JP2006000862A - Compound material for brazing, brazing method using the same, and brazed product manufactured by using the method - Google Patents

Compound material for brazing, brazing method using the same, and brazed product manufactured by using the method Download PDF

Info

Publication number
JP2006000862A
JP2006000862A JP2004176608A JP2004176608A JP2006000862A JP 2006000862 A JP2006000862 A JP 2006000862A JP 2004176608 A JP2004176608 A JP 2004176608A JP 2004176608 A JP2004176608 A JP 2004176608A JP 2006000862 A JP2006000862 A JP 2006000862A
Authority
JP
Japan
Prior art keywords
brazing
layer
brazed
composite material
base material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004176608A
Other languages
Japanese (ja)
Inventor
Kazuma Kuroki
一真 黒木
Hiromitsu Kuroda
洋光 黒田
Hideyuki Sagawa
英之 佐川
Sukaku Shirai
枢覚 白井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Cable Ltd
Original Assignee
Hitachi Cable Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Cable Ltd filed Critical Hitachi Cable Ltd
Priority to JP2004176608A priority Critical patent/JP2006000862A/en
Publication of JP2006000862A publication Critical patent/JP2006000862A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Pressure Welding/Diffusion-Bonding (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound material for brazing in which the melting point of a brazed layer is low and a brazed part has sufficient brazing strength and corrosion resistance, a brazing method using the same, and a brazed product manufactured by using the method. <P>SOLUTION: The compound material 10 for brazing is constituted of a compound material with a brazed layer 15 integrated with a surface of a base material 11, and brazed with a member to be brazed. The brazed layer 15 is constituted of a laminate in which two or more kinds of metal layers 12, 13 are laminated to two or more layers, and the base material 11 is formed of an Fe-based alloy containing Cu element at the ratio of 2.0-4.0 mass%. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、熱交換器や燃料電池用部材などの被ろう付け部材をろう付けするためのろう付け用複合材及びそれを用いたろう付け方法並びにその方法を用いて製造したろう付け製品に関するものである。   The present invention relates to a brazing composite material for brazing a brazed member such as a heat exchanger or a fuel cell member, a brazing method using the same, and a brazed product manufactured using the method. is there.

自動車用オイルクーラの接合材としてステンレス基クラッド材が使用されている。これは、基材であるステンレス鋼板の片面又は両面に、ろう材としての機能を有するCu材をクラッドしてなるものである。   Stainless steel-based clad materials are used as joining materials for automobile oil coolers. This is formed by cladding a Cu material having a function as a brazing material on one side or both sides of a stainless steel plate as a base material.

また、ステンレス鋼や、Ni基又はCo基合金などからなる部材のろう付け材として、ろう付け接合部の耐食性に優れる各種Niろう材が、JIS規格により規定されている。さらに、熱交換器の接合に用いられるNiろう材として、粉末状のNiろう材に、Ni、Cr、又はNi−Cr合金の中から選択される金属粉末を4〜22wt%添加してなる粉末Niろう材が提案されている(例えば、特許文献1参照)。   Further, as a brazing material for members made of stainless steel, Ni-base or Co-base alloy, various Ni brazing materials having excellent corrosion resistance at the brazed joint are defined by JIS standards. Furthermore, as a Ni brazing material used for joining heat exchangers, a powder obtained by adding 4 to 22 wt% of a metal powder selected from Ni, Cr, or Ni—Cr alloy to a powdered Ni brazing material Ni brazing filler metal has been proposed (see, for example, Patent Document 1).

また、基材であるステンレス鋼の表面にNi及びTiからなるろう付け層を有する自己ろう付け性複合材がある(例えば、特許文献2参照)。この自己ろう付け性複合材は、基材の表面に、基材側からNi又はNi合金層、Ti又はTi合金層、Ni又はNi合金層の順に積層されたろう付け層を一体的に設けたものである。   In addition, there is a self-brazing composite material having a brazing layer made of Ni and Ti on the surface of stainless steel as a base material (see, for example, Patent Document 2). This self-brazing composite material is obtained by integrally providing a brazing layer in the order of a Ni or Ni alloy layer, a Ti or Ti alloy layer, and a Ni or Ni alloy layer in this order from the substrate side. It is.

特開2000−107883号公報JP 2000-107883 A 特開平7−299592号公報Japanese Patent Laid-Open No. 7-299592

前述した特許文献2記載の自己ろう付け性複合材を用いてろう付けを行う際、例えば、ろう付け層(ろう材)のTi成分を38mass%、Ni成分を62mass%とし、被ろう付け部材をステンレス鋼などのFe成分を含む材料とした場合、ろう材を十分に溶融させることが可能なろう付け処理温度は約1150℃となる。このため、このろう付け処理を、軟化温度が約1200℃の石英管で炉体が構成される熱処理炉内で行うと、炉体が軟化し易いという問題があった。   When performing brazing using the above-described self-brazing composite material described in Patent Document 2, for example, the brazing layer (brazing material) has a Ti component of 38 mass%, an Ni component of 62 mass%, and a brazed member. When a material containing an Fe component such as stainless steel is used, the brazing temperature at which the brazing material can be sufficiently melted is about 1150 ° C. For this reason, when this brazing process is performed in a heat treatment furnace in which the furnace body is composed of a quartz tube having a softening temperature of about 1200 ° C., there is a problem that the furnace body is easily softened.

一方、ろう付け接合部の耐食性を維持しつつ、ろう付け層の融点を低下させるための方法として、NiとTiのクラッド材において、Niに対するTiの割合を高くする方法がある。例えば、ろう付け層(ろう材)のTi成分を72mass%、Ni成分を28mass%とすることで、ろう付け層の融点を942℃と最も低くすることができる。ところが、この場合、Tiの割合を多くしたため、ろう付け処理後のろう付け接合部が著しく脆くなってしまい、十分な接合強度を得ることができないという問題があった。   On the other hand, as a method for reducing the melting point of the brazing layer while maintaining the corrosion resistance of the brazed joint, there is a method of increasing the ratio of Ti to Ni in the cladding material of Ni and Ti. For example, by setting the brazing layer (brazing material) to have a Ti component of 72 mass% and an Ni component of 28 mass%, the melting point of the brazing layer can be minimized to 942 ° C. However, in this case, since the ratio of Ti is increased, the brazed joint after the brazing treatment becomes extremely brittle, and there is a problem that sufficient joint strength cannot be obtained.

また、NiとTiのクラッド材に、更にCuをクラッドすることで、ろう付け層の融点を低下させる方法がある。ところが、この場合、クラッド材の製造工程数が増えると共に、ろう付け処理後のろう付け接合部の耐食性が悪化してしまうという問題があった。   In addition, there is a method of lowering the melting point of the brazing layer by further clad Cu with a clad material of Ni and Ti. However, in this case, there are problems that the number of manufacturing steps of the clad material increases and the corrosion resistance of the brazed joint after the brazing process is deteriorated.

以上の事情を考慮して創案された本発明の目的は、ろう付け層の融点が低く、ろう付け接合部が十分な接合強度及び耐食性を有するろう付け用複合材及びそれを用いたろう付け方法並びにその方法を用いて製造したろう付け製品を提供することにある。   The object of the present invention created in view of the above circumstances is to provide a brazing composite material in which the melting point of the brazing layer is low and the brazed joint has sufficient joint strength and corrosion resistance, and a brazing method using the same. The object is to provide a brazed product manufactured using the method.

上記目的を達成すべく本発明に係るろう付け用複合材は、基材の表面にろう付け層を一体的に設けてなる複合材で構成され、被ろう付け部材とろう付けされるろう付け用複合材において、
上記ろう付け層を、2種類以上の金属の層を2層以上に積層した積層体で構成し、かつ、上記基材を、Cu成分を2.0〜4.0mass%の割合で含むFe基合金で構成したものである。
In order to achieve the above object, the brazing composite material according to the present invention is composed of a composite material in which a brazing layer is integrally provided on the surface of a base material and brazed to a member to be brazed. In composite materials,
The brazing layer is composed of a laminate in which two or more kinds of metal layers are laminated in two or more layers, and the base material is an Fe group containing a Cu component at a ratio of 2.0 to 4.0 mass%. It is composed of an alloy.

