JP2006005061A - Tank for storing cooling medium - Google Patents

Tank for storing cooling medium Download PDF

Info

Publication number
JP2006005061A
JP2006005061A JP2004178197A JP2004178197A JP2006005061A JP 2006005061 A JP2006005061 A JP 2006005061A JP 2004178197 A JP2004178197 A JP 2004178197A JP 2004178197 A JP2004178197 A JP 2004178197A JP 2006005061 A JP2006005061 A JP 2006005061A
Authority
JP
Japan
Prior art keywords
cooling medium
pressure
storage tank
tank
medium storage
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2004178197A
Other languages
Japanese (ja)
Inventor
Hiromitsu Fuji
洋光 藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004178197A priority Critical patent/JP2006005061A/en
Publication of JP2006005061A publication Critical patent/JP2006005061A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Exposure And Positioning Against Photoresist Photosensitive Materials (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)
  • Motor Or Generator Cooling System (AREA)
  • Linear Motors (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a driving device which raises the accuracy of a length measuring meter by increasing the quantity of the amount of recovery of heat generated from a driving part, by reducing the increase in a design pressure resistance, by suppressing the increase in the pressure of a cooling medium route due to the increase in the supply quantity of a cooling medium, and by enabling the design pressure resistance due to the decrease in the pressure of a cooling medium route; and which achieved the increased output more than before. <P>SOLUTION: The pressure of the cooling medium supply route entirety becoming a closed circuit which flows from a tank for storing the cooling medium to a heating element, and again returns to the tank for storing the cooling medium by reducing in the pressure in the tank for storing the cooling medium. Accordingly, the design pressure resistance is reduced. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は半導体デバイスの製造に好適に用いられる半導体製造システムの技術分野に属する。   The present invention belongs to the technical field of semiconductor manufacturing systems suitably used for manufacturing semiconductor devices.

半導体露光装置や高精度加工機などでナノメートル(nm)オーダの位置決め精度が要求されている今日では、たとえば、100mmの低熱膨張材(熱膨張係数1×10−6/K)が1Kの温度変化で100nm変化し、また、光干渉式測長計の光路における空気温度が1Kであっても位置測定値が条件によっては100nmの誤差が生じ得るため、温度変化の防止策として発熱体の冷却、特に発生する熱の回収が必要になっている。 Today, positioning accuracy of the order of nanometers (nm) is required for semiconductor exposure apparatuses and high-precision processing machines. For example, a low thermal expansion material of 100 mm (thermal expansion coefficient 1 × 10 −6 / K) is 1K in temperature. Since the position measurement value may have an error of 100 nm depending on conditions even when the air temperature in the optical path of the optical interference type length meter is 1K, the heating element is cooled as a measure for preventing the temperature change. In particular, it is necessary to recover the generated heat.

露光装置はウエハやレチクルを高速で移動させて位置決めするステージ装置(ウエハステージ、レチクルステージ)を有し、その駆動用にリニアモータを備えている。リニアモータのコイルの発熱の冷却対策としてコイルにジャケットを設け冷却媒体を流し冷却を行ってきた。冷却媒体の供給装置は冷却媒体貯蔵用タンクから発熱体に供給し、再び冷却媒体貯蔵用タンクに戻る閉回路になっており、冷却媒体貯蔵用タンクは大気圧と等しくなっている。   The exposure apparatus has a stage apparatus (wafer stage, reticle stage) for moving and positioning a wafer or reticle at high speed, and includes a linear motor for driving the stage apparatus. As a countermeasure against cooling of the heat generated in the coil of the linear motor, a jacket is provided on the coil to cool it by flowing a cooling medium. The cooling medium supply device is a closed circuit that supplies heat from the cooling medium storage tank to the heating element and returns to the cooling medium storage tank. The cooling medium storage tank is equal to the atmospheric pressure.

一方、装置の高性能化に伴い、リニアモータの高出力が要求されており、そのためにコイルに流れる電流を増やすと発熱量も大きく増大する。処理速度(スル−プット)の向上に伴うステージ加速度は増加の一途であり、さらには基板の大型化に伴ってステージ質量も増大している、このため<移動体の質量>×<加速度>で定義される駆動力は非常に大きなものになり、ステージ駆動用のリニアモータの発熱量も増大し、発熱が周りに与える影響が問題として顕在化しつつある。   On the other hand, as the performance of the apparatus increases, a high output of the linear motor is required. For this reason, when the current flowing through the coil is increased, the amount of heat generation is greatly increased. The stage acceleration accompanying the improvement of the processing speed (throughput) is steadily increasing, and the stage mass is also increasing with the increase in the size of the substrate. For this reason, <mass of moving body> × <acceleration> The defined driving force has become very large, the amount of heat generated by the linear motor for driving the stage has increased, and the influence of the heat generation on the surroundings is becoming a problem.

