JP2005505654A - 接触メタセシス重合 - Google Patents

接触メタセシス重合 Download PDF

Info

Publication number
JP2005505654A
JP2005505654A JP2003534484A JP2003534484A JP2005505654A JP 2005505654 A JP2005505654 A JP 2005505654A JP 2003534484 A JP2003534484 A JP 2003534484A JP 2003534484 A JP2003534484 A JP 2003534484A JP 2005505654 A JP2005505654 A JP 2005505654A
Authority
JP
Japan
Prior art keywords
metathesis
catalyst
support
rubber
monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2003534484A
Other languages
English (en)
Inventor
シー キャスター、ケネス
ジー ケック、クリストファー
Original Assignee
ロード コーポレーション
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ロード コーポレーション filed Critical ロード コーポレーション
Publication of JP2005505654A publication Critical patent/JP2005505654A/ja
Pending legal-status Critical Current

Links

Images

Classifications

    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C1/00Tyres characterised by the chemical composition or the physical arrangement or mixture of the composition
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08GMACROMOLECULAR COMPOUNDS OBTAINED OTHERWISE THAN BY REACTIONS ONLY INVOLVING UNSATURATED CARBON-TO-CARBON BONDS
    • C08G61/00Macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain of the macromolecule
    • C08G61/02Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes
    • C08G61/04Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms
    • C08G61/06Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds
    • C08G61/08Macromolecular compounds containing only carbon atoms in the main chain of the macromolecule, e.g. polyxylylenes only aliphatic carbon atoms prepared by ring-opening of carbocyclic compounds of carbocyclic compounds containing one or more carbon-to-carbon double bonds in the ring
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08JWORKING-UP; GENERAL PROCESSES OF COMPOUNDING; AFTER-TREATMENT NOT COVERED BY SUBCLASSES C08B, C08C, C08F, C08G or C08H
    • C08J5/00Manufacture of articles or shaped materials containing macromolecular substances
    • C08J5/12Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives
    • C08J5/124Bonding of a preformed macromolecular material to the same or other solid material such as metal, glass, leather, e.g. using adhesives using adhesives based on a macromolecular component
    • C08J5/128Adhesives without diluent
    • CCHEMISTRY; METALLURGY
    • C08ORGANIC MACROMOLECULAR COMPOUNDS; THEIR PREPARATION OR CHEMICAL WORKING-UP; COMPOSITIONS BASED THEREON
    • C08LCOMPOSITIONS OF MACROMOLECULAR COMPOUNDS
    • C08L65/00Compositions of macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Compositions of derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J165/00Adhesives based on macromolecular compounds obtained by reactions forming a carbon-to-carbon link in the main chain; Adhesives based on derivatives of such polymers
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J5/00Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers
    • C09J5/04Adhesive processes in general; Adhesive processes not provided for elsewhere, e.g. relating to primers involving separate application of adhesive ingredients to the different surfaces to be joined
    • BPERFORMING OPERATIONS; TRANSPORTING
    • B60VEHICLES IN GENERAL
    • B60CVEHICLE TYRES; TYRE INFLATION; TYRE CHANGING; CONNECTING VALVES TO INFLATABLE ELASTIC BODIES IN GENERAL; DEVICES OR ARRANGEMENTS RELATED TO TYRES
    • B60C9/00Reinforcements or ply arrangement of pneumatic tyres
    • B60C9/0007Reinforcements made of metallic elements, e.g. cords, yarns, filaments or fibres made from metal
    • B60C2009/0021Coating rubbers for steel cords
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2301/00Additional features of adhesives in the form of films or foils
    • C09J2301/50Additional features of adhesives in the form of films or foils characterized by process specific features
    • C09J2301/504Additional features of adhesives in the form of films or foils characterized by process specific features process of pretreatment for improving adhesion of rubber on metallic surfaces
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/163Metal in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2400/00Presence of inorganic and organic materials
    • C09J2400/10Presence of inorganic materials
    • C09J2400/16Metal
    • C09J2400/166Metal in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2421/00Presence of unspecified rubber
    • C09J2421/006Presence of unspecified rubber in the substrate
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2421/00Presence of unspecified rubber
    • C09J2421/008Presence of unspecified rubber in the pretreated surface to be joined
    • CCHEMISTRY; METALLURGY
    • C09DYES; PAINTS; POLISHES; NATURAL RESINS; ADHESIVES; COMPOSITIONS NOT OTHERWISE PROVIDED FOR; APPLICATIONS OF MATERIALS NOT OTHERWISE PROVIDED FOR
    • C09JADHESIVES; NON-MECHANICAL ASPECTS OF ADHESIVE PROCESSES IN GENERAL; ADHESIVE PROCESSES NOT PROVIDED FOR ELSEWHERE; USE OF MATERIALS AS ADHESIVES
    • C09J2465/00Presence of polyphenylene

Landscapes

  • Chemical & Material Sciences (AREA)
  • Organic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Medicinal Chemistry (AREA)
  • Polymers & Plastics (AREA)
  • Health & Medical Sciences (AREA)
  • Engineering & Computer Science (AREA)
  • Manufacturing & Machinery (AREA)
  • Materials Engineering (AREA)
  • Mechanical Engineering (AREA)
  • Adhesives Or Adhesive Processes (AREA)
  • Polyoxymethylene Polymers And Polymers With Carbon-To-Carbon Bonds (AREA)
  • Laminated Bodies (AREA)
  • Paints Or Removers (AREA)

Abstract

【課題】触媒を第1の支持体表面に提供し、次にその表面をメタセシス反応を受けて材料を第1の支持体表面に接着させる材料と接触させることを含む第1の支持体表面に材料を接着させる方法を提供することである。
【解決手段】この方法には塗料法と接着剤法の2つの実施態様がある。塗料法の実施態様において、メタセシス性材料を支持体表面上の触媒と接触させて、それがメタセシス重合をして被膜を形成する。接着剤法は、(a)触媒を第1の支持体表面に提供し、(b)第1の支持体表面と第2の支持体表面との間にメタセシス性材料を提供し、(c)第1の支持体表面の触媒とメタセシス性材料と接触させて、そのメタセシス性材料がメタセシス反応を受けて第1の支持体表面を第2の支持体表面に接着させることから成る。

