JP2005525690A - Phase change memory with higher pore position - Google Patents

Phase change memory with higher pore position Download PDF

Info

Publication number
JP2005525690A
JP2005525690A JP2003525922A JP2003525922A JP2005525690A JP 2005525690 A JP2005525690 A JP 2005525690A JP 2003525922 A JP2003525922 A JP 2003525922A JP 2003525922 A JP2003525922 A JP 2003525922A JP 2005525690 A JP2005525690 A JP 2005525690A
Authority
JP
Japan
Prior art keywords
phase change
memory
lower electrode
cup
semiconductor structure
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003525922A
Other languages
Japanese (ja)
Other versions
JP4150667B2 (en
Inventor
ローリー,タイラー・エイ
Original Assignee
オヴォニクス インコーポレイテッド
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by オヴォニクス インコーポレイテッド filed Critical オヴォニクス インコーポレイテッド
Publication of JP2005525690A publication Critical patent/JP2005525690A/en
Application granted granted Critical
Publication of JP4150667B2 publication Critical patent/JP4150667B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/20Multistable switching devices, e.g. memristors
    • H10N70/231Multistable switching devices, e.g. memristors based on solid-state phase change, e.g. between amorphous and crystalline phases, Ovshinsky effect
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/011Manufacture or treatment of multistable switching devices
    • H10N70/061Patterning of the switching material
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/821Device geometry
    • H10N70/826Device geometry adapted for essentially vertical current flow, e.g. sandwich or pillar type devices
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/841Electrodes
    • H10N70/8413Electrodes adapted for resistive heating
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/861Thermal details
    • H10N70/8616Thermal insulation means
    • HELECTRICITY
    • H10SEMICONDUCTOR DEVICES; ELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10NELECTRIC SOLID-STATE DEVICES NOT OTHERWISE PROVIDED FOR
    • H10N70/00Solid-state devices without a potential-jump barrier or surface barrier, and specially adapted for rectifying, amplifying, oscillating or switching
    • H10N70/801Constructional details of multistable switching devices
    • H10N70/881Switching materials
    • H10N70/882Compounds of sulfur, selenium or tellurium, e.g. chalcogenides
    • H10N70/8828Tellurides, e.g. GeSbTe

Abstract

ポアの位置を高くした相変化型メモリセル(10)は、相変化型メモリコンポーネントの製造プロセスを半導体基板(12)の他の部分と物理的に分離することにより相変化型メモリの製造を容易にする。本発明の実施の一態様として、半導体基板(12)内にあるコンタクト(16)は、絶縁体(20)により充填されたカップ状導体(18)と電気的に結合している。カップ状導体(18)は高い位置に設けられたポアまで電流を導くが、絶縁体(20)は熱的に電気的にポアを絶縁する役割を果たす。The phase change memory cell (10) with a higher pore position facilitates the manufacture of the phase change memory by physically separating the manufacturing process of the phase change memory component from the rest of the semiconductor substrate (12). To. As one embodiment of the present invention, the contact (16) in the semiconductor substrate (12) is electrically coupled to the cup-shaped conductor (18) filled with the insulator (20). The cup-shaped conductor (18) conducts current to a pore provided at a high position, while the insulator (20) plays a role of thermally and electrically insulating the pore.

Description

本発明は、一般的に、相変化材(phase-change materials)を使用するメモリに関する。   The present invention relates generally to memories that use phase-change materials.

相変化材は少なくとも2つの異なる状態を呈することがある。それらの状態はアモルファス(非結晶)状態と結晶状態と呼ばれることがある。これらの状態間の転移は温度変化に応じて選択的に引き起こされる場合がある。アモルファス状態は一般的に結晶状態よりも電気抵抗率が高いために、これらの状態は区別が可能である。アモルファス状態はより無秩序な原子構造を有し、結晶状態はより規則正しく配列した原子構造を有する。一般的に、どのような相変化材も利用することができる。場合によっては、薄膜カルコゲニド(chalcogenide)合金材料が特に適することがある。   The phase change material can exhibit at least two different states. These states are sometimes called an amorphous (non-crystalline) state and a crystalline state. The transition between these states may be selectively triggered in response to temperature changes. Since the amorphous state generally has a higher electrical resistivity than the crystalline state, these states can be distinguished. The amorphous state has a more disordered atomic structure, and the crystalline state has a more ordered atomic structure. In general, any phase change material can be utilized. In some cases, thin film chalcogenide alloy materials may be particularly suitable.

相変化は可逆的に引き起こされる場合がある。従って、メモリはアモルファス状態から結晶状態に変化し、またアモルファス状態に戻ることが可能であり、その逆の過程も起きる場合がある。要するに、各メモリセルは、高抵抗状態と低抵抗状態との間を可逆的に変化するプログラマブル抵抗器と考えることができる。   Phase changes may be caused reversibly. Accordingly, the memory can change from the amorphous state to the crystalline state and return to the amorphous state, and vice versa. In short, each memory cell can be thought of as a programmable resistor that reversibly changes between a high resistance state and a low resistance state.

状況によっては、メモリセルは多数の状態を有することがある。このとき、各状態は電気抵抗によって区別できるので、多数の電気抵抗によって決まる状態が実現可能であり、それにより複数ビットのデータを単一セルに記憶することが可能となる。   In some situations, a memory cell can have multiple states. At this time, since each state can be distinguished by electric resistance, a state determined by a large number of electric resistances can be realized, and thereby, a plurality of bits of data can be stored in a single cell.

様々な相変化合金が知られている。一般的に、カルコゲニド合金は、周期表VI族に属する1つ以上の元素を含みうる。特に適した一群の合金としてはGeSbTe合金がある。   Various phase change alloys are known. In general, chalcogenide alloys can include one or more elements belonging to Group VI of the periodic table. A particularly suitable group of alloys is GeSbTe alloys.

相変化材は、誘電材料を貫通する通路(passage)またはポア(pore:微細孔)の内側に形成される場合がある。相変化材は、通路のどちらか一方の端部においてコンタクト(contact)に結合されることがある。状態の転移は電流を流して相変化材を加熱することにより引き起こされることがある。   The phase change material may be formed inside a passage or pore through the dielectric material. The phase change material may be coupled to a contact at either end of the passage. The state transition may be caused by heating the phase change material by passing an electric current.