一方、従来のLSIあるいは超LSIなどの極微細パターンから形成される半導体素子の製造工程において、マスクに描かれた回路パターンを感光剤が添付された基板上に縮小投影して焼き付け形成する縮小型投影露光装置が使用されている。半導体素子の実装密度の向上に伴い、パターンのより一層の微細化により、高精度な位置決めを行う必要がありリニアモータからの発熱による干渉計計測精度への影響を抑えることが要求され、露光装置の微細化への対応がなされてきた。
特開平10−125592号公報
On the other hand, in a manufacturing process of a semiconductor element formed from a very fine pattern such as a conventional LSI or VLSI, a reduction type that burns and forms a circuit pattern drawn on a mask on a substrate attached with a photosensitive agent by reduction projection A projection exposure apparatus is used. As the mounting density of semiconductor elements increases, it is necessary to perform high-precision positioning by further miniaturizing the pattern, and it is required to suppress the influence on the interferometer measurement accuracy due to heat generated from the linear motor. There has been a response to miniaturization.
JP-A-10-125592

近年、リニアモータの発熱量は増加の一途であり、高精度な位置決めを行うために干渉計を使用しているが、リニアモータからの発熱の影響により干渉計の光軸やミラーが設置されているリニアモータ近傍やステージ空間の温度の上昇及びゆらぎを起こしてしまい、干渉計計測精度を落としてしまう。   In recent years, the amount of heat generated by linear motors is increasing, and interferometers are used to perform highly accurate positioning. However, the optical axis and mirror of the interferometer are installed due to the effects of heat generated by the linear motors. The temperature rises and fluctuates in the vicinity of the linear motor and the stage space, and the interferometer measurement accuracy is lowered.

リニアモータからの発熱量の増加による干渉計計測精度への影響を抑えるために、大量の冷却媒体を閉回路内で供給するために高い圧力をかける必要があり、露光装置内の各装置は冷却媒体の圧力に耐えうる設計をしなければならず装置が大型化してしまう。   In order to suppress the influence on the interferometer measurement accuracy due to the increase in the calorific value from the linear motor, it is necessary to apply a high pressure to supply a large amount of cooling medium in the closed circuit, and each apparatus in the exposure apparatus is cooled. The device must be designed to withstand the pressure of the medium, and the apparatus becomes large.

本発明は上記課題を解決するためになされたもので、本発明は第1に冷却媒体経路の圧力の低下による設計耐圧の低減を可能にする、また冷却媒体の供給量の増大による冷却媒体経路の圧力の増加を抑え設計耐圧の増大を少なくすることで、駆動部より発生する熱の回収量を増量し、測長計の精度を高めることとともに、従来以上の高出力化を果たした駆動装置を提供することを目的とする。   The present invention has been made to solve the above-mentioned problems. The present invention first enables the design withstand voltage to be reduced by lowering the pressure of the cooling medium path, and the cooling medium path by increasing the supply amount of the cooling medium. By reducing the increase in pressure and reducing the increase in design withstand pressure, the amount of heat recovered from the drive unit is increased, the accuracy of the length meter is increased, and a drive unit that achieves higher output than before. The purpose is to provide.

第2に極紫外線(EUV)・電子ビーム(EB)などを用いた露光装置では装置内の一部が超真空環境となり、露光装置内が真空状態になることで従来の大気圧もしくは陽圧環境下と比較し真空環境と冷却媒体経路との圧力差が大きくなり設計耐圧の強化が必要となる。この問題を解決することを目的として、さらにはこの駆動装置を使用した優れたステージ装置や露光装置、デバイス製造方法などを提供することを目的とする。   Second, in an exposure apparatus using extreme ultraviolet (EUV), electron beam (EB), etc., a part of the apparatus is in an ultra-vacuum environment, and the exposure apparatus is in a vacuum state, so that a conventional atmospheric pressure or positive pressure environment is obtained. Compared with the bottom, the pressure difference between the vacuum environment and the cooling medium path becomes larger, and the design withstand voltage must be strengthened. In order to solve this problem, an object is to provide an excellent stage apparatus, exposure apparatus, device manufacturing method, and the like using this driving apparatus.