Description

【技術分野】
【0001】
本発明は、材料を支持体表面へ接着又はコ−ティング(被覆)する方法、及び高温での優れた離層抵抗を有する被接着支持体に関する。
【従来の技術】
【0002】
米国特許第5,728,785号は、メタセシス(複分解)反応を介して重合された架橋ポリシクロオレフィンを開示しており、過酸化物架橋剤をメタセシス性単量体及び触媒と混合し、高温で分解して、得られる重合体と反応する反応性物質を遊離して架橋を生成している。
【0003】
米国特許第5,973,085号は、一成分のメタセシシ触媒で貯蔵安定性を有するメタセシス性ビス-シクロオレフィンを開示している。そのビス-シクロオレフィンは、熱重合下でメタセシス重合及び自己架橋をする。
【0004】
同時継続出願の原出願第09/209,202号は、メタセシス反応性官能基を含有する単量体、オリゴマ−、重合体又は混合体の表面メタセシス反応を利用する塗料及び接着剤の接触メタセシス重合を開示している。その方法に使用される単量体及び単量体の混合物のいくつかの例は、ノルボルネン、シクロアルケン、シクロアルカジエン、シクロアルカトリエン、シクロアルカテトラエン、芳香族含有シクロオレフィン、ポリシクロノルボルネン及びそれらの混合物のような非架橋及び架橋単量体を含む。支持体表面のコ−ティング又は2つの支持体の結合において行われる接触メタセシス重合は、可変の結果を与える。
【特許文献1】
なし
【発明の開示】
【発明が解決しようとする課題】
【0005】
優れた物性を有する接触メタセシス重合被膜及び接着剤及び加熱することなく適用でき、かつ後硬化工程の必要がなく自己架橋できる接着を提供することは有利である。さらに、それによって結合された又は被覆された支持体への高温耐性接着層を示す接触メタセシス重合被膜及び接着剤を提供することは産業的に重要である。
【課題を解決するための手段】
【0006】
本発明により、第1の支持体表面に触媒を提供し、その表面の触媒を少なくとも1つのメタシシス性単量体、オリゴマ−又は重合体とメタシシス性架橋コモノマ−の混合体と接触させ、メタセシス反応を生じさせて第1の支持体表面に接着させることを含むことを特徴とする材料を第1の支持体表面に接着させる方法が提供される。この方法は、コ−ティング(塗料)法及び接着剤法の2つの実施態様がある。
【0007】
塗料法の実施態様において、非架橋性単量体に可溶である少なくとも1つの接触メタセシス非架橋単量体及び架橋単量体のメタセシス混合体は支持体表面上の触媒に付加されるので、それは接触時にメタセシス重合を生じて被膜又は被膜の一構成材料を形成する。得られた重合化、架橋メタセシス化重合材料自身は被膜又は被膜の一部になる。ここでの用語「塗料」は支持体表面の片面に被膜(連続又は不連続)を形成して機能的目的及び/又は美的目的を果たす材料を表わす。その支持体は、被膜に埋封されず、メタセシス化重合体マトリックスに埋封された支持体の従来の反応性射出成形とは異なる。支持体の片面上の被膜に対するかかる機能的目的は、腐食、放射、熱、溶媒、等からの被覆表面の環境保護、潤滑性、導線性又は抵抗性のような電気的性質及び触媒的性質を含む。ペイントは本発明による「塗料」に含まれる。
【0008】
接着剤法の実施態様において、メタセシス反応は2つの支持体の界面で重合した架橋化メタセシス重合体を提供してそれらの支持体を一緒に接着するのに利用される。その接着剤法は、同一の支持体又は異なる2つの支持体の接着(直交積層)に適用できる。特に、(a)触媒を第1の支持体表面に提供する工程、(b)架橋用メタセシス単量体が非架橋液体単量体に溶解される架橋用メタセシス単量体と非架橋液体単量体からなる混合体を提供する工程、その混合体は第1の支持体表面と第2の支持体表面との間で重合する、又は第2の支持体の成分としてメタセシス性混合体を提供する工程、及び(c)第1の支持体表面の触媒をメタセシス性混合体と接触させてメタセシス反応をさせて、架橋化メタセシス化重合体接着剤で第1の支持体表面を第2の支持体表面に接着させる工程から成ることを特徴とする第1の支持体表面を第2の支持体表面に接着させる方法が提供される。
【0009】
図1に示す第1の接着剤の実施態様によると、メタセシス性材料は、第1の支持体表面上の触媒と第2の支持体表面との間に挿入される組成物の一部として存在する。換言すると、そのメタセシス性材料は通常の接着剤に類似するが、それは塗布されたときに2つの支持体とは異なる組成物である。図2に示す第2の接着剤の実施態様によると、第2の支持体はメタセシス性材料から作られる又は複メタセシス性材料を含む、そしてこの第2の支持体と第1の支持体表面上と触媒との接触が、第1及び第2の支持体間に接着剤中間層を作る。その接着剤中間層はメタセシスを受けたメタセシス性の第2支持体の薄層から成る。
【0010】
また、第1支持体表面、第2支持体表面及び、第1と第2の支持体表面の間に挿入された接着剤層を含み第1及び第2の支持体表面を接着した製品が提供される、その第1支持体表面はエラストマ−材料からなり、接着剤層はメタセシス重合体から成る。
【0011】
本発明は、種々の支持体表面(後加硫エラストマ−材料及び熱可塑性エラストマ−の接着が困難な表面を含む)を普通の環境条件下で最少数の工程及び表面調製で強い接着層を形成できるユニ−クな能力を提供する。その方法は、また実質的に100%反応性及び/又は水性キャリヤ−流体でできるから、揮発性有機溶媒の使用を回避する。
【0012】
本発明の接着剤法は、特に繊維質支持体の接着に有用である、本発明は、(a)触媒を繊維支持体表面に提供する工程;(b)メタセシス性材料がメタセシス反応を生じるようにその繊維支持体表面の触媒をメタセシス性材料と接触させる工程;及び(c)繊維支持体表面を第2の支持体表面と接触させる工程からなることを特徴とする繊維支持体表面を第2の支持体表面に接着させる方法が提供される。もしくは、その繊維支持体はコ−ティングの実施態様に従って被覆することができる。
【0013】
本発明の接着剤法は、タイヤ積層品の製造に特に有用であって、触媒をタイヤトレッド又はタイヤカ−カスへ塗布し、触媒が塗布されていないタイヤトレッド又はタイヤカ−カスにメタセシス性材料を塗布し、そしてメタセシス性材料を塗布したタイヤトレッド又はタイヤカ−カスを一緒に接着させる。この方法は無又は最少の熱及び圧力でタイヤの再生を可能にし、かなりの硬化時間を必要とせず、かつ装置の設置コストを低減する。
【0014】
本発明のさらに別の実施態様によると、その方法は塗料又は接着剤塗布用の多層構造物を作ることができる。この実施態様における触媒及びメタセシス性材料は上記のように最初に第1の支持体表面に塗布される。しかしながら、その触媒部位はコ−テイング層内を伝ぱんし、そこでメタセシス性材料との後続の反応に安定な活性部位として残る。換言すると、活性触媒はメタセシス性材料から生じた新しい表面上に残る。第2のメタセシス性材料は次にこの「リビング」表面と接触して、別の新しい層が生じる。このプロセスは、その表面に残留する活性触媒の濃度がもはや有用でないレベルに減少するまで反復できる。その触媒は典型的に消費又は脱活されない、したがって過剰の触媒を必要としないことに注目すべきである。
【発明の実施の形態】
【0015】
ここで使用されるように、次の用語は所定の意味を有する:
“ADMET”は、非環式ジエンオレフィンのメタセシスを意味する;
“触媒”は、開始剤、助触媒及び促進剤も意味する;
“塗料”は、支持体表面上の最終被膜又は外被膜であることを意図する塗料及び後続の塗料に対するプライマ−であることを意図する塗料を含む;
“繊維質支持体”は、織り、不織り布、モノフィラメント、マルチフィラメント糸又は繊維コ−ドを意味する;
“フイルモジェニック”は、表面上に実質的に連続的フィルムを形成する材料の能力を意味する;
“メタセシス(複分解)性材料”は、周囲の中位の高温においてメタセシス反応をすることができる少なくとも1つの成分を含む単一又は多−成分の組成物を意味する;
“非繊維質支持体”は、繊維(非繊維支持体が繊維強化プラスチックスのような一成分として繊維を含む複合支持体を含む)以外のタイプの支持体を意味する;
“普通の環境条件”は、最小の大気制御作業場に典型的に見られる温度(例えば、約−20℃〜40℃)、約1気圧及びある量の水分を含有する空気雰囲気を意味する;
“ROMP”は、開環メタセシス重合を意味する;
“室温”は、約10℃〜40℃、典型的に約20℃〜25℃を意味する;
“実質的に硬化したエラストマ−”及び“後加硫エラストマ−”は、交換可能に使用される、そして重合体及び熱可塑性ポリオレフィン(実質的に硬化又は後加硫エラストマ−は典型的に流動できない)に対してTg以上の熱硬化重合体を意味する;
“表面”は、材料/空気の界面によって規定され、約1原子層から数千原子層に及ぶ支持体の最外部によって表される支持体の領域を意味する。
【0016】
本発明によって生じる重合接着又は重合被覆はメタセシス反応を介して生じる。それらの接着剤及び塗料は比較的薄く、接着剤層又は塗り厚よりも厚い支持体を被覆する。接着剤層又は塗り厚に関して均一な被膜が、比較的に無限の表面積の表面に形成される。
【0017】
種々のメタセシス反応は、Ivin,K.J.及びMol,J.C.,Olefin Metathesis and Metathesis Polymerization(Acdemic Press 1997)に記載されている。そのメタセシス反応は、クロス−メタセシス反応、ADMET,閉環メタセシス反応又は好適にはROMPにすることができる。この発明において生じる表面メタセシス重合は、バルク(反応射出成形を含む)、エマルション又は溶液メタセシス重合とは著しく異なり、メタセシス性単量体及び触媒は一緒に単一組成物に混合されてメタセシス反応をする。バルク・メタセシス重合、特に得られるポリノルボルネン製の成形品を製造するノルボルネン単量体の特に反応射出成形は既知である。例えば、米国特許第4、902、560号は、ジシクロペンタジエン単量体及び触媒を含む重合性液体で未コ−テッド織りガラス布を飽和させ、その飽和布を反応射出成形させ、そして得られる構造物を後硬化させることを含むガラス繊維強化ポリジシクロペンタジェン品の製造法を教示している。本発明により、得られるメタセシス重合体は成形品よりむしろフィルムジェニック接着剤又は被膜を形成する。
【0018】
本発明に使用されるメタセシス性材料は適当な触媒と接触されたときにメタセシス重合をすることができる材料である。メタセシス性架橋機能を含むメタセシス性材料は単量体、オリゴマ−、重合体又は架橋用メタセシス性単量体とそれらの混合物である。好適なメタセシス性材料は、オレフィン材料のような少なくとも1つのメタセシス反応性官能基を含むものである。メタセシス性材料又は成分は、メタセシス性成分のモル分子当り1〜約1000、好適には1〜約100、最適には約1〜約10モルのメタセシス性部分を有することができる。さらに、ROMPを受けることができる材料は典型的に、前記Ivinらの刊行物の224頁に記載されているように“固有の環歪み”を有する、この環歪みの除去は重合用の駆動力である。ADMETをすることができる材料は典型的に末端又は近−末端不飽和を有する。主材料は、それ自身が低レベルで架橋しない単量体、オリゴマ−又は重合体からなる。その低レベルの架橋は、ノルボルネン又はジシクロペンタジエンがそれ自身メタセシス反応でする架橋レベルに相当する。高温で優れた接着性及び被覆性を提供するのは、少部のメタセシス性架橋コモノマ−によって提供される付加的架橋密度である。
【0019】
メタセシス性材料の例は、エテン、α-アルケン、非環式アルケン、(即ち、β-位置又は高位置に不飽和をもったアルケン)、非環式ジエン、アセチレン、環状アルケン及び環状ポリエンのような不飽和官能基を含むものである。環状アルケン又は環状ポリエンがメタセシス性材料のときのメタセシス反応はROMPである。
【0020】
メタセシス性材料自身が支持体表面上に被膜を形成することを意図しているとき、又はメタセシス性材料自身が1つの支持体表面を別の支持体表面に接着する接着剤として作用することを意図しているときには、単量体又はオリゴマ−が特に有用である。単量体は、それらが塗布されるとき支持体表面に拡散できるから特に有用である。それ自身によって単量体として、オリゴマ−を作る単量体として、又は他のタイプの重合体を官能化する単量体として特に有用なものは、ノルボルネン、シクロアルアケン、シクロアルカジエン、シクロアルカトリエン、シクロアルカテトラエン、芳香族を含有するシクロオレフィン及びそれらの混合体である。シクロアルケンの例は、シクロオクテン、ヘキサシクロヘプタデセン、シクロプロペン、シクロブテン、シクロペンテン、シクロヘキセン、シクロヘプテン、シクロノネン、シクロデセン、シクロドデセン、パラシクロフェン、及びフェロセノフェンを含む。シクロアルカジエンの例は、シクロオクタジェン及びシクロヘキサジエンを含む。シクロアルカトリエンの例はシクロオクタトリエンを含む。シクロアルカテトレエンの例はシクロオクタテトラエンを含む。
【0021】
ノルボルネン単量体が特に適する。ここでの用語“ノルボルネン”は、ノルボルネン自身、ノルボルナジエン、置換ノルボルネン、及び多環式ノルボルネンを含むノルボルネン環部分を含む化合物を意味する。ここでの用語“置換ノルボルネン”はノルボルネン環部分及び少なくとも1つの置換基をもった分子を意味する。ここでの用語“多環式ノルボルネン”はノルボルネン環部分及び少なくとも1つの付加縮合環をもった分子を意味する。ノルボルネンの例は,次式によって表される構造をもったものを含む。
【0022】
【化5】
Figure 2005505654
〔式中、XはCH2,CHR3,C(R32,O,S,N−R3,P−R3,O=P−R3,Si(R32,B−R3又はAs−R3であり;各R1は独立にH,CH2,アルキル、アルケニル、シクロアルキル、シクロアルケニル、アリ−ル、アルカリ−ル、アラルキル、ハロゲン、ハロゲン化アルキル、ハロゲン化アルケニル、アルコキシ、オキシアルキル、カルボキシル、カルボニル、アミド、(メタ)アクリレ−ト−含有基、無水物−含有基、チロアルコキシ、スルホキシド、ニトロ、ヒドロキシ、ケト、カルバメ−ト、スルホニル、スルホニル、カルボキシレ−ト、シラニル、シャノ又はイミドであり;R2は縮合芳香族、脂肪族又は複素環式又は多環式環であり;R3はアルキル、アルケニル、シクロアルキル、シクロアルケニル、アリ−ル、アルカリ−ル、アラルキル又はアルコキシである〕。炭素を含有するR基は約20個までの炭素原子を有する。
【0023】
置換ノルボルネン単量体の例はメチリデンノルボルネン、5-メチル-2-ノルボルネン、5-ジメチル-2-ノルボルネン、5-エチル-2-ノルボルネン、5-ブチル-2-ノルボルネン、5-ヘキシル-2-ノルボルネン、5-オクチル-2-ノルボルネン、エチリデンノルボルネン、5-ドデシル-2-ノルボルネン、5-ドデシル-2-ノルボルネン、5-イソブチル-2-ノルボルネン、5-オクタデシル-2-ノルボルネン、5-イソプロピル-2-ノルボルネン、5-フェニル-2-ノルボルネン、5-p-トルイル-2-ノルボルネン、5-α-ナフチル-2-ノルボルネン、5-シクロヘキシル-2-ノルボルネン、5-イソプロペニル-ルボルネン、5-ビニル-ノルボルネン、5、5-ジメチル-2-ノルボルネン、5-ルボルネン-2-カルボニトリル、5-トリエトキシシリル-2-ノルボルネン、5-ノルボン-2-イルアセテ−ト、7-オキサノルボルネン、5-ルボルネン-2、3-カルボン酸、5-ノルボルネン-2、2-ジメタノ−ル、2-ベンゾイル-5-ノルボルネン、5-ノルボルネン-2-メタノ−ルアクリレ−ト、2、3-ジ(クロロメチル)-5-ノルボルネン、2、3-ヒドロキシメチル-5-ノルボルネンジアセテ−ト及びそれらの立体異性体及びそれらの混合体を含む。
【0024】
多環式ノルボルネン単量体の例は、ジシクロペンタジエン(DCPD):
【0025】
【化6】
Figure 2005505654
及びジヒロドジジシクロペンタジエンのような三環性単量体:
【0026】
【化7】
Figure 2005505654
テトラシクロドデセンのような四環性単量体:
【0027】
【化8】
Figure 2005505654
トリシクロペンジエン五環性単量体:
【0028】
【化9】
Figure 2005505654
ヘキサシクロヘプタデセンのような六環性単量体:
【0029】
【化10】
Figure 2005505654
テトラシクロペンタジエンのような七環性単量体:
【0030】
【化11】
Figure 2005505654
ペンタシクロペンタジエンのような非環式単量体:
【0031】
【化12】
Figure 2005505654
及び対応する置換多環式ノルボルネンを含む。
【0032】
例示のシクロオレフィンの構造を以下に示す:
【0033】
【化13】
Figure 2005505654
Figure 2005505654
Figure 2005505654
Figure 2005505654
〔式中(32)中のRは、H,CH2,アルケニル(例えば、ビニル又はアリル)、シクロアルキル、シクロアルケニル、アリ−ル、アルカリ−ル、アラルキル、ハロゲン、ハロゲン化アルキル、ハロゲン化アルケニル、アルコキシ、オキシアルキル、カルボキシル、カルボニル、アミド、無水物含有基、チオアルコキシ、スルホキシド、ニトロ、ヒドロキシ、ケト、カルバメイト、フルホニル、スルフィニル、カルボキシレ−ト、シラニル、シアノ又はイミド;縮合芳香族、脂肪族又は複素環式又は多環式環から別々に選ぶ〕;
【0034】
〔式(51)中のXは、CH2,CHR3,C(R32,O,S,N−R3,P−R3,O=P−R3,Si(R32,B−R3又はAs−R3であり;R及びR′は,H,CH2,アルキル、アルケニル(例えば、ビニル又はアリル)、シクロアルキル、シクロアルケニル、アリ−ル、アルカリ−ル、アラルキル、ハロゲン、ハロゲン化アルキル、ハロゲン化アルケニル、アルコキシ、オキシアルキル、カルボキシル、カルボニル、アミド、(メタ)アクリレ−ト−含有基、無水物−含有基、チオアルコキシ、スルホキシド、ニトロ、ヒドロキシ、ケト、カルバメ−ト、スルホニル、スルフィニル、カルボキシレ−ト、シラニル、シャノ又はイミドであり;縮合芳香族、脂肪族又は複素環式又は多環式環である〕。炭素含有のR及びR′基は、約20個間での炭素原子を有する、そして多環式エステルは、アクリル酸又はメタクリル酸のような不飽和カルボン酸とシクロオレフィン、例えばジシクロペンタジェンのディ−ルス−アルダ−反応、続いてジオ−ル、トリオ−ル、テトラオ−ル等のようなポリオ−ルを使用したエステル化から誘導される。アクリル酸及びジオ−ル又はトリオ−ルをベ−スにした多環式エステルは例えば次式によって表される:
【0035】
【化14】
Figure 2005505654
【0036】