アクセスデバイスが、半導体集積回路基板内にその上に積層する相変化材を活性化するために設けられることがある。他の相変化型メモリコンポーネントも半導体基板内に一体化されることがある。集積回路配置構造(integrated topography)上にパターン形成することにより下地の集積回路配置構造に悪影響が及ぼされる場合がある。このため、以前に製作された集積回路配置構造に一切妨害を与えることのない仕方により、集積回路の他の部分の上に相変化型メモリを形成することが望ましいであろう。   An access device may be provided to activate the phase change material that is stacked on the semiconductor integrated circuit substrate. Other phase change memory components may also be integrated into the semiconductor substrate. Forming a pattern on an integrated circuit arrangement structure (integrated topography) may adversely affect the underlying integrated circuit arrangement structure. For this reason, it would be desirable to form phase change memory on other portions of the integrated circuit in a manner that does not interfere with any previously fabricated integrated circuit arrangement.

相変化型メモリの別の問題として、各メモリセルからの熱損失が大きくなるほどデバイスをプログラミングするために印加されなければならない電流が大きくなるということがある。このため、加熱された相変化材からの熱損失量を減らすことが望ましいであろう。同様に、相変化材全体にわたって熱を均一に分布させることが望ましい。しかしながら、現在提案されている多くの技術によれば、デバイスの電気抵抗はプログラミング後に局所的に変動するという結果がもたらされることがある。またこのような電気抵抗の局所的変動の結果、相変化型プログラミング中に局所的な領域に応力が発生することもある。   Another problem with phase change memory is that the greater the heat loss from each memory cell, the greater the current that must be applied to program the device. For this reason, it would be desirable to reduce the amount of heat loss from the heated phase change material. Similarly, it is desirable to distribute heat uniformly throughout the phase change material. However, many currently proposed techniques can result in the electrical resistance of the device fluctuating locally after programming. Also, as a result of such local variations in electrical resistance, stress may occur in local regions during phase change programming.

セルサイズを可能な限り小さくして製造コストを減らすことが望ましいであろう。また、製造工程数を最大限減らして製造コストを減らすことも望ましい。   It would be desirable to reduce the manufacturing cost by making the cell size as small as possible. It is also desirable to reduce the manufacturing cost by reducing the number of manufacturing steps as much as possible.

以上のことから、相変化型メモリとその製造技術を改良することが必要とされている。   In view of the above, it is necessary to improve the phase change memory and its manufacturing technology.

図1に、本発明の実施の一態様として、高い位置に設けられたポア(elevated pore)を含みうる相変化型メモリ10を示す。基板12は、ベースコンタクト(base contact)16を通る電流を制御するアクセストランジスタ(図示せず)を含む集積回路を含みうる。浅いトレンチ型絶縁構造14は、基板12内に形成された構造の他の部分からメモリセル10を絶縁する。本発明の実施の一態様によれば、基板12上にはライナー導体(liner conductor)18が配設される。本発明の実施の一態様によれば、このライナー導体18は、管状でカップ状の形をしており、充填用絶縁体20で満たされる中空になった中央領域が設けられることがある。ライナー導体18は、ベースコンタクト16から、高い位置に設けられたポアに上向きに電流を流す。   FIG. 1 shows a phase-change memory 10 that can include an elevated pore provided at a high position as one embodiment of the present invention. The substrate 12 may include an integrated circuit that includes an access transistor (not shown) that controls the current through the base contact 16. The shallow trench isolation structure 14 insulates the memory cell 10 from other parts of the structure formed in the substrate 12. According to one embodiment of the present invention, a liner conductor 18 is disposed on the substrate 12. According to one embodiment of the present invention, the liner conductor 18 is tubular and cup-shaped, and may be provided with a hollow central region filled with the filling insulator 20. The liner conductor 18 causes a current to flow upward from the base contact 16 to a pore provided at a high position.

高い位置に設けられたポアは、同じく管状でカップ状の抵抗または下部電極22を含みうる。下部電極22内側内部には、対向する1対のスペーサ24と相変化層28とによって画定されるポアが存在する。本発明の実施の一態様において、相変化層28が管状でカップ状であってもよく、上部電極30が詰められていてもよい。本発明の実施の一態様として、上部電極30と相変化材28とがパターン形成されていてもよい。   The elevated pore may include a tubular or cup-shaped resistor or lower electrode 22. Inside the lower electrode 22, there are pores defined by a pair of opposed spacers 24 and a phase change layer 28. In one embodiment of the present invention, the phase change layer 28 may be tubular and cup-shaped, and the upper electrode 30 may be packed. As an embodiment of the present invention, the upper electrode 30 and the phase change material 28 may be patterned.

以下、図2(図2A〜図2I)を参照して、図1に示された構造を形成するためのプロセスについて説明する。図2Aにおいて、最初に、エッチストップ層(etch stop layer)26と誘電層32とを貫いてポア(微細孔)34が形成される。エッチストップ層26は、それを取り巻く様々な層と比較してよりエッチングされにくい性質を持つ素材でありうる。本発明の実施の一態様として、このエッチストップ層26は、窒化珪素(silicon nitride)またはSi34でありうる。 Hereinafter, a process for forming the structure shown in FIG. 1 will be described with reference to FIG. 2 (FIGS. 2A to 2I). In FIG. 2A, first, pores (fine holes) 34 are formed through the etch stop layer 26 and the dielectric layer 32. The etch stop layer 26 may be a material having a property that is more difficult to be etched than various layers surrounding the etch stop layer 26. As an embodiment of the present invention, the etch stop layer 26 may be silicon nitride or Si 3 N 4 .

次に図2Bに示されているように、本発明の実施の一態様として、ライナー導体18がポア34の内側に積層されていてもよい。ライナー導体18は、チタン、窒化チタン、タングステン、またはこれらの材料の組み合わせであってもよい。ライナー導体18は、円筒形ポア34の内側を覆い、充填材20が詰められていてもよい。有利には、ライナー導体18は、ポア34の側壁を不断に密着して覆う。充填材20は、熱的に及び電気的に絶縁性を有する。本発明の実施の一態様においては、この充填材20は二酸化珪素でありうる。   Next, as shown in FIG. 2B, as one embodiment of the present invention, the liner conductor 18 may be laminated inside the pore 34. The liner conductor 18 may be titanium, titanium nitride, tungsten, or a combination of these materials. The liner conductor 18 may cover the inside of the cylindrical pore 34 and may be filled with a filler 20. Advantageously, the liner conductor 18 covers the side walls of the pores 34 in intimate contact. The filler 20 is thermally and electrically insulative. In one embodiment of the present invention, the filler 20 can be silicon dioxide.

次に図2Cの段階において、図2Bに示された構造が平坦化処理されていてもよい。本発明の実施の一態様において、平坦面Sを作り出すためにCMP(Chemical Mechanical Planarization:化学機械平坦化)工程が利用されることがある。平坦化処理の停止点をうまくコントロールするためにエッチストップ層26を使用してもよい。   Next, in the stage of FIG. 2C, the structure shown in FIG. 2B may be planarized. In one embodiment of the present invention, a CMP (Chemical Mechanical Planarization) process may be used to create the flat surface S. An etch stop layer 26 may be used to better control the stop point of the planarization process.