本発明は冷却媒体貯蔵用タンク内を減圧することにより、上記課題が解決されることを見出したものである。すなわち冷却媒体貯蔵用タンク内を減圧することにより、冷却媒体貯蔵用タンクから発熱体に流れ、再び冷却媒体貯蔵用タンクに戻る閉回路となっている冷却媒体供給経路全体の圧力が減圧され設計耐圧が低減することを特徴とする。   This invention discovers that the said subject is solved by depressurizing the inside of a cooling medium storage tank. In other words, by reducing the pressure in the cooling medium storage tank, the pressure in the entire cooling medium supply path, which is a closed circuit, flows from the cooling medium storage tank to the heating element and returns to the cooling medium storage tank again. Is reduced.

冷却媒体貯蔵用タンクの圧力を下げることにより、冷却媒体供給経路全体の圧力を下げることができ、装置の設計耐圧を低く設計することができる。これにより装置の小型化が可能であり、また測長計の精度を高めることとともに高出力化した駆動装置を提供することができる。また極紫外線(EUV)・電子ビーム(EB)などを用いた露光装置内では冷却対象装置が真空環境内に存在するので、冷却媒体供給経路の圧力を低減することで冷却対象装置の設計耐圧を下げることのできる効果は大きい。   By reducing the pressure of the cooling medium storage tank, the pressure of the entire cooling medium supply path can be lowered, and the design withstand pressure of the apparatus can be designed low. As a result, the apparatus can be miniaturized, and it is possible to provide a drive device with high output while improving the accuracy of the length meter. In addition, in an exposure apparatus using extreme ultraviolet (EUV), electron beam (EB), etc., the cooling target apparatus exists in a vacuum environment. Therefore, the design withstand pressure of the cooling target apparatus can be reduced by reducing the pressure of the cooling medium supply path. The effect that can be lowered is great.

以下、図面に基づいて本発明の実施例を説明する。   Embodiments of the present invention will be described below with reference to the drawings.

図1は冷却媒体供給システムの概略図であり、露光装置内の位置決め装置の冷却構成を示している。冷却媒体の供給装置は冷却媒体貯蔵用タンク2とポンプ3、温度制御ユニット4とから構成されており、従来では冷却媒体貯蔵用タンク2は大気圧となっていたが、冷却媒体供給経路は閉回路となっており、冷却媒体貯蔵用タンク2は真空ポンプ1を用いて減圧することができ、圧力制御ユニットを用いることで冷却媒体貯蔵用タンクの圧力を調整することができる。   FIG. 1 is a schematic diagram of a cooling medium supply system, and shows a cooling configuration of a positioning device in an exposure apparatus. The cooling medium supply device is composed of a cooling medium storage tank 2, a pump 3, and a temperature control unit 4. Conventionally, the cooling medium storage tank 2 is at atmospheric pressure, but the cooling medium supply path is closed. The cooling medium storage tank 2 can be depressurized using the vacuum pump 1 and the pressure of the cooling medium storage tank can be adjusted by using the pressure control unit.

位置決め装置のリニアモータは磁石を有した図面左右方向に移動可能な可動側の駆動手段8および発熱体であるコイル有した固定側の駆動手段7で構成されている。9は可動側の駆動手段8に搭載された位置決め対象、10は駆動手段8に搭載された位置対象9の位置基準、11は位置決め対象9の位置を位置基準10を参照して計測する位置計測手段、12は位置計測手段11が計測する長さ、13は位置計測手段11から得た位置決め対象9の位置データより駆動装置の運動量を制御するための指令信号を出力するコントローラ、14はコントローラ13からの指令信号に従って駆動手段7、8を駆動するドライバである。   The linear motor of the positioning device includes a movable driving means 8 having a magnet and movable in the left-right direction of the drawing, and a fixed driving means 7 having a coil as a heating element. 9 is a positioning object mounted on the movable driving means 8, 10 is a position reference of the position object 9 mounted on the driving means 8, and 11 is a position measurement that measures the position of the positioning object 9 with reference to the position reference 10. Means, 12 is a length measured by the position measuring means 11, 13 is a controller that outputs a command signal for controlling the momentum of the driving device from the position data of the positioning object 9 obtained from the position measuring means 11, and 14 is a controller 13 This is a driver for driving the drive means 7 and 8 in accordance with a command signal from.