架橋剤は、シクロペンタジェンのようなシクロオレフィンと不飽和カルボン酸とのディ−ルス−アルダ−反応、続いてジイソシャネ−トとの反応及びアミドを与えるためにCO2の排除、又はその酸のアルコ−ルへの還元、続いてカルバメ−トを与えるためにジイソシアネ−トとの反応によって作ることができる。
【0037】
上記構造の範囲内の多数の他の他環式メタセシス単量体が、ビス−ノルボルネンのように知れれている、そして他の例の(13)〜(19)、(35)、(44)〜(51)はメタセシス性架橋用単量体である。架橋用メタセシスコノモノマ−は、周囲条件下のメタセシス反応によって重合できる2つ以上のメタセシス性二重結合の存在を特徴とする。1つのメタセシス基、即ち非架橋用単量体を含有する単量体と少なくとも2つのメタセシス基との混合体では、架橋用単量体が他の主単量体においてメタセシス重合温度において少なくとも0.5モル%のレベルで可溶性であり、かつそのメタセシス性架橋用単量体がメタセシス重合において他の単量体に類似した反応性比を有すると、接触メタセシスの際に支持体の表面での混合体の重合は優れた物理的性質をもたらすことがわかった。メタセシス性架橋用コノモノマ−のあるものは、十分な量の架橋用単量体を溶解させるために単量体の混合体を40℃〜沸点まで加熱する必要がある。溶解度及びメタセシス性架橋用コノモノマ−の十分な溶解度が生じる温度の決定は、単量体を混合し、溶解が生じるか否か又は溶解が生じる温度を観察することによって容易に決定できる。
【0038】
材料の混合体(一つが少モル部のメタセシス性架橋用単量体である)の接触メタセシス重合から得られる架橋重合体は、主メタセシス化材料80〜99.5モル%及び少なくとも2つのメタセシス性不飽和部分を基準として0.5〜20モル%の共重合メタセシス性架橋用単量体を含有する。得られた架橋重合体に混合された架橋用メタセシス単量体のモル%は、優れた接着剤及び塗料性能を提供するのに重要である。低臨界限度は、架橋重合体に混合されたメタセシス性架橋用単量体の0.5モル%である。その低限界はメタセシス性単量体/材料の混合体における架橋用単量体の溶解度の度合いに限定できる。したがって、本発明による主単量体との混合物におけるメタセシス性単量体の最低溶解度は0.5モル%である。多くのメタセシス性架橋用単量体は室温で0.5〜20モル%の範囲内で容易に溶解する。あるメタセシス性架橋用単量体は加熱によって単量体/材料の混合体に溶解する。その溶解度は、試験管内の混合体の視覚検査によって主メタセシス材料中のメタセシス性架橋用単量体の溶解を定量的に観察することによって実験的に容易に決定できる。前記化合物(13)〜(19)、(35)、(44)〜(51)は、室温又は暖加熱下で単量体の混合体に0.5〜20モル%の範囲内で溶解する。
【0039】
主メタセシス性材料のタイプは、ROMPをすることができる官能価を有する単量体からオリゴマ−そして重合体の範囲内の分子量を有し得る。本発明に有用な主メタセシス性単量体の他の例は以下に示す。
【0040】
例えば、ノルボルネン含有ポリ(エステル−アミド)は適当な架橋剤である、そしてROMP及びCMP架橋剤として有用である(Ikeda,A.;Tsubata,A.;Kameyama,A.;Nishikubo,T.:“Synthesis and Photochemical Properties of Poly(ester-amide)s Containing Norbornadiene(NBD) Residues," J.Poly.Sci.:Part A: Polymer Chemistry,1999、 37、 917):
【0041】
【化15】
Figure 2005505654
Coleman,C.G.;McCarthy,T.J.“Tricyclooctadiene: A Crosslinking Agent for Olefin Metathesis Polymerization," Polymer Preprints, 1988, 28, 283. This material is available by dimerization of cis-3,4-dichlorocyclobutene (Paquette,L.A.;Carmody,;M.J. J.Amer. Chem. Soc.,1976, 98, 8175)を参照。
【0042】
【化16】
Figure 2005505654
Bazan,G.C.; Schrock,R.R. “Synthesis of Star Block Copolymers by Controlled Ring-Opening Metathesis Polymerization," Macromolecules,1991, 24, 81 7. Saunders,R.S.;Coen,R.E.;Wong,S.J.;Schrock,R.R. “Synthesis of AmphiphilicStar Block Copolymers Using Ring-Opening Metathesis Polymerization," Macromolecules,1992、 25、 2055を参照。
【0043】
【化17】
Figure 2005505654
(前記(17)を参照)
Stille,J.K.;Witherell,D.R. “Influence of Hydrogen Crowding on the Rates of Reactions. The Addition of cis Reagents to the Dimethanonaphthalene Ring System," J.Amer.Chem.Soc., 1964, 86, 2188を参照。
Stille,J.K.;Frey,D.A. “Tetracyclic Dienes. I. The Diels-Alder Adduct of Norbornadiene and Cyclopentadiene," J.Amer. Chem. Soc.,1959,81 4273を参照(前記(18)参照。
【0044】
任意の熱反応性過酸化物化合物は、後硬化加熱工程における残留不飽和を転化することによって接着した接着剤又は塗料を架橋させることができるメタセシス性材料に含ませることができる。その架橋剤は、一般に後硬化中に架橋を形成する反応性物質に分解する過酸化物からなる。
【0045】
適当な過酸化物の例は、アルキル過酸化物、特にt−ブチル過酸化物又はジ−t−ブチル過酸化物、2,5−ジメチル−2,5−ジ−(t−ブチルペルオキシ)ヘキシン−3,2,5−ジメチル−2,5−ジ−(t−ブチルペルオキシ)ヘキサン、過酸化ベンゾイル、及び他のジアシル過酸化物、クメンペルオキシドのようなヒドロペルオキシド、t−ブチルペルオキシベンゾエイトのようなペルエステル;メチルエチルケトンヒドロペルオキシドのようなケトンヒドロペルオキシドのような既知化合物を含む。適当な市販のオルガノペルオキシドは、Elf Atochem N.V.社から商品名LUPERSOLD,例えば、LUPERSOL 130(2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキシン−3及びジ−t−ブチルペルオキシドを含有する)、及び、LUPERSOL 101(2,5−ジメチル−2,5−ジ(t−ブチルペルオキシ)ヘキサン−3及びジ−t−ペルオキシドを含有する)で入手できる。
【0046】
任意の過酸化物触媒は、メタセシス触媒と接触する前にメタセシス材料と混合する。典型的な後ベ−キング温度は、触媒の分解温度以上で約60℃〜120℃の範囲内で後ベ−ク温度で所定過酸化物を1〜3.5時間の滞留時間である。その後ベ−ク硬化条件は、選択した過酸化物触媒に対して既知で推薦される条件に従って容易に決めることができる。
【0047】
支持体表面に塗布し、メタセシス材料、メタセシス性架橋剤及び任意の過酸化物架橋剤の混合物と接触される好適なメタセシス触媒は、次式を有するルテニウム、オスミウム又はイリジウムカルベン錯体が特に望ましい:
【0048】
【化18】
Figure 2005505654
〔式中、MはOs,Ru又はIrであり;各R1は同一又は異なり、H,C2-20アルケル、,C2-20アルキニル、C1-20アルキル、アリ−ル、アルカリ−ル、アラルキル、C1-20カルボキシレ−ト、C1-20アルコキシ、C2-20アルケニルオキシ、アルケニルアリ−ル、C2-20アルキニルアルコキシ、アリ−ルオキシ、C2-20アルコキシカルボニル、アルキルチオ、アルキルスルホニル又はアルキルスルフィニルであり;Xは同一又は異なり、アニオンリガンド基であり;そしてLは同一又は異なり、中性電子供与体基である〕。
【0049】
メタセシス性材料は、接触メタセシス機構を介して重合し、次にその過酸化物の架橋剤は、例えば高温で分解して活性物質を生成し、それはエチレン基と反応して重合体に架橋を形成する。架橋メタセシス化重合体は、熱の後硬化不在下で接触メタセシス重合から生じることが望ましい。即ち、接触メタセシス中に架橋用単量体を含有するメタセシス材料混合体の転化は支持体の表面で触媒との接触時に生じる、そして実質的に完了して、周囲条件下で架橋重合体を生じる。接触メタセシス重合中に生成される架橋重合体は、Tg以上の高温で優れた引張り強さ及び接着性を示すが、低温(室温以下)の引張り強さ及び接着性は驚くことに低下しない。
【0050】
上記に架橋用単量体のメタセシス性部分は、前記化学構造式(13)〜(19),(35),(50)及び(51)のように選択して、選択された主メタセシス材料に類似する反応性を示すことができる、そして支持体の表面での触媒との接触時に、メタセシス性混合体中のメタセシス性架橋用単量体の溶解度の限度に依存して、架橋は周囲温度又は中位の高温条件で成長する重合体を生じる。
【0051】
好適な主メタセシス性単量体は、エチリデンノルボルネン、特に5-エチリデン-2-ノルボルネン単量体(ここで“ENB”と呼ぶ)、及びジシクロペンタジエン(ここで“DCPD”と呼ぶ)である。エチリデンノルボルネンは驚くことに広範囲の支持体に渡って優れた性能を提供する。
【0052】
塗料又は接着剤として使用されるときのメタセシス性単量体又はオリゴマ−の混合体は、それ自身によって実質的に純粋な形態又は技術的グレ−ドで使用される。もちろん、以下に記載するように、メタセシス性単量体又はオリゴマ−は他の成分との混合体に含有される、又は溶媒又はキャリヤ−流体で実質的に希釈することができる。ここでの用語“技術的グレ−ド”は少なくとも約90重量%の単量体又はオリゴマ−を含む溶液を意味する。技術的グレ−ドを使用する利点は、メタセシス性組成物が約100%反応性であり、したがって揮発性有機化合物に起因する作業場又は環境の問題、又は非反応性添加剤に起因する性能問題がなく、かつ精製の必要がないことである。
【0053】
あるいは、メタセシス性単量体又はオリゴマ−はエマルション、分散液、溶液又は混合体のような多成分組成物に含有させることができる。換言すると、メタセシス性材料は、メタセシス性単量体又はオリゴマ−のような少なくとも1つのメタセシス性成分を含む多成分組成物にすることができる。かかるメタセシス性成分含有組成物は、塗布するときに液体、ペ−スト又は溶融可能性固体の形態であることが望ましい。メタセシス性液体組成物は、従来の手段にしたがって成分を一緒に混合することによって調製できる、次に使用前の長期間貯蔵が可能である(ここでは保存期間という)。
【0054】
例えば、メタセシス性単量体は、シクロヘキサン、塩化メチレン、クロロホルム、トルエン、テトラヒドロフラン、N−メチルピロリドン、メタノ−ル、エタノ−ル又はアセトンのような従来の有機溶媒に又は水に溶解又は分散されることができる。1つの特に有用な組成物は、ポリエステル、ポリウレタン、ポリカ−ボネ−ト、エポキシ又はアクリルのような重合体に溶解したメタセシス性単量体/オリゴマ−含む。そのメタセシス性成分は多成分組成物にも含有されることができる、その場合にメタセシス重合がプレフォ−ムド及び/又は同時生成材料の共存下で生じて、貫通重合体網目構造の形成をもたらす。
【0055】
メタセシス性組成物(単量体単独又は多成分)は実質的に約100%固体であることが望ましい。換言すると、その組成物は反応して固体を形成する液体量を実質的に含まない。
【0056】
基材表面に塗布するメタセシス性材料の量は、塗料の場合に連続被膜を形成する又は接着剤の場合に適当な接着を提供するのに十分にすべきである。その量は支持体のタイプ及び必要な性質を含む種々の要素に依存して変わるが、0.01〜1,000,好適には0.1〜100,さらに望ましくは0.3〜25mg/cm2基材表面積の範囲にできる。
【0057】
図2に示す別の実施態様によると、第1の支持体に接着させる第2の支持体はメタセシス性成分を含む。そのメタセシス性材料は、支持体の化学的又はイオン的に結合した部分として存在できる又はそれは物理的混合体の形態で単純に存在できる(例えば、水素結合)。
【0058】
接触時にメタセシス性材料を重合させることができる触媒を使用できる。その触媒は、支持体表面に塗布された後に良好な安定性ももたなければならない。特に、通常の環境条件下の接着の場合には、触媒は酸素及び水分の存在下で支持体の塗布後及びメタセシス性材料が触媒と接触するまで適当な期間その活性を維持できなければならない。実験的試験は、ある触媒は支持体表面に被覆後少なくとも30日間活性のままにできることを示した。
【0059】
本発明に有用な既知メタセシス触媒は多数ある。遷移金属カルベン触媒は周知である。メタセシス触媒系の例は、レニウム化合物(例えば、Re27/Al23,ReCl5/Al23,Re27/Sn(CH34及びCH3ReO3/Al23-SiO2);ルテニウム化合物(例えば、RuCl3,RuCl3(水和物)、K2[RuCl5-H2O],[Ru(H2O)6](tos)3(“tos”はトシラ−トを意味する)、ルテニウム/オレフィン系(Ruとオレフィン(単量体)との間のプレフォ−ムド錯体の溶液又は分散液を意味し、それは可溶性又は分散重合体の共存又は不在下でβ-酸素も含み、その重合体はメタセシス又は他の従来の重合合成によって調製されるオリゴマ−又は高分子量重合体にすることができる);オスミウム化合物(例えば、OsCl3,OsCl3(水和物)及び以下に詳細に記載するオスミウムカルベン錯体;モリブデン化合物(例えば、モリブデンカルベン錯体(例えば、t-ブトキシ及びヘキサフルオロ-t-ブトキシ系)、モリブデンペンタクロリド、モリブデンオキシトリクロリド、トリドデシルアンモニウムモリブデ−ト、メチルトリカプリルアンモニウムモリブデ−ト、トリ(トリデシル)アンモニウムモリブデ−ト、及びトリオクチルアンモニウムモリブデ−ト);タングステン化合物(例えば、タングステンカルベン錯体(例えば、t-ブトキシ及びヘキサフルオロ-t-ブトキシ系)、WCl6(典型的にSnR4(Rはアルキルを意味する)又はPbR4のような助触媒と共に)、タングステンオキシクロリド、タングステンオキシドトリドデシルアンモニウムタングステ−ト、メチルトリカプリルアンモニウムタングステ−ト、トリ(トリデシル)アンモニウムタングステ−ト、及びトリオクチルアンモニウムタングステ−ト、WCl6/CH3CH2OH/CH3CH2AlCl2,WO3/SiO2/Al23,WCl6/2,6-C65-OH/SnR4,WCl6/2,6-Br-C63-OH/SnR4,WOCl4/2,6-C65-C65-OH/SnR4,WOCl4/2,6-Br-C63-OH/SnR4;TiCl4/アルミニウムアルキル;NbOX/SiiO2/イソブチルAlCl2;及びMgCl2を含む。R4はこの文脈で呼ばれるR4はアルキル基を意味する。上記のように、これらの触媒、特にタングステンのあるものは、アルミニウム、亜鉛、鉛又はスズアルキルのような付加活性剤又は開始剤系の存在を要する。好適な触媒はルテニウム化合物、モリブデン化合物及びオスミウム化合物である。
【0060】
次式によって表される構造をもったルテニウム、オスミウム又はイリジウムカルベン錯体が特に望ましい:
【0061】
【化19】
Figure 2005505654
〔式中、MはOs,Ru又はIrであり,各R1は同一又は異なり、H,アルケニル、アルキニル、アルキル、アリ−ル、アルカリ−ル、カルボキシレ−ト、アルコキシ、アルケニルカルボキシレ−ト、アルケニルアリ−ル、アルキニルアルコキシ、アリ−ルオキシ、アルコキシカルボニル、アルキルチオ、アルキルスルホニル又はアルキルスルフィニルであり;Xは同一又は異なり、アニオンリガンド基であり;そしてLは同一又は異なり、中性電子供与体基である〕ニル、アルキニル、アルキル、アリ−ル、アルカリ−ル、カルボキシレ−ト、アルコキシ、アルケニルカルボキシレ−ト、アルケニルアリ−ル、アルキニルアルコキシ、アリ−ルオキシ、アルコキシカルボニル、アルキルチオ、アルキルスルホニル又はアルキルスルフィニルであり;Xは同一又は異なり、アニオンリガンド基であり;そしてLは同一又は異なり、中性電子供与体基である〕。
【0062】
XはCl,Br,I,F,CN,SCN,又はN3、0−アルキル又は0−アリ−ルであり;Lは複素環又はQ(R2)aであり(但し、QはP,As,Sb又はNであ;R2はH,シクロアルキル、アルキル、アルコキシ、アリ−レ−ト又は複素環であり;aは1、2又は3である);MはRuであり;R1はH,フェニル、−CH=C(フェニル)2、−CH=C(CH32,又は−C(CH32(フェニル)である;LはPCy3(Cyはシクロヘキシル又はシクロペンチルである)、P(イソプロピル)3又はPPh3のようなトリアルキルホスフィンであり;XはClである。特に望ましい触媒は、トリシクロヘキシルホスフィンルテニウムカルベン、特にビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウム(IV)ジクロリド(ここではRuCl2(PCy32=CHPhで示す)を含む。かかるルテニウム及びオスミウムカルベン触媒は、例えば、米国特許第5、312、940号及び5、312、909号;Schwab,P.;Grubbs.R.H.;Ziller,J.W.,Journal of American Chemical Society,1996,118,100;Schwab,P.;France,M.B.Ziller,J.W.;Grubbs.R.H.,Journal of American Chemical Society,1993,115,9858に記載されている。
【0063】
このグル−プ内のさらに望ましい触媒は、L基がトリアルキルホスフィン、イミダゾ−ル−2−イリデンをベ−スにした系、混合又は同一である触媒である。これら触媒の例はN,N′−二置換4,5−ジヒドロイミダゾ−ル−2−イリデン置換ルテニウムカルベン、N,N′−二置換イミダゾ−ル−2−イリデン置換ルテニウムカルベン、混合ホスフィン−ジヒドロイミダゾ−ル−2−イリデン置換ウテニウムカルベン又は混合ホスフィン−イミダゾ−ル−2−イリデン置換ウテニウムカルベンを含む。これらの中で特に望ましいのは、トリシクロヘキシルホスフィン[1,3−ビス(2,4,6−トリメチルフェニル)−4,5−ジヒドロイミダゾ−ル−2−イリデン][ベンジリデン]ルテニウム(IV)ジクロリド、又はトリシクロヘキシルホスフィン[1,3−ビス(2,3,6−トリメチルフェニル)−4,5−ジヒドロイミダゾ−ル−2−イリデン][ベンジリデン]ルテニウム(IV)ジクロリドである。次は、有用な触媒のいくつかである(Cy=シクロヘキシル、R2=アルキル及びアリ−ル基):