図2Dに示されているように、充填材20はコントロールされた距離までエッチングされる。このようにして、開口部36がコントロールされた深さまで形成される。本発明の実施の一態様において、充填材20のエッチングとしてドライ絶縁体エッチング(dry insulator etch)を実施してもよい。その後、ライナー導体18のエッチングを行ってもよい。実施の一態様として、このライナー導体18が、最小限のオーバーエッチングにより等方性エッチングされていてもよい。実施の一態様として、ライナー導体18は、充填材20のエッチング後にウェットエッチング(wet etch)を使用してエッチングされることがある。   As shown in FIG. 2D, the filler 20 is etched to a controlled distance. In this way, the opening 36 is formed to a controlled depth. In one embodiment of the present invention, dry insulator etching may be performed as the etching of the filler 20. Thereafter, the liner conductor 18 may be etched. As an embodiment, the liner conductor 18 may be isotropically etched with minimal overetching. In one implementation, the liner conductor 18 may be etched using a wet etch after the filler 20 is etched.

次に、図2Eに示されるように、本発明の実施の一態様として、抵抗または下部電極22が積層されていてもよい。エッチストップ層26の上面にある開口部36は、下部電極22で覆われていてもよい。そして、この下部電極22は絶縁体40で覆われていてもよい。下部電極22によってライナー導体18との電気的接続が提供されるため、基板12内にあるベースコンタクト16までの電気的接続が提供される。   Next, as shown in FIG. 2E, as an embodiment of the present invention, a resistor or lower electrode 22 may be stacked. The opening 36 on the upper surface of the etch stop layer 26 may be covered with the lower electrode 22. The lower electrode 22 may be covered with an insulator 40. Since the lower electrode 22 provides electrical connection with the liner conductor 18, electrical connection to the base contact 16 in the substrate 12 is provided.

その後、図2Eに示された構造に対してCMP等の平坦化プロセスが実行されて、図2Fに示された平坦化された構造が作り出される。そして、ライナー導体18に対して溝切エッチング(recess etch)が施されて、Eで示された陥凹領域(recessed region)が形成される。実施の一態様として、この溝切エッチングは、短いウェットエッチング(short wet etch)であってもよい。   Thereafter, a planarization process, such as CMP, is performed on the structure shown in FIG. 2E to create the planarized structure shown in FIG. 2F. The liner conductor 18 is then subjected to a recess etch to form a recessed region indicated by E. In one embodiment, the grooving etch may be a short wet etch.

この後、ドライまたはウェット絶縁体エッチング等のエッチングプロセスを使用して絶縁体40を取り除くことができ、その結果、図2Gに示されるように、Fで示されたポアが作り出されて下部電極22が露出する。その後、図2Hに示されるように、側壁スペーサ24が形成されてもよい。例えば、絶縁材を積層し、積層した絶縁材を異方性エッチングすることにより、側壁スペーサ24を従来通りに形成してもよい。実施の一態様において、この側壁スペーサ24は、窒化珪素または二酸化珪素でありうる。   After this, the insulator 40 can be removed using an etching process such as dry or wet insulator etching, resulting in the creation of pores denoted F and the lower electrode 22 as shown in FIG. 2G. Is exposed. Thereafter, as shown in FIG. 2H, sidewall spacers 24 may be formed. For example, the sidewall spacers 24 may be formed as usual by laminating insulating materials and anisotropically etching the laminated insulating materials. In one embodiment, the sidewall spacer 24 can be silicon nitride or silicon dioxide.

次に、図2Iに示されるように、図2Hの構造は、相変化層28と上部電極層30とによって被覆されていてもよい。実施の一態様において、相変化層28は、カップ状であり、その側面をスペーサ24によって画定され、その底面を下部電極22によって画定されるポア内を下向きに延びる。実施の一態様において、相変化材は、Ge2Sb2Te5でありうる。 Next, as shown in FIG. 2I, the structure of FIG. 2H may be covered by the phase change layer 28 and the upper electrode layer 30. In one embodiment, the phase change layer 28 is cup-shaped and extends downwardly in a pore defined by spacers 24 on its sides and bottom surfaces defined by lower electrodes 22. In one embodiment, the phase change material can be Ge 2 Sb 2 Te 5 .

上部電極28は、複数の層から成るサンドウィッチ構造の場合がある。実施の一態様として、このサンドウィッチ構造は、底の方から順に、チタンと、窒化チタンと、アルミニウムとを含む。   The upper electrode 28 may have a sandwich structure composed of a plurality of layers. As an embodiment of this embodiment, the sandwich structure includes titanium, titanium nitride, and aluminum in order from the bottom.

このようにして、基板12内のベースコンタクト16からライナー導体18を通って下部電極22に至り、そして相変化層28に至る電気的接続が構築される。最後に、実施の態様によっては、相変化層28と上部電極30とは、パターン形成されて、図1に示された構造が実現されることがある。   In this way, an electrical connection is established from the base contact 16 in the substrate 12 through the liner conductor 18 to the lower electrode 22 and to the phase change layer 28. Finally, in some embodiments, phase change layer 28 and upper electrode 30 may be patterned to achieve the structure shown in FIG.

実施の態様によっては、基板12よりも上にポアを持ち上げることによって相変化型メモリセルを標準的なCMOS(complementary metal oxide semiconductor)工程に取り込むことが容易になる。特に、ポアを持ち上げることによって、基板12内の集積回路配置構造にパターン形成することを避けることができる。その結果、フォトリソグラフィ工程を平坦化された表面上で行うことができる。   In some embodiments, the phase change memory cell can be easily incorporated into a standard complementary metal oxide semiconductor (CMOS) process by raising the pore above the substrate 12. In particular, it is possible to avoid patterning the integrated circuit arrangement in the substrate 12 by lifting the pores. As a result, a photolithography process can be performed on the planarized surface.

実施の態様によっては、熱効率の良いデバイス構造は、デバイスのプログラミングに必要な電力を減らすことによって改良されたデバイス性能を実現する。相変化層28により代表されるプログラマブル媒体の容積は、その周囲をほぼ断熱する。   In some embodiments, the thermally efficient device structure achieves improved device performance by reducing the power required to program the device. The volume of the programmable medium represented by the phase change layer 28 substantially insulates its periphery.

