成形工程S5と離型工程S6)
図14(a)(b)に示すように、型閉じした上述の成形型5に成形品1を形成する樹脂を充填・成形してパターン転写成形工程S5が行われ、図14(c)に示すように、型開きに続いて突き出し装置25による離型工程S6が行われ、成形品1が得られる。成形品1を形成する樹脂は、熱可塑性樹脂に限らず、成形型5により成形できるものであれば、製品の機能に応じて適宜選定できる。
(Pattern transfer molding step S5 and mold release step S6)
As shown in FIGS. 14A and 14B, the pattern transfer molding step S5 is performed by filling and molding the resin for forming the molded product 1 in the above-described molding die 5 which is closed, and FIG. As shown, a mold release step S6 is performed by the ejecting device 25 following the mold opening, and the molded product 1 is obtained. The resin that forms the molded product 1 is not limited to a thermoplastic resin, and any resin that can be molded by the molding die 5 can be appropriately selected according to the function of the product.

得られた成形品1は、図15(a)(b)に示すように、面要素13a毎にパターン10を備えることにより、成形品1の全曲面にパターン10を備えたものに成っている。このように、本成形転写方法によると、曲面マスタの作成において、曲面上の任意の位置に、微細形状パターン10を容易にかつ効率良く転写でき、また、面要素13a毎にパターンの転写を繰り返して大面積部分に微細形状パターンを容易にかつ効率良く転写できる。さらに曲面マスタをもとにして所望の曲面とパターンを成形できる成形型が得られ、所望の成形品1が容易に得られる。   As shown in FIGS. 15 (a) and 15 (b), the obtained molded product 1 is provided with the pattern 10 on each curved surface of the molded product 1 by providing the pattern 10 for each surface element 13a. . As described above, according to the present molding transfer method, the fine shape pattern 10 can be easily and efficiently transferred to an arbitrary position on the curved surface in the creation of the curved surface master, and the pattern transfer is repeated for each surface element 13a. Thus, a fine pattern can be easily and efficiently transferred over a large area. Furthermore, a mold capable of forming a desired curved surface and pattern based on the curved surface master is obtained, and the desired molded product 1 can be easily obtained.

次に、面分割工程S1について、図16、図17を参照してさらに説明する。まず、離型方向を考慮して分割を決定することについて説明する。図16(a)に示す曲面再構成体13を形成するに当たり、図16(b)に示す離型方向L1と面要素13aの法線方向L2の成す角度θ、さらに、図16(c)に示す離型方向L1と各パターン10を形成する個別パターンの形成面に沿った方向L3の成す角度αを考慮する。方向L3は、さらに詳述すると、離型方向線分を個別パターン形成面に垂直射影して得られる線分の方向である。ここで、分かり易さのため、面要素13aに代表点Pを定め、この代表点Pをもとに面要素13aの位置、サイズ、方向(3次元空間における三角形の方向)を決めている。代表点Pは、例えば、三角形の幾何学的重心とすることができる。そして、図16(b)に示すように、少なくとも、方向L1,L2が代表点Pを通るように定義されている。   Next, the surface dividing step S1 will be further described with reference to FIGS. First, the determination of division in consideration of the mold release direction will be described. In forming the curved surface reconstructed body 13 shown in FIG. 16A, the angle θ formed by the mold release direction L1 and the normal direction L2 of the surface element 13a shown in FIG. 16B, and FIG. The angle α formed by the mold release direction L1 shown and the direction L3 along the formation surface of the individual pattern forming each pattern 10 is considered. More specifically, the direction L3 is the direction of the line segment obtained by vertically projecting the release direction line segment onto the individual pattern forming surface. Here, for ease of understanding, a representative point P is determined for the surface element 13a, and the position, size, and direction (the direction of the triangle in the three-dimensional space) of the surface element 13a are determined based on the representative point P. The representative point P can be, for example, a triangular geometric center of gravity. Then, as shown in FIG. 16B, at least the directions L1 and L2 are defined so as to pass through the representative point P.

離型方向L1を考慮した分割決定とは、例えば、角度αが正(α>0)の範囲、すなわち、離型に際してパターン成形型24と成形品1のパターン10とが干渉しない範囲に納まるように角度θを定めて面要素13aの分割を決定することである。このような分割によると、前述の離型工程S6における離型に際し、成形型5の離型方向に対するパターン10の形状がアンダーカットの関係にならない。従って、離型時の微細形状パターンの破損を回避できる。   The division determination considering the mold release direction L1 is, for example, within a range where the angle α is positive (α> 0), that is, within a range where the pattern mold 24 and the pattern 10 of the molded product 1 do not interfere with each other during mold release. Is to determine the division of the surface element 13a. According to such division, the shape of the pattern 10 with respect to the mold release direction of the mold 5 does not have an undercut relationship at the time of mold release in the above-described mold release step S6. Therefore, it is possible to avoid damage to the fine pattern at the time of mold release.

続いて、パターンの連続性を考慮して分割を決定することについて説明する。面分割工程S1において、前述のように、曲面形状体12を面要素13aの集合に分割して曲面Sが再構成されるが、パターン10も面要素13aに付随して分割再構成される。このとき、パターン10をして所定の光学的機能を発現させるには、各面要素13a間におけるパターン10の連続性を確保して、各面要素13aに付随させる必要がある。   Next, the determination of division in consideration of pattern continuity will be described. In the surface division step S1, as described above, the curved surface 12 is divided into a set of surface elements 13a and the curved surface S is reconstructed, but the pattern 10 is also reconstructed along with the surface elements 13a. At this time, in order to cause the pattern 10 to exhibit a predetermined optical function, it is necessary to ensure the continuity of the pattern 10 between the surface elements 13a and to accompany the surface elements 13a.