【0064】
【化20】
Figure 2005505654
Figure 2005505654
Figure 2005505654
Figure 2005505654
Figure 2005505654
Figure 2005505654
Figure 2005505654
Figure 2005505654
有用な触媒は下記の文献に記載されている:Ahmed,M.; Garrett,A.G.M.; Bradock,D.C.; Cramp,S.M.: Procopoiou,P.A. Tetrahedron Letters 1999,40,8657; Olivan,M.;Caulton,K.G. J.Chemi.Commun. 1997, 1733; Amoroso,D.;Fogg,D.E. Macromolecules 2000,33,2815; Furstner,A.; Hill,A.F.; Liebl,M.; Wilton-Ely,J.D.E.T. J.Chem.Soc.,Nhem. Commun., 1999,601; Robson,D.A.; Gibson, V. C.; Davies,R.G.; North,M. Macromolecules 1999,32,6731; Schwab, P.; France,M.B.; Ziller,J.W.; Grubbs、R.H. Angew. Chem.Int.Ed. 1995,34,2039; Schwab,P,; Grubbs,R.H. Tetrahedron Lett. 2000,4689; M.Scholl; S.Ding; C.W.Le e; Gubbs,R.H. Oefnic Lett. 1999,I,953; Scholl,M.; Trnka,T.M.; Morgan,J. P.; Grubbs,R.H. Tetrahedron Lett. 1999,40,2247; Belderrain,T.R.; Grubbs,R.H. Organometallics 1997,16,4001; Ulman,M.;Beldrrain,T.R.; Grubbs,R.H. Tetrahedron Lett. 2000,4689; Sanford,M.S.; Henling,L.M.; Day,M,W.; Grubbs,R.H. Angew. Chem. Int.Ed. 2000,39,3451; Lynn,D.M.; Mohr,B.; Grubbs,R. H.; Henling,L.M.; Day,M.W. J. Am. Chem. Soc. 2000,122,6601; Mohr,B.; Lynn,D.M.; Grubbs,R.H. Organometallics 1996,15,4317; Nguyen,S.T.; Grubbs,R.H.; Ziller,J.W. J. Am. Chem. Soc. 1993,15,9858; Weskamp,T.; Schattenman n,W.C.; Volland,m.a.o.; Rominger,F.; Eisentrager,F.; Hofmann,P. Angew. Chem.Int.Ed.1999、38、1273; J.S.Kingsbury,J.S.; Harrity,J.P.A.; Bonitatebu s,P.J.; Hoveyda,A.H. J.Am. Chem. Soc.1999、121、791; Wolf,J.; Stuer,W.; Grunwald,C.; Werner,H.; Schwab,P.; Schulz,M. Angew. Chem.Int. ED. 1998,37,1124.
有用な別のルテニウムカルベン錯体は次式によって表される構造を有するバイメタル性触媒である:
【0065】
【化21】
Figure 2005505654
〔式中、MはRu,Os又はRhである。かかる触媒はDias,E.L.;Grubbs.R.H.,Organometallics,1998,17,2758に開示されている。
望ましいモリブデン又はタングステン触媒は次式によって表されるものである:
【0066】
【化22】
Figure 2005505654
〔式中、MはMo又はWであり;XはO又はSであり;R1はアルキル、アリ−ル、アラルキル、アルカリ−ル、ハロアルキル、ハロアリ−ル、ハロアラルキル又はシリコン−含有のそれらの類似物質であり;R2はそれぞれ同一又は異なり、アルキル、アリ−ル、アラルキル、アルカリ−ル、ハロアルキル、ハロアリ−ル、ハロアラルキルであり又は一緒に複素環式又はシクロアルキル環を形成する;そしてR3はアルキル、アリ−ル、アラルキル、アルカリ−ルである〕。MはMoであり;XはOであり;R1はフェニル又はフェニル(R5)(R5はフェニル、イソプロピル又はアルキルである)であり;R2はC(CH33,-C(CH3)(CF32
【0067】
【化23】
Figure 2005505654
〔式中、R4はフェニル、ナフチル、ビナフトレ−ト又はビフェノレ−トであり;R3ha-C(CH3265である。特に望ましいのは2、6-ジイソプロピルフェニルイミドネオフィリデンモリブデン(IV)ビス(ヘキサフルオロ-t−ブトキシド)(ここでは“MoHFTB”という)及び2、6-ジイソプロピルフェニルイミドネオフィリデンモリブデン(IV)ビス-t−ブトキシド)(ここでは“MoTB”という)。かかるモリブデン触媒はBazan,G.C.,Oskam,J.H.,Cho,N.H.,Park,L.Y.,Schrock,R.R.,Journal of American Chemical Society,1991,113,6899及び米国特許第4、727、215号に記載されている。
【0068】
Alexander, B.;La,D.S.; Cefalo,D.R.; Hoveyda,A.H.; Schrock,R.R. J. Am. Chem. Soc. 1998,120,4041; Zhu,S.; Cefalo,D.R.; La,D.S.; Jamieson,J.Y.; Davis,W.M.; Hoveyda,A.H.; Schrock,R.R. J. Am. Chem. Soc. 1999,121,8251; and Aeilts,S.L.; Cefalo,D.R.; Bonitatebus,Jr.,P.J.; Houser,J.H.;Hoveyda, A.H.; Schrock,R.R. ANGEW. Chem. Int. Ed. 2001,40,1452.
説明的な例は、以下に示す:
【0069】
【化24】
Figure 2005505654
【0070】
触媒は任意の方法によって支持体表面に送出できる。典型的に触媒は液体組成物で支持体表面に塗布される。その実質的に純粋の形態の触媒は普通の環境条件下では液体又は固体として存在する。触媒が液体として存在する場合には、それは触媒の濃度を希釈するためにキャリヤ−流体と混合する。触媒が固体として存在する場合には、それが支持体表面に容易に送出できるようにキャリヤ−流体と混合される。もちろん、固体触媒は液体のキャリヤ−流体の使用なしに表面に付加できる。好適なRuCl2(PCy32=CHPh、ホモバイメタル性ルテニウム、MoHFTB及びMoTB触媒は普通の環境条件下で固体である、したがって通常キャリヤ−流体と混合される。その触媒組成物は、それが後続の塗料又は接着剤の塗布のために下塗をする意味でプライマ−とも考えられる。
【0071】
また、触媒は支持体とばらで混合することもできる。触媒を支持体とばらで混合する場合には、支持体表面へ滲出させることが望ましい。かかる触媒を含有する支持体を製造する方法の1つは、触媒を支持体とばらで混合し、次に得られる混合物を成形、押出等を介して支持体品に成形する。もちろん、触媒は支持体の組成物によってまたは支持体品の製造法によって脱活されない。この方法は、触媒が重合体マトリックスに含まれる図3に示す。
【0072】
本発明は、触媒の塗布前に支持体表面の予備機能化をする必要がない。換言すると、支持体表面は触媒を受ける表面を調製する剤と反応させる必要がない。例えば、触媒又はメタセシス性接着剤又は塗料と異なる材料(チオ−ル等)から作った所謂単層又は自動集成層を支持体表面に形成する必要はない。その触媒は支持体表面と直接接触して付加できる。もちろん、金属支持体に対しては、支持体表面は従来の清浄処理又は加工処理で予備処理できる、そしてエラストマ−支持体に対しては溶媒で拭うことができる。
【0073】
触媒はキャリヤ−流体に分散、懸濁又は溶解される。そのキャリヤ−流体は水又はジクロロエタン、トルエン、メチルエチルケトン、アセトン、テトラヒドロフラン、N-メチルピロリドン、3-メチル-2-オキサゾリドン、1、3-ジメルエチレンウレア、1、3-ジメルエプロピレンウレア及び超臨界二酸化炭素のような従来の有機溶媒である。ルテニウム、オスミウム及びイリジウム触媒は極性有機及び水性キャリヤ−系に特に有用である。そのキャリヤ−流体は普通の環境条件下又は加熱すると支持体表面から蒸発することができる。
【0074】
その支持体に付加する触媒の量は、メタセシス重合させるのに十分な量にすべきである。その量は、支持体のタイプ及び必要な性質を含む種々の要素に依存して変わるが、0.001〜10,望ましくは0.01〜5,さらに望ましくは0.1〜5mg/cm2の支持体表面積の範囲にすることができる。
【0075】
本発明の接着剤又は塗料は多数の使用が容易な利点を与える。メタセシス重合は普通の環境条件下で水分の存在に無関係に空気中で生じる。接着剤又は塗料を作るために硬化用の放射線、熱又は光化学のような外部エネルギ−源を必要としない。したがって、接着剤又は塗料は熱的に又は溶媒に敏感な表面に接着する。さらに、本発明による工程は最少数である。最初に支持体表面を反応させて表面に特定の官能基を生成させる必要がない。いわゆる単層又は自動集成層を形成すために必要な慎重に制御された多工程の必要がない。本発明によって形成された結合は顕著な接着強度を示す。
【0076】
さらに重要な利点は、本発明の方法が環境に優しいことである。触媒は水性キャリヤ−流体で支持体表面に送出することができる。実質的に純粋又は技術的グレ−ドのメタセシス性単量体又はオリゴマ−を使用できる、そしてその単量体又はオリゴマ−は実質的に100%反応性である。その結果、本発明の一実施態様に従って使用される揮発性有機溶媒は実質的に存在しない。
【0077】
本発明によって生成される接着剤又は塗料は多くの要素のためにその驚異的な接着を達成すると考えられる。その単量体及び/又は触媒は支持体表面、特にエラストマ−支持体に容易に拡散する。この拡散の結果として、透入網目構造がメタセシス性材料から形成された重合体と支持体の分子構造との間に生じる。その上、そのメタセシス重合反応はメタセシス性材料の分子と支持体の分子との間に形成される強い共有結合の形成を促進する。塗料のユニ−クな利点は支持体表面への優れた接着性である。
【0078】
その接着剤又は塗料はメタセシス反応を介して生成された付加重合体である。得られる重合体は連続膜を形成できる。オレフィンメタセシスは典型的に不飽和線状主鎖を有する重合体を生じる。その重合体の反復主鎖単位の不飽和官能価の度合は単量体の値と同一である。ノルボルネン反応物質で得られる重合体は次式によって表される構造をもつ筈である:
【0079】
【化25】
Figure 2005505654
〔式中、nは1〜20,000,望ましくは1〜500、さらに望ましくは1〜100、最適には10〜100である。触媒に対するノルボルネン反応物のモル比は20,000:1〜1:1,望ましくは500:1〜1:1,最適には100:1〜10:1の範囲内にする必要がある。
【0080】
得られる重合体被膜は脆いが、柔軟性の支持体でも驚くほど優れた接着が生じる。その被膜の割れは支持体に伝ぱんしないと思われる。
本発明の好適な実施態様によると、液体触媒(それ自身によって又は多成分触媒組成物の成分として)支持体表面に塗布される。その触媒は、吹付け、浸漬、はけ塗り、しごき塗り等のような通常の塗工/プリント手段によって連続表面被覆面積又は所定の選択部分にのみ被覆面積を達成するために塗布することができる。メタセシス性材料は、それが湿潤しているときに得られる触媒化-塗工表面と接触させることができる。しかしながら、その触媒キャリヤ−流体は蒸発させることが望ましく、次に乾燥した触媒化-塗工表面が塗布される。触媒キャリヤ−流体の蒸発は普通の環境条件下で時間をかけて生じる、又は触媒化-塗工表面を熱又は真空にかけて促進することができる。本発明の注目すべき利点は、乾燥した触媒化-塗工表面が長期間安定で活性の儘であることである。その乾燥した触媒化-塗工表面は少なくとも5分間、望ましくは少なくとも24時間、さらに望ましくは少なくとも1ヵ月間、最適には少なくとも6ヵ月間保持されると考えられる。この安定性は、メタセシス性材料が触媒化表面と接触している間比較的長い期間を提供することによって製造の融通性に寄与する。例えば、一連の支持体は触媒を塗工して、次に塗工又は接着に必要なときまで貯蔵することができる。別の実施態様における触媒及びメタセシス性材料は支持体表面に同時に吹付け塗布することができる。別の実施態様において、触媒及びメタセシス性材料は支持体表面に同時に噴霧塗布することができる。
【0081】
触媒が一旦支持体表面で利用可能に作られると、メタセシス性材料(第2の支持体、塗料又は接着剤の形態で)その支持体表面上でその触媒と接触される。そのメタセシス性材料は典型的に接触時に支持体表面と反応し始める。膜形成はメタセシス性材料のメタセシス重合に起因して実質的に線状の重合体を生成する。膜形成速度は、ブロンステッド酸、ルイス酸又はCuClを触媒組成物又はメタセシス性組成物に添加することによって加速することができる。メタセシス性材料を触媒化-塗工表面に接触させる方法は意図する用途に依存する。
【0082】
メタセシス性材料がそれ自身被膜を形成することを意図している場合には、それは吹付け、浸漬、はけ塗り、しごき塗り、ロ−ルコ−ティング等のような通常の塗工/プリント手段によって触媒化-塗工表面に液状で普通の環境条件下で塗布することができる。そのメタセシス性塗料は、それが溶融材料の形態の場合には押出によっても塗布できる。塗膜の厚さは意図する用途によって変わる。
【0083】
特に単量体の形態のメタセシス性材料は、塗料又はコ−キング材のような多成分外部用塗料組成物の一成分として含ませることができる。かかる系での触媒は外部塗工前に塗布するプライマ−組成物に含ませることができる。
【0084】
メタセシス性材料が、2つの支持体を一緒に接着させる接着剤を生成することを意図している場合には、そのメタセシス性材料は液状で普通の環境条件下で吹付け、浸漬、はけ塗り、しごき塗り、ロ−ルコ−ティング等のような通常の塗工/プリント手段によって触媒化-塗工表面に直接塗布することができる。次に他の支持体表面をメタセシス性材料の硬化完了前にメタセシス性材料と接触させる。しかしながら、触媒を塗工しない支持体表面にメタセシス性材料を塗布して、メタセシス性接着剤を塗工した支持体と触媒を塗工した基材とを普通の環境条件下で接触させて接着をさせることが望ましい。そのメタセシス性材料は液状で普通の環境条件下で吹付け、浸漬、はけ塗り、しごき塗り、ロ−ルコ−ティング等のような通常の塗工/プリント手段によって非触媒-塗工表面に直接塗布することができる。そのメタセシス性材料は2つの支持体を一緒にする前に乾燥又は湿潤のままにさせることができる。メタセシス性接着材料は、それが溶融材料の形態の場合には押出によってこれら別々の方法の両方で塗布することもできる。メタセシス性材料が室温で固体の場合には、接着を促進するために少なくとも部分的に溶融又は半固体になるように加熱する必要がある。固体メタセシス性材料に圧力をかけてミクロ液体表面層を得ることもできる。
【0085】
本発明によって塗工又は接着することができる支持体表面の種類は広く変わる。もちろん、その支持体はそれ自身有用な製品である。かかる支持体は金属及びエラストマ−から作った機械加工部品、エラストマ−又はエンジニアリングプラスチックから作った成形品、熱可塑性プラスチックス又は熱硬化性プラッチックスから作った繊維又は部品のような押出品、シ−ト又はコイル金属品、繊維ガラス、木材、紙、セラミックス、ガラス等を含む。ここでの用語“支持体”はアルミナ又はシリカのようなばら材料から作った従来の触媒支持体は含まない。従来の触媒支持体は重合をさせる触媒を支持するためにのみ有用であるが。それ自身は触媒なしでは有用でない。
【0086】
エラストマ−支持体の例は、ポリクロロプレン、ポリブタジェン、ポリイソプレン、スチレン-ブタジエン共重合体ゴム、アクリロニトリル-ブタジエンン共重合体ゴム(“NBR”),エチレン-プロピレン共重合体ゴム、(“EPM”),エチレン-プロピレン-ジエンタ−ポリマ−ゴム(“EPDM”),ブチルゴム、臭素化ブチルゴム、アルキル化クロロスルホン化ポリエチレンゴム、ハロゲン化ニトリルゴム(“HNBR”),シリコ−ンゴム、フルオロシリコ−ンゴム、ポリ(n-ブチルアクリレ−ト)、熱可塑性エラストマ−等のような天然ゴム及び合成ゴム並びにそれらの混合物を含む。
【0087】
本発明に有用なエンジニアリングプラスチックは、ポリエステル、ポリオレフィン、ポリアミド、ポリイミド、ポリニトリル、ポリカ−ボネ−ト、アクリルアセテ−ト、ポリケトン、ポリアリ−レ−ト、ポリベンジイミダゾ−ル、ポリビニルアルコ−ル、イオノマ−、ポリフェニレンオキシド、ポリフェニレンスルフィド、ポリアリ−ルスルホン、スチレン、ポリスルホン、ポリウレタン、ポリビニルクロリド、エポキシ又はポリエ−テルケトンを含む。
【0088】
金属支持体の例は、鉄、鋼(ステンレス鋼及び電気亜鉛メッキ鋼を含む)、鉛、アルミニウム、銅、黄銅、青銅、モネルメタル、金属合金、ニッケル、亜鉛、スズ、金、銀、白金、パラジウム、等を含む。本発明によって触媒を添加する前に、金属表面は脱脂及びグリットブラストのような技術的に既知の方法にしたがって清浄化できる、及び/又は金属表面はリン酸塩処理、電着又は自動析出を介して転化又は塗工できる。
【0089】
繊維支持体の例は、ガラス繊維、ポリエステル、ポリイミド(ナイロン及びアラミドの両方)、ポリエチレン、ポリプロピレン、炭素、レ−ヨン及び綿を含む。
繊維強化又は含浸複合支持体は、ガラス繊維強化プレプレグ(“FRP”),シ−ト成形コンパウンド(“SMC”)及び繊維強化エラストマ−フ複合体を含む。繊維強化エラストマ−複合物の場合の繊維支持体は、外側のエラストマ−層の間にサンドウィッチ又は接着させて、自動車産業用のタイヤ、ベルト、ホ−ス、エアスプリング等のような複合多層複合構造を形成させることができる。本発明のメタセシス性接着剤は繊維強化コ−ドのタイヤ材料への接着に使用できる。