下部電極22は、より低い電流で相変化を引き起こすための熱を与える。下部電極22は比較的に薄く作られていてもよく、そのようにすることにより実施の態様によっては電極22を通じての熱損失が小さくなる。さらに実施の態様によっては、プログラミング中の熱分布はより均一になり、プログラミング後のデバイス電気抵抗の局所変動がより小さく抑えられる。またこの構造によれば、実施の態様によっては相変化を生じさせる際に局所領域における応力の発生がより抑えられるという結果ももたらされる。   The lower electrode 22 provides heat to cause a phase change at a lower current. The lower electrode 22 may be made relatively thin, thereby reducing heat loss through the electrode 22 in some embodiments. Further, in some embodiments, the heat distribution during programming is more uniform, and local variations in device electrical resistance after programming are reduced. In addition, according to this structure, the occurrence of stress in the local region can be further suppressed when the phase change is caused in some embodiments.

同様に、実施の態様によっては、セルサイズを小さくすることができ、それにより製造コストが減少する。また、本構造を形成するのにマスキング工程を2工程だけ追加することが必要とされるだけでよく、それによってもコストが減少し、工程サイクル時間が短縮される。   Similarly, in some embodiments, the cell size can be reduced, thereby reducing manufacturing costs. Also, only two masking steps need be added to form this structure, which also reduces cost and process cycle time.

本発明は、限定された数の実施態様についてのみ説明がなされたが、当業者であればそれらの実施態様の多数の変更及び変形を考えることができるであろう。本願の特許請求の範囲は、全てのそのような変更及び変形を本発明の技術的思想の範囲内に入るものとしてカバーすることを意図している。   Although the present invention has only been described with respect to a limited number of embodiments, those skilled in the art will be able to contemplate many variations and modifications of those embodiments. The claims of this application are intended to cover all such changes and modifications as fall within the scope of the inventive concept.

本発明の実施の一態様におけるデバイスの拡大断面図である。It is an expanded sectional view of the device in one mode of implementation of the present invention. 図2A〜図2Iは、本発明の実施の一態様に基づく図1に示されたデバイスの製造工程を説明するための拡大断面図である。2A to 2I are enlarged cross-sectional views for explaining a manufacturing process of the device shown in FIG. 1 according to one embodiment of the present invention.

Claims (30)

半導体構造基板内にベースコンタクトを形成するステップと、
該半導体構造基板を層により被覆するステップと、
該層を貫通して前記ベースコンタクトに至る電気的接続を形成するステップと、
該層を覆うように、前記ベースコンタクトと電気的に結合する相変化層を形成するステップと
を含んでなる方法。
Forming a base contact in a semiconductor structure substrate;
Coating the semiconductor structure substrate with a layer;
Forming an electrical connection through the layer to the base contact;
Forming a phase change layer electrically coupled to the base contact so as to cover the layer.
前記半導体構造基板を層により被覆するステップが、該半導体構造基板を少なくとも1つの絶縁層で被覆することを含む請求項1に記載の方法。   The method of claim 1, wherein coating the semiconductor structure substrate with a layer comprises coating the semiconductor structure substrate with at least one insulating layer. 前記絶縁層を貫通する通路を形成することを含む請求項2に記載の方法。   The method of claim 2 including forming a passage through the insulating layer. 前記通路に沿って前記電気的接続を形成することを含む請求項3に記載の方法。   4. The method of claim 3, comprising forming the electrical connection along the passage. 前記電気的接続を形成するステップが、カップ状電気的接続部を形成することを含む請求項4に記載の方法。   5. The method of claim 4, wherein forming the electrical connection comprises forming a cup-like electrical connection. 前記カップ状電気的接続部を絶縁体で充填することを含む請求項5に記載の方法。   6. The method of claim 5, comprising filling the cup-like electrical connection with an insulator. 前記カップ状電気的接続部に結合する下部電極を形成することを含む請求項6に記載の方法。   7. The method of claim 6, comprising forming a bottom electrode that couples to the cup-like electrical connection. カップ状下部電極を形成することを含む請求項7に記載の方法。   8. The method of claim 7, comprising forming a cup-shaped lower electrode. 前記カップ状下部電極の内側に側壁スペーサを形成することを含む請求項8に記載の方法。   9. The method of claim 8, comprising forming a sidewall spacer inside the cup-shaped lower electrode. 前記相変化層を形成するステップが、前記絶縁層及び前記側壁スペーサの上に相変化層を積層し、該相変化層を前記下部電極と電気的に接触させることを含む請求項9に記載の方法。   The method of claim 9, wherein forming the phase change layer includes stacking a phase change layer on the insulating layer and the sidewall spacer, and electrically contacting the phase change layer with the lower electrode. Method. 半導体構造基板と、
該半導体構造基板上に形成されたベースコンタクトと、
該半導体構造基板を上から覆う絶縁層と、
該絶縁層を貫通して形成されており、電気的接続部を含む通路と、
該電気的接続部と電気的に結合した相変化層と
を含んでなるメモリ。
A semiconductor structure substrate;
A base contact formed on the semiconductor structure substrate;
An insulating layer covering the semiconductor structure substrate from above;
A passage formed through the insulating layer and including an electrical connection;
A memory comprising a phase change layer electrically coupled to the electrical connection.
前記電気的接続部がカップ状である請求項11に記載のメモリ。   The memory according to claim 11, wherein the electrical connection portion has a cup shape. 下部電極を含む請求項12に記載のメモリ。   The memory of claim 12, comprising a bottom electrode. 前記下部電極上に側壁スペーサを含む請求項13に記載のメモリ。   The memory of claim 13, comprising a sidewall spacer on the lower electrode. 前記相変化層が、前記側壁スペーサを覆って前記下部電極と接触するように形成されている請求項14に記載のメモリ。   The memory according to claim 14, wherein the phase change layer is formed so as to cover the sidewall spacer and to be in contact with the lower electrode. 前記カップ状電気的接続部の内側に絶縁材を含む請求項15に記載のメモリ。   The memory according to claim 15, further comprising an insulating material inside the cup-shaped electrical connection portion. 前記下部電極がカップ状である請求項16に記載のメモリ。   The memory according to claim 16, wherein the lower electrode has a cup shape. 前記下部電極が、前記絶縁層の上面より下に陥凹的に設けられている請求項17に記載のメモリ。   The memory according to claim 17, wherein the lower electrode is provided in a recessed manner below an upper surface of the insulating layer. 前記相変化層を覆う上部電極を含む請求項18に記載のメモリ。   The memory of claim 18, further comprising an upper electrode covering the phase change layer. 半導体構造基板と、
該半導体構造基板の上に間隔を置いて配置された相変化層と、
該相変化層を前記半導体構造基板に電気的に結合させる管状コネクタと
を含んでなるメモリ。
A semiconductor structure substrate;
A phase change layer disposed on the semiconductor structure substrate at an interval;
And a tubular connector for electrically coupling the phase change layer to the semiconductor structure substrate.
前記半導体構造基板を覆う絶縁層を含む請求項20に記載のメモリ。   21. The memory according to claim 20, further comprising an insulating layer covering the semiconductor structure substrate. 前記絶縁層を貫通するように形成された通路を含む請求項21に記載のメモリ。   The memory of claim 21, comprising a passage formed to penetrate the insulating layer. 前記通路が、前記管状コネクタで内側を覆われている請求項22に記載のメモリ。   The memory of claim 22, wherein the passage is lined with the tubular connector. 前記相変化層と前記管状コネクタとに電気的に結合した下部電極を含む請求項20に記載のメモリ。   21. The memory of claim 20, including a lower electrode electrically coupled to the phase change layer and the tubular connector. 前記下部電極が管状である請求項24に記載のメモリ。   The memory of claim 24, wherein the lower electrode is tubular. 前記管状コネクタがカップ状である請求項20に記載のメモリ。   The memory of claim 20, wherein the tubular connector is cup-shaped. 前記下部電極がカップ状である請求項26に記載のメモリ。   27. The memory according to claim 26, wherein the lower electrode is cup-shaped. 前記下部電極を覆い、該下部電極と前記相変化層との間に側壁スペーサを含む請求項27に記載のメモリ。   28. The memory according to claim 27, comprising a sidewall spacer covering the lower electrode and between the lower electrode and the phase change layer. 前記側壁スペーサが前記通路の内側に設けられており、該側壁スペーサが円筒状である請求項28に記載のメモリ。   29. The memory according to claim 28, wherein the side wall spacer is provided inside the passage, and the side wall spacer is cylindrical. 前記相変化層を覆う上部電極を含む請求項29に記載のメモリ。   30. The memory of claim 29, comprising an upper electrode covering the phase change layer.
JP2003525922A 2001-08-31 2002-08-20 Phase change memory with higher pore position Expired - Fee Related JP4150667B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/944,478 US6764894B2 (en) 2001-08-31 2001-08-31 Elevated pore phase-change memory
PCT/US2002/026375 WO2003021693A2 (en) 2001-08-31 2002-08-20 Elevated pore phase-change memory