そこで、図17(a)に示すパターン10を備えた面要素13aの分割決定に際し、図17(b)に示すように、面要素13a内においてパターン10を分割するとともにこれらを再構成した再構成パターン10bが位置を最適化して決定される。この再構成パターン10bは、面要素13aの法線方向L2回りの回転Rと、面要素13aからなる平面内の2方向x、yに関する平行移動とによって、互いに隣接する面要素13aに含まれる再構成パターン10b同士が連続するように、方向と位置が調整される。この調整の際に、図17(c)に示すパターン10の連続性の方向L4と再構成パターン10bの方向についても、互いに一致する方向に最適化される。パターンの連続性(規則性)を確保するようにパターンの位置及び方向を決定して面分割を行うので、成形品表面に所望の連続した微細形状パターンを施すことができ、所定の機能を備えた成形品が得られる。   Therefore, when determining the division of the surface element 13a having the pattern 10 shown in FIG. 17A, as shown in FIG. 17B, the reconstruction is performed by dividing the pattern 10 in the surface element 13a and reconfiguring them. The pattern 10b is determined by optimizing the position. This reconstruction pattern 10b is generated by the rotation R around the normal direction L2 of the surface element 13a and the parallel movement in the two directions x and y in the plane formed by the surface element 13a. The direction and position are adjusted so that the configuration patterns 10b are continuous. During this adjustment, the direction of continuity L4 of the pattern 10 and the direction of the reconstruction pattern 10b shown in FIG. 17C are also optimized to coincide with each other. Since the surface is divided by determining the position and direction of the pattern so as to ensure the continuity (regularity) of the pattern, a desired continuous fine shape pattern can be applied to the surface of the molded product, and a predetermined function is provided. A molded product is obtained.

次に、曲面マスタ成形工程S2とパターン転写成形工程S5において用いられる成形用の型について説明する(図5、図13参照)。曲面マスタ成形工程S2とパターン転写成形工程S5は、それぞれ少なくとも2つの型を用いて行われるが、これらの工程で用いられる型のうち、1つは両工程において通常共通であるため、これらの型を共用することにより設備を簡素化でき、また、精度良い成形ができる。例えば、前出の図5に示される曲面マスタ成形型2の下型21、及び前出の図13に示される成形型5のコア型23は、共に、曲面及び曲面上の微細形状パターンに依存しない成形部分に対する型であり、従って、これらの型を両工程における共通の型として用いることができる。但し、これらの型を共用する場合、加熱冷却機構等に共用性を持たせる必要がある。   Next, the molding die used in the curved surface master molding step S2 and the pattern transfer molding step S5 will be described (see FIGS. 5 and 13). The curved surface master molding step S2 and the pattern transfer molding step S5 are each performed using at least two molds, but one of the molds used in these processes is usually common in both processes. The equipment can be simplified and the molding can be performed with high accuracy. For example, the lower mold 21 of the curved surface master mold 2 shown in FIG. 5 and the core mold 23 of the mold 5 shown in FIG. 13 both depend on the fine shape pattern on the curved surface and curved surface. Therefore, these molds can be used as a common mold in both processes. However, when these molds are shared, it is necessary to make the heating / cooling mechanism and the like have commonality.

また、上述の成形型5のコア型23は、分割パターン転写工程S3において分割型3による加圧力を受ける下型20としても用いることができる(図8、図13参照)。分割パターン転写工程において処理の対象となり、かつ、その後の工程で必要となるのは曲面マスタ14の表面側のみである。そこで、成形品のコア型23にリブ溝等の構造が施されてい場合であっても下型20として用いても問題はない。加熱転写時に下型20により分割型3による加圧力を受けるので、加圧してパターン転写される曲面マスタ14のコア側の形状が保持され、曲面マスタ14の変形を抑制でき、最終的な成形品の精度が損なわれない。また、分割パターン転写の終了した曲面マスタ14を下型20から取外すときに、下型20としてコア型23を流用していると、コア型23に付属する離型装置25を利用できるので、パターン転写曲面マスタ15の取出しも容易に行われる。   The core mold 23 of the mold 5 described above can also be used as the lower mold 20 that receives the pressure applied by the divided mold 3 in the divided pattern transfer step S3 (see FIGS. 8 and 13). Only the surface side of the curved surface master 14 is to be processed in the divided pattern transfer process and is required in the subsequent processes. Therefore, there is no problem even if the core mold 23 of the molded product is provided with a structure such as a rib groove or the like as a lower mold 20. Since the lower mold 20 receives pressure from the divided mold 3 during heat transfer, the shape of the curved master 14 on which the pattern is transferred by pressurization is maintained, the deformation of the curved master 14 can be suppressed, and the final molded product The accuracy of is not impaired. In addition, when the core mold 23 is used as the lower mold 20 when removing the curved surface master 14 after the division pattern transfer is completed, the mold release device 25 attached to the core mold 23 can be used. The transfer curved surface master 15 can be easily taken out.

次に、曲面マスタ成形工程S2の他の例について、図18を参照して説明する。曲面マスタ14は、図18(a)(b)に示すように、樹脂ブロックBLを切削加工することにより成形できる。この場合、樹脂成形を行わないので成形用の型を省略ができる。また、細部にこだわらない大きめの外形を備えた樹脂成形品を切削加工で仕上げることにより曲面マスタ14を成形できる。この場合は、成形用の型を簡略化することができる。   Next, another example of the curved surface master forming step S2 will be described with reference to FIG. As shown in FIGS. 18A and 18B, the curved surface master 14 can be formed by cutting the resin block BL. In this case, since the resin molding is not performed, the molding die can be omitted. Further, the curved surface master 14 can be formed by finishing a resin molded product having a large outer shape not particular to details by cutting. In this case, the mold for molding can be simplified.

切削加工は、前出の図4(a)に示した曲面再構成体13のCADデータに基づいて、行われる。曲面マスタ14を樹脂ブロックBLから切削加工により成形して、図18(b)に示すような中実形状、つまり、前出の図6(b)に示したような中空形状ではない形状、とすることにより、分割パターン転写工程S3における下型20(図8)を省略できる。   Cutting is performed based on the CAD data of the curved surface reconstructed body 13 shown in FIG. The curved surface master 14 is molded from the resin block BL by cutting, and a solid shape as shown in FIG. 18B, that is, a shape that is not a hollow shape as shown in FIG. By doing so, the lower mold 20 (FIG. 8) in the divided pattern transfer step S3 can be omitted.