ここで、ろう付け層を、Ti又はTi合金層とNi又はNi合金層とで構成、或いは、ろう付け層を、Ti又はTi合金層、Ni又はNi合金層、及びFe又はFe合金層で構成することが好ましい。   Here, the brazing layer is composed of a Ti or Ti alloy layer and a Ni or Ni alloy layer, or the brazing layer is composed of a Ti or Ti alloy layer, a Ni or Ni alloy layer, and a Fe or Fe alloy layer. It is preferable to do.

また、基材を、Cu成分を2.0〜4.0mass%の割合で含むステンレス鋼で構成することが好ましい。   Moreover, it is preferable to comprise a base material with the stainless steel which contains Cu component in the ratio of 2.0-4.0 mass%.

一方、本発明に係るろう付け方法は、上述したろう付け用複合材を用いて被ろう付け部材とのろう付けを行う方法であって、
真空度が1.0×10-1Pa以下の圧力下でろう付け処理を行い、基材に含まれるCu成分をろう付け層中に拡散させてろう付け層を溶融させると共に、ろう付け層中に拡散したCu成分をろう溶融部から蒸発させるものである。
On the other hand, a brazing method according to the present invention is a method of brazing with a member to be brazed using the above-described brazing composite material,
Brazing treatment is performed under a pressure of a vacuum of 1.0 × 10 −1 Pa or less, and the Cu component contained in the base material is diffused into the brazing layer to melt the brazing layer and diffuse into the brazing layer. The Cu component thus evaporated is evaporated from the solder melting portion.

ここで、ろう溶融部が完全に溶解した後、ろう溶融部を急冷することが好ましい。   Here, it is preferable to quench the brazing melt part after the brazing melt part is completely dissolved.

また一方、本発明に係るろう付け製品は、上述したろう付け方法を用いて、前述のろう付け用複合材と被ろう付け部材とをろう付け接合したものである。   On the other hand, a brazing product according to the present invention is obtained by brazing and joining the above-mentioned brazing composite material and a member to be brazed using the brazing method described above.

本発明によれば、1125℃未満といった低い温度でろう付け処理が可能なろう付け用複合材を得ることができるという優れた効果を発揮する。   According to the present invention, it is possible to obtain a brazing composite material that can be brazed at a low temperature of less than 1125 ° C.

以下、本発明の好適一実施の形態を添付図面に基づいて説明する。   DESCRIPTION OF EXEMPLARY EMBODIMENTS Hereinafter, a preferred embodiment of the invention will be described with reference to the accompanying drawings.

本発明の好適一実施の形態に係るろう付け用複合材の横断面図を図1に示す。   A cross-sectional view of a brazing composite material according to a preferred embodiment of the present invention is shown in FIG.

図1に示すように、本実施の形態に係るろう付け用複合材10は、被ろう付け部材とろう付けされるものであって、基材11の表面(図1中では上面のみ)にろう付け層15を一体的に設けてなるものである。このろう付け用複合材10に適宜、圧延加工を施すことで、所望の厚さのろう付け用複合材(最終製品)が得られる。ここで言う基材11の表面は、外部に露出する全ての面を示している。   As shown in FIG. 1, the composite material 10 for brazing according to the present embodiment is brazed to a member to be brazed and brazed to the surface of the base material 11 (only the upper surface in FIG. 1). The adhesive layer 15 is provided integrally. By appropriately rolling the brazing composite material 10, a brazing composite material (final product) having a desired thickness can be obtained. The surface of the base material 11 here refers to all surfaces exposed to the outside.

ろう付け層15は、Ni又はNi合金層(以下、Ni層と表す)12、Ti又はTi合金層(以下、Ti層と表す)13、Ni層12の少なくとも3層の積層体で構成されるものである。図1中では、ろう付け層15は、基材11側から順に、Ni層12、Ti層13、Ni層12を配置、積層し、クラッドしてなるものである。   The brazing layer 15 is composed of a laminate of at least three layers of a Ni or Ni alloy layer (hereinafter referred to as Ni layer) 12, a Ti or Ti alloy layer (hereinafter referred to as Ti layer) 13, and a Ni layer 12. Is. In FIG. 1, the brazing layer 15 is formed by arranging, laminating, and cladding a Ni layer 12, a Ti layer 13, and a Ni layer 12 in order from the base material 11 side.

基材11は、ろう付け製品を構成する構成部材(被ろう付け部材)と同一又はほぼ同一の材料で、かつ、Cu成分を2.0〜4.0mass%、好ましくは2.5〜4.0mass%の割合で含むFe基合金で構成される。このようなFe基合金としては、耐食性をより向上させたステンレス鋼、例えば、SUS316J1、SUS316J1L、SUSXM7、SUS630(全てJIS規格品)などが挙げられる。   The base material 11 is made of the same or substantially the same material as the component member (the member to be brazed) constituting the brazed product, and contains a Cu component in a ratio of 2.0 to 4.0 mass%, preferably 2.5 to 4.0 mass%. It is composed of an Fe-based alloy. Examples of such Fe-based alloys include stainless steels with improved corrosion resistance, such as SUS316J1, SUS316J1L, SUSXM7, and SUS630 (all JIS standard products).

基材11に含まれるCu成分の割合を2.0〜4.0mass%としたのは、Cu成分の割合が2.0mass%未満だと、TiとNiが反応して得られるろう材の融点を低下させる効果が小さいためである。また、Cu成分の割合が4.0mass%を超えると、ろう付け接合部(後述)と比較して、基材11の耐食性が低下するためである。   The reason why the ratio of the Cu component contained in the base material 11 is set to 2.0 to 4.0 mass% is that when the ratio of the Cu component is less than 2.0 mass%, the melting point of the brazing material obtained by reacting Ti and Ni is reduced. This is because is small. Moreover, it is because the corrosion resistance of the base material 11 will fall compared with a brazing junction part (after-mentioned) when the ratio of Cu component exceeds 4.0 mass%.

ろう付け層15の[Ni]重量と[Ni+Ti]重量との比(Ni/Ni+Ti)は0.58〜0.68、好ましくは0.60〜0.66に調整される。これらの調整は、Ni層12及びTi層13の各層厚の調整、Ni層12及びTi層13の各合金組成の調整などによってなされる。ここで、Ni/Ni+Tiが0.58未満、又は0.68を超えると、ろう付け層15全体の融点が上昇するので、ろう付け処理温度が高温(例えば、1200℃以上)となってしまう。その結果、被ろう付け部材や基材11自体の強度が低下するため、好ましくない。   The ratio (Ni / Ni + Ti) of [Ni] weight and [Ni + Ti] weight of the brazing layer 15 is adjusted to 0.58 to 0.68, preferably 0.60 to 0.66. These adjustments are made by adjusting the thicknesses of the Ni layer 12 and the Ti layer 13, adjusting the alloy compositions of the Ni layer 12 and the Ti layer 13, and the like. Here, if Ni / Ni + Ti is less than 0.58 or exceeds 0.68, the melting point of the entire brazing layer 15 is increased, so that the brazing treatment temperature becomes high (for example, 1200 ° C. or more). As a result, the strength of the member to be brazed and the substrate 11 itself is lowered, which is not preferable.