Publications (2)

Publication Number Publication Date
JP2005525690A true JP2005525690A (en) 2005-08-25
JP4150667B2 JP4150667B2 (en) 2008-09-17

Family

ID=25481474

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003525922A Expired - Fee Related JP4150667B2 (en) 2001-08-31 2002-08-20 Phase change memory with higher pore position

Country Status (5)

Country Link
US (2) US6764894B2 (en)
JP (1) JP4150667B2 (en)
KR (1) KR100534530B1 (en)
TW (1) TW579593B (en)
WO (1) WO2003021693A2 (en)

Cited By (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158852A (en) * 2002-11-01 2004-06-03 Samsung Electronics Co Ltd Phase conversion memory device and its manufacturing method
JP2006019686A (en) * 2004-06-30 2006-01-19 Hynix Semiconductor Inc Phase change storage element and manufacturing method thereof
JP2006295130A (en) * 2005-03-15 2006-10-26 Elpida Memory Inc Memory device and its manufacturing method
JP2006303294A (en) * 2005-04-22 2006-11-02 Renesas Technology Corp Variable-phase nonvolatile memory and its manufacturing method
JP2006351992A (en) * 2005-06-20 2006-12-28 Renesas Technology Corp Semiconductor storage device and manufacturing method thereof
JP2008193071A (en) * 2007-02-01 2008-08-21 Ind Technol Res Inst Phase change memory
US7714314B2 (en) 2006-07-12 2010-05-11 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
JP2010153868A (en) * 2008-12-24 2010-07-08 Imec Method of manufacturing resistive switching memory device, and devices obtained thereof
US7939366B2 (en) 2007-07-25 2011-05-10 Samsung Electronics Co., Ltd. Phase change memory devices and methods of forming the same
US8426838B2 (en) 2008-01-25 2013-04-23 Higgs Opl. Capital Llc Phase-change memory
US8605493B2 (en) 2008-12-31 2013-12-10 Higgs Opl. Capital Llc Phase change memory
US8604457B2 (en) 2008-11-12 2013-12-10 Higgs Opl. Capital Llc Phase-change memory element
USRE45035E1 (en) 2008-12-30 2014-07-22 Higgs Opl. Capital Llc Verification circuits and methods for phase change memory array
USRE45189E1 (en) 2007-11-08 2014-10-14 Higgs Opl. Capital Llc Writing system and method for phase change memory
KR20200050386A (en) * 2018-10-31 2020-05-11 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Phase change random access memory and method of manufacturing