【0090】
本発明の接着剤の実施態様は繊維強化又は含浸複合物自身の製造にも使用できる。例えば、触媒は繊維又はコ−ドに塗布できる、そして次に別のメタセシス性材料を触媒-処理した繊維又はコ−ドと接触させて複合マトリックス材料で接着剤を生成する、又はその複合マトリックス材料自身がメタセシス性である。
【0091】
本発明は特に2つの支持体を相互に接着させるのに有用である。上記支持体の種類は本発明によって全て一緒に接着できる。それらの支持体はそれぞれ同一材料又は異なる材料から作ることができる。本発明は後加硫又は硬化エラストマ−を特に金属のような異なる材料から作った支持体に接着させるのに有用である。
【0092】
メタセシス性材料を硬化エラストマ−支持体表面に付加して、次にその接着剤塗布エラストマ−支持体を触媒を塗工した他の支持体と接触させる場合に、硬化エラストマ−支持体の優れた接着が得られることがわかった。この方法を図1に模式的に示す。この望ましい方法は特に硬化エラストマ−を金属に、及び硬化エラストマ−を硬化エラストマ−に接着する場合に適用できる。メタセシス性接着剤はエラストマ−支持体表面に塗布される。その触媒は金属支持体の表面に塗布されて乾燥される。そのメタセシス性接着剤はエラストマ−支持体の表面に塗布される。触媒を塗工した金属支持体及び接着剤を塗布した支持体は、それらの支持体を一緒にかつその場所に単に保持するのに適当な最小の圧力下で触媒との接触によって開始されるメタセシス反応が少なくとも“生強度”を提供するのに十分な硬化点に進行するまで一緒にする。メタセシス性材料の支持体中への拡散速度及びメタセシス性材料の蒸発速度に依存して、2つの支持体が一緒になる前に30分の経過があるが、その経過は約30秒〜5分が望ましい。硬化EPDMの鋼への接着の場合の生強度は、支持体が接触した後約5〜10分以内に現れると思われる、そして十分高い接着強度は支持体が接触した後約30分以内に現れると思われる。
【0093】
本発明の接着方法は、SANTOPRENE(商品名)のような熱可塑性エラストマ−から作った支持体を別の熱可塑性エラストマ−に又は異なる材料から作った支持体に接着するのに特に有用である。SANTOPRENEはAdvanced Elastomer Systemsから商的に入手できる熱可塑性エラストマ−(“TPE”)の商品名である(それは熱可塑性材料の連続マトリックス全体に分散されているエラストマ−粒子から成る)。かかるTPE混合物は米国特許第5、609、962号に詳細に記載されている。ここでの用語TPEは、米国特許第5、073、595号に記載されているような熱可塑性オレフィン(“TPO”)も含む。
【0094】
TPEは周知である。多くのTPEは、主にポリプロピレン・ホモポリマ−の混合物およびプロピレンと別のα−オレフィン状の1−オクテンとの共重合体のようなポリオレフィンを含有する。米国特許第5、609、962号によると、それらはエチレン、プロピレン、1-ブテン、イソブチレン、1-ペンテン、1-ヘキセン、1-オクテン、3-メチル-1-ペンテン、4-メチル-1-ペンテン、5-メチル-1-ヘキセン、それらの混合体のような炭素原子数が2〜7のモノオレフィン単量体及び(メタ)アクリレ−ト及び/又は酢酸ビニルとの共重合体から望ましく調製される。炭素原子数が3〜6の単量体が望ましく、プロピレンが望ましい。ポリプロピレンは高結晶質のアイソタクチック又はシンジオタクチックポリプロピレンにすることができる。
【0095】
ポリオレフィン成分の一部は、米国特許第5、609、962号にしたがって官能化ポリオレフィンにすることができる。換言すると、非官能化ポリオレフィンと官能化ポリオレフィンを一緒に混合してTPEを生成することができる。官能化ポリオレフィンのポリオレフィンは、エチレン、プロピレン、1-ブテン、1-ヘキセン及び4-メチル-1-ペンテンのようなホモポリマ−及び1つ以上のアルファ-オレフィンとの共重合体にすることができる。そのポリオレフィンの中で、低密度ポリエチレン、線状低密度ポリエチレン、中間及び高密度ポリエチレン、及びプロピレン-エチレンランダム又はブロック共重合体が望ましい。官能化ポリオレフィンは重合中に組込まれた1つ以上の官能基を含有する。しかしながら、それらは官能基がグラフトされている重合体が望ましい。かかる官能基を形成する単量体はカルボン酸、ジカルボン酸又はそれらの無水物のような誘導体が望ましい。
【0096】
TPEのエラストマ−成分はEPM,EPDM,ブチルゴム、C4-7NOイソモノオレフィンとパラ-アルキルスチレンの共重合体、天然ゴム、合成ポリイソプレン、ポリブタジエン、スチレン-ブタジエン共重合体ゴム、ニトリルゴム、ポリクロロプレン及びそれらの混合物のようなオレフィンゴムから作られる。
【0097】
米国特許第5、609、962号によると、ポリオレフィンの量は一般に約10〜87重量%,ゴムの量は一般に約10〜70重量%,そして官能化ポリオレフィンの量は約3〜80重量%である、但しポリオレフィン、ゴム及び官能化ポリオレフィンの合計量は、ポリオレフィン、ゴム及び官能化ポリオレフィン及び任意の添加物の合計重量を基準にして少なくとも約35重量%である。
【0098】
オレフィンゴム成分は一般に連続ポリオレフィンマトリックス内で小さい、例えば、ミクロサイズの粒子として存在する。そのゴムは、部分的に架橋(硬化)され、望ましくは完全に架橋又は硬化されることが望ましい。部分的又は完全架橋は、ポリオレフィンとゴムの混合物に適当なゴム硬化剤を添加し、そのゴムを通常の加硫条件下で必要な度合に加硫することによって達成できる。そのゴムは、ゴムをポリオレフィン成分の融点以上の温度で高剪断の条件下で加硫する動的加硫によって架橋できる。したがって、そのゴムは同時に架橋してポリオレフィンのマトリックス内に微粒子として分散される。
【0099】
本発明の接着法は特に、エラストマ−タイヤ又はプラスチックタイヤ・トレッドをエラストマ−タイヤ又はプラスチックタイヤ・カ−カスに接着するのにも有用である。前記のように、タイヤ・トレッドの交換又は再生は一般に予備硬化又は未硬化再生素材を直接硬化タイヤ・カ−カスに接着させることを含む。本発明のメタセシス性接着材料は再生技術に最近使用される接着クッション又はクッションガム層の取換えに使用できる。
【0100】
メタセシス触媒はタイヤカ−カスの接着表面に又はタイヤトレッドの接着表面に塗布される、そしてメタセシス性材料がタイヤカ−カス又はタイヤトレッドの別の表面に塗布される。触媒はタイヤカ−カスに塗布し、メタセシス性材料はタイヤトレッドに塗布することが望ましい。使用されるタイヤのカ−カスは既知の手段でバフをかけて触媒又はメタセシス性材料を受ける表面を提供することができる。接着表面は弱く粗く又は軽いサン−ダ−仕上げをするのみが望ましい。触媒又はメタセシス性材料を塗工した再生素材は触媒又はメタセシス性材料を塗工したタイヤカ−カスの周囲に配置される。その塗工された表面は次にそのトレッド及びカ−カスを単に一緒に保持するのに十分な最小圧力で一緒に接触される。トレッド素材及びカ−カスは、メタセシス性材料の硬化中にカバ−又はフィルムをそのタイヤアセンブリの周りにステ−プル又は配置するような再生技術における通常の手段によって一緒に保持することができる。それらの表面が接触されたときに硬化が開始され、約5〜10分以内に生強度が生じ始まり、そして約15〜1時間以内に高接着強度が生じ始まる。
【0101】
得られたタイヤ積層品はタイヤカ−カス又はケ−シング、タイヤ再生踏面及びカ−カスとタイヤ再生踏面の間のメタセシス重合体接着層を含む。そのタイヤ積層品は乗用車タイヤ、軽及び中トラックタイヤ、オフロ−ドタイヤ、等のような種々のタイプの自動車に有用である。この接着方法は、新しいタイヤの製造にも適用でき、トレッドをトレッドレスタイヤ・ケ−シング又はカ−カスに適用する。触媒及びメタセシス性材料は典型的に液状で塗布される。
【0102】
再生又はトレッド素材は技術的に周知であって、炭素原子数が4〜10の共役ジエンから作ったゴム、炭素原子数が8〜12のビニル置換芳香族単量体と炭素原子数が4〜10の共役ジエン単量体から作ったゴム及びそれらの混合体のような硬化又は未硬化の従来の合成又は天然ゴムにすることができる。かかるゴムは一般に、酸化防止剤、カ−ボンブラック、油、硫黄、促進剤、ステアリン酸のような充填剤、オゾン割れ防止剤及び他の添加物を含有する。再生又はトレッド素材は、同心円形タイヤカ−カス又はケ−シングの外周の周りに配置されるストリップの形態にすることができる。硬化カ−カスは同様に技術的に周知であって、ポリイソプレン又は天然ゴム、炭素原子数が4〜10の共役ジエンから作ったゴムと炭素原子数が8〜12のビニル置換芳香族単量体で作ったゴム、及びそれらの混合体のような共役ジエンから作られる。かかるゴムは一般に、酸化防止剤、カ−ボンブラック、油、硫黄、促進剤、ステエリン酸のような充填剤、オゾン割れ防止剤及び他の添加物を含有する。
【実施例】
【0103】
本発明は次の非限定実施態様によってさらに詳細に記載される。特にことわらない限り、実施例に使用される鋼ク−ポンはグリットブラストした1010完全硬化、冷延鋼から作り、硬化EPDMゴムストリップはBritish Tire and Rubber社から商品名96616で入手し、全ての接着及び被覆は普通の環境条件で行なった。
【0104】
被接着試料の一次接着はASTM-D429法Bにしたがって試験した。被接着試料はインストロン試験機に配置して、エラストマ−支持体を他の支持体から180°の角度で50.88mm/分の速度で剥離する。最高荷重における平均荷重、破断点に対する平均エネルギ−を測定する。引張り分離した後、それらの試料は検査して破壊モ−ドを決定する。最も望ましい破壊モ−ドはゴム引裂−1つの支持体のエラストマ−材料の一部が他の支持体に残る。ゴム引裂は、接着剤がエラストマ−材料より強いことを示す。
【0105】
実施例1−金属へのEPDMの接着−浸漬又はフラッディング法による触媒の塗布
0.021gのRuCl2(PCy32=CHPhを1.5mlのCH2Cl2に溶解させることによって調製した。3つのグリットブラスト仕上の鋼ク−ポンは、0.5mlの触媒溶液を注射器によって各ク−ポンの上に移して丁度その表面(34.9mm×25.4mm)を被覆し、その溶媒を開放実験室で3〜4分間蒸発させた。これは≧7mgのRuCl2(PCy32=CHPh/ク−ポンを与えた。金属ク−ポンは一般にアセトンで洗浄し、触媒溶液の塗布前に乾燥したが、これは必要なかった。この実施例では、ク−ポンは洗浄しなかった。EPDMゴムストリップは、接着表面(34.9mm×25.4mm)をアセトンで洗浄し、室温で3〜4分間乾燥し、次に注射器で各ク−ポンに0.03mlのENBを塗布し、それを針の先で平らに広げた。触媒を塗工した金属ク−ポンは両方の被処理表面が相互に接触するように直ちにENBを塗工したEPDMの上に配置し、合わせ部分の上に約100gmの重りを置いた。それらの試料は環境条件下で一晩置いた。全ての試料は手で引き離すことができなかった。それらはインストロンで180°剥離試験を用いて評価した、そしてEPDMゴムのみが破壊時に引裂を示した。12試料の全部を試験した、最大荷重に置ける平均荷重は273.04(N)であった、そして破断の平均エネルギ−は37.87(J)であった。
【0106】
実施例2−金属へのEPDMの接着
この試験は金属へのEPDMの接着をさせる種々のと方法を評価する先行選別として行なった。実施例1に記載の方法を使用してRuCl2(PCy32=CHPh触媒溶液又はENBをグリットブラスト仕上の鋼ク−ポン又はEPDMゴムストリップに塗布した。それらの結果を以下の表1に示す。これらの結果に基づいて、最良の接着法は触媒を金属に塗布して、ENBをEPDMに塗布したときに生じた。表1において、触媒又は単量体の下に挙げた基材の種類は触媒又は単量体が塗布される基材である。
【0107】
Figure 2005505654
【0108】
実施例3−触媒を塗工した基材の遅延接着
実施例1に記載の方法にしたがって、触媒溶液をグリットブラスト仕上金属ク−ポンに塗布したが、触媒を塗工したク−ポンはENBをEPDMに接着する前に実験室の環境条件加下で乾燥させ、3、10、20及び23日間放置した。全ての試料が180°剥離試験にかけたときにEPDMゴム引裂を示した。3日の試料は最大荷重で291.49(N)の平均荷重そして39.29(J)の破断平均エネルギ−を有した;10日の試料は最大荷重で298.32(N)の平均荷重そして39.29(J)の破断平均エネルギ−を有した;20日の試料は最大荷重で262.79(N)の平均荷重そして35.76(J)の破断平均エネルギ−を有した;そして30日の試料は最大荷重で313.26(N)の平均荷重そして48.48(J)の破断平均エネルギ−を有した。
【0109】
実施例4−はけ塗り法による基材への触媒の塗布
2下でねじ蓋つきのバイアルに0.021gのRuCl2(PCy32=CHPhを1.5mlのCH2Cl2に溶解させることによって触媒溶液を調製した。この溶液は、接着される表面(34.9mm×25.4mm)上の3つのグリットブラスト仕上の鋼ク−ポンにはけで塗布した、そしてその溶媒ははけ塗り工程中に開放実験室で3〜4分間蒸発させた、したがって金属ク−ポン表面に触媒粉末が均一に分散して残った。乾燥後、調製した試料は全て秤量して表面の触媒量5.8±1.8mg/ク−ポンを測定した。最初に作った溶液がなくなったときには、別のバッチの触媒溶液を上記のように調製した。このように合計12試料を調製した。EPDMゴムストリップは、接着表面(34.9mm×25.4mm)をアセトンで洗浄し、室温で3〜4分間乾燥し、次に注射器で各ク−ポンに0.03mlのENBを塗布し、それを針の先で平らに広げた。触媒を塗工した金属ク−ポンは両方の被処理表面が相互に接触するように直ちにENBを塗工したEPDMストリップの上に配置し、合わせ部分の上に約100gmの重りを置いた。それらの試料は環境条件下で一晩置いた。次の朝、手で引き離すことを試みたが破壊は観察されなかった。それらはインストロンで180°剥離試験を使用して評価した、そして破壊時に上に均一に分布したゴム引裂を示した。合計12試料を試験した、そして最大荷重における平均荷重は283.87(N)であった、そして破断の平均エネルギ−は41.72(J)であった。
【0110】
実施例5−基材への水性触媒の塗布
0.015gのRuCl2(PCy32=CHPh及びドデシルトリメチルアンモニウムブロミド(“DTAB”)(0.488w/w%)0.006gを1.21gの水に溶解させることによって触媒溶液を調製した。その水性触媒溶液は、水の除去を助けるためにク−ポンを40℃のホットプレ−ト上で加熱したことを除いて実施例4に記載した方法を使用して2つのグリットブラスト仕上の金属ク−ポンにはけで塗布した。そのク−ポンは室温に冷却して実施例4に記載したようにENB0.04mlでEPDMに接着した。次の朝、試料を手で引き離すことができた。
【0111】
別の実施例で、0.0272gのRuCl2(PCy32=CHPh及びドデシルトリメチルアンモニウムブロミド(“DTAB”)(0.068w/w%)0.0024gを3.5gの水に溶解させることによって触媒溶液を調製した。その水性触媒溶液は、上記のように3つのグリットブラスト仕上の金属ク−ポンにはけで塗布し、室温に冷却して実施例4に記載したようにENB0.04mlでEPDMに接着した。それらはインストロンで180°剥離試験を用いて評価した、そして破壊時にそしてEPDM上でゴム引裂を示した。合計3つの試料を試験した、最大荷重における平均荷重は215.07(N)であった、そして破断の平均エネルギ−は23.09(J)であった。
【0112】
実施例6−EPDM基材上のENB単量体の滞留時間
EPDMのグリットブラスト仕上の鋼ク−ポンへの接着は、金属への接着前にENB0.04mgを被接着EPDM表面上に0、2及び4分間静置させた。4分の試料にでは、その液体がEPDMに吸収されたのでさらに0.03mlのENBを2つのEPDMストリップに塗布した。全ての試料はインストロンで180°剥離試験を受けたときEPDMゴムの引裂を示した。0分の試料は最大荷重で256.41(N)の平均荷重そして29.45(J)の破断平均エネルギ−を有した;2分の試料は最大荷重で273.12(N)の平均荷重そして35.34(J)の破断平均エネルギ−を有した;そして4分の試料は最大荷重で247.28(N)の平均荷重そして22.82(J)の破断平均エネルギ−を有した。
【0113】
実施例7−異なる鋼基材を使用したEPDM-金属の接着
実施例1に記載した方法にしたがってリン酸塩処理及び未処理1010鋼をEPDMゴムに接着した。接着強度はグリットブラスト仕上の鋼と比較して低下したが、試料は全て180°剥離試験を受けたとき若干のEPDMゴムの引裂を示した。リン酸塩処理した鋼試料は、最大荷重で158.69(N)の平均荷重そして13.49(J)の破断平均エネルギ−を有した;そして未処理1010鋼試料は最大荷重で209.07(N)の平均荷重そして19.88(J)の破断平均エネルギ−を有した。
【0114】
実施例8−吹付け法による基材への触媒の塗布
触媒溶液は0.5gのRuCl2(PCy32=CHPhを20mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、接着される表面(34.9mm×25.4mm)の平らな被覆面積が得られるまで12のグリットブラスト仕上鋼ク−ポン上にスイ−ピング模様に吹き付けた。その溶媒を開放実験室雰囲気で1.5時間蒸発させた。乾燥後、調製した全ての試料は秤量して表面上の触媒の量を決定した、その値は9.0±0.95mg/ク−ポンであった。EPDMゴムストリップは、接着表面(34.9mm×25.4mm)をアセトンで洗浄し、室温で3〜4分間乾燥し、次に注射器で各ク−ポンに0.06mlのENBを塗布し、それを針の先で平らに広げた。触媒を塗工した金属ク−ポンは両方の被処理表面が相互に接触するように直ちにENBを塗工したEPDMの上に配置し、合わせ部分の上に約100gmの重りを置いた。それらの試料は環境条件下で一晩置いた。次の朝、全ての試料は手で引き離すことができなかった、そしてそれらはインストロンで分析後EPDMゴムのみの引裂を示した。12試料の全部を試験した、最大荷重に置ける平均荷重は357.47(N)であった、そして破断の平均エネルギ−は61.23(J)であった。
【0115】
実施例9−他の金属を使用したEPDM-金属の接着