このようにして得られたろう付け用複合材10に、適宜、焼鈍処理、プレス成形(プレス加工)を施して所望の形状の半製品に形成する。その後、その半製品と接合を行う被ろう付け部材(図示せず)とを組み合わせ、ろう付け接合を行う部分(以下、ろう付け箇所と記す)を接触させる。その後、ろう付け箇所をメインにして、これらの組み合わせ部材に加熱によるろう付け処理を施すことで、ろう付け層15が溶融、凝固し、ろう凝固部(ろう付け接合部)を介して接合されたろう付け製品が得られる。あるいは、被ろう付け部材として、ろう付け用複合材10を用いてもよい。例えば、本実施の形態に係るろう付け用複合材10を複数個用意し、各複合材10に適宜プレス加工を施してそれぞれ所望の形状の半製品に形成した後、それらの半製品を組み合わせ、ろう付け箇所を接触させる。その後、これらの組み合わせ部材に加熱によるろう付け処理を施すことで、ろう付け製品を得るようにしてもよい。   The brazing composite material 10 thus obtained is appropriately subjected to an annealing treatment and press molding (press processing) to form a semi-finished product having a desired shape. Thereafter, the semi-finished product and a member to be brazed (not shown) to be joined are combined, and a part to be brazed and joined (hereinafter referred to as a brazed part) is brought into contact. After that, the brazing layer 15 is melted and solidified by subjecting these combined members to a brazing treatment by heating, with the brazing point being the main, and the brazing layer 15 is joined via the brazing solidified portion (brazing joint). An attached product is obtained. Alternatively, the brazing composite material 10 may be used as a member to be brazed. For example, preparing a plurality of brazing composite materials 10 according to the present embodiment, appropriately pressing each composite material 10 to form a semi-finished product of a desired shape, and then combining those semi-finished products, Contact the brazed area. Then, you may make it obtain a brazing product by performing the brazing process by heating to these combination members.

ろう付け製品としては、EGR用クーラ等の高温・高腐食性のガス又は液体に晒される熱交換器、燃料電池の改質器用クーラ、燃料電池部材、オイルクーラ、ラジエータ、二次電池部材などが挙げられる。   Brazing products include heat exchangers exposed to high-temperature, highly corrosive gases or liquids such as EGR coolers, fuel cell reformer coolers, fuel cell members, oil coolers, radiators, secondary battery members, etc. Can be mentioned.

本実施の形態においては、基材側からNi層12、Ti層13、Ni層12の順に積層してなる3層構造のろう付け層15を有するろう付け用複合材10について説明を行った。しかし、ろう付け層の構造は、これに特に限定するものではなく、例えば、基材11側からNi層12、Ti層13、Ni層12、Ti層13、…の順に積層してなる4層構造以上のろう付け層であってもよい。   In the present embodiment, the brazing composite material 10 having the brazing layer 15 having a three-layer structure in which the Ni layer 12, the Ti layer 13, and the Ni layer 12 are laminated in this order from the substrate side has been described. However, the structure of the brazing layer is not particularly limited to this. For example, four layers formed by laminating the Ni layer 12, the Ti layer 13, the Ni layer 12, the Ti layer 13,. It may be a brazing layer having a structure or higher.

また、本実施の形態においては、基材11の片面(図1中では上面)のみにろう付け層15を設けたろう付け用複合材10について説明を行ったが、これに特に限定するものではない。例えば、ろう付け層15が基材11の両面(図1中では上・下面)に設けられたろう付け用複合材であってもよい。   Moreover, in this Embodiment, although the brazing composite material 10 which provided the brazing layer 15 only in the single side | surface (FIG. 1 upper surface) of the base material 11 was demonstrated, it does not specifically limit to this. . For example, a brazing composite material in which the brazing layer 15 is provided on both surfaces (upper and lower surfaces in FIG. 1) of the base material 11 may be used.

さらに、本実施の形態においては、箔状(薄板状)を呈したろう付け用複合材10を用いて説明を行ったが、複合材の形状は箔状に特に限定するものではない。例えば、棒状又はワイヤ状の基材の表面に、基材側からNi層12、Ti層13、Ni層12の順に積層してなるろう付け層15を一体的に設け、ろう付け用複合材としてもよい。この場合、Ni層12及びTi層13の形成は、メッキ法、押出法、造管法などによってなされる。   Furthermore, in this Embodiment, although demonstrated using the composite material 10 for brazing which exhibited foil shape (thin plate shape), the shape of a composite material is not specifically limited to foil shape. For example, a brazing layer 15 formed by laminating a Ni layer 12, a Ti layer 13, and a Ni layer 12 in this order from the substrate side is integrally provided on the surface of a rod-shaped or wire-shaped substrate, and as a brazing composite material Also good. In this case, the Ni layer 12 and the Ti layer 13 are formed by a plating method, an extrusion method, a pipe making method, or the like.

次に、本実施の形態に係るろう付け用複合材10を用いたろう付け方法を説明する。   Next, a brazing method using the brazing composite material 10 according to the present embodiment will be described.

先ず、本実施の形態に係るろう付け用複合材10にプレス加工を施し、半製品を作製する。この時、プレス加工に先立って、適宜、ろう付け用複合材10に焼鈍処理を施してもよい。焼鈍処理を行うことによって、基材11が十分に軟化され、プレス加工時に割れが生じることはなく、所望の形状の半製品を歩留りよく得ることができる。また、この焼鈍処理によって、ろう付け層15におけるNi層12,12とTi層13の各層間で拡散反応が進行する。   First, the brazing composite material 10 according to the present embodiment is pressed to produce a semi-finished product. At this time, prior to the press working, the brazing composite material 10 may be appropriately annealed. By performing the annealing treatment, the base material 11 is sufficiently softened, and cracking does not occur at the time of pressing, and a semi-finished product having a desired shape can be obtained with a high yield. Further, by this annealing treatment, a diffusion reaction proceeds between the Ni layers 12 and 12 and the Ti layer 13 in the brazing layer 15.

この半製品と被ろう付け部材(図示せず)とを組み合わせ、ろう付け箇所を接触させる。その後、これらの組み合わせ部材に、加熱炉を用いてろう付け処理を施すことで、ろう付け箇所においてろう付け層15(ろう材)の溶融反応が生じる。このろう付け処理は、真空度が1×10-1Pa以下、好ましくは1×10-2Pa以下の圧力雰囲気下で行う。ろう付け処理温度は、例えば、1050〜1125℃未満、好ましくは1100℃前後とされる。 This semi-finished product and a member to be brazed (not shown) are combined to bring the brazed portion into contact. Thereafter, these combination members are subjected to a brazing process using a heating furnace, whereby a melting reaction of the brazing layer 15 (brazing material) occurs at the brazing point. This brazing treatment is performed in a pressure atmosphere with a degree of vacuum of 1 × 10 −1 Pa or less, preferably 1 × 10 −2 Pa or less. The brazing temperature is, for example, 1050 to less than 1125 ° C, preferably around 1100 ° C.

このろう付け処理により、先ず、ろう付け層15におけるNi層12,12とTi層13との間で拡散反応が進行し、合金化がなされる。これと同時に、基材11に含まれるCu成分がろう付け層15中に拡散する。つまり、ろう付け層15中では、Cu成分、Ni成分、及びTi成分による混合、合金化がなされる。これによって、ろう付け層15の融点は、NiとTiだけで構成されるろう付け層を溶融させる場合と比較して更に低下することから、より低い温度でのろう付け処理が可能となる。その結果、約1050〜1125℃未満の温度でろう付け層15が溶融し始め、ろう付け層15の流動が生じ、ろう付け層15が溶融してろう溶融部が形成される。   By this brazing treatment, first, a diffusion reaction proceeds between the Ni layers 12 and 12 and the Ti layer 13 in the brazing layer 15 to form an alloy. At the same time, the Cu component contained in the substrate 11 diffuses into the brazing layer 15. That is, the brazing layer 15 is mixed and alloyed with the Cu component, the Ni component, and the Ti component. As a result, the melting point of the brazing layer 15 is further lowered as compared with the case where the brazing layer composed of only Ni and Ti is melted, so that the brazing process can be performed at a lower temperature. As a result, the brazing layer 15 begins to melt at a temperature of less than about 1050 to 1125 ° C., causing the brazing layer 15 to flow, and the brazing layer 15 melts to form a brazed molten portion.

また、ろう付け処理は、真空度が1×10-1Pa以下の低圧雰囲気下で行われる。ここで、ろう溶融部において、Cuはその他の金属元素(Ni、Ti)と比較して蒸気圧(飽和蒸気圧)が低いため、Cu蒸気が優先的にろう溶融部から蒸発し、脱離拡散される。その後、ろう付け層15が完全に溶融した段階で急冷を行うことで、ろう溶融部が凝固してろう付け接合部となり、基材11と被ろう付け部材とがろう付け接合部を介して接合され、ろう付け製品が得られる。 The brazing process is performed in a low-pressure atmosphere with a degree of vacuum of 1 × 10 −1 Pa or less. Here, since Cu has a lower vapor pressure (saturated vapor pressure) than other metal elements (Ni, Ti) in the brazing melt, Cu vapor preferentially evaporates from the brazing melt and is desorbed and diffused. Is done. Thereafter, rapid cooling is performed when the brazing layer 15 is completely melted, so that the brazed molten portion is solidified to become a brazed joint, and the base material 11 and the member to be brazed are joined via the brazed joint. And a brazed product is obtained.