Families Citing this family (109)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6545287B2 (en) * 2001-09-07 2003-04-08 Intel Corporation Using selective deposition to form phase-change memory cells
US7319057B2 (en) * 2001-10-30 2008-01-15 Ovonyx, Inc. Phase change material memory device
US6891747B2 (en) * 2002-02-20 2005-05-10 Stmicroelectronics S.R.L. Phase change memory cell and manufacturing method thereof using minitrenches
KR100481865B1 (en) * 2002-11-01 2005-04-11 삼성전자주식회사 Phase changeable memory device and method of fabricating the same
US7314776B2 (en) * 2002-12-13 2008-01-01 Ovonyx, Inc. Method to manufacture a phase change memory
US6869883B2 (en) * 2002-12-13 2005-03-22 Ovonyx, Inc. Forming phase change memories
EP1576677B1 (en) * 2002-12-19 2010-12-01 Nxp B.V. Electric device comprising a layer of phase change material and method of manufacturing the same
US7323734B2 (en) * 2003-02-25 2008-01-29 Samsung Electronics Co., Ltd. Phase changeable memory cells
KR100560659B1 (en) * 2003-03-21 2006-03-16 삼성전자주식회사 Phase change memory device structure and method for fabricating the same
KR100504698B1 (en) * 2003-04-02 2005-08-02 삼성전자주식회사 Phase change memory device and method for forming the same
DE60328960D1 (en) * 2003-04-16 2009-10-08 St Microelectronics Srl Self-aligning process for making a phase change memory cell and phase change memory cell made thereby
KR100979710B1 (en) * 2003-05-23 2010-09-02 삼성전자주식회사 Semiconductor memory device and fabricating method thereof
KR100615586B1 (en) * 2003-07-23 2006-08-25 삼성전자주식회사 Phase change memory device including localized phase transition area in porous dielectric layer and method of forming the same
US7381611B2 (en) 2003-08-04 2008-06-03 Intel Corporation Multilayered phase change memory
US7471552B2 (en) * 2003-08-04 2008-12-30 Ovonyx, Inc. Analog phase change memory
US7211819B2 (en) * 2003-08-04 2007-05-01 Intel Corporation Damascene phase change memory
US20050029504A1 (en) * 2003-08-04 2005-02-10 Karpov Ilya V. Reducing parasitic conductive paths in phase change memories
US7012273B2 (en) * 2003-08-14 2006-03-14 Silicon Storage Technology, Inc. Phase change memory device employing thermal-electrical contacts with narrowing electrical current paths
DE10356285A1 (en) * 2003-11-28 2005-06-30 Infineon Technologies Ag Integrated semiconductor memory and method for manufacturing an integrated semiconductor memory
US7057923B2 (en) * 2003-12-10 2006-06-06 International Buisness Machines Corp. Field emission phase change diode memory
KR100639206B1 (en) 2004-06-30 2006-10-30 주식회사 하이닉스반도체 Phase-change memory device and method for manufacturing the same
KR101026476B1 (en) * 2004-07-01 2011-04-01 주식회사 하이닉스반도체 Phase-change random access memory device and method for manufacturing the same
KR100626381B1 (en) * 2004-07-19 2006-09-20 삼성전자주식회사 Phase change memory devices and methods of the same
KR100623181B1 (en) * 2004-08-23 2006-09-19 삼성전자주식회사 Phase-changeable memory device and method of manufacturing the same
KR100568543B1 (en) * 2004-08-31 2006-04-07 삼성전자주식회사 Method of forming a phase change memory device having a small area of contact
US7135696B2 (en) * 2004-09-24 2006-11-14 Intel Corporation Phase change memory with damascene memory element
KR100626388B1 (en) * 2004-10-19 2006-09-20 삼성전자주식회사 Phase-changable memory device and method of forming the same
US7189626B2 (en) * 2004-11-03 2007-03-13 Micron Technology, Inc. Electroless plating of metal caps for chalcogenide-based memory devices
DE102004059428A1 (en) * 2004-12-09 2006-06-22 Infineon Technologies Ag Manufacturing method for a microelectronic electrode structure, in particular for a PCM memory element, and corresponding microelectronic electrode structure
US20060138467A1 (en) * 2004-12-29 2006-06-29 Hsiang-Lan Lung Method of forming a small contact in phase-change memory and a memory cell produced by the method
US7214958B2 (en) * 2005-02-10 2007-05-08 Infineon Technologies Ag Phase change memory cell with high read margin at low power operation
US7229883B2 (en) * 2005-02-23 2007-06-12 Taiwan Semiconductor Manufacturing Company, Ltd. Phase change memory device and method of manufacture thereof
DE602005018744D1 (en) 2005-04-08 2010-02-25 St Microelectronics Srl Lateral phase change memory
US7910904B2 (en) * 2005-05-12 2011-03-22 Ovonyx, Inc. Multi-level phase change memory
KR100655440B1 (en) 2005-08-30 2006-12-08 삼성전자주식회사 Phase change memory devices and methods of the same
US7417245B2 (en) * 2005-11-02 2008-08-26 Infineon Technologies Ag Phase change memory having multilayer thermal insulation
US7635855B2 (en) 2005-11-15 2009-12-22 Macronix International Co., Ltd. I-shaped phase change memory cell
US7449710B2 (en) 2005-11-21 2008-11-11 Macronix International Co., Ltd. Vacuum jacket for phase change memory element
US7646006B2 (en) 2006-03-30 2010-01-12 International Business Machines Corporation Three-terminal cascade switch for controlling static power consumption in integrated circuits
US20070252127A1 (en) * 2006-03-30 2007-11-01 Arnold John C Phase change memory element with a peripheral connection to a thin film electrode and method of manufacture thereof
US9178141B2 (en) 2006-04-04 2015-11-03 Micron Technology, Inc. Memory elements using self-aligned phase change material layers and methods of manufacturing same
US7812334B2 (en) * 2006-04-04 2010-10-12 Micron Technology, Inc. Phase change memory elements using self-aligned phase change material layers and methods of making and using same
US7345899B2 (en) * 2006-04-07 2008-03-18 Infineon Technologies Ag Memory having storage locations within a common volume of phase change material
US7696077B2 (en) * 2006-07-14 2010-04-13 Micron Technology, Inc. Bottom electrode contacts for semiconductor devices and methods of forming same
US7772581B2 (en) * 2006-09-11 2010-08-10 Macronix International Co., Ltd. Memory device having wide area phase change element and small electrode contact area
KR100782496B1 (en) 2006-11-09 2007-12-05 삼성전자주식회사 Methods fabricating of semiconductor devices having self-aligned cell diodes and methods fabricating of phase change memory devices using the same
KR100809437B1 (en) * 2006-12-05 2008-03-05 한국전자통신연구원 Phase memory device having blocking layer between upper electrode layer and phase changing layer fabrication thereof
KR100846506B1 (en) * 2006-12-19 2008-07-17 삼성전자주식회사 Phase change random access memory comprising PN diode and methods of manufacturing and operating the same
US7718989B2 (en) 2006-12-28 2010-05-18 Macronix International Co., Ltd. Resistor random access memory cell device
US20080164453A1 (en) 2007-01-07 2008-07-10 Breitwisch Matthew J Uniform critical dimension size pore for pcram application
US20080173975A1 (en) * 2007-01-22 2008-07-24 International Business Machines Corporation Programmable resistor, switch or vertical memory cell
KR100881055B1 (en) * 2007-06-20 2009-01-30 삼성전자주식회사 Phase-change memory unit, method of forming the phase-change memory unit, phase-change memory device having the phase-change memory unit and method of manufacturing the phase-change memory device
US20080316793A1 (en) * 2007-06-22 2008-12-25 Jan Boris Philipp Integrated circuit including contact contacting bottom and sidewall of electrode
US7932167B2 (en) * 2007-06-29 2011-04-26 International Business Machines Corporation Phase change memory cell with vertical transistor
US7863593B2 (en) * 2007-07-20 2011-01-04 Qimonda Ag Integrated circuit including force-filled resistivity changing material
US7729161B2 (en) 2007-08-02 2010-06-01 Macronix International Co., Ltd. Phase change memory with dual word lines and source lines and method of operating same
US20090039333A1 (en) * 2007-08-09 2009-02-12 Heon Yong Chang Phase change memory device and method for manufacturing the same
EP2034536B1 (en) * 2007-09-07 2010-11-17 STMicroelectronics Srl Phase change memory device for multibit storage
US7859025B2 (en) * 2007-12-06 2010-12-28 International Business Machines Corporation Metal ion transistor
US8158965B2 (en) * 2008-02-05 2012-04-17 Macronix International Co., Ltd. Heating center PCRAM structure and methods for making
US8064247B2 (en) 2009-01-14 2011-11-22 Macronix International Co., Ltd. Rewritable memory device based on segregation/re-absorption
US8350316B2 (en) * 2009-05-22 2013-01-08 Macronix International Co., Ltd. Phase change memory cells having vertical channel access transistor and memory plane
US7968876B2 (en) 2009-05-22 2011-06-28 Macronix International Co., Ltd. Phase change memory cell having vertical channel access transistor
US8809829B2 (en) 2009-06-15 2014-08-19 Macronix International Co., Ltd. Phase change memory having stabilized microstructure and manufacturing method
US8406033B2 (en) 2009-06-22 2013-03-26 Macronix International Co., Ltd. Memory device and method for sensing and fixing margin cells
US8363463B2 (en) 2009-06-25 2013-01-29 Macronix International Co., Ltd. Phase change memory having one or more non-constant doping profiles
US8238149B2 (en) 2009-06-25 2012-08-07 Macronix International Co., Ltd. Methods and apparatus for reducing defect bits in phase change memory
US8198619B2 (en) 2009-07-15 2012-06-12 Macronix International Co., Ltd. Phase change memory cell structure
US7894254B2 (en) 2009-07-15 2011-02-22 Macronix International Co., Ltd. Refresh circuitry for phase change memory
US8110822B2 (en) 2009-07-15 2012-02-07 Macronix International Co., Ltd. Thermal protect PCRAM structure and methods for making
US8064248B2 (en) 2009-09-17 2011-11-22 Macronix International Co., Ltd. 2T2R-1T1R mix mode phase change memory array
JP2011091156A (en) * 2009-10-21 2011-05-06 Elpida Memory Inc Semiconductor device and method of manufacturing the same
US8178387B2 (en) 2009-10-23 2012-05-15 Macronix International Co., Ltd. Methods for reducing recrystallization time for a phase change material
KR101069724B1 (en) * 2009-12-22 2011-10-04 주식회사 하이닉스반도체 Phase Change Memory Having 3 Dimension Stack Structure and Method of Manufacturing the Same
US8729521B2 (en) 2010-05-12 2014-05-20 Macronix International Co., Ltd. Self aligned fin-type programmable memory cell
KR20110135285A (en) 2010-06-10 2011-12-16 삼성전자주식회사 Methods for fabricating phase change memory devices
US8310864B2 (en) 2010-06-15 2012-11-13 Macronix International Co., Ltd. Self-aligned bit line under word line memory array
KR101143485B1 (en) * 2010-07-30 2012-05-10 에스케이하이닉스 주식회사 Phase Change Random Access Memory And Fabricating The Same
CN102376879B (en) * 2010-08-10 2013-10-09 中芯国际集成电路制造(上海)有限公司 Method for forming phase-change memory
US8728859B2 (en) 2010-08-12 2014-05-20 International Business Machines Corporation Small footprint phase change memory cell
US8395935B2 (en) 2010-10-06 2013-03-12 Macronix International Co., Ltd. Cross-point self-aligned reduced cell size phase change memory
US8497705B2 (en) 2010-11-09 2013-07-30 Macronix International Co., Ltd. Phase change device for interconnection of programmable logic device
US8467238B2 (en) 2010-11-15 2013-06-18 Macronix International Co., Ltd. Dynamic pulse operation for phase change memory
KR101781483B1 (en) 2010-12-03 2017-09-26 삼성전자 주식회사 Method Of Forming Resistance Changeable Memory Device
US8486743B2 (en) 2011-03-23 2013-07-16 Micron Technology, Inc. Methods of forming memory cells
KR101298189B1 (en) * 2011-05-11 2013-08-20 에스케이하이닉스 주식회사 Phase-Change Random Access Memory Device and Fabrication Method Thereof
US8994489B2 (en) 2011-10-19 2015-03-31 Micron Technology, Inc. Fuses, and methods of forming and using fuses
US9252188B2 (en) 2011-11-17 2016-02-02 Micron Technology, Inc. Methods of forming memory cells
US8723155B2 (en) 2011-11-17 2014-05-13 Micron Technology, Inc. Memory cells and integrated devices
US8546231B2 (en) 2011-11-17 2013-10-01 Micron Technology, Inc. Memory arrays and methods of forming memory cells
US8765555B2 (en) 2012-04-30 2014-07-01 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
US9136467B2 (en) * 2012-04-30 2015-09-15 Micron Technology, Inc. Phase change memory cells and methods of forming phase change memory cells
CN103855300B (en) * 2012-12-04 2017-03-29 中芯国际集成电路制造(上海)有限公司 Phase transition storage and forming method thereof
US9553262B2 (en) 2013-02-07 2017-01-24 Micron Technology, Inc. Arrays of memory cells and methods of forming an array of memory cells
US9012880B2 (en) * 2013-02-21 2015-04-21 Winbond Electronics Corp. Resistance memory device
US9099637B2 (en) * 2013-03-28 2015-08-04 Intellectual Discovery Co., Ltd. Phase change memory and method of fabricating the phase change memory
KR20140140746A (en) * 2013-05-30 2014-12-10 에스케이하이닉스 주식회사 Phase-change random access memory device and method of manufacturing the same
JP2015002283A (en) * 2013-06-17 2015-01-05 ピーエスフォー ルクスコ エスエイアールエルPS4 Luxco S.a.r.l. Semiconductor device and manufacturing method therefor
US9112148B2 (en) 2013-09-30 2015-08-18 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell structure with laterally offset BEVA/TEVA
US9881971B2 (en) 2014-04-01 2018-01-30 Micron Technology, Inc. Memory arrays
US9178144B1 (en) 2014-04-14 2015-11-03 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell with bottom electrode
US9362494B2 (en) 2014-06-02 2016-06-07 Micron Technology, Inc. Array of cross point memory cells and methods of forming an array of cross point memory cells
US9343506B2 (en) 2014-06-04 2016-05-17 Micron Technology, Inc. Memory arrays with polygonal memory cells having specific sidewall orientations
US9209392B1 (en) 2014-10-14 2015-12-08 Taiwan Semiconductor Manufacturing Co., Ltd. RRAM cell with bottom electrode
US9672906B2 (en) 2015-06-19 2017-06-06 Macronix International Co., Ltd. Phase change memory with inter-granular switching
KR102301774B1 (en) 2017-03-31 2021-09-13 삼성전자주식회사 Semiconductor device and method for fabricating the same
US10366982B2 (en) 2017-11-30 2019-07-30 Taiwan Semiconductor Manufacturing Co., Ltd. Structure with embedded memory device and contact isolation scheme
US11264569B2 (en) * 2019-11-01 2022-03-01 International Business Machines Corporation Phase change memory device
WO2023004609A1 (en) * 2021-07-28 2023-02-02 Yangtze Advanced Memory Industrial Innovation Center Co., Ltd Phase-change memory device and method for forming the same