固定された駆動手段7に対して駆動手段8が図面の左右方向に動くことにより位置決め対象9の位置はは同方向に動き、位置決め対象9の位置は10を基準にして位置決め計測手段11によって計測される。例えば、位置基準10が反射ミラーで位置計測手段11がレーザー干渉計である場合には長さ12が光路長となり、これが位置決め対象9の位置となる。一般に位置決め対象9と位置基準10はいくらか離れるため、かつ位置基準10の位置を位置決め対象9としているため、この両者間の距離変動は位置決めの誤差となる。コントローラ13は位置測定手段11の位置データを用いて位置決め対象9が所定の位置に位置決めされるようドライバ14に指令を与え、ドライバ14は駆動手段7、8を駆動する。その時にコイルを有する固定側の駆動手段7が発熱すると温度変化を起こす。この温度が駆動手段7の、光路12の空気の揺らぎを誘発してしまうため、冷却媒体が直接触れて駆動手段7から発熱量を効率よく奪う構成になっており、発熱を回収することで光路12の空気の揺らぎによる測定誤差を抑える。   The position of the positioning object 9 moves in the same direction as the driving means 8 moves in the left-right direction of the drawing with respect to the fixed driving means 7, and the position of the positioning object 9 is measured by the positioning measuring means 11 with reference to 10. Is done. For example, when the position reference 10 is a reflecting mirror and the position measuring means 11 is a laser interferometer, the length 12 is the optical path length, and this is the position of the positioning object 9. In general, since the positioning target 9 and the position reference 10 are somewhat apart from each other, and the position of the position reference 10 is set as the positioning target 9, a variation in the distance between the two becomes a positioning error. The controller 13 gives a command to the driver 14 so that the positioning object 9 is positioned at a predetermined position using the position data of the position measuring means 11, and the driver 14 drives the driving means 7 and 8. At that time, when the driving means 7 on the fixed side having the coil generates heat, the temperature changes. Since this temperature induces air fluctuations in the optical path 12 of the driving means 7, the cooling medium directly touches the driving means 7 so that the heat generation amount is efficiently taken away from the driving means 7, and the optical path is recovered by collecting the generated heat. Measurement error due to twelve air fluctuations is suppressed.

なお本実施例ではコイルを有する側を可動側の駆動手段、磁石を有する側を固定側の駆動手段としてもよい。   In this embodiment, the side having the coil may be the movable side driving means, and the side having the magnet may be the stationary side driving means.

冷却媒体貯蔵用タンクを真空ポンプ1を用いて減圧することで経路全体の圧力が低減され、冷却媒体供給経路に接続されているコイルを有する固定側の駆動手段7の設計耐圧を低くできることによる装置の小型化が可能になる。また圧力制御ユニットを用いることにより真空ポンプを適切にコントロールし必要に応じて冷却媒体貯蔵用タンクの減圧を行うことができ省電力化が可能になる。さらに冷却媒体の経路全体の圧力が低減することで従来と同等の設計耐圧でより多くの冷却媒体を供給でき、高出力化を果たした駆動装置に対応できる。   An apparatus in which the pressure of the entire path is reduced by reducing the pressure of the cooling medium storage tank using the vacuum pump 1, and the design withstand voltage of the fixed drive means 7 having a coil connected to the cooling medium supply path can be lowered. Can be miniaturized. Further, by using the pressure control unit, the vacuum pump can be appropriately controlled, and the cooling medium storage tank can be depressurized as necessary, thereby saving power. Furthermore, since the pressure of the entire path of the cooling medium is reduced, more cooling medium can be supplied with the same design withstand voltage as before, and it is possible to cope with a drive device that achieves high output.