この冷却過程において、ろう溶融部から脱離拡散(蒸発)したCu蒸気が、ろう溶融部の表面に再付着しないようにするために、加熱炉のチャンバー部分を、ろう溶融部よりも早く冷却することが好ましい。或いは、Cu蒸気を吸着させるためのゲッター材(吸着材)を加熱炉内に配置するようにしてもよい。   In this cooling process, in order to prevent Cu vapor desorbed and diffused (evaporated) from the solder melting part from reattaching to the surface of the solder melting part, the chamber part of the heating furnace is cooled earlier than the solder melting part. It is preferable. Alternatively, a getter material (adsorbent) for adsorbing Cu vapor may be disposed in the heating furnace.

以上、本実施の形態に係るろう付け用複合材10(図1参照)は、基材11を、Cu成分を2.0〜4.0mass%の割合で含むFe基合金で構成したことで、このろう付け用複合材10を用いてろう付け接合を行った際、基材11からろう付け層15中にCu成分が拡散する。よって、ろう付け層15の融点を1100℃前後にまで低下させることができる。その結果、被ろう付け部材や基材11自体の強度が低下することがなくなると共に、石英管で構成される熱処理炉の炉体が軟化するおそれもなくなくなる。   As described above, the brazing composite material 10 (see FIG. 1) according to the present embodiment is configured by brazing the base material 11 with an Fe-based alloy containing a Cu component at a ratio of 2.0 to 4.0 mass%. Cu component diffuses from the base material 11 into the brazing layer 15 when the brazing joint is performed using the composite material 10. Therefore, the melting point of the brazing layer 15 can be lowered to around 1100 ° C. As a result, the strength of the member to be brazed and the base material 11 itself is not reduced, and there is no possibility that the furnace body of the heat treatment furnace composed of the quartz tube is softened.

ろう付け処理は、真空度が1×10-1Pa以下の低圧雰囲気下で行われるため、基材11からろう付け層15中に拡散し、ろう付け層15の融点低下に寄与したCu成分は優先的に蒸発される。よって、最終的に得られたろう付け製品のろう付け接合部中に残存するCu成分は極微量となる。その結果、ろう付け製品のろう付け接合部の耐食性を良好に保つことができる。 Since the brazing process is performed in a low-pressure atmosphere with a vacuum degree of 1 × 10 −1 Pa or less, the Cu component that diffuses from the base material 11 into the brazing layer 15 and contributes to the lowering of the melting point of the brazing layer 15 is Evaporates preferentially. Therefore, the Cu component remaining in the brazed joint portion of the brazed product finally obtained is extremely small. As a result, the corrosion resistance of the brazed joint of the brazed product can be kept good.

また、本実施の形態に係るろう付け用複合材10においては、ろう付け層15の融点低下に寄与するCu成分は基材11から供給される。このため、ろう付け層15は、従来のろう付け用複合材のろう付け層と同様の製造工程で製造可能であり、容易、かつ、安価にろう付け用複合材10を製造することができる。   In the brazing composite material 10 according to the present embodiment, the Cu component that contributes to lowering the melting point of the brazing layer 15 is supplied from the base material 11. For this reason, the brazing layer 15 can be manufactured by the same manufacturing process as the brazing layer of the conventional brazing composite material, and the brazing composite material 10 can be manufactured easily and inexpensively.

また、本実施の形態に係るろう付け用複合材10は、基材11とろう付け層15とが一体的に設けられているため、基材11と被ろう付け部材とのろう付け箇所にろう材を配置する作業が不要となる。このため、良好なろう付け生産性で、ろう付け製品を得ることができる。   Further, in the brazing composite material 10 according to the present embodiment, the base material 11 and the brazing layer 15 are integrally provided, so that the brazing portion between the base material 11 and the member to be brazed is brazed. The work of arranging the materials becomes unnecessary. For this reason, a brazed product can be obtained with good brazing productivity.

次に、本発明の他の実施の形態を添付図面に基づいて説明する。   Next, another embodiment of the present invention will be described with reference to the accompanying drawings.

本発明の他の好適一実施の形態に係るろう付け用複合材の横断面図を図2に示す。尚、図1と同様の部材については同じ符号を付しており、これらの部材については説明を省略する。   FIG. 2 shows a cross-sectional view of a brazing composite material according to another preferred embodiment of the present invention. In addition, the same code | symbol is attached | subjected about the member similar to FIG. 1, and description is abbreviate | omitted about these members.

図2に示すように、本実施の形態に係るろう付け用複合材20は、被ろう付け部材とろう付けされるものであって、基材11の表面(図2中では上面のみ)にろう付け層25を一体的に設けてなるものである。このろう付け用複合材20に適宜、圧延加工を施すことで、所望の厚さのろう付け用複合材(最終製品)が得られる。   As shown in FIG. 2, the composite material 20 for brazing according to the present embodiment is brazed to a member to be brazed, and is brazed to the surface of the base material 11 (only the upper surface in FIG. 2). The adhesive layer 25 is integrally provided. By appropriately rolling the brazing composite material 20, a brazing composite material (final product) having a desired thickness can be obtained.

ろう付け層25は、Ni層12、Ti層13、Fe又はFe合金層(以下、Fe層と記す)14の少なくとも3層の積層体で構成されるものである。図2中では、ろう付け層25は、基材11側から順に、Ni層12、Ti層13、Fe層14を配置、積層し、クラッドしてなるものである。   The brazing layer 25 is composed of a laminate of at least three layers of the Ni layer 12, the Ti layer 13, the Fe or Fe alloy layer (hereinafter referred to as Fe layer) 14. In FIG. 2, the brazing layer 25 is formed by arranging, laminating, and cladding the Ni layer 12, the Ti layer 13, and the Fe layer 14 in order from the substrate 11 side.

ろう付け層25の[Ni]重量と[Ni+Ti]重量との比(Ni/Ni+Ti)は0.58〜0.68、好ましくは0.60〜0.66に調整される。これらの調整は、Ni層12、Ti層13、及びFe層14の各層厚の調整、Ni層12、Ti層13、及びFe層14の各合金組成の調整などによってなされる。ここで、Ni/Ni+Tiが0.58未満、又は0.68を超えると、ろう付け層25全体の融点が上昇するので、ろう付け処理温度が高温(例えば、1200℃以上)となってしまう。その結果、被ろう付け部材や基材11自体の強度が低下するため、好ましくない。   The ratio (Ni / Ni + Ti) of [Ni] weight and [Ni + Ti] weight of the brazing layer 25 is adjusted to 0.58 to 0.68, preferably 0.60 to 0.66. These adjustments are made by adjusting the thicknesses of the Ni layer 12, the Ti layer 13, and the Fe layer 14, adjusting the alloy compositions of the Ni layer 12, the Ti layer 13, and the Fe layer 14. Here, when Ni / Ni + Ti is less than 0.58 or exceeds 0.68, the melting point of the entire brazing layer 25 is increased, so that the brazing treatment temperature becomes high (for example, 1200 ° C. or more). As a result, the strength of the member to be brazed and the substrate 11 itself is lowered, which is not preferable.