Family Cites Families (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5166758A (en) 1991-01-18 1992-11-24 Energy Conversion Devices, Inc. Electrically erasable phase change memory
US5296716A (en) * 1991-01-18 1994-03-22 Energy Conversion Devices, Inc. Electrically erasable, directly overwritable, multibit single cell memory elements and arrays fabricated therefrom
US5879955A (en) * 1995-06-07 1999-03-09 Micron Technology, Inc. Method for fabricating an array of ultra-small pores for chalcogenide memory cells
US6420725B1 (en) 1995-06-07 2002-07-16 Micron Technology, Inc. Method and apparatus for forming an integrated circuit electrode having a reduced contact area
US5837564A (en) * 1995-11-01 1998-11-17 Micron Technology, Inc. Method for optimal crystallization to obtain high electrical performance from chalcogenides
US6337266B1 (en) * 1996-07-22 2002-01-08 Micron Technology, Inc. Small electrode for chalcogenide memories
US5814527A (en) * 1996-07-22 1998-09-29 Micron Technology, Inc. Method of making small pores defined by a disposable internal spacer for use in chalcogenide memories
US6031287A (en) * 1997-06-18 2000-02-29 Micron Technology, Inc. Contact structure and memory element incorporating the same
BR0009308A (en) 1999-03-25 2001-12-18 Energy Conversion Devices Inc Memory element
US6534781B2 (en) * 2000-12-26 2003-03-18 Ovonyx, Inc. Phase-change memory bipolar array utilizing a single shallow trench isolation for creating an individual active area region for two memory array elements and one bipolar base contact
US7365354B2 (en) * 2001-06-26 2008-04-29 Ovonyx, Inc. Programmable resistance memory element and method for making same