図2は極紫外線(EUV)・電子ビーム(EB)などを用いた露光装置での冷却媒体供給システムの概略図であり、図2は冷却媒体供給システムの概略図であり、露光装置内の位置決め装置の冷却構成を示している。冷却媒体の供給装置は冷却媒体貯蔵用タンク2とポンプ3、温度制御ユニット4とから構成されており、従来では冷却媒体貯蔵用タンク2は大気圧となっていたが、冷却媒体供給経路は閉回路となっており、冷却媒体貯蔵用タンク2は真空ポンプ1を用いて減圧することができ、圧力制御ユニットを用いることで冷却媒体貯蔵用タンクの圧力を調整することができる。   FIG. 2 is a schematic view of a cooling medium supply system in an exposure apparatus using extreme ultraviolet (EUV) / electron beam (EB). FIG. 2 is a schematic view of the cooling medium supply system, and positioning in the exposure apparatus. Fig. 2 shows the cooling configuration of the device. The cooling medium supply device is composed of a cooling medium storage tank 2, a pump 3, and a temperature control unit 4. Conventionally, the cooling medium storage tank 2 is at atmospheric pressure, but the cooling medium supply path is closed. The cooling medium storage tank 2 can be depressurized using the vacuum pump 1 and the pressure of the cooling medium storage tank can be adjusted by using the pressure control unit.

位置決め装置のリニアモータは磁石を有した図面左右方向に移動可能な可動側の駆動手段8および発熱体であるコイル有した固定側の駆動手段7で構成されている。9は可動側の駆動手段8に搭載された位置決め対象、10は駆動手段8に搭載された位置対象9の位置基準、11は位置決め対象9の位置を位置基準10を参照して計測する位置計測手段、12は位置計測手段11が計測する長さ、13は位置計測手段11から得た位置決め対象9の位置データより駆動装置の運動量を制御するための指令信号を出力するコントローラ、14はコントローラ13からの指令信号に従って駆動手段7、8を駆動するドライバである。   The linear motor of the positioning device includes a movable driving means 8 having a magnet and movable in the left-right direction of the drawing, and a fixed driving means 7 having a coil as a heating element. 9 is a positioning object mounted on the movable driving means 8, 10 is a position reference of the position object 9 mounted on the driving means 8, and 11 is a position measurement that measures the position of the positioning object 9 with reference to the position reference 10. Means, 12 is a length measured by the position measuring means 11, 13 is a controller that outputs a command signal for controlling the momentum of the driving device from the position data of the positioning object 9 obtained from the position measuring means 11, and 14 is a controller 13 This is a driver for driving the drive means 7 and 8 in accordance with a command signal from.

固定された駆動手段7に対して駆動手段8が図面の左右方向に動くことにより位置決め対象9の位置はは同方向に動き、位置決め対象9の位置は10を基準にして位置決め計測手段11によって計測される。例えば、位置基準10が反射ミラーで位置計測手段11がレーザー干渉計である場合には長さ12が光路長となり、これが位置決め対象9の位置となる。一般に位置決め対象9と位置基準10はいくらか離れるため、かつ位置基準10の位置を位置決め対象9としているため、この両者間の距離変動は位置決めの誤差となる。コントローラ13は位置測定手段11の位置データを用いて位置決め対象9が所定の位置に位置決めされるようドライバ14に指令を与え、ドライバ14は駆動手段7、8を駆動する。その時にコイルを有する固定側の駆動手段7が発熱すると温度変化を起こす。この温度が駆動手段7の、光路12の空気の揺らぎを誘発してしまうため、冷却媒体が直接触れて駆動手段7から発熱量を効率よく奪う構成になっており、発熱を回収することで光路12の空気の揺らぎによる測定誤差を抑える。   The position of the positioning object 9 moves in the same direction as the driving means 8 moves in the left-right direction of the drawing with respect to the fixed driving means 7, and the position of the positioning object 9 is measured by the positioning measuring means 11 with reference to 10. Is done. For example, when the position reference 10 is a reflecting mirror and the position measuring means 11 is a laser interferometer, the length 12 is the optical path length, and this is the position of the positioning object 9. In general, since the positioning target 9 and the position reference 10 are somewhat apart from each other, and the position of the position reference 10 is set as the positioning target 9, a variation in the distance between the two becomes a positioning error. The controller 13 gives a command to the driver 14 so that the positioning object 9 is positioned at a predetermined position using the position data of the position measuring means 11, and the driver 14 drives the driving means 7 and 8. At that time, when the driving means 7 on the fixed side having the coil generates heat, the temperature changes. Since this temperature induces air fluctuations in the optical path 12 of the driving means 7, the cooling medium directly touches the driving means 7 so that the heat generation amount is efficiently taken away from the driving means 7, and the optical path is recovered by collecting the generated heat. Measurement error due to twelve air fluctuations is suppressed.