次に、分割パターン転写工程S3の他の例について、図19〜図22を参照して説明する。図19(a)(b)に示す分割パターン転写工程では、曲面マスタ14を形成する材料として熱可塑性樹脂を用いるとともに分割型3を形成する材料として透明体を用いている。上型32は、冷却装置の他に、加熱装置としてエネルギ線を発生する線源61を備えている。上型32の内部には線源61からのエネルギ線62を曲面マスタ14に導く反射鏡63などの構造が形成されている。エネルギ線62としては、例えば、熱可塑性樹脂材料の吸収波長域に応じた波長領域のレーザ光線を用いることができる。分割型3を形成する透明体として、石英、弗化カルシウム、シリコンなどを用いることができる。   Next, another example of the divided pattern transfer step S3 will be described with reference to FIGS. In the divided pattern transfer process shown in FIGS. 19A and 19B, a thermoplastic resin is used as a material for forming the curved surface master 14 and a transparent body is used as a material for forming the divided mold 3. In addition to the cooling device, the upper mold 32 includes a radiation source 61 that generates energy rays as a heating device. A structure such as a reflecting mirror 63 that guides the energy beam 62 from the radiation source 61 to the curved surface master 14 is formed inside the upper mold 32. As the energy beam 62, for example, a laser beam having a wavelength region corresponding to the absorption wavelength region of the thermoplastic resin material can be used. Quartz, calcium fluoride, silicon or the like can be used as the transparent body forming the split mold 3.

分割パターン転写は、前述のように、分割型3を面要素13aの法線方向L0に沿って移動させるとともに、線源61からのエネルギ線62を透明体からなる分割型3を透過して熱可塑性樹脂からなる曲面マスタ14に照射することにより面要素13aの領域を加熱して行われる。すなわち、面要素13aの部分の樹脂温度がガラス転移温度より20〜30℃高い温度になった後、加圧・転写を行う。その後、エネルギ線62の照射を停止し、上型32に付属している冷却装置を用いて面要素13aの領域を冷却し、樹脂の温度をガラス転移温度より20〜30℃低い温度にして後、分割型3を離型する。その後、他の面要素13aに対して同様の動作を繰り返す。このような方法によると、局部的な加熱・冷却のもとで分割パターン転写がきるため、熱効率も良く、転写面以外の領域における熱変形を最小限に抑えることができる。   In the divided pattern transfer, as described above, the divided mold 3 is moved along the normal direction L0 of the surface element 13a, and the energy rays 62 from the radiation source 61 are transmitted through the divided mold 3 made of a transparent material and heated. The area of the surface element 13a is heated by irradiating the curved surface master 14 made of a plastic resin. That is, after the resin temperature of the surface element 13a is 20 to 30 ° C. higher than the glass transition temperature, pressure and transfer are performed. Thereafter, the irradiation of the energy beam 62 is stopped, the area of the surface element 13a is cooled by using the cooling device attached to the upper mold 32, and the temperature of the resin is lowered to 20 to 30 ° C. below the glass transition temperature. Then, the split mold 3 is released. Thereafter, the same operation is repeated for the other surface elements 13a. According to such a method, divided pattern transfer can be performed under local heating / cooling, so that thermal efficiency is good and thermal deformation in a region other than the transfer surface can be minimized.

図20に示す分割パターン転写工程では、曲面マスタ14を形成する材料として透明な熱可塑性樹脂を用いる。上型32は冷却装置を備えている。熱可塑性樹脂の加熱は、下型21の下方に別途設けた加熱装置により行う。加熱装置は、エネルギ線を発生する線源64、線源64からのエネルギ線65を加熱領域である面要素13aに導く反射鏡66を備えている。下型21は、エネルギ線65を透過する石英、シリコン、弗化カルシウムなどの材料で構成される。曲面マスタ14を構成する透明な樹脂として、PMMA、PCなどを用いる。エネルギ線65としては、曲面マスタ14の樹脂を透過する波長領域のレーザ光線を用いることができる。   In the divided pattern transfer process shown in FIG. 20, a transparent thermoplastic resin is used as a material for forming the curved surface master 14. The upper mold 32 includes a cooling device. The thermoplastic resin is heated by a heating device provided separately below the lower mold 21. The heating apparatus includes a radiation source 64 that generates energy rays, and a reflecting mirror 66 that guides the energy rays 65 from the radiation source 64 to the surface element 13a that is a heating region. The lower mold 21 is made of a material such as quartz, silicon, or calcium fluoride that transmits the energy beam 65. As the transparent resin constituting the curved surface master 14, PMMA, PC, or the like is used. As the energy beam 65, a laser beam in a wavelength region that transmits the resin of the curved surface master 14 can be used.

分割パターン転写工程において、まず、前述のように、分割型3を面要素13aの法線方向L0に沿って移動させて面要素13aに近接又は接触させる。次に、曲面再構成体13のCADデータに基づいて反射鏡66の角度を調整し、線源64からのエネルギ線65を反射鏡66で反射させて面要素13aの領域に導く。透明な下型21及び透明な曲面マスタ14を透過したエネルギ線65は、曲面マスタ14の面要素13a領域の表層を加熱する。面要素13a領域の加熱は、この領域にエネルギ線65の焦点を結ばせるとともに焦点位置をスキャンすることや、面要素13aに近接又は接触している分割型3をエネルギ線65により加熱して分割型3から表層への熱伝導を利用することにより行うことができる。   In the divided pattern transfer step, first, as described above, the divided mold 3 is moved along the normal direction L0 of the surface element 13a to be brought close to or in contact with the surface element 13a. Next, the angle of the reflecting mirror 66 is adjusted based on the CAD data of the curved surface reconstruction body 13, and the energy beam 65 from the radiation source 64 is reflected by the reflecting mirror 66 and guided to the area of the surface element 13a. The energy rays 65 transmitted through the transparent lower mold 21 and the transparent curved surface master 14 heat the surface layer of the surface element 13a region of the curved surface master 14. The area of the surface element 13a is heated by focusing the energy line 65 in this area and scanning the focal position, or by dividing the divided mold 3 that is in proximity to or in contact with the surface element 13a by the energy line 65. This can be done by utilizing heat conduction from the mold 3 to the surface layer.