ろう付け層25全体に占めるFeの割合は6〜35mass%、好ましくは10〜30mass%に調整される。言い換えると、ろう付け用複合材20は、ろう付け層25全体の組成がNi-Ti-6〜35mass%Feとなるように調整したものである。これらの調整は、Ni層12、Ti層13、及びFe層14の各層厚の調整、Ni層12、Ti層13、及びFe層14の各合金組成の調整などによってなされる。ここで、Feの割合が6mass%未満だと、被ろう付け部材や基材11からFe成分が溶出するのを十分に抑制することができない。また、Feの割合が35mass%を超えると、ろう付け層25全体の融点が上昇するので、ろう付け処理温度がより高温となってしまい、結果的に被ろう付け部材や基材11の強度が低下する。   The ratio of Fe in the entire brazing layer 25 is adjusted to 6 to 35 mass%, preferably 10 to 30 mass%. In other words, the brazing composite material 20 is adjusted so that the composition of the entire brazing layer 25 is Ni-Ti-6 to 35 mass% Fe. These adjustments are made by adjusting the thicknesses of the Ni layer 12, the Ti layer 13, and the Fe layer 14, adjusting the alloy compositions of the Ni layer 12, the Ti layer 13, and the Fe layer 14. Here, when the proportion of Fe is less than 6 mass%, it is not possible to sufficiently suppress the elution of the Fe component from the member to be brazed and the base material 11. Moreover, since the melting | fusing point of the whole brazing layer 25 will rise when the ratio of Fe exceeds 35 mass%, brazing processing temperature will become higher temperature, and the intensity | strength of the brazing member and the base material 11 will result in it. descend.

このようにして得られたろう付け用複合材20に、適宜、焼鈍処理、プレス成形(プレス加工)を施して所望の形状の半製品に形成する。その後、その半製品と接合を行う被ろう付け部材(図示せず)とを組み合わせ、ろう付け箇所を接触させる。その後、ろう付け箇所をメインにして、これらの組み合わせ部材に加熱によるろう付け処理を施すことで、ろう付け層25が溶融、凝固し、ろう付け接合部を介して接合されたろう付け製品が得られる。あるいは、被ろう付け部材として、ろう付け用複合材20を用いてもよい。例えば、本実施の形態に係るろう付け用複合材20を複数個用意し、各複合材20に適宜プレス加工を施してそれぞれ所望の形状の半製品に形成した後、それらの半製品を組み合わせ、ろう付け箇所を接触させる。その後、これらの組み合わせ部材に加熱によるろう付け処理を施すことで、ろう付け製品を得るようにしてもよい。   The brazing composite material 20 thus obtained is appropriately subjected to annealing treatment and press molding (pressing) to form a semi-finished product having a desired shape. Thereafter, the semi-finished product and a member to be brazed (not shown) to be joined are combined, and the brazed portion is brought into contact. After that, the brazing part 25 is melted and solidified by subjecting these combination members to a brazing treatment by heating, with the brazed portion as the main, and a brazed product joined through the brazed joint is obtained. . Alternatively, the brazing composite material 20 may be used as a member to be brazed. For example, preparing a plurality of brazing composite materials 20 according to the present embodiment, appropriately pressing each composite material 20 to form a semi-finished product of a desired shape, and then combining those semi-finished products, Contact the brazed area. Then, you may make it obtain a brazing product by performing the brazing process by heating to these combination members.

本実施の形態においては、基材側からNi層12、Ti層13、Fe層14の順に積層してなる3層構造のろう付け層25を有するろう付け用複合材20について説明を行った。しかし、ろう付け層の構造は、これに特に限定するものではなく、例えば、基材11側からNi層12、Ti層13、Ni層12、Fe層14、…の順に積層してなる4層構造以上のろう付け層であってもよい。   In the present embodiment, the brazing composite material 20 having the brazing layer 25 having a three-layer structure in which the Ni layer 12, the Ti layer 13, and the Fe layer 14 are laminated in this order from the substrate side has been described. However, the structure of the brazing layer is not particularly limited to this. For example, four layers formed by laminating the Ni layer 12, the Ti layer 13, the Ni layer 12, the Fe layer 14,. It may be a brazing layer having a structure or higher.

また、本実施の形態においては、基材11の片面(図2中では上面)のみにろう付け層25を設けたろう付け用複合材20について説明を行ったが、これに特に限定するものではない。例えば、ろう付け層25が基材11の両面(図2中では上・下面)に設けられたろう付け用複合材であってもよい。   Moreover, in this Embodiment, although the brazing composite material 20 which provided the brazing layer 25 only in the single side | surface (FIG. 2 upper surface) of the base material 11 was demonstrated, it does not specifically limit to this. . For example, a brazing composite material in which the brazing layer 25 is provided on both surfaces (upper and lower surfaces in FIG. 2) of the base material 11 may be used.

さらに、本実施の形態においては、箔状(薄板状)を呈したろう付け用複合材20を用いて説明を行ったが、複合材の形状は箔状に特に限定するものではない。例えば、棒状又はワイヤ状の基材の表面に、基材側からNi層12、Ti層13、Fe層14の順に積層してなるろう付け層25を一体的に設け、ろう付け用複合材としてもよい。この場合、Ni層12、Ti層13、及びFe層14の形成は、メッキ法、押出法、造管法などによってなされる。   Furthermore, in this Embodiment, although demonstrated using the brazing composite material 20 which exhibited foil shape (thin plate shape), the shape of a composite material is not specifically limited to foil shape. For example, a brazing layer 25 formed by laminating a Ni layer 12, a Ti layer 13 and an Fe layer 14 in this order from the substrate side is integrally provided on the surface of a rod-like or wire-like substrate, and as a brazing composite material Also good. In this case, the Ni layer 12, the Ti layer 13, and the Fe layer 14 are formed by a plating method, an extrusion method, a pipe making method, or the like.

次に、本実施の形態に係るろう付け用複合材20を用いたろう付け方法を説明する。   Next, a brazing method using the brazing composite material 20 according to the present embodiment will be described.

先ず、本実施の形態に係るろう付け用複合材20にプレス加工を施し、半製品を作製する。この時、プレス加工に先立って、適宜、ろう付け用複合材20に焼鈍処理を施してもよい。焼鈍処理を行うことによって、基材11が十分に軟化され、プレス加工時に割れが生じることはなく、所望の形状の半製品を歩留りよく得ることができる。また、この焼鈍処理によって、ろう付け層25におけるNi層12、Ti層13、及びFe層14の各層間で拡散反応が進行する。   First, the brazing composite material 20 according to the present embodiment is pressed to produce a semi-finished product. At this time, prior to press working, the brazing composite material 20 may be appropriately annealed. By performing the annealing treatment, the base material 11 is sufficiently softened, and cracking does not occur at the time of pressing, and a semi-finished product having a desired shape can be obtained with a high yield. In addition, by this annealing treatment, a diffusion reaction proceeds between the Ni layer 12, the Ti layer 13, and the Fe layer 14 in the brazing layer 25.

この半製品と被ろう付け部材(図示せず)とを組み合わせ、ろう付け箇所を接触させる。その後、これらの組み合わせ部材に、加熱炉を用いてろう付け処理を施すことで、ろう付け箇所においてろう付け層25(ろう材)の溶融反応が生じる。このろう付け処理は、真空度が1×10-1Pa以下、好ましくは1×10-2Pa以下の圧力雰囲気下で行う。ろう付け処理温度は、例えば、1050〜1125℃未満、好ましくは1100℃前後とされる。 This semi-finished product and a member to be brazed (not shown) are combined to bring the brazed portion into contact. Thereafter, these combination members are subjected to a brazing process using a heating furnace, whereby a melting reaction of the brazing layer 25 (brazing material) occurs at the brazing point. This brazing treatment is performed in a pressure atmosphere with a degree of vacuum of 1 × 10 −1 Pa or less, preferably 1 × 10 −2 Pa or less. The brazing temperature is, for example, 1050 to less than 1125 ° C, preferably around 1100 ° C.