なお本実施例ではコイルを有する側を可動側の駆動手段、磁石を有する側を固定側の駆動手段としてもよい。   In this embodiment, the side having the coil may be the driving unit on the movable side, and the side having the magnet may be the driving unit on the fixed side.

極紫外線(EUV)・電子ビーム(EB)などを用いた露光装置では露光空間で真空環境が必要となり、冷却対象装置の周囲が隔壁16により真空状態となっている、このため真空環境と前記冷却対象内の冷却媒体経路との圧力差が生じコイルを有する固定側の駆動手段7での設計圧力の増加が必要となる。   In an exposure apparatus using extreme ultraviolet (EUV), electron beam (EB), etc., a vacuum environment is required in the exposure space, and the periphery of the apparatus to be cooled is evacuated by the partition wall 16, so that the vacuum environment and the cooling are A pressure difference with the cooling medium path in the object is generated, and an increase in the design pressure is required in the driving means 7 on the fixed side having the coil.

冷却媒体貯蔵用タンクの圧力を減圧しないとき、大気圧下で冷却溶媒供給経路の圧力が経路内の圧力損失により減少し、例えば、ポンプ3出口で0.4[MPa]、温度制御ユニット4出口で0.3[MPa]、可動側の駆動手段7入り口で0.2[MPa]、可動側の駆動手段8出口で0.1[MPa]となり、冷却媒体貯蔵用タンクで0.0[MPa]とするとき、それぞれの装置で圧力に応じた設計耐圧が必要となる。また大気圧と真空環境での圧力差が−0.1[MPa]の時、真空環境内での装置ではそれぞれ設計耐圧が0.1[MPa]の強化が必要となるが、冷却媒体貯蔵タンクの圧力を減圧することで、大気圧時と同等の設計耐圧を用いる事ができる。冷却媒体貯蔵用タンクを真空ポンプ1を用いて減圧することで経路全体の圧力が低減され、冷却媒体貯蔵用タンクの減圧前の設計耐圧と同等の設計耐圧を用いる事ができる。   When the pressure of the cooling medium storage tank is not reduced, the pressure of the cooling solvent supply path decreases under atmospheric pressure due to the pressure loss in the path. For example, 0.4 [MPa] at the outlet of the pump 3 and the outlet of the temperature control unit 4 0.3 [MPa], 0.2 [MPa] at the inlet of the movable drive means 7, 0.1 [MPa] at the outlet of the movable drive means 8, and 0.0 [MPa] at the cooling medium storage tank ], The design withstand pressure corresponding to the pressure is required for each device. In addition, when the pressure difference between the atmospheric pressure and the vacuum environment is −0.1 [MPa], the apparatus within the vacuum environment needs to be strengthened with a design pressure resistance of 0.1 [MPa]. By reducing the pressure, it is possible to use a design withstand pressure equivalent to that at atmospheric pressure. By reducing the pressure of the cooling medium storage tank using the vacuum pump 1, the pressure of the entire path is reduced, and a design pressure resistance equivalent to the design pressure resistance before the pressure reduction of the cooling medium storage tank can be used.

冷却溶媒の供給システムを説明する概念図。The conceptual diagram explaining the supply system of a cooling solvent. 冷却対象が真空環境に存在する時の冷却溶媒の供給システムを説明する概念図。The conceptual diagram explaining the supply system of the cooling solvent when the cooling target exists in a vacuum environment.

符号の説明Explanation of symbols

1 真空ポンプ
2 冷却溶媒貯蔵用タンク
3 ポンプ
4 温度制御ユニット
5 冷却溶媒供給経路
6 冷却溶媒戻り経路
7 固定側の駆動手段
8 可動側の駆動手段
9 位置決め対象
10 位置基準
11 位置計測手段
12 計測する長さ
13 コントロー
14 ドライバ
15 圧力制御ユニット
16 隔壁
DESCRIPTION OF SYMBOLS 1 Vacuum pump 2 Cooling solvent storage tank 3 Pump 4 Temperature control unit 5 Cooling solvent supply path 6 Cooling solvent return path 7 Fixed side drive means 8 Movable side drive means 9 Positioning object 10 Position reference 11 Position measurement means 12 Measure Length 13 Controller 14 Driver 15 Pressure control unit 16 Bulkhead

Claims (4)