面要素13aの領域の樹脂温度がガラス転移温度より20〜30℃高い温度になった後、加圧・転写を行う。その後、エネルギ線65の照射を停止し、上型32に付属している冷却装置を用いて面要素13aの領域を冷却し、樹脂の温度をガラス転移温度より20〜30℃低い温度にして後、分割型3を離型する。その後、他の面要素13aに対して同様の動作を繰り返す。このような方法によると、このような方法によると、透明体を透過するエネルギ線65により曲面マスタ14側から曲面マスタ14の面要素13a領域を部分的(局部的)に加熱して分割パターンの転写ができるので、冷却も容易であり熱効率も良く、また、パターン転写の対象としている面要素部分以外の面要素に対する本来発生を回避すべき熱変形を抑制できる。   After the resin temperature in the area of the surface element 13a reaches 20 to 30 ° C. higher than the glass transition temperature, pressure and transfer are performed. After that, the irradiation of the energy beam 65 is stopped, the area of the surface element 13a is cooled by using the cooling device attached to the upper mold 32, and the temperature of the resin is lowered to 20 to 30 ° C. below the glass transition temperature. Then, the split mold 3 is released. Thereafter, the same operation is repeated for the other surface elements 13a. According to such a method, according to such a method, the surface element 13a region of the curved surface master 14 is partially (locally) heated from the curved surface master 14 side by the energy rays 65 that pass through the transparent body, and the divided pattern is formed. Since transfer is possible, cooling is easy and thermal efficiency is good, and thermal deformation that should be avoided from occurring on the surface elements other than the surface element portion to be subjected to pattern transfer can be suppressed.

図21に示す分割パターン転写工程では、曲面マスタ14を光造形により作成するとともに曲面マスタ14の表層にUV硬化性樹脂をコーティングして、そのコーティング層14aにパターン転写を行っている。本転写工程において、UV光(紫外光)発生源67、UV光発生源からのUV光を導く光ガイド68、光ガイド68の先端に設けられUV光を照射するための集光レンズを備えた照射ヘッド69が用いられる。照射ヘッド69は、上型32に固定され、上型32及び上型32と一体になった分割型3の移動とともに移動して転写領域にUV光70を照射する。上型32は、前述のいずれかの上型32とは異なり、加熱装置及び冷却装置を備えていない。   In the divided pattern transfer process shown in FIG. 21, the curved surface master 14 is created by stereolithography, the surface layer of the curved surface master 14 is coated with a UV curable resin, and pattern transfer is performed on the coating layer 14a. In this transfer process, a UV light (ultraviolet light) generation source 67, a light guide 68 for guiding the UV light from the UV light generation source, and a condensing lens for irradiating the UV light provided at the tip of the light guide 68 are provided. An irradiation head 69 is used. The irradiation head 69 is fixed to the upper mold 32 and moves with the movement of the upper mold 32 and the divided mold 3 integrated with the upper mold 32 to irradiate the transfer area with the UV light 70. Unlike any of the above-described upper molds 32, the upper mold 32 does not include a heating device and a cooling device.

曲面マスタ14は、CADデータと光造形の方法を用いて形成される。光造形によるとCADデータに基づいて曲面マスタを作成できるので、成形型作成の手間と費用が削減できる。コーティング層14aは、UV硬化性樹脂を曲面マスタ14の表層に吹付けコーティングすることにより形成される。コーティング層14aの膜厚は転写深さの2〜50倍程度である。   The curved surface master 14 is formed using CAD data and an optical modeling method. According to stereolithography, since a curved surface master can be created based on CAD data, it is possible to reduce the labor and cost of creating a mold. The coating layer 14 a is formed by spray coating a surface layer of the curved surface master 14 with a UV curable resin. The film thickness of the coating layer 14a is about 2 to 50 times the transfer depth.

分割パターン転写工程において、まず、前述のように、分割型3を面要素13aの法線方向L0に沿って移動させて面要素13aに接触させ、加圧する。加圧力は、0.5kN〜5kN程度でよい。UV光発生源67からのUV光70を照射ヘッド69を介して面要素13aに照射する。UV硬化性樹脂がUV光70の照射によって硬化してパターン転写が完了した後、UV光70照射を停止し、分割型3を離型する。その後、他の面要素13aに対して同様の動作を繰り返す。このような方法によると、UV硬化性樹脂からなるコーティング層14aを分割パターン転写の対象とするので大きな加圧力を必要としなく、また、転写に際し、加熱や冷却が不要であり、従って、分割パターン転写のための装置を簡素化できる。   In the divided pattern transfer step, first, as described above, the divided mold 3 is moved along the normal direction L0 of the surface element 13a to be brought into contact with the surface element 13a and pressurized. The applied pressure may be about 0.5 kN to 5 kN. The surface element 13 a is irradiated with UV light 70 from a UV light generation source 67 through an irradiation head 69. After the UV curable resin is cured by the irradiation of the UV light 70 and the pattern transfer is completed, the irradiation of the UV light 70 is stopped and the split mold 3 is released. Thereafter, the same operation is repeated for the other surface elements 13a. According to such a method, the coating layer 14a made of a UV curable resin is the target of divided pattern transfer, so that a large pressing force is not required, and heating or cooling is not required for the transfer. An apparatus for transfer can be simplified.

図22に示す分割パターン転写工程では、分割型3によるパターン転写後の分割型3の離型に際し、分割型3を超音波振動させながら離型する。超音波発生器USが、上型32(分割型3と加圧装置41(図8)の間であればよい)に備えられている。超音波発生器USによる超音波振動の方向は、離型方向L6及び面要素13aの面内方向において任意に設定でき、その振幅は、転写するパターンのサイズ以下である。上述のいずれかのパターン転写工程における加圧転写後であって離型開始前に、超音波発生器USにより分割型3を加振し、加振した状態で、曲面マスタ14から分割型3を離型する。離型完了後に超音波発生器USの振動を停止する。超音波振動の効果により、離型がスムーズに行え、微細形状パターンの破損を防止でき、分割型の離型作業効率が向上する。   In the divided pattern transfer process shown in FIG. 22, when the divided mold 3 is released after the pattern transfer by the divided mold 3, the divided mold 3 is released while being ultrasonically vibrated. An ultrasonic generator US is provided in the upper mold 32 (which may be between the split mold 3 and the pressure device 41 (FIG. 8)). The direction of ultrasonic vibration by the ultrasonic generator US can be arbitrarily set in the mold release direction L6 and the in-plane direction of the surface element 13a, and the amplitude is equal to or smaller than the size of the pattern to be transferred. After the pressure transfer in any of the pattern transfer processes described above and before the start of mold release, the split mold 3 is vibrated by the ultrasonic generator US, and the split mold 3 is removed from the curved surface master 14 in the vibrated state. Release. After the mold release is completed, the vibration of the ultrasonic generator US is stopped. Due to the effect of ultrasonic vibration, the mold release can be performed smoothly, the fine pattern can be prevented from being damaged, and the separation mold release work efficiency is improved.