このろう付け処理により、先ず、ろう付け層25におけるNi層12とTi層13との間で拡散反応が進行し、Ni層12とTi層13との界面で溶融が生じ始める。その後、Fe層14からFe成分がろう付け層25中に拡散し、これと同時に、基材11に含まれるCu成分がろう付け層25中に拡散し、ろう付け層25の溶融が更に進行する。つまり、ろう付け層25中では、Ni成分、Ti成分、Fe成分、及びCu成分による混合、合金化がなされる。これによって、ろう付け層25の融点は、NiとTiだけで構成されるろう付け層を溶融させる場合と比較して更に低下することから、より低い温度でのろう付け処理が可能となる。その結果、約1050〜1125℃未満の温度でろう付け層25が溶融し始め、ろう付け層25の流動が生じ、ろう付け層25が溶融してろう溶融部が形成される。   By this brazing treatment, first, a diffusion reaction proceeds between the Ni layer 12 and the Ti layer 13 in the brazing layer 25, and melting starts to occur at the interface between the Ni layer 12 and the Ti layer 13. Thereafter, the Fe component diffuses from the Fe layer 14 into the brazing layer 25, and at the same time, the Cu component contained in the base material 11 diffuses into the brazing layer 25, and the melting of the brazing layer 25 further proceeds. . That is, in the brazing layer 25, mixing and alloying are performed by the Ni component, Ti component, Fe component, and Cu component. As a result, the melting point of the brazing layer 25 is further lowered as compared with the case where the brazing layer composed of only Ni and Ti is melted, so that a brazing process at a lower temperature is possible. As a result, the brazing layer 25 begins to melt at a temperature of less than about 1050 to 1125 ° C., causing the brazing layer 25 to flow, and the brazing layer 25 melts to form a brazed molten portion.

また、ろう付け処理は、真空度が1×10-1Pa以下の低圧雰囲気下で行われる。ここで、ろう溶融部において、Cuはその他の金属元素(Ni、Ti、及びFe)と比較して蒸気圧(飽和蒸気圧)が低いため、Cu蒸気が優先的にろう溶融部から蒸発し、脱離拡散される。その後、ろう付け層25が完全に溶融した段階で急冷を行うことで、ろう溶融部が凝固してろう付け接合部となり、基材11と被ろう付け部材とがろう付け接合部を介して接合され、ろう付け製品が得られる。 The brazing process is performed in a low-pressure atmosphere with a degree of vacuum of 1 × 10 −1 Pa or less. Here, since Cu has a lower vapor pressure (saturated vapor pressure) than other metal elements (Ni, Ti, and Fe) in the brazing melt, Cu vapor preferentially evaporates from the brazing melt, Desorbed and diffused. Thereafter, rapid cooling is performed when the brazing layer 25 is completely melted, so that the brazed molten portion is solidified to become a brazed joint, and the base material 11 and the member to be brazed are joined via the brazed joint. And a brazed product is obtained.

本実施の形態に係るろう付け用複合材20においても、前実施の形態に係るろう付け用複合材10と同様の作用効果が得られる。   Also in the brazing composite material 20 according to the present embodiment, the same effects as the brazing composite material 10 according to the previous embodiment can be obtained.

また、本実施の形態に係るろう付け用複合材20によれば、ろう付け処理時に、ろう付け層25のNi層12及びTi層13に続いてFe層14が溶融し、Ni成分、Ti成分、及びFe成分が混合されると共に、基材11のCu成分がろう付け層25中に拡散して、ろう付け層25に流動が生じる。ここで、ろう付け層25の流動が生じる前に、ろう付け層25中にFe層14が溶融するため、溶融したろう付け層25全体のFe濃度は、溶融前のろう付け層25全体のFe濃度と同じ6〜35mass%となる。ろう付け処理の際に、被ろう付け部材や基材11のFe成分がろう溶融部中に溶け込むことがあるが、溶け込みが生じるのはろう溶融部におけるFe濃度が飽和に達するまでであり、溶け込み可能なFe量には限界がある。よって、被ろう付け部材や基材11、特に被ろう付け部材のFe成分が、ろう溶融部中に溶け込むことが抑制され、被ろう付け部材や基材11に侵食が発生するのを大幅に低減することができる。また、ろう溶融部中のFe濃度は、湯流れ性を阻害しないように6〜35mass%に調整している。このため、ろう溶融部の湯流れ性は良好である。これらの結果、ろう付け後において、被ろう付け部材と基材11とのろう付け接合部の強度低下が生じることはなく、ろう付け接合部の信頼性は良好である。   Moreover, according to the brazing composite material 20 according to the present embodiment, the Fe layer 14 is melted after the Ni layer 12 and the Ti layer 13 of the brazing layer 25 during the brazing process, and thus the Ni component and the Ti component. , And the Fe component are mixed, and the Cu component of the base material 11 diffuses into the brazing layer 25, and the brazing layer 25 flows. Here, since the Fe layer 14 is melted in the brazing layer 25 before the flow of the brazing layer 25 occurs, the Fe concentration of the entire brazed layer 25 is equal to the Fe concentration of the entire brazing layer 25 before melting. It becomes 6-35 mass% which is the same as the concentration. During the brazing process, the Fe component of the member to be brazed and the base material 11 may be dissolved in the brazing melt part, but the melting occurs until the Fe concentration in the brazing melt part reaches saturation. There is a limit to the amount of Fe that is possible. Therefore, the brazing member and the base material 11, in particular, the Fe component of the brazing member is suppressed from being dissolved into the brazing melt part, and the occurrence of erosion of the brazed member and the base material 11 is greatly reduced. can do. Moreover, the Fe concentration in the brazing melt part is adjusted to 6 to 35 mass% so as not to inhibit the hot water flowability. For this reason, the hot metal flowability of the brazing melt part is good. As a result, after brazing, the strength of the brazed joint between the member to be brazed and the substrate 11 does not decrease, and the reliability of the brazed joint is good.

以上、本発明は、上述した実施の形態に限定されるものではなく、他にも種々のものが想定されることは言うまでもない。   As described above, the present invention is not limited to the above-described embodiment, and it goes without saying that various other things are assumed.

次に、本発明について、実施例に基づいて説明するが、本発明はこの実施例に限定されるものではない。   Next, although this invention is demonstrated based on an Example, this invention is not limited to this Example.

(実施例1)
板厚が0.84mmのNi板、板厚が2.0mmの純Ti板、板厚が0.84mmのNi板を順に重ね合わせて3層構造の積層体を形成した。この積層体に熱間圧延処理を施して、板厚が1.4mmのクラッド板を得た。このクラッド板に冷間圧延処理を施して、板厚が1.0mmのクラッド板を作製した。
Example 1
A Ni plate having a thickness of 0.84 mm, a pure Ti plate having a thickness of 2.0 mm, and a Ni plate having a thickness of 0.84 mm were sequentially stacked to form a laminate having a three-layer structure. This laminate was hot-rolled to obtain a clad plate having a thickness of 1.4 mm. The clad plate was cold-rolled to produce a clad plate having a thickness of 1.0 mm.

このクラッド板と基材(厚さ2.5mm、Cu成分を2.5mass%の割合で含むステンレス鋼板)とを重ね合わせ、圧延法によりクラッドして複合材を作製した。この複合材に冷間圧延処理を繰り返し施し、厚さが0.5mmで、3層構造(Ni/Ti/Ni/基材)のろう付け層を有するろう付け用複合材を作製した。   This clad plate and a base material (a stainless steel plate having a thickness of 2.5 mm and containing a Cu component in a proportion of 2.5 mass%) were overlapped and clad by a rolling method to produce a composite material. This composite material was repeatedly subjected to cold rolling treatment to produce a brazing composite material having a thickness of 0.5 mm and a brazing layer having a three-layer structure (Ni / Ti / Ni / base material).

このろう付け用複合材に対して、真空下(真空度は3.0×10-3Pa)で加熱処理を施し、ろう付け層が完全に溶融した時点で急冷を行い、ろう付け処理を行った。 The brazing composite material was subjected to a heat treatment under a vacuum (degree of vacuum: 3.0 × 10 −3 Pa), and when the brazing layer was completely melted, the brazing treatment was performed.

(実施例2)
板厚が1.67mmのNi板、板厚が2.0mmの純Ti板、板厚が0.81mmのFe板を順に重ね合わせて3層構造の積層体を形成した。この積層体に熱間圧延処理を施して、板厚が1.4mmのクラッド板を得た。このクラッド板に冷間圧延処理を施して、板厚が1.0mmのクラッド板を作製した。
(Example 2)
A Ni plate having a thickness of 1.67 mm, a pure Ti plate having a thickness of 2.0 mm, and an Fe plate having a thickness of 0.81 mm were sequentially stacked to form a laminate having a three-layer structure. This laminate was hot-rolled to obtain a clad plate having a thickness of 1.4 mm. The clad plate was cold-rolled to produce a clad plate having a thickness of 1.0 mm.