触媒溶液は0.030gのRuCl2(PCy32=CHPhを2.5mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、鋼Qパネル、アルミニウ及びクロメ−ト処理アルミニウム金属ク−ポンに塗布した、そして実施例4に記載のようにそれらの金属ク−ポンは0.04mgのENB単量体/ク−ポンでEPDMゴムストリップに接着させた。3つの異なるが同一バッチの触媒溶液を使用して金属ク−ポンを調製した、それらは秤量後7.3±1.2mgの触媒/ク−ポンを含有した。それらはインストロンの180°剥離試験で分析した。3つの金属は全て極めて少量のゴム引裂を示した、ENB重合体膜の大部分の一次破壊モ−ドの接着剤破壊が破壊時にゴムに付着した。クロメ−ト処理アルミニウム表面で高い接着強度が観察された。
【0116】
Figure 2005505654
【0117】
実施例10−Santprene-金属の接着例
触媒溶液は0.030gのRuCl2(PCy32=CHPhを3.0mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、グリットブラスト仕上鋼ク−ポンに塗布した、そして実施例4に記載のようにそれらの鋼ク−ポンは0.08mgのENB単量体/ク−ポンで4種類のSantprene(101-64,201-64,201-87及び8201-90)の3試料に接着させた。それらは秤量の結果、9.4±1.2mg触媒/ク−ポンを含有した。そのゴム表面は各種類の単量体の塗布前にサンダ−仕上げした。接着した試料はインストロンの180°剥離試験で分析した、得られた結果を表3に示す。軟質のゴム101-64,201-64の両方の3つの試料は全て優れたゴム引裂を示したが、剛性ゴム201-87及び8201-90はゴム引裂を示さなかった、そして剥離後ゴムに付着したENB重合体膜の大部分で接着剤破壊が顕著であった。全ての試料に良好な接着強度が観察された。
【0118】
Figure 2005505654
Figure 2005505654
【0119】
実施例11−天然ゴム-グリットブラスト仕上鋼の接着
RuCl2(PCy32=CHPhをグリットブラスト仕上鋼ク−ポンに塗布して、実施例4に記載の方法を使用して0.10mgのENB単量体/ク−ポンで接着した。4つの天然ゴム試料を調製した。2つの試料はサンダ−仕上し、2つの試料はそのままサンダ−仕上しなかった。3日目に、サンダ−仕上した天然ゴムから調製した2つの試料は手で引き剥がせた。薄いENB重合体膜がその天然ゴムストリップに残り、若干のゴム引裂が観察された。サンダ−仕上をしなかった天然ゴムから調製した2つの試料は手で引き剥がせなかった、そしてそれらはインストロンで180°剥離試験で分析した。接着試料は最大荷重に置ける平均荷重は183.14(N)であった、そして破断の平均エネルギ−は12.20(J)であった。ゴム引裂は高い値で試料に観察された。
【0120】
実施例12−MoTB触媒でEPDM-グリットブラスト仕上鋼の接着
触媒溶液は0.021gの2、6-ジイソプロピルフェニルイミド・ネオフィリデンモリブデン(VI)ビス-t-ブトキシド(MoTB)を2.0mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、グリットブラスト仕上鋼ク−ポンに塗布した、次にそれらの鋼ク−ポンは実施例4に記載のように0.08〜0.09mlのENB単量体/ク−ポンでEPDMゴムストリップに接着させた。空気及び水分に対する触媒の感度のために、ゴム、金属及び触媒溶液の取扱は全てグロ−ブボックスでアルゴン雰囲気下で行なった。一旦接着したら、試料は機械的試験を行なうまでグロ−ブボックス中に保持した。元のグリットブラスト仕上金属及びゴムク−ポンは、全ての水分又は酸素を完全に除去するために数ヶ月間グロ−ブボックス中に貯蔵した。これは、グロ−ブボックスに数時間だけ滞留した試料でも接着が観察されなかったから、後で必要であることがわかった。2つ表面を合わせた後、5〜10秒以内でク−ポンは相互に動かせなかったことから重合が生じていたことを示唆する。全ての試料はインストロンで180°剥離試験を使用して分析した。それの結果は、2つの別のデ−タセットを意味する:元の2つの接着試料(グロ−ブボックスの長時間滞留)は最大荷重で46.57(N)の平均荷重そして1.54(J)の破断平均エネルギ−を有した;そして3つの新しい試料(グロ−ブボックスに入れる前にアセトンで表面を完全に洗浄し、次に単量体の添加前にCH2Cl2で洗浄した)は最大荷重で139.26(N)の平均荷重そして11.12(J)の破断平均エネルギ−を有した。
【0121】
実施例13−ホモバイメタル性ルテニウム触媒使用のEPDM-グリット-ブラスト仕上鋼の接着
触媒溶液は、0.030gのRuCl2(PCy32=CHPhを3.0mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、グリットブラスト仕上鋼ク−ポンに塗布した、そして実施例4に記載のようにそれらの鋼ク−ポンは0.08mgのENB単量体/ク−ポンでEPDMゴムストリップに接着させた。合わせた試料はインストロンでの180°剥離試験で分析した、それらの接着試料は最大荷重における平均荷重は226.60(N)、そして破断の平均エネルギ−は26.78(J)であった。全ての試料にゴム引裂が観察された。
【0122】
実施例14−単量体としてDCPDを使用のEPDM-グリット-ブラスト仕上鋼の接着
触媒溶液は、0.031gのRuCl2(PCy32=CHPhを3.2mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、グリットブラスト仕上鋼ク−ポンに塗布した、そして実施例4に記載のようにそれらの鋼ク−ポンはDEPD単量体でEPDMゴムストリップに接着させた。DCPDの塗布方法はENBでの場合と少し変わった。EPDMの表面は、DCPD単量体の塗布前にアセトンで洗浄した、それは蒸留したジシクロペンタジエンをヒ−トガンで穏やかに溶融させ、その液体をEPDMの表面にピペットで移し、そしてその液体をピペットで広げる必要がある。一旦その単量体を塗布したら、DCPD塗工表面をヒ−トガンで穏やかに加熱してその固体を溶かした;金属とゴム部品は直ちに合わせて100gの重りを置いた。合わせた試料はインストロンでの180°剥離試験で分析した、それらの接着試料は最大荷重における平均荷重は290.78(N)、そして破断の平均エネルギ−は44.44(J)であった。全ての試料にゴム引裂が観察された。
【0123】
実施例15−単量体としてメチリデンノルボルネンを使用のEPDM-グリット-ブラスト仕上鋼の接着
触媒溶液は、0.031gのRuCl2(PCy32=CHPhを3.2mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、グリットブラスト仕上鋼ク−ポンに塗布し、次に実施例4に記載のようにそれらの鋼ク−ポンは0.10mlのメチリデンノルボルネン単量体/ク−ポンでEPDMにに接着させた。合わせた試料はインストロンでの180°剥離試験で分析した、それらの接着試料は最大荷重における平均荷重は40.55(N)、そして破断の平均エネルギ−は1.48(J)であった。
【0124】
実施例16−EPDM-EPDMの接着
触媒溶液は、0.030gのRuCl2(PCy32=CHPhを2mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は2つのEPDMストリップに塗布した。各触媒を塗工したEPDMストリップは実施例1に記載のように0.02mgのENB単量体/ストリップで別のEPDMストリップに接着させた。EPDMはアセトンで洗浄し、触媒溶液又はENB単量体の塗布前に乾燥させた。2つのストリップは重ね剪断形状の表面((34.9mm×25.4mm)に接着させた;次の日の試料検査はそれらが手で引き剥がせないことを示した。それらは、環境条件下で3ヶ月の静置後にインストロンで重ね剪断引張り試験によって分析した、そして破断の平均エネルギ−は419.42(J)であった。
【0125】
触媒溶液は、0.027gのRuCl2(PCy32=CHPhを2.5mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は3つのEPDMストリップに塗布した。各触媒を塗工したEPDMストリップは実施例4に記載のように0.07〜0.10mgのENB単量体/ストリップでEPDMストリップに接着させた。EPDMはアセトンで洗浄し、触媒溶液又はENB単量体の塗布前に乾燥させた。6つの試料は180°剥離試験モ−ドで接着させた。3つは接着前にサンダ−仕上した。全ての試料は接着させた、そして手で引き離すことができなかった、そしてインストロンでの180°剥離試験で分析した。サンダ−仕上の試料は最大荷重に置ける平均荷重は166.51(N)、そして破断の平均エネルギ−は25.56(J)であった;サンダ−仕上しなかった試料は最大荷重に置ける平均荷重は176.16(N)、そして破断の平均エネルギ−は26.97(J)であった。破壊分析はサンダ−仕上の試料がゴム引裂を有したが、サンダ−仕上しなかった試料はチャンク引裂で深いゴム引裂を有したことを示した。
【0126】
実施例17−MoTB触媒でEPDM-EPDMの接着
2つの別の触媒溶液は粘着非サンダ−ド仕上及びサンダ−ド仕上のEPDM試料に調製した。第1の溶液は、0.021gの2、6-ジイソプロピルフェニルイミド・ネオフィリデンモリブデン(VI)ビス-t-ブトキシド(MoTB)を2.0mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、2つの非サンダ−ド仕上のゴムストリップに塗布した、それを次に実施例12に記載のように0.08mlのENB単量体/ク−ポンでEPDMゴムストリップに接着させた。第2の溶液は、0.0211gの2、6-ジイソプロピルフェニルイミド・ネオフィリデンモリブデン(VI)ビス-t-ブトキシド(MoTB)を0.7mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、サンダ−ド仕上のEPDMゴムストリップに塗布した、それを次に実施例12に記載のように0.13mlのENB単量体/ク−ポンでEPDMゴムストリップに接着させた。全ての試料はインストロンで180°剥離試験を使用して分析した。それらの結果は、2つの別のデ−タセットを意味する:元の2つのサンダ−仕上をしない試料(グロ−ブボックスに長時間滞留)は最大荷重で9.41(N)の平均荷重そして0.27(J)の破断平均エネルギ−を有した;そして2つの新しい試料(グロ−ブボックスに入れる前にサンダ−仕上げし、次ぎに単量体の添加前にCH2Cl2で洗浄した)は最大荷重で12.97(N)の平均荷重そして0.76(J)の破断平均エネルギ−を有した。いずれの試料にもゴム引裂は観察されなかった。
【0127】
実施例18−ホモバイオメタル性ルテニウム触媒及びENBを使用のEPDM-EPDMの接着
触媒溶液は、0.031gのRuCl2(p-シメン)(PCy32=CHPhを3.1mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は3つのEPDMゴムストリップに塗布した、それらは次ぎに実施例4に記載のように0.16mlのENB単量体/ク−ポンでEPDMゴムストリップに接着させた。合わせた試料はインストロンでの180°剥離試験で分析した。接着試料は最大荷重に置ける平均荷重は126.28(N)、そして破断の平均エネルギ−は11.38(J)であった。全ての試料にゴム引裂が観察された。
【0128】
実施例19−単量体としてDCPD使用のEPDM-EPDMの接着
触媒溶液は、0.031gのRuCl2(p-シメン)(PCy32=CHPhを3.1mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は3つのEPDMゴムストリップに塗布した、それらは次ぎに実施例4及び実施例14に記載のようにDCPD単量体でEPDMゴムストリップに接着させた。合わせた試料はインストロンでの180°剥離試験で分析した。接着試料は最大荷重における平均荷重は181.75(N)、そして破断の平均エネルギ−は26.46(J)であった。全ての試料にゴム引裂が観察された。
【0129】
実施例20−異なる硬化ゴム使用のゴム-ゴムの接着
触媒溶液は、0.031gのRuCl2(p-シメン)(PCy32=CHPhを3.2mlのCH2Cl2に溶解させることによって調製した。この溶液は3つのゴムストリップに塗布した、それらは次ぎに実施例4に記載のようにENB単量体(各試料に塗布したENBの量は表4及び5を参照されたい)で粘着させた。この触媒溶液が消耗したら、別の同一バッチを調製して別の3試料の接着に使用した。EPDM及び天然ゴムA225Pストリップは成形して、表4及び表5に示すように異なる硬化度に硬化させた。その硬化度はMonsanto振動板レオメ−タ−(例えば、T90=最大トルクの90%に置ける時間)で測定した。A225Pはサンダ−仕上げしたが、EPDMはサンダ−仕上げしない儘であった。EPDMは100、70及び40%で硬化し、A225Pは100、90、70及び40%で硬化した。180°剥離試験からのインストロンの結果は表4(EPDM)及び表5(A225P)に示す。
【0130】
Figure 2005505654
全ての試料が優れたゴム引裂を示した。しかしながら、深いゴム引裂は観察されなかった。40%EPDM試料は、70及び100%試料と比較したときにより良好なゴム引裂を示した。
【0131】
Figure 2005505654
100%のA225Pは良好なゴム引裂を示し、90、70及び40%のA225Pは深いゴム引裂を示した。100%のA225Pストリップは、他の3種類の硬化ゴムの厚さの約2倍であった。
【0132】
実施例21−Santoprene-Santopreneの接着
触媒溶液は、0.030gのRuCl2(p-シメン)(PCy32=CHPhを2.5mlのCH2Cl2に溶解させることによって調製した。この溶液は4種類のSantoprene(商品名)(101-64、201-64、201-87及び8201-90)の3つのストリップに塗布した、そして実施例4に記載のようにENB単量体で粘着させた。Santopreneの表面処理に依存して塗布したENBの量は、非サンダ−仕上が0.06mlそしてサンダ−仕上が0.16mlである。一旦この触媒溶液が消耗したら、別の同一バッチを調製して別の3つの試料を接着するのに使用した。接着試料はインストロンで180°剥離試験を使用して分析した。それらの結果を表6及び7に示す。全ての非サンダ−仕上げ試料はゴム引裂を示さなかった、そして重合体膜がゴム表面の多くに観察される接着剤破壊を示した。3つの101-64サンダ−仕上げ試料は優れたゴム引裂を示し、2つの201-64サンダ−試料は優れたゴム引裂を示し、この触媒溶液が消耗し、剛性ゴムの201-87及び8201-90試料は、ゴム引裂を示さなかった。
【0133】
Figure 2005505654
【0134】
Figure 2005505654
【0135】
実施例22−タイヤ再生トレッドの塗布
触媒溶液は、0.031gのRuCl2(p-シメン)(PCy32=CHPhを3.1mlのCH2Cl2に溶解させることによって調製した。次の3種類の接着を行なった:(1)トレッド-トレッド、(2)カ−カス及び(3)カ−カス-トレッド。カ−カス-トレッドの試料には、触媒をカ−カスに塗布し、ENBをトレッドに塗布した。接着方法は実施例4に記載のように行なった。一旦この触媒溶液が消耗したら、別の同一バッチを調製した。塗布したENBの量は試料に依存した、そして表8及び9に示す。機械的性質はカ−カス及びトレッドの素材の非サンダ−仕上げ及びサンダ−仕上げの組合せについて得た。接着試料はインストロンで180°剥離試験を使用して分析した。表8は非サンダ−仕上げ試料のデ−タを示す。非サンダ−仕上げ試料は全てゴム引裂を示した。トレッド-トレッド試料は若干の表面ゴム引裂を示した。カ−カス及びカ−カス-トレッド試料は深いゴム引裂を示した。
【0136】
Figure 2005505654
【0137】
表9はサンダ−仕上げ試料のデ−タを示す。これらは全て同様にゴム引裂を示す。しかしながら、ゴム引裂は非サンダ−仕上げ試料と比較して深いゴム引裂であった。トレッド-トレッド試料は最少量の引裂を示したが非サンダ−仕上のものよりもっと多かった。カ−カス-カ−カス試料は優れた深いゴム引裂を示した。最後にカ−カス-トレッド試料も優れた深いゴム引裂を示したが、カ−カス-カ−カス試料程よくなかった。
【0138】
Figure 2005505654
【0139】
実施例23−金属-金属の接着
触媒溶液は、0.021gのRuCl2(PCy32=CHPhを1.5mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、3つのグリットブラスト仕上鋼ク−ポンに塗布した、そして実施例1に記載のようにそれらは0.02〜0.03mlのENB単量体/ク−ポンで他のグリットブラスト仕上鋼ク−ポンに塗布した。他の鋼ク−ポンは直ちにその処理した表面に合わせて、100gの重りで押さえた。環境条件下で3日間置いた後、3試料はすべて手で引き離せなかった。それらの試料は重ね剪断引張り試験を使用してインストロンで分析した、そして破断時の平均荷重が375.99(N)であった。
【0140】
実施例24−ガラス-ガラスの接着
触媒溶液は、0.040gのRuCl2(PCy32=CHPhを3.05mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、3つのガラス顕微鏡スライドに塗布した、そして全ての触媒溶液を使用しないで、所定の部分を被覆する十分な量だけ使用することを除いて、実施例1に記載のようにそれらは0.15〜0.20mlのENB単量体/スライドで他のガラス顕微鏡スライドに塗布した。その溶媒は、EBNをピペットで触媒含有表面に移す前に3〜4分間蒸発させた。直ちに、その他のガラススライドを他のスライド上に合わせて100gの重りで押さえた。1.5時間後、2つのガラススライドは検査して、基材が落下して離れることなく取上げれるように一緒に保持されることがわかった。
【0141】
実施例25−紙-紙の接着
3mlのCH2Cl2中の0.040gのRuCl2(PCy32=CHPhから調製した触媒溶液は、実施例1に記載のように実験室のろ紙の単片に塗布した。その溶媒は、約2分間蒸発させた。ろ紙の別の片にENB単量体を塗布した。直ちに、2つの紙片を合わせて100gの重りで押さえた。1.5時間後、2つの紙片は検査して、一緒に保持されて落下して離れないことがわかった。
【0142】
実施例26−RuCl2(PCy32=CHPhの吹付け塗布及び種々の基材へにENBを使用の塗料組成物
触媒溶液は、0.75gのRuCl2(PCy32=CHPhを25mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、次に均一な被覆面積が得られるまで表面汚染を除去するためにアセトンでスウィ−プ模様に予め拭った7.62cm×15.24cmの支持体表面に吹き付けた。その溶媒は開放実験室雰囲気中で30分間蒸発させ触媒を塗工した表面を残した。BlackSantoprene,manila Santoprene,アクリロニトリルブタジエンスチレン(ABS),ポリプロピレン、ポリメチルメタクリレ−ト(PMMA),アルミニウム、クロム酸塩処理アルミニウム、ステンレス鋼、ポリカ−ボネ−トシ−ト、Delrinアセタ−ル樹脂シ−ト、Mannington Classic 無塗工エンボス加工ポリビニル(PVC)床仕上材(MCと呼ぶ)、及びTakett/Domcoポリビニル床仕上材(Tと呼ぶ)にENB単量体を吹付けて、乾燥させた。塗工した全ての試料の静摩擦係数及び動摩擦係数はインストロンで抗力抵抗を決定することによって測定した(P.R.Guevin,“Slip Resistance”,in Paint and Coating Testing Manual,Fourteenth Edition of the Gardner-Sward Handbook,J.V.Koleske,ed.,ASTM Manual, Series:MNL 17,ASTM,Philadelphia,199 5,Chapter 50参照)。それらの結果は次ぎの表10及び11に示す。全ての試料での静摩擦係数及び動摩擦係数は、ENBを吹付け塗工後、2、3の場合を除いて対照試料(表にアルミニウム-Cとして示した)と比較して低かった。
【0143】
Figure 2005505654
【0144】
Figure 2005505654
Figure 2005505654
【0145】
接着性の測定は、剃刀の刃で被覆表面にクロスハッチ模様を軽く切目をつけることによって測定した。約3.2mm離れた5線及び約3.2mm離れた別の5線を交差模様につけた。クロスハッチド部分上に50.8〜63.5mm長さ、25.4mm幅のスコッチ・マスキングテ−プ(2500-3705)を付加した、そして指で平滑に押した。2又は3分後、そのテ−プを表面から迅速に引張った。接着性お順位付けスケ−ルを作った、1は最良そして5は最悪である(表12参照)。
【0146】
Figure 2005505654
【0147】
Santoprene及びEPDMのようなゴム質支持体へのポリ(ENB)塗料の接着性等級を表13に示す。それらは、両方のSantoprene試料は優れた接着性を示し、テ−プにクロスハッチ模様のみが見られた。EPDMの接着性は4のみで、1つが悪い被膜で第2が均一被膜であった。ポリ(ENB)の均一な良い塗料を塗布する限り、ゴム質基材への良好な接着が観察された。
【0148】
Figure 2005505654
【0149】
実施例27−RuCl2(PCy32=CHPhの吹付け塗布及び重ね塗料の塗料組成物
触媒溶液は、0.75gのRuCl2(PCy32=CHPhを25mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、次に均一な被覆面積が得られるまで表面汚染を除去するためにアセトンでスウィ−プ模様に予め拭った4つの7.62cm×15.24cm片の表面に吹き付けた。その溶媒は開放実験室雰囲気中で30分間蒸発させ、触媒を塗工した表面を残した。試料は次にENB単量体を吹付けて、粘着しなくなるまで開放実験室に静置した。EPDM-4にさらにENBを塗布してその試料を一晩乾燥した。その触媒及び得られた重合体レベルを表14に示す。EPDM-4上にENBの第2の吹付けは、ポリENB層が前のEPDM表面に蓄積され、そして触媒が活性の儘であることを示した。
【0150】
Figure 2005505654
【0151】
実施例28−RuCl2(PCy32=CHPhの吹付け塗布及び他の単量体をもつた塗料組成物
触媒溶液は、0.75gのRuCl2(PCy32=CHPhを25mlのCH2Cl2に溶解させることによって調製した。この触媒溶液は、次に均一な被覆面積が得られるまで表面汚染を除去するためにイソプロパノ−ルで予め拭ったABS試料(10.16cm×15.24cm)の表面に吹き付けた。その溶媒は開放実験室のヒュ−ムフ−ド中で30分間蒸発させ触媒を塗工した表面を残した。それらの試料は次にDCPD,メチルイデンノルボルネン(MNB),及びシクロオクテン(CO)単量体を吹付けて、秤量前に開放実験室雰囲気に2.5時間静置した。触媒及び得られた重合体レベルを表15に示す。摩擦係数デ−タ及びクロスハッチ接着性デ−タをそれぞれ表15及び16に示す。シクロオクテン試料では、重合体の生成は観察されなかった;そのシクロオクテンは表面から蒸発したと思われる。
【0152】
Figure 2005505654
【0153】
Figure 2005505654
【0154】
実施例29−MoTB触媒及びENBを使用の塗料組成物
触媒溶液は0.1692gの2、6-ジイソプロピルフェニルイミド・ネオフィリデンモリブデン(VI)ビス-t-ブトキシド(MoTB)を5mlのCH2Cl2に溶解させることによって調製した。その触媒溶液は、実施例12に記載のようにグロ−ブボックス内の10.16cm×15.24cmのABS支持体に塗布した。ピペットを使用して、ENB単量体を1ミルのドロ−ダウン・バ−の前に塗布して、そのバ−を触媒塗工部分を横断して引き下げた。バ−を2回目にドロ−ダウンしようとする際に、単量体が極めて迅速に重合したので新しく形成された被膜が擦られた。これは触媒塗工部分に皺の暗褐色の被膜を与え、黄白色の縁部はENB単量体であった。
【0155】
この表面溶解問題を排除するために、別のMoTB触媒溶液(3mlのCH2Cl2に0.1192gのMoTB)を再び表面、しかし今回は10.16cm×15.24cmのクロム酸塩アルミニウム(AC)基材に塗布した。ポリ(ENB)のさらに均一な被膜がその表面に形成した。クロム酸塩アルミニウム塗工試料(AC)は0.44±0.03の静摩擦係数と0.14±0.05の動摩擦係数を示した。これらのデ−タは、上記のようにABCの表面が極めて粗い場合のみにAC試料に得られた。両試料のクロスハッチ接着デ−タを表17に示す。
【0156】
Figure 2005505654
【0157】
実施例30−重合体マトリックスにおける触媒又は単量体の塗布による被膜
マトリックス溶液は、(2gのPMMA,0.1gのRuCl2(PCy32=CHPh及び50mlのCH2Cl2)から調製した、そして吹付け塗布によってPMMA支持体に塗布した。その被膜は均一でなかったので、3〜4滴の上記マトリックス溶液をPMMA基材に塗布してガラス棒を使用して広げた。乾燥時に、透明な均一被膜が形成した、それはENBを吹付けた。
【0158】
被膜の表面張力の変化はAccu-Dlyne溶液のセットを使用して評価した。これらの溶液を使用してそれらの表面張力を問題の表面と合わせる。表面張力におけるマッチは、塗布した溶液が試験される表面を濡らすときに決定される。溶液の表面張力は表面の表面張力と相関する。
【0159】
上記PMMA/RuCl2(PCy32=CHPhマトリックスへのENBの吹付け前後には表面張力の変化は観察されなかった(γ=38ダイン/cm)。そのPMMA/RuCl2(PCy32=CHPhマトリックスにさらにRuCl2(PCy32=CHPhを添加した、したがってPMMAマトリックスに合計0.35gの触媒となった。この新しい溶液は、新しい5.08cm×5.08cmPMMA基材に塗工し、乾燥し、次にENBを吹付けた。その表面張力は38ダイン/cmの儘であった。再び、触媒の別の添加はPMMAマトリックスに新しく合計0.55gのRuCl2(PCy32=CHPhをもたらした。上記のように処理したこの表面は34ダイン/cmの表面張力を示した。この結果は、触媒は重合体マトリックスに添加したとき活性のままであったこと、及びこの活性表面に塗料を塗布できることを示した。
【0160】
15mlのCH2Cl2に0.25gのRuCl2(PCy32=CHPhを含有する溶液を10.16cm×15.24cmのPMMA支持体に塗布して、乾燥時にその表面に0.0384gの触媒を提供した。オ−バ−コ−トPMMA/ENBマトリックス(10mlのCH2Cl2に2mlのENBと1gのPMMA)はガラス棒によって触媒塗工表面に塗布された、そして得られた表面張力は46ダイン/cmであった。これは、対照非塗工PMMA支持体の表面張力36ダイン/cmと比較する。
【0161】
実施例31−RuCl2(PCy32=CHPh及び種々の単量体の吹付け塗布による塗工紙
商用ろ紙(Whatman#41)試料を15のドッグボ−ン型試料(全長11cm、ドロ−面積40×7.2cm)に切断し、実施例8に記載のようにRuCl2(PCy32=CHPhの溶液を吹付け塗工した。実験室の空気で30分間乾燥後、それらの試料を秤量し、次にDCPD(5ml)を吹付け塗工した、5試料はエチリデンノロボルネン(8ml)を吹付け塗工し、5試料はシクロオクテン(5ml)を紙の片側に吹付け塗工した。ヒュ−ムフ−ド内で16時間乾燥後、それらの試料を秤量して反応した単量体の量を測定し、そしてそれらの引張特性をインストロンで測定した(表18)。ポリ(ENB)及びポリ(DCPD)塗工紙ドッグボ−ンは最大荷重値を増したが、ポリ(シクロオクテン)は増さなかった。統計分析(t-試験)は95%の信頼レベルでDCPDの最大荷重のおいて変位を増大した。高揮発性vsROMP速度の結果として、ポリ(シクロオクテン)は少ししか生成しなかった。
【0162】
Figure 2005505654
【0163】
実施例32−RuCl2(PCy32=CHPh及び単量体の塗布による繊維被覆
Kevlar,Nomex及びナイロンのねじ(寸法、69、0.2032mm)を5mlのCH2Cl2に約0.04gのRuCl2(PCy32=CHPhを含有する溶液に1分間ソ−キングして、真直ぐの位置で乾燥させた。20分後、それらのねじに8mlのENBを吹付けた。2時間後、それらのねじは真直ぐで剛性であった。これら試料の引張特性はインストロンオで非塗工ねじと比較した。引張のデ−タでは有効な相違は観察されなかった。しかしながら、各ねじはより厚くねじが確かに塗工されたことを示していた。
【0164】
Figure 2005505654
【0165】
実施例33−RuCl2(PCy32=CHPh及び単量体の塗布による布被覆
綿、ガラス繊維、ポリエステル及びアラミド布を2.54cm×15.24cmに切断して、100mlのCH2Cl2に約1.0gのRuCl2(PCy32=CHPhを含有する溶液に1分間浸漬して乾燥させた。過剰の触媒は乾燥工程中に布表面に吸収された。過剰の触媒は各布から振とう除去した。全ての布は紫色を有し、触媒がその表面に吸着されたことを示した。布ストリップの両面に約30mlのENBを吹付けた。全ての布試料は重合が生じた際に剛性になった。引張特性はインストロンでそれぞれ塗工及び非塗工試料の6つについて測定した(表20)。剛性であるが、それらの布は非塗工布のように容易に曲げることができた。
【0166】
ポリエステル布にポリ(ENB)を塗工することによって、ピ−クにおける荷重がほとんど2倍になったが、変位又は0%歪みにおける相違は僅かであった。これは、堅く織ったポリエステル布の強さはポリ(ENB)の添加によって正確に増すことを示唆する。アラミド及び綿布はピ−クにおける変位及び0%歪みが、それぞれ半分であり、ピ−クにおける荷重が少し増加または無変化であることを示した。したがって、布はポリ(ENB)の添加によってそれらの伸縮性を若干失うが、それらの強さは失わない。ガラス繊維では、ピ−クにおける荷重及び破断エネルギ−が顕著に増すが、ピ−クにおける変位及び0%歪みは変化しない。
【0167】
Figure 2005505654
【0168】
実施例34ビスノルボルナジエン架橋剤#49の合成
250ml,14/20,3つ口、丸底フラスコに温度計、ゴム隔膜、およびガス・アダプタ−を備えた還流冷却器を装着した。攪拌バ−を添加した。その系はアルゴン下で火炎乾燥して、アルゴン下に置いた。この装置に5.000g(0.0115モル)の4−エチル−2,3,5,6−テトラブロモトルエンと130mlの蒸留ジエチルエ−テルを充てんした。そのテトラブロモトルエンが溶解して透明な淡黄色の溶液を生成した。
【0169】
その反応フラスコの内容物を2−プロパノ−ル/ドライアイスの浴中で−62℃に冷却して、9.5ml(7.620g,0.1153モル、10.0当量)のシクロペンダジエンを充てんした。最後に、その反応フラスコに9.5ml(0.0237モル、二.一当量)の2.5Mn−BuLi溶液(ヘキサン中)を気密注入器を使用し40分かけて滴下した。その反応混合体はゆっくり室温にもたらし、一晩攪拌し、次に1.5mlnoMeOHで急冷し、真空濾過し、脱イオン、蒸留水で(3x25ml)洗浄した。曇り黄色の有機層はMgSO4で乾燥し、真空濾過した。ろ液は部分真空下39℃で回転蒸発させて、透明な金色の液体となり、それは高真空下で黄色の固体となった。その固体は冷MeOH(3x25ml)で洗浄してクリ−ム色の粉末となった。真空乾燥で1.617g(57%収率)の生成物となった。1Hおよび13C−NMRは、その生成物は高純度で合成されたことを確認した。そのNMRは、その生成物がシンおよびアンチ−異性体であることも示した。融点=84−85℃;1HNMR(CDCl3):δ1.18(3H),2.28(7H),2.75(H),3.99(4H),6.85(4H);13CNMR(CDCl3):δ14.8(3H),16.5,23.1,47,9,48.0,48.2,69.8,123.0,123.1,129.6,129.7,143.2,143.4,145.8,14.6。
【0170】
構造#49の合成
5.000g(0.0111モル)の1,4−ジエチル−2,3,5,6−テトラブロモベンゼンと130mlの蒸留ジエチルエ−テルを初に反応フラスコに充てんし;9.15ml(7.299g,0.1104モル、9.9当量)のシクロペンダジエンを充てんし;そしてその反応フラスコに9.5ml(0.0237モル、2.1当量)の2.5Mn−BuLi溶液(ヘキサン中)をその反応フラスコに気密注入器を使用して40分かけて滴下充てんしたことを除いて、架橋剤#49と同じ方法を用いた。2.326g(収率80%)の生成物が得られた。1Hおよび13C−NMRは、その生成物は高純度で合成されたことを確認した。そのNMRは、その生成物がシンおよびアンチ−異性体であることも示した。融点=139−140℃;1HNMR(CDCl3):δ1.19(6H),2.30(4H),2.78(4H),4.02(4H),6.88(4H);13CNMR(CDCl3):δ16.5,23.1,47.9,69,6,69.7,129.9,143.3,143.4,145.9。
【0171】
実施例34(A) - (M)グッドイヤ−・タイヤカ−カス素材とトレッドゴム素材との接着
グッドイヤ−・タイヤカ−カス素材をトレッドゴム素材にグラブス社のルテニウムベンジリデン触媒RuCl2(PCy32=CHPhとENBおよび表21に示した架橋剤の混合体を使用して接着させた。ENBとか架橋剤の溶液を表21に示した量でサンダ−仕上げしたトレッド素材に塗布しながら、その触媒をはけ技術を用いてサンダ−仕上げカ−カス素材に塗布した。対照試料は架橋剤無しでENBを含有した。
【0172】
その対照試料および3つの架橋試料は、室温で180゜の剥離試験によりインストロンで分析した。架橋剤を含有する試料は、30分間の平衡化後65℃および85℃で剥離試験を行った。
【0173】
実施例35EPDMとEPDMの接着
実施例16の方法を反復した。触媒溶液を2つのEPDMストリップに塗布した。各触媒を塗布したEPDMストリップは、別のEPDMストリップに室温でENBに溶解した表21に示した架橋剤の混合体で接着し、実施例1に記載した各ストリップに付加した。EPDMゴムストリップはアセトンで洗浄して、触媒溶液又はメタセシス性混合体の塗布前に乾燥させた。2つのストリップ(34.9mmx25.4mm)を接着して表21に示した剥離温度で180゜の剥離試験によってインストロンで試験した。
【0174】
実施例36EPDMと金属の接着
実施例14の方法を反復した。触媒溶液を3つのグリット・ブラスト鋼ストリップに塗布した。各触媒を塗布した鋼ストリップは、EPDMストリップに室温でENBに溶解した表21に示した架橋剤の混合体で接着し、実施例4に記載した各ストリップに付加した。EPDMゴムストリップはアセトンで洗浄して、メタセシス性混合体の塗布前に乾燥させた。3つのストリップ(34.9mmx25.4mm)を接着して表21に示した剥離温度で180゜の剥離試験によってインストロンで試験した。
【0175】
【表21】
Figure 2005505654
Figure 2005505654
*EPDMは脆く−40℃で引張り中に数分で破断した
高温の接着性の改善を示す図5を参照すると、室温以下での剥離強さは犠牲にされないで、高温での剥離強さは架橋剤をメタセシス性材料に混合してメタセシス重合をさせることによって改善される。
【0176】
実施例37
単量体又は種々の架橋用単量体との溶液混合体を含有する接着剤を使用してCMPを介してサンダ−仕上げおよび無サンダ−仕上げのポリプオプレンを接着した。次の方法に従って10.16cmx2.54cmx0.32cmのク−ポンから重ね剪断試料を調製した。プロピレンをダンダ−仕上げする場合は、100#のサンドペ−パ−を使用して重ね剪断試料の接着面を軽く荒らした。15mLのジクロロメタン中に200mgのビス(トリシクロヘキシルホスフィンベンジリデン・ルテニウム(II)ジクロリド(Grubs社の触媒)又はトリシクロヘキシルホスフィン(1,3−デメシチル−4,5−ジヒドロイミダゾ−ル−2−イリデン)ベンジリデン・ルテニウム(II)ジクロリドを10個のポリプロピレン・ク−ポンの6.45cm2(1in2)接着面積に吹き付けた。その溶媒を乾燥させた後、約3.5〜4.0mgの触媒を各ク−ポンに送出した。150μLの単量体を接合ク−ポンに置き、触媒含有ク−ポンおよび単量体含有ク−ポンを合わせて、その接着剤を24時間硬化させた。5個の重ね剪断試料のセットを各単量体について調製した。それらの結果を表22に示す。
【0177】
Figure 2005505654
Figure 2005505654
【0178】
実施例38
ポリプロピレン(PP)についてさらに接着剤試験を行った。対照試料はENB単独であった。本発明に従った実施例はENBと架橋用メタセシスコモノマ−の混合体を含有した。サンダ−仕上げのポリプロピレンについて、ENBおよびノルボルナジエンを主成分とした二量体での重ね剪断結果を表23に示す。架橋用メタセシスコモノマ−を含有する混合体で改善が見られ、PP自身の接着時に接着強度への架橋剤の寄与を立証している。
【0179】
【表23】
Figure 2005505654