次に、離型工程S6の他の例を、図23を参照して説明する。離型工程において、成形型5と成形品の離型に際し、離型をスムーズに行うため、成形型5のパターン型24を超音波振動させながら離型する。このため、パターン型24に超音波発生器USを備えている。超音波発生器USによる超音波振動の方向は、離型方向L7及び離型方向L7に直交する面内方向において任意に設定でき、その振幅は、転写するパターンのサイズ以下である。加圧転写後であって離型開始前に、超音波発生器USによりパターン型24を加振し、加振した状態で、成形品1からパターン型24を離型する。離型完了後に超音波発生器USの振動を停止する。超音波振動の効果により離型がスムーズに行え、微細形状パターンの破損を防止でき、成形型5の離型作業効率が向上する。   Next, another example of the mold release step S6 will be described with reference to FIG. In the mold release process, when the mold 5 and the molded product are released, the pattern mold 24 of the mold 5 is released while being ultrasonically vibrated in order to release the mold smoothly. Therefore, the pattern mold 24 is provided with an ultrasonic generator US. The direction of ultrasonic vibration by the ultrasonic generator US can be arbitrarily set in the mold release direction L7 and the in-plane direction orthogonal to the mold release direction L7, and its amplitude is equal to or smaller than the size of the pattern to be transferred. After the pressure transfer and before the start of mold release, the pattern mold 24 is vibrated by the ultrasonic generator US, and the pattern mold 24 is released from the molded product 1 in the vibrated state. After the mold release is completed, the vibration of the ultrasonic generator US is stopped. Due to the effect of ultrasonic vibration, mold release can be performed smoothly, damage to the fine pattern can be prevented, and mold release work efficiency of the mold 5 can be improved.

次に、パターン転写成形工程S5の他の例を、図24(a)〜(c)を参照して説明する。このパターン転写成形工程では、成形品1のパターン部1bを成形品1の他の部分(コア部1a)とは異なる材料を用いて形成する。本成形工程において、まず、図24(a)に示すように、成型用の下型23と上型24aを用いて成形品1のコア部1aを成形する。ここで、上型24aは、最終成形品1から形状パターンを含む表層のパターン部1bを差引いた形状を成形する型である。コア部1aの成形後に上型24aを離型する。   Next, another example of the pattern transfer molding step S5 will be described with reference to FIGS. In this pattern transfer molding process, the pattern portion 1b of the molded product 1 is formed using a material different from that of the other portion (core portion 1a) of the molded product 1. In the main molding step, first, as shown in FIG. 24A, the core portion 1a of the molded product 1 is molded using the lower mold 23 and the upper mold 24a for molding. Here, the upper mold 24a is a mold for molding a shape obtained by subtracting the pattern portion 1b of the surface layer including the shape pattern from the final molded product 1. After the core portion 1a is molded, the upper mold 24a is released.

続いて、図24(b)に示すように、下型23に保持された状態のコア部1aに、パターン型24を被せて型閉じする。その後、パターン部1b用の樹脂を充填してコア部1aの表層にパターン部1bを成形する。パターン型24は、前出の型(図13参照)と同じものである。   Subsequently, as shown in FIG. 24B, the pattern mold 24 is put on the core portion 1a held by the lower mold 23 and the mold is closed. Thereafter, the resin for the pattern portion 1b is filled to form the pattern portion 1b on the surface layer of the core portion 1a. The pattern mold 24 is the same as the above mold (see FIG. 13).

続いて、図24(c)に示すように、パターン型24を離型し、下型23に備えられた突き出し棒25aを有する突き出し装置25を用いて下型23から成形品1を離型する。成形品1は、拡大図で示すように、コア部1aとその表面に形成されたパターン部1bから成っている。   Subsequently, as shown in FIG. 24 (c), the pattern mold 24 is released, and the molded product 1 is released from the lower mold 23 using an ejector 25 having an ejector bar 25 a provided in the lower mold 23. . As shown in the enlarged view, the molded product 1 includes a core portion 1a and a pattern portion 1b formed on the surface thereof.

成形品1をこのような二重構造とすると、容積の多いコア部1aを低価格の一般材料を用いて形成し、要請記の少ない表層のパターン部1bを高機能材料を用いて形成することができる。一般に、高価格である高機能材料の使用量を抑えることにより成形品費用を抑えることができる。また、コア部1aを密着性の良い材料とし、パターン部1bを撥水性の良い材料とすることにより、高撥水機能を持った成形品1を得ることができる。   When the molded product 1 has such a double structure, the core portion 1a having a large volume is formed by using a low-cost general material, and the pattern portion 1b having a small surface layer is formed by using a highly functional material. Can do. In general, the cost of a molded product can be reduced by reducing the amount of high-functional materials that are expensive. Further, by using the core portion 1a as a material having good adhesion and the pattern portion 1b as a material having good water repellency, a molded product 1 having a high water repellency function can be obtained.

さらに、光学的用途において、表面の微細形状パターンに基づいた光学特性の制御に加え、コア部1aとパターン部1bとを互いに屈折率の異なる樹脂を用いて成形することによる材料物性に基づいた成形品1の光学特性の制御が可能である。このように、表面の微細形状パターン部分とその他の部分の材質を異なるものとすることにより成形用材料選定の巾が広がるので、微細形状パターン部分に高価ではあるがパターン転写に最適であるという材料を選定する材料費の最適配分や、両部分における異なる材質の相乗効果による新機能の発現などが可能である。なお、本発明は、上記構成に限られることなく種々の変形が可能である。   Furthermore, in optical applications, in addition to controlling the optical characteristics based on the fine pattern on the surface, molding based on material properties by molding the core portion 1a and the pattern portion 1b using resins having different refractive indexes. The optical characteristics of the product 1 can be controlled. In this way, by making the material of the fine pattern part of the surface different from the material of the other parts, the range of selection of the molding material is widened, so the material that is expensive for the fine pattern part but optimal for pattern transfer It is possible to optimally allocate material costs for selecting materials and to develop new functions due to the synergistic effect of different materials in both parts. The present invention is not limited to the above-described configuration, and various modifications can be made.

本発明の一実施形態に係る成形転写方法の工程フロー図。The process flow figure of the molding transfer method concerning one embodiment of the present invention. (a)は同上成形転写方法により形成される成形品の3次元形状モデルの斜視図、(b)は(a)の部分断面図。(A) is a perspective view of a three-dimensional shape model of a molded product formed by the above-described molding transfer method, and (b) is a partial sectional view of (a). (a)は同上成形転写方法により形成される成形品のパターンなし状態を示す曲面形状体の斜視図、(b)は(a)の部分断面図。(A) is a perspective view of a curved surface shaped body showing a pattern-free state of a molded product formed by the above-described molding transfer method, and (b) is a partial sectional view of (a). (a)は同上成形転写方法により形成される成形品のパターンなし曲面を面要素により分割再構成した曲面再構成体の斜視図、(b)は(a)の部分断面図。(A) is a perspective view of a curved surface reconstructed body obtained by dividing and reconstructing a pattern-free curved surface of a molded product formed by the above-described molding and transfer method using surface elements, and (b) is a partial cross-sectional view of (a). 同上成形転写方法における曲面マスタ成形工程を説明する断面図。Sectional drawing explaining the curved surface master shaping | molding process in a shaping | molding transcription | transfer method same as the above. (a)は同上成形転写方法における曲面マスタの斜視図、(b)は同曲面マスタの断面図。(A) is a perspective view of the curved surface master in the same molding transfer method, (b) is a cross-sectional view of the curved surface master. (a)は同上成形転写方法の分割パターン転写工程において用いられる分割型の斜視図、(b)は(a)のA−A断面図。(A) is a perspective view of a split mold used in the split pattern transfer step of the above-described molding transfer method, and (b) is a cross-sectional view taken along line AA of (a). 同上成形転写方法における分割パターン転写工程を説明する概念図。The conceptual diagram explaining the division | segmentation pattern transfer process in a shaping | molding transfer method same as the above. (a)は同上分割パターン転写工程を詳細説明する斜視図、(b)は同工程途中における曲面マスタの斜視図。(A) is a perspective view explaining in detail the same divided pattern transfer process, (b) is a perspective view of a curved surface master in the middle of the process. 同上分割パターン転写工程において形成されたパターン転写曲面マスタの斜視図、(b)は同パターン転写曲面マスタの一部断面図。The perspective view of the pattern transfer curved surface master formed in the division | segmentation pattern transfer process same as the above, (b) is a partial cross section figure of the pattern transfer curved surface master. (a)は同上成形転写方法における成形型作成工程を説明する電気鋳造途中の入れ子型の断面図、(b)は(a)の一部断面図。(A) is sectional drawing of the nested mold in the middle of electroforming explaining the shaping | molding die preparation process in a shaping | molding transcription | transfer method same as the above, (b) is a partial sectional view of (a). (a)は同上成形型作成工程により作成された入れ子型の断面図、(b)は(a)の一部断面図。(A) is a sectional view of a nested mold created by the same mold making process, (b) is a partial sectional view of (a). 同上成形転写方法において用いられる成形型の断面図。Sectional drawing of the shaping | molding die used in a shaping | molding transcription | transfer method same as the above. (a)(b)(c)は同上成形転写方法におけるパターン転写成形工程を説明する成形型と成形品の断面図。(A) (b) (c) is sectional drawing of the shaping | molding die and molded article explaining the pattern transfer shaping | molding process in a shaping | molding transcription | transfer method same as the above. (a)は同上成形転写方法により形成された成形品の斜視図、(b)は(a)の一部断面図。(A) is a perspective view of a molded product formed by the above-described molding transfer method, and (b) is a partial sectional view of (a). (a)は同上成形転写方法における曲面再構成体の斜視図、(b)は同曲面再構成体の一部断面図、(c)は(b)の一部拡大断面図。(A) is a perspective view of a curved surface reconstructed body in the above-described molding transfer method, (b) is a partial cross-sectional view of the curved surface reconstructed body, and (c) is a partially enlarged cross-sectional view of (b). (a)は同上成形転写方法における曲面再構成体の斜視図、(b)は同曲面再構成体の一部拡大斜視図、(c)は(b)のさらに一部拡大斜視図。(A) is a perspective view of a curved surface reconstructed body in the same molding transfer method, (b) is a partially enlarged perspective view of the curved surface reconstructed body, (c) is a further partially enlarged perspective view of (b). (a)は同上成形転写方法における曲面マスタの他の例を示す斜視図、(b)は同曲面マスタの断面図。(A) is a perspective view which shows the other example of the curved surface master in the same shaping | molding transfer method, (b) is sectional drawing of the curved surface master. (a)は同上成形転写方法における分割パターン転写工程の他の例を示す一部断面概念図、(b)は同工程におけるパターン転写の詳細を示す一部断面概念図。(A) is the partial cross section conceptual diagram which shows the other example of the division | segmentation pattern transfer process in the same mold transfer method, (b) is the partial cross section conceptual diagram which shows the detail of the pattern transfer in the same process. 同上成形転写方法における分割パターン転写工程のさらに他の例を示す一部断面概念図。The partial cross-section conceptual diagram which shows the further another example of the division | segmentation pattern transfer process in a shaping | molding transfer method same as the above. 同上成形転写方法における分割パターン転写工程のさらに他の例を示す一部断面概念図。The partial cross-section conceptual diagram which shows the further another example of the division | segmentation pattern transfer process in a shaping | molding transfer method same as the above. 同上成形転写方法における分割パターン転写工程のさらに他の例を示す一部断面概念図。The partial cross-section conceptual diagram which shows the further another example of the division | segmentation pattern transfer process in a shaping | molding transfer method same as the above. 同上成形転写方法における離型工程の他の例を示す断面図。Sectional drawing which shows the other example of the mold release process in the same shaping | molding transfer method. (a)〜(c)は同上成形転写方法におけるパターン転写成形工程の他の例を時系列的に示す断面図。(A)-(c) is sectional drawing which shows the other example of the pattern transfer shaping | molding process in a shaping | molding transcription | transfer method same as the above in time series.