このクラッド板と基材(厚さ2.5mm、Cu成分を3.5mass%の割合で含むステンレス鋼板)とを重ね合わせ、圧延法によりクラッドして複合材を作製した。この複合材に冷間圧延処理を繰り返し施し、厚さが0.5mmで、3層構造(Fe/Ti/Ni/基材)のろう付け層を有するろう付け用複合材を作製した。   This clad plate and a base material (thickness 2.5 mm, a stainless steel plate containing a Cu component at a ratio of 3.5 mass%) were superposed and clad by a rolling method to produce a composite material. This composite material was repeatedly subjected to cold rolling treatment to produce a brazing composite material having a thickness of 0.5 mm and a brazing layer having a three-layer structure (Fe / Ti / Ni / base material).

このろう付け用複合材に対して、真空下(真空度は8.0×10-3Pa)で加熱処理を施し、ろう付け層が完全に溶融した時点で急冷を行い、ろう付け処理を行った。 The brazing composite material was subjected to a heat treatment under vacuum (vacuum degree: 8.0 × 10 −3 Pa). When the brazing layer was completely melted, the brazing treatment was performed.

(比較例1)
基材としてCu成分を0.5mass%の割合で含むステンレス鋼板を用いる以外は実施例1と同様にして、厚さが0.5mmで、3層構造(Ni/Ti/Ni/基材)のろう付け層を有するろう付け用複合材を作製した。
(Comparative Example 1)
Brazing with a thickness of 0.5 mm and a three-layer structure (Ni / Ti / Ni / base material) in the same manner as in Example 1 except that a stainless steel plate containing a Cu component at a ratio of 0.5 mass% is used as the base material. A brazing composite material having a layer was prepared.

このろう付け用複合材に対して、真空下(真空度は5.0×10-3Pa)で加熱処理を施し、ろう付け層が完全に溶融した時点で急冷を行い、ろう付け処理を行った。 The brazing composite material was subjected to heat treatment under vacuum (vacuum degree: 5.0 × 10 −3 Pa), and when the brazing layer was completely melted, rapid cooling was performed to perform brazing treatment.

(比較例2)
基材としてCu成分を5.5mass%の割合で含むステンレス鋼板を用いる以外は実施例2と同様にして、厚さが0.5mmで、3層構造(Fe/Ti/Ni/基材)のろう付け層を有するろう付け用複合材を作製した。
(Comparative Example 2)
Brazing with a thickness of 0.5 mm and a three-layer structure (Fe / Ti / Ni / base material) in the same manner as in Example 2 except that a stainless steel plate containing a Cu component at a rate of 5.5 mass% is used as the base material. A brazing composite material having a layer was prepared.

このろう付け用複合材に対して、真空下(真空度は4.0×10-3Pa)で加熱処理を施し、ろう付け層が完全に溶融した時点で急冷を行い、ろう付け処理を行った。 The brazing composite material was subjected to a heat treatment under a vacuum (degree of vacuum: 4.0 × 10 −3 Pa), and when the brazing layer was completely melted, the brazing treatment was performed.

(比較例3)
基材としてCu成分を3.0mass%の割合で含むステンレス鋼板を用いる以外は実施例1と同様にして、厚さが0.5mmで、3層構造(Ni/Ti/Ni/基材)のろう付け層を有するろう付け用複合材を作製した。
(Comparative Example 3)
Brazing with a thickness of 0.5 mm and a three-layer structure (Ni / Ti / Ni / base material) in the same manner as in Example 1 except that a stainless steel plate containing a Cu component at a ratio of 3.0 mass% is used as the base material. A brazing composite material having a layer was prepared.

このろう付け用複合材に対して、真空下(真空度は5.0×10-1Pa)で加熱処理を施し、ろう付け層が完全に溶融した時点で急冷を行い、ろう付け処理を行った。 The brazing composite material was subjected to a heat treatment under vacuum (vacuum degree: 5.0 × 10 −1 Pa). When the brazing layer was completely melted, the brazing treatment was performed.

(比較例4)
基材としてSUS304(Cu成分の含有割合:0mass%)で構成されるステンレス鋼板を用いる以外は実施例1と同様にして、厚さが0.5mmで、3層構造(Ni/Ti/Ni/基材)のろう付け層を有するろう付け用複合材を作製した。
(Comparative Example 4)
A thickness of 0.5 mm and a three-layer structure (Ni / Ti / Ni / base) in the same manner as in Example 1 except that a stainless steel plate composed of SUS304 (Cu component content: 0 mass%) is used as the base material. A brazing composite material having a brazing layer of (material) was produced.

このろう付け用複合材に対して、真空下(真空度は5.0×10-3Pa)で加熱処理を施し、ろう付け層が完全に溶融した時点で急冷を行い、ろう付け処理を行った。 The brazing composite material was subjected to heat treatment under vacuum (vacuum degree: 5.0 × 10 −3 Pa), and when the brazing layer was completely melted, rapid cooling was performed to perform brazing treatment.

実施例1,2、比較例1〜4の各ろう付け用複合材について、それらの積層構造、基材中のCu成分割合[mass%]、ろう付け処理時の圧力(真空度;[Pa])、ろう付け層が完全に溶融した温度[℃]、ろう付け接合部の耐食性、基材の耐食性を表1に示す。   About each composite material for brazing of Examples 1 and 2 and Comparative Examples 1 to 4, their laminated structure, Cu component ratio [mass%] in the base material, pressure during brazing treatment (vacuum degree; [Pa] Table 1 shows the temperature [° C.] at which the brazing layer was completely melted, the corrosion resistance of the brazed joint, and the corrosion resistance of the base material.

ろう付け接合部及び基材の耐食性の評価は、耐食性が良好なものを○、耐食性が悪いものを×とした。   In the evaluation of the corrosion resistance of the brazed joint and the base material, the case where the corrosion resistance was good was evaluated as ○, and the case where the corrosion resistance was poor was evaluated as ×.

Figure 2006000862
Figure 2006000862

表1に示すように、実施例1,2の各ろう付け用複合材におけるろう付け層の溶融温度はいずれも1100℃であり、従来のろう付け用複合材におけるろう付け層の溶融温度(例えば、1150℃)と比較して、十分に低かった。また、ろう付け接合部及び基材の耐食性はいずれも良好であった。   As shown in Table 1, the melting temperature of the brazing layer in each of the brazing composite materials of Examples 1 and 2 is 1100 ° C., and the melting temperature of the brazing layer in the conventional brazing composite material (for example, , 1150 ° C). Further, the corrosion resistance of the brazed joint and the base material were both good.

これに対して、比較例1,4の各ろう付け用複合材は、ろう付け接合部及び基材の耐食性はいずれも良好であった。しかし、比較例1のろう付け用複合材は、基材のCu成分含有割合が0.5mass%であり、規定範囲(2.0〜4.0mass%)よりも少ない。また、比較例4のろう付け用複合材は、基材がCu成分を含有しないSUS304で構成されている。よって、比較例1,4の各ろう付け用複合材においては、ろう付け層の溶融温度の低下効果が不十分であり、ろう付け層の溶融温度は1125℃、1130℃とやや高めであった。   In contrast, each of the brazing composite materials of Comparative Examples 1 and 4 had good corrosion resistance of the brazed joint and the base material. However, the brazing composite material of Comparative Example 1 has a Cu component content of the base material of 0.5 mass%, which is less than the specified range (2.0 to 4.0 mass%). Moreover, the brazing composite material of Comparative Example 4 is made of SUS304 whose base material does not contain a Cu component. Therefore, in each brazing composite material of Comparative Examples 1 and 4, the effect of lowering the melting temperature of the brazing layer was insufficient, and the melting temperature of the brazing layer was slightly higher, 1125 ° C and 1130 ° C. .