露光光を照射する照明系光学系または電子ビームと、基板を搭載するステージと、冷却媒体を介して装置内の発熱体を冷却する温調装置を備えた露光装置において、冷却媒体貯蔵用タンクに減圧装置を備えたことを特徴とする露光装置。   In an exposure apparatus that includes an illumination optical system or electron beam that irradiates exposure light, a stage on which a substrate is mounted, and a temperature control device that cools a heating element in the apparatus via a cooling medium, a cooling medium storage tank An exposure apparatus comprising a decompression device. 前記冷却媒体貯蔵用タンクの圧力の減圧を行う真空ポンプを備えたことを特徴とする請求項1記載の露光装置。   2. The exposure apparatus according to claim 1, further comprising a vacuum pump for reducing the pressure of the cooling medium storage tank. 前記冷却媒体貯蔵用タンクの圧力を制御する圧力調整手段を備えた請求項1または2記載の露光装置。   3. An exposure apparatus according to claim 1, further comprising pressure adjusting means for controlling the pressure of the cooling medium storage tank. 前記冷却対象が真空環境内に配置されていることを特徴とする請求項1〜3のいずれか記載の露光装置。   The exposure apparatus according to claim 1, wherein the object to be cooled is arranged in a vacuum environment.
JP2004178197A 2004-06-16 2004-06-16 Tank for storing cooling medium Withdrawn JP2006005061A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004178197A JP2006005061A (en) 2004-06-16 2004-06-16 Tank for storing cooling medium

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004178197A JP2006005061A (en) 2004-06-16 2004-06-16 Tank for storing cooling medium

Publications (1)

Publication Number Publication Date
JP2006005061A true JP2006005061A (en) 2006-01-05

Family

ID=35773191

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004178197A Withdrawn JP2006005061A (en) 2004-06-16 2004-06-16 Tank for storing cooling medium

Country Status (1)

Country Link
JP (1) JP2006005061A (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068208B2 (en) * 2006-12-01 2011-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for improving immersion scanner overlay performance

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8068208B2 (en) * 2006-12-01 2011-11-29 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for improving immersion scanner overlay performance
US8199314B2 (en) 2006-12-01 2012-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. System and method for improving immersion scanner overlay performance
TWI456353B (en) * 2006-12-01 2014-10-11 Taiwan Semiconductor Mfg System and method for improving immersion scanner overlay performance

Similar Documents

Publication Publication Date Title
KR100286209B1 (en) Stage system with driving mechanism, and exposure apparatus having the same
KR101619280B1 (en) Projection system and lithographic apparatus
JP4852431B2 (en) Lithographic apparatus having controlled motor, and motor control system and method
US7064804B2 (en) Temperature adjustment apparatus, exposure apparatus having the temperature adjustment apparatus, and semiconductor device manufacturing method
US7804575B2 (en) Lithographic apparatus and device manufacturing method having liquid evaporation control
US7116396B2 (en) Exposure device, exposure method and device manufacturing method
US10191395B2 (en) Thermal conditioning unit, lithographic apparatus and device manufacturing method
JP4495046B2 (en) Lithographic apparatus, apparatus with illumination system, apparatus with projection system, optical element of lithographic apparatus and device manufacturing method
US9971254B2 (en) Sensor, lithographic apparatus and device manufacturing method
US8817229B2 (en) Method of cooling an optical element, lithographic apparatus and method for manufacturing a device
US20080137055A1 (en) Lithographic apparatus and device manufacturing method
US7791709B2 (en) Substrate support and lithographic process
JP3814598B2 (en) Temperature adjustment apparatus, exposure apparatus, and device manufacturing method
JP2006526757A (en) Heat pipe with temperature control
JP2005079585A (en) Lithographic apparatus and device manufacturing method
JP2009037391A (en) Temperature control device, exposure device, actuator device, holding device, and device manufacturing method
JP2006005061A (en) Tank for storing cooling medium
JP5607907B2 (en) Charged particle beam lithography system
US20150098067A1 (en) Lithographic apparatus
JP2006216866A (en) Positioning device, exposure device and manufacturing method using it
JP2005136004A (en) Aligner and manufacturing method for device
JP2009027006A (en) Heat insulating structure, heat insulating device, heat sink, driver, stage device, exposure equipment, and method for manufacturing device
US7423721B2 (en) Lithographic apparatus
US10241422B2 (en) Lithography apparatus and a method of manufacturing a device
JP2006149100A (en) Linear motor, stage device, and aligner

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20070904