符号の説明Explanation of symbols

1 成形品
2 曲面マスタ成形型
3 分割型
5 成形型
10 パターン(微細形状パターン)
11 3次元形状モデル
13a 面要素
14 曲面マスタ
14a コーティング層
15 パターン転写曲面マスタ
21 上型
22 下型
23 コア型
24 パターン型
L0 離型方向
S 曲面
1 Molded product 2 Curved surface master mold 3 Divided mold 5 Mold 10 Pattern (fine shape pattern)
11 Three-dimensional shape model 13a Surface element 14 Curved surface master 14a Coating layer 15 Pattern transfer curved surface master 21 Upper mold 22 Lower mold 23 Core mold 24 Pattern mold L0 Mold release direction S Curve

Claims (12)

少なくとも曲面を備え、当該曲面に所定の微細形状パターンを成形転写した成形品を製造する成形転写方法において、
前記曲面を微小な面要素に分割する面分割工程と、
前記パターンを備えることなく前記曲面を備えて前記成形品と同一形状を有する曲面マスタを成形する曲面マスタ成形工程と、
前記各面要素に対応する部位における前記パターン形状を備えた分割型を用いて、前記曲面マスタの前記各面要素に対応する部位に当該パターンを転写する分割パターン転写工程と、
前記パターンが転写された曲面マスタをもとに電気鋳造法を用いて成形型を作成する成形型作成工程と、
前記工程により作成された成形型を用いて、前記曲面及び当該曲面に前記パターンを備えた成形品を転写成形するパターン転写成形工程と、
前記工程により転写成形された成形品を離型する離型工程と、を含むことを特徴とする成形転写方法。
In a molding transfer method for producing a molded product comprising at least a curved surface and molding and transferring a predetermined fine shape pattern on the curved surface,
A surface dividing step of dividing the curved surface into minute surface elements;
A curved surface master forming step of forming a curved surface master having the same shape as the molded product with the curved surface without the pattern,
A divided pattern transfer step of transferring the pattern to a portion corresponding to each surface element of the curved surface master using a divided mold having the pattern shape in a portion corresponding to each surface element;
A mold creating step for creating a mold using an electroforming method based on the curved surface master to which the pattern is transferred,
A pattern transfer molding step for transferring and molding the curved surface and a molded product having the pattern on the curved surface, using the mold created by the step,
And a mold release step of releasing the molded product transferred and molded in the above process.
前記面分割工程は、成形品の3次元形状モデルを用いて前記面要素への分割を行うとともに、前記離型工程における離型に際し前記成形型の離型方向に対する前記パターンの形状がアンダーカットの関係にならないように前記分割を決定する工程を含むことを特徴とする請求項1に記載の成形転写方法。   In the surface dividing step, the three-dimensional shape model of the molded product is divided into the surface elements, and the shape of the pattern with respect to the releasing direction of the forming die is undercut at the time of releasing in the releasing step. The molding transfer method according to claim 1, further comprising a step of determining the division so as not to be related. 前記面分割工程は、前記各面要素に含まれるパターンが当該面要素に隣接する面要素に含まれるパターンに連続するように、前記各パターンの位置及び方向を決定する工程を含むことを特徴とする請求項1又は請求項2に記載の成形転写方法。   The surface dividing step includes a step of determining a position and a direction of each pattern such that a pattern included in each surface element is continuous with a pattern included in a surface element adjacent to the surface element. The molding transfer method according to claim 1 or 2. 前記曲面マスタ成形工程とパターン転写成形工程は、それぞれ少なくとも2つの型を用いて行われ、前記各工程で用いられる型のうち1つは両工程において共用されることを特徴とする請求項1乃至請求項3のいずれかに記載の成形転写方法。   The curved surface master molding step and the pattern transfer molding step are each performed using at least two molds, and one of the molds used in each of the processes is shared by both processes. The molding transfer method according to claim 3. 前記曲面マスタ成形工程は、樹脂を前記曲面マスタの形状に切削加工する工程を含むことを特徴とする請求項1乃至請求項3のいずれかに記載の成形転写方法。   The molding transfer method according to any one of claims 1 to 3, wherein the curved surface master molding step includes a step of cutting a resin into a shape of the curved surface master. 前記分割パターン転写工程は、前記曲面マスタを形成する材料として熱可塑性樹脂を用いるとともに前記分割型を形成する材料として透明体を用い、前記透明体からなる分割型を透過して前記熱可塑性樹脂からなる曲面マスタにエネルギ線を照射することにより前記曲面マスタを部分的に加熱するとともに当該加熱部分に前記分割型により前記パターンを転写する工程を含むことを特徴とする請求項1乃至請求項5のいずれかに記載の成形転写方法。   In the division pattern transfer step, a thermoplastic resin is used as a material for forming the curved surface master, a transparent body is used as a material for forming the division mold, and the division mold made of the transparent body is transmitted through the thermoplastic resin. 6. The method according to claim 1, further comprising: partially heating the curved surface master by irradiating the curved surface master with energy rays, and transferring the pattern to the heated portion by the split mold. The molding transfer method according to any one of the above. 前記分割パターン転写工程は、前記曲面マスタを形成する材料として透明な熱可塑性樹脂を用い、前記透明な曲面マスタを透過してエネルギ線を照射することにより前記曲面マスタの表面を部分的に加熱するとともに当該加熱部分に前記分割型により前記パターンを転写する工程を含むことを特徴とする請求項1乃至請求項5のいずれかに記載の成形転写方法。   The division pattern transfer step uses a transparent thermoplastic resin as a material for forming the curved surface master, and partially heats the surface of the curved surface master by irradiating energy rays through the transparent curved surface master. The molding transfer method according to claim 1, further comprising a step of transferring the pattern to the heated portion by the split mold. 前記分割パターン転写工程は、前記曲面マスタを光造形により作成するとともに前記曲面マスタの表層にUV硬化性樹脂をコーティングし、前記曲面マスタのコーティング層に前記分割型を加圧するとともにUV光により前記コーティング層を硬化させる工程を含むことを特徴とする請求項1乃至請求項5のいずれかに記載の成形転写方法。   In the divided pattern transfer step, the curved surface master is created by stereolithography, the surface layer of the curved surface master is coated with a UV curable resin, the divided mold is pressed on the coating layer of the curved surface master, and the coating is applied with UV light. The molding transfer method according to any one of claims 1 to 5, further comprising a step of curing the layer. 前記分割パターン転写工程は、前記分割型によるパターン転写に際し、前記パターン転写成形工程において前記成形型とともに用いられるコア側の型を、前記分割型による加圧力を受ける下型として用いる工程を含むことを特徴とする請求項1乃至請求項7のいずれかに記載の成形転写方法。   The divided pattern transfer step includes a step of using a core-side die used together with the forming die in the pattern transfer forming step as a lower die that receives pressure applied by the divided die, in transferring the pattern by the divided die. The molding transfer method according to any one of claims 1 to 7, wherein 前記分割パターン転写工程は、前記分割型によるパターン転写後の分割型の離型に際し、前記分割型を超音波振動させながら離型する工程を含むことを特徴とする請求項1乃至請求項9のいずれかに記載の成形転写方法。   10. The divided pattern transfer process includes a step of releasing the divided mold while ultrasonically vibrating the divided mold when releasing the divided mold after pattern transfer by the divided mold. The molding transfer method according to any one of the above. 前記離型工程は、前記成形型と成形品の離型に際し、前記成形型を超音波振動させながら離型する工程を含むことを特徴とする請求項1乃至請求項10のいずれかに記載の成形転写方法。   The mold release step includes a step of releasing the mold while ultrasonically oscillating the mold when releasing the mold and the molded product. Mold transfer method. 前記パターン転写成形工程は、成形品の前記パターン部分を当該成形品の他の部分と異なる材料を用いて形成する工程を含むことを特徴とする請求項1乃至請求項11のいずれかに記載の成形転写方法。
The said pattern transfer molding process includes the process of forming the said pattern part of a molded article using the material different from the other part of the said molded article, The Claim 1 thru | or 11 characterized by the above-mentioned. Mold transfer method.
JP2004186967A 2004-06-24 2004-06-24 Molding transfer method Withdrawn JP2006007546A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004186967A JP2006007546A (en) 2004-06-24 2004-06-24 Molding transfer method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004186967A JP2006007546A (en) 2004-06-24 2004-06-24 Molding transfer method