また、比較例2のろう付け用複合材は、ろう付け層の溶融温度が1080℃と十分に低く、かつ、ろう付け接合部の耐食性も良好であった。しかし、比較例2のろう付け用複合材は、基材のCu成分含有割合が5.5mass%であり、規定範囲(2.0〜4.0mass%)よりも多い。このように、比較例2のろう付け用複合材においては、基材にCu成分が多く含まれていることから、基材の耐食性が悪かった。   In the brazing composite material of Comparative Example 2, the melting temperature of the brazing layer was sufficiently low at 1080 ° C., and the corrosion resistance of the brazed joint was good. However, the brazing composite material of Comparative Example 2 has a Cu component content of the base material of 5.5 mass%, which is greater than the specified range (2.0 to 4.0 mass%). Thus, in the composite material for brazing of Comparative Example 2, the base material contains a large amount of Cu component, and thus the corrosion resistance of the base material was poor.

また、比較例3のろう付け用複合材は、ろう付け層の溶融温度が1100℃と十分に低く、かつ、基材の耐食性も良好であった。しかし、比較例3のろう付け用複合材は、ろう付け処理時の圧力が5.0×10-1Paであり、規定範囲(1.0×10-1Pa以下)よりも高い。このように、比較例3のろう付け用複合材においては、ろう付け処理時の圧力が高すぎるため、ろう付け処理時、ろう溶融部からCu成分を十分に蒸発させることができず、結果的にろう付け接合部の耐食性が悪化した。 Further, in the brazing composite material of Comparative Example 3, the melting temperature of the brazing layer was sufficiently low at 1100 ° C., and the corrosion resistance of the base material was also good. However, the brazing composite material of Comparative Example 3 has a pressure during the brazing treatment of 5.0 × 10 −1 Pa, which is higher than the specified range (1.0 × 10 −1 Pa or less). Thus, in the brazing composite material of Comparative Example 3, since the pressure during the brazing process is too high, the Cu component cannot be sufficiently evaporated from the brazing molten part during the brazing process, resulting in a result. The corrosion resistance of the brazed joint deteriorated.

本発明の好適一実施の形態に係るろう付け用複合材の横断面図である。1 is a cross-sectional view of a brazing composite material according to a preferred embodiment of the present invention. 本発明の他の好適一実施の形態に係るろう付け用複合材の横断面図である。It is a cross-sectional view of a composite material for brazing according to another preferred embodiment of the present invention.

符号の説明Explanation of symbols

10 ろう付け用複合材
11 基材
12 Ni層
13 Ti層
15 ろう付け層
DESCRIPTION OF SYMBOLS 10 Composite material for brazing 11 Base material 12 Ni layer 13 Ti layer 15 Brazing layer

Claims (7)

基材の表面にろう付け層を一体的に設けてなる複合材で構成され、被ろう付け部材とろう付けされるろう付け用複合材において、
上記ろう付け層を、2種類以上の金属の層を2層以上に積層した積層体で構成し、かつ、上記基材を、Cu成分を2.0〜4.0mass%の割合で含むFe基合金で構成したことを特徴とするろう付け用複合材。
In a composite material for brazing composed of a composite material in which a brazing layer is integrally provided on the surface of a base material and brazed to a member to be brazed,
The brazing layer is composed of a laminate in which two or more kinds of metal layers are laminated in two or more layers, and the base material is an Fe group containing a Cu component at a ratio of 2.0 to 4.0 mass%. A composite material for brazing characterized by comprising an alloy.
上記ろう付け層を、Ti又はTi合金層とNi又はNi合金層とで構成した請求項1記載のろう付け用複合材。   The brazing composite material according to claim 1, wherein the brazing layer is composed of a Ti or Ti alloy layer and a Ni or Ni alloy layer. 上記ろう付け層を、Ti又はTi合金層、Ni又はNi合金層、及びFe又はFe合金層で構成した請求項1記載のろう付け用複合材。   The brazing composite material according to claim 1, wherein the brazing layer is composed of a Ti or Ti alloy layer, a Ni or Ni alloy layer, and a Fe or Fe alloy layer. 上記基材を、Cu成分を2.0〜4.0mass%の割合で含むステンレス鋼で構成した請求項1から3いずれかに記載のろう付け用複合材。   The brazing composite material according to any one of claims 1 to 3, wherein the base material is made of stainless steel containing a Cu component at a ratio of 2.0 to 4.0 mass%. 請求項1から4いずれかに記載のろう付け用複合材を用いて被ろう付け部材とのろう付けを行う方法であって、
真空度が1.0×10-1Pa以下の圧力下でろう付け処理を行い、基材に含まれるCu成分をろう付け層中に拡散させてろう付け層を溶融させると共に、ろう付け層中に拡散したCu成分をろう溶融部から蒸発させることを特徴とするろう付け方法。
A method for performing brazing with a member to be brazed using the brazing composite material according to claim 1,
Brazing treatment is performed under a pressure of a vacuum of 1.0 × 10 −1 Pa or less, and the Cu component contained in the base material is diffused into the brazing layer to melt the brazing layer and diffuse into the brazing layer. A brazing method characterized in that the Cu component is evaporated from the brazing melt part.
上記ろう溶融部が完全に溶解した後、ろう溶融部を急冷する請求項5記載のろう付け方法。   The brazing method according to claim 5, wherein the brazing melt part is rapidly cooled after the brazing melt part is completely dissolved. 請求項5又は6記載のろう付け方法を用いてろう付け用複合材と被ろう付け部材とをろう付け接合したことを特徴とするろう付け製品。
A brazed product obtained by brazing a brazing composite material and a member to be brazed using the brazing method according to claim 5 or 6.
JP2004176608A 2004-06-15 2004-06-15 Compound material for brazing, brazing method using the same, and brazed product manufactured by using the method Pending JP2006000862A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004176608A JP2006000862A (en) 2004-06-15 2004-06-15 Compound material for brazing, brazing method using the same, and brazed product manufactured by using the method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004176608A JP2006000862A (en) 2004-06-15 2004-06-15 Compound material for brazing, brazing method using the same, and brazed product manufactured by using the method

Publications (1)

Publication Number Publication Date
JP2006000862A true JP2006000862A (en) 2006-01-05

Family

ID=35769687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004176608A Pending JP2006000862A (en) 2004-06-15 2004-06-15 Compound material for brazing, brazing method using the same, and brazed product manufactured by using the method

Country Status (1)

Country Link
JP (1) JP2006000862A (en)

Similar Documents

Publication Publication Date Title
CN100450699C (en) Brazing clad material, and brazing method and brazing product using the same
KR101812618B1 (en) Iron-chromium based brazing filler metal
JP2003126986A (en) Aluminum alloy brazing sheet, brazing method using it, and brazed product
JP2012024827A (en) Fluxless brazing method of aluminum material and aluminum alloy brazing sheet for fluxless brazing
JP5490603B2 (en) Brazing method of aluminum member
CN110662626A (en) Brazing method for aluminum alloy brazing sheet, and method for manufacturing heat exchanger
JP3360026B2 (en) Brazing method of aluminum alloy brazing sheet for heat exchanger
JP2006272363A (en) Clad metal for brazing, and brazed product using the same
JP2012030244A (en) Fluxless brazing method for aluminum material
JP2003117678A (en) Composite material for brazing and brazed product using the same
JP2019069474A (en) Aluminum alloy brazing sheet, manufacturing method of the same, aluminum alloy sheet, and heat exchanger
JP2008030102A (en) Brazing method of composite material for brazing, and brazed product
JP4239853B2 (en) Brazing composite material, method for producing the same, and brazed product
JP2006000862A (en) Compound material for brazing, brazing method using the same, and brazed product manufactured by using the method
JP2009155679A (en) Aluminum alloy cladding material
EP3785844A1 (en) Aluminum alloy material, fluxless brazed structure, and fluxless brazing method
JP2003117686A (en) Composite material for brazing, and brazed product obtained by using the composite material
JP2003117679A (en) Composite brazing filler metal and composite material for brazing and brazing method
JP2012236201A (en) Aluminum alloy brazing sheet
JP4507943B2 (en) Brazing clad material and brazing product using the same
JP2005297047A (en) Composite material for brazing, and product using the same
JP2002248597A (en) High thermal conductive composite material and metallic mold
JP4239764B2 (en) Brazing composite material and brazing method using the same
JP4840190B2 (en) Brazing composite material and brazing product using the same
JP2006181586A (en) Composite material for soldering, solder material, and soldered structure joined using them