【図面の簡単な説明】
【0180】
【図1】本発明の2つの支持体の接着方法の第1の実施態様の好適実施態様を示す。
【図2】本発明の2つの支持体の接着方法の第2の実施態様を示す。
【図3】触媒が重合体マトリックスに含まれる本発明の接着方法を示す。
【図4】本発明の“リビング”塗工法を示す。
【図5】可変剥離温度における本発明によって調製した接着層のタフネスを示す。
【図6】可変剥離温度における本発明によって調製した接着層の破壊エネルギ−を示す。

Claims (43)

  1. 下記の工程(a),(b)及び(c)から成ることを特徴とする第1の支持体を第2の支持体へ接着させる方法:
    (a)第1の支持体にメタセシス触媒を提供して、処理された第1の支持体を形成させる工程;
    (b)前記第2の支持体上に又は第2の支持体の成分として、主メタセシス性材料に溶解したメタセシス性架橋剤0.5〜20モル%を含有するメタセシス性混合物を提供する工程;及び
    (c)前記処理された第1の支持体と間にメタセシス材料を有する前記第2の支持体とを接着させ、それによってメタセシス材料がメタセシス反応を開始して前記第1の支持体を第2の支持体へ接着する架橋重合体を生成する工程。
  2. 前記支持体の少なくとも1つは、エラストマ−材料からなることを特徴とする請求項1記載の方法。
  3. 前記エラストマ−材料は、熱可塑性エラストマ−であることを特徴とする請求項2記載の方法。
  4. 前記第1又は第2の支持体の一つが金属材料からなり、前記他の第1又は第2の支持体がエラストマ−材料からなることを特徴とする請求項1記載の方法。
  5. 前記金属材料が鋼からなり、前記エラストマ−材料が、天然ゴム、ポリクロロプレン、ポリブタジェン、ポリイソプレン、スチレン−ブタジエン共重合体ゴム、アクリロニトリル−ブタジエン共重合体ゴム、エチレン−プロピレン共重合体ゴム、エチレン−プロピレン−ジエンタ−ポリマ−ゴム、ブチルゴム、臭素化ブチルゴム、アルキル化クロロスルホン化ポリエチレンゴム、水素化ニトリルゴム、シリコ−ンゴム、フルオロシリコ−ンゴム、ポリ(n-ブチルアクリレ−ト)、熱可塑性エラストマ−及びそれらの混合物から選択されることを特徴とする請求項4記載の方法。
  6. 前記第1の支持体が、タイヤカ−カスからなり、前記第2の支持体がタイヤトレッドからなることを特徴とする請求項1記載の方法。
  7. 前記工程(b)は、メタセシス性混合体を第2の支持体表面へ塗布することからなり、前記工程(c)は、第1の支持体表面上の触媒と処理された第2の支持体表面とを接触させることからなることを特徴とする請求項1記載の方法。
  8. 前記支持体の少なくとも一つは実質的に硬化したエラストマ−材料であることを特徴とする請求項1記載の方法。
  9. 前記メタセシス性混合物は(a)と(b)からなり、(a)はノルボルネン、メチリデンノルボルネン、エチリデンノルボルネン、ノルボルナジエン、ジシクロペンタジエン、シクロオクテン、シクロヘキセニルノルボルネンからなる群から選択し、(b)は次式によって表される化合物からなる群から選択することを特徴とする請求項1記載の方法:
    Figure 2005505654
  10. 前記工程(c)は、周囲温度で行われることを特徴とする請求項1記載の方法。
  11. 前記工程(a)−(c)は、室温で行われることを特徴とする請求項1記載の方法。
  12. 前記工程(c)における接着は、1時間以内で生じることを特徴とする請求項1記載の方法。
  13. 前記工程(a)は、触媒を第1の支持体表面に塗布することを特徴とする請求項1記載の方法。
  14. 前記メタセシス触媒は、液体キャリヤ−流体に溶解又は混合されて、前記第1の支持体へ塗布され、その液体又はキャリヤ−は工程(c)の前に除去されることを特徴とする請求項13記載の方法。
  15. 前記メタセシス触媒は、多成分組成物の一成分として含まれることを特徴とする請求項13記載の方法。
  16. 前記メタセシス触媒は、第1の支持体の一成分として含まれることを特徴とする請求項13記載の方法。
  17. 前記主メタセシス性材料は、液体、ペ−スト又は溶融性固体の形態であることを特徴とする請求項7記載の方法。
  18. 前記メタセシス性材料は、多成分組成物の一成分として含まれることを特徴とする請求項7記載の方法。
  19. 前記メタセシス性材料は、第2の支持体の成分として含まれることを特徴とする請求項1記載の方法。
  20. 下記の工程(a),(b)及び(c)から成ることを特徴とする金属支持体をエラストマ−支持体へ接着させる方法:
    (a)固体メタセシス触媒を金属支持体表面の一部分へ塗布して被処理金属支持体を形成させる工程;
    (b)主メタセシス性材料に溶解したメタセシス性架橋用単量体からなるメタセシス性混合物をエラストマ−支持体表面へ塗布する工程;及び
    (c)前記金属支持体表面と前記エラストマ−支持体表面を一緒にして触媒とメタセシス性材料とを接触させ、それによってメタセシス重合及び架橋反応を開始させる工程。
  21. 前記工程(c)は、周囲温度で行われることを特徴とする請求項20記載の方法。
  22. 前記エラストマ−支持体は実質的に硬化したエラストマ−材料であることを特徴とする請求項20記載の方法。
  23. 前記メタセシス触媒は、レニウム化合物、ルテニウム化合物、オスミウム化合物、モリブデン化合物、タングステン化合物、チタン化合物、ニオブ化合物、イリジウム化合物及びMgCl2の少なくとも1つから選択されることを特徴とする請求項1記載の方法。
  24. 前記メタセシス触媒は、ルテニウム化合物、モリブデン化合物、イリジウム化合物及びオスミウム化合物から選択されることを特徴とする請求項23記載の方法。
  25. 前記触媒は、次式によって表される構造を有することを特徴とする請求項24記載の方法:
    Figure 2005505654
    〔式中、MはOs,Ru又はIrであり;各R1は同一又は異なり、H,アルケニル、アルキニル、アルキル、アリ−ル、アルカリ−ル、カルボキシレ−ト、アルコキシ、アルケニルカルボキシレ−ト、アルケニルアリ−ル、アルキニルアルコキシ、アリ−ルオキシ、アルコキシカルボニル、アルキルチオ、アルキルスルホニル又はアルキルスルフィニルであり;Xは同一又は異なり、アニオンリガンド基であり;そしてLは同一又は異なり、中性電子供与体基である〕。
  26. XがCl,Br,I,F,CN,SCN,又はN3であり;LはQ(R2)aであり(但し、QはP,As,Sb又はNである);R2はH,シクロアルキル、アルキル、アルコキシ、アクリレ−ト又は複素環であり、aは1、2又は3である);MはRuであり;R1はH,フェニル、−CH=C(フェニル)2、−CH=C(CH32,又は−C(CH32(フェニル)であることを特徴とする請求項25記載の方法。
  27. 前記メタセシス触媒は、ホスフィン−置換ルテニウムカルベンであることを特徴とする請求項26記載の方法。
  28. 前記触媒は、ビス(トリシクロヘキシルホスフィン)ベンジリデンルテニウム(IV)ジクロリドであることを特徴とする