Publications (1)

Publication Number Publication Date
JP2006007546A true JP2006007546A (en) 2006-01-12

Family

ID=35775319

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004186967A Withdrawn JP2006007546A (en) 2004-06-24 2004-06-24 Molding transfer method

Country Status (1)

Country Link
JP (1) JP2006007546A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016444A (en) * 2006-06-09 2008-01-24 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
JP2008021640A (en) * 2006-06-14 2008-01-31 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US8313355B2 (en) 2006-06-09 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
US9064827B2 (en) 2006-06-14 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008016444A (en) * 2006-06-09 2008-01-24 Semiconductor Energy Lab Co Ltd Manufacturing method of semiconductor device
US8313355B2 (en) 2006-06-09 2012-11-20 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device
JP2008021640A (en) * 2006-06-14 2008-01-31 Semiconductor Energy Lab Co Ltd Method of manufacturing semiconductor device
US9064827B2 (en) 2006-06-14 2015-06-23 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing semiconductor device

Similar Documents

Publication Publication Date Title
Chen et al. A layerless additive manufacturing process based on CNC accumulation
CN111225780A (en) Method and apparatus for casting polymer products
JP6784764B2 (en) Creation of homogeneous optical elements by additive manufacturing
JP6560953B2 (en) How to make a 3D structure
CN105856573A (en) High-precision and high-speed continuous 3D printer and printing method thereof
CN113167969A (en) Method and apparatus for casting polymer products
CN205326294U (en) Light path structure of formula of sinking 3D printer
JP3456290B2 (en) Optical element manufacturing method and optical element manufacturing apparatus
JP6775604B2 (en) Method for manufacturing cut edge structure and polymer cut edge structure
US20200198163A1 (en) Polymeric Cutting Edge Structures And Method of Manufacturing Polymeric Cutting Edge Structures
JPH0857967A (en) Three-dimensional shaping method
CN101301792B (en) Light-curing quick moulding method based on LCD space light modulator and device
Yun et al. Development of DMD-based micro-stereolithography apparatus for biodegradable multi-material micro-needle fabrication
JP2006007546A (en) Molding transfer method
CN115551694A (en) Rapid prototyping of optical components, in particular lenses, for producing customized optical surface shapes
KR101199496B1 (en) Processing method of large area structure in low cost type stereolithography system using small DMD and UV-LED
JP3805749B2 (en) Thin film curing stereolithography equipment
KR20150112270A (en) Stereolithograpgy equipment using surface emitting led light source
Grewell Modeling of molecular healing for micro-laser welding of plastics with diffractive optical elements as spatial modulators
JP2013167713A (en) Manufacturing method of reflection-type plane symmetry imaging element
JP7134235B2 (en) Three-dimensional modeling apparatus, control device, and manufacturing method of modeled object
JPH11170377A (en) Method for photo-shaping and movable device and photo-shaping apparatus using the method
JP2005205860A (en) Method for production of optical element
JP2019206180A (en) Resin mold, method of producing replica mold, and method of producing optical device
JPH08300490A (en) Three-dimensionally shaping device and method thereof

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904