Cited By (27)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2004158852A (en) * 2002-11-01 2004-06-03 Samsung Electronics Co Ltd Phase conversion memory device and its manufacturing method
JP2006019686A (en) * 2004-06-30 2006-01-19 Hynix Semiconductor Inc Phase change storage element and manufacturing method thereof
JP4530411B2 (en) * 2004-06-30 2010-08-25 株式会社ハイニックスセミコンダクター Method for manufacturing phase change memory element
JP2006295130A (en) * 2005-03-15 2006-10-26 Elpida Memory Inc Memory device and its manufacturing method
JP2006303294A (en) * 2005-04-22 2006-11-02 Renesas Technology Corp Variable-phase nonvolatile memory and its manufacturing method
JP2006351992A (en) * 2005-06-20 2006-12-28 Renesas Technology Corp Semiconductor storage device and manufacturing method thereof
US8546783B2 (en) 2006-07-12 2013-10-01 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US7714314B2 (en) 2006-07-12 2010-05-11 Renesas Technology Corp. Semiconductor device and method of manufacturing the same
US7884348B2 (en) 2006-07-12 2011-02-08 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
US8232543B2 (en) 2006-07-12 2012-07-31 Renesas Electronics Corporation Semiconductor device and method of manufacturing the same
JP2008193071A (en) * 2007-02-01 2008-08-21 Ind Technol Res Inst Phase change memory
US7939366B2 (en) 2007-07-25 2011-05-10 Samsung Electronics Co., Ltd. Phase change memory devices and methods of forming the same
USRE45189E1 (en) 2007-11-08 2014-10-14 Higgs Opl. Capital Llc Writing system and method for phase change memory
US8716099B2 (en) 2008-01-25 2014-05-06 Higgs Opl. Capital Llc Phase-change memory
US9087985B2 (en) 2008-01-25 2015-07-21 Higgs Opl.Capital Llc Phase-change memory
US8426838B2 (en) 2008-01-25 2013-04-23 Higgs Opl. Capital Llc Phase-change memory
US8884260B2 (en) 2008-11-12 2014-11-11 Higgs Opl. Capital Llc Phase change memory element
US8604457B2 (en) 2008-11-12 2013-12-10 Higgs Opl. Capital Llc Phase-change memory element
US9245924B2 (en) 2008-11-12 2016-01-26 Higgs Opl. Capital Llc Phase change memory element
US9735352B2 (en) 2008-11-12 2017-08-15 Gula Consulting Limited Liability Company Phase change memory element
US10573807B2 (en) 2008-11-12 2020-02-25 Gula Consulting Limited Liability Company Phase change memory element
JP2010153868A (en) * 2008-12-24 2010-07-08 Imec Method of manufacturing resistive switching memory device, and devices obtained thereof
USRE45035E1 (en) 2008-12-30 2014-07-22 Higgs Opl. Capital Llc Verification circuits and methods for phase change memory array
US8605493B2 (en) 2008-12-31 2013-12-10 Higgs Opl. Capital Llc Phase change memory
KR20200050386A (en) * 2018-10-31 2020-05-11 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Phase change random access memory and method of manufacturing
US11139430B2 (en) 2018-10-31 2021-10-05 Taiwan Semiconductor Manufacturing Co., Ltd. Phase change random access memory and method of manufacturing
KR102366986B1 (en) * 2018-10-31 2022-02-25 타이완 세미콘덕터 매뉴팩쳐링 컴퍼니 리미티드 Phase change random access memory and method of manufacturing

Also Published As

Publication number Publication date
JP4150667B2 (en) 2008-09-17
KR100534530B1 (en) 2005-12-07
TW579593B (en) 2004-03-11
KR20040032955A (en) 2004-04-17
US6764894B2 (en) 2004-07-20
WO2003021693A2 (en) 2003-03-13
US20040202033A1 (en) 2004-10-14
US7326952B2 (en) 2008-02-05
WO2003021693A3 (en) 2003-11-13
US20030116794A1 (en) 2003-06-26

Similar Documents

Publication Publication Date Title
JP4150667B2 (en) Phase change memory with higher pore position
KR100594849B1 (en) Multiple layer phase-change memory
KR100595450B1 (en) Phase Change Material Memory Device
JP4873859B2 (en) Phase change memory and method of forming phase change memory
KR100687747B1 (en) Phase change type memory device and method of manufacturing the same
KR100491978B1 (en) Phase change memory element capable of low power operation and method for fabricating the same
TWI376032B (en) Phase change memory device and fabrications thereof
US20080067491A1 (en) Phase change material memory device
US9087985B2 (en) Phase-change memory
US20090189140A1 (en) Phase-change memory element

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080401

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080502

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080530

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080630

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 4150667

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110704

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120704

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130704

Year of fee payment: 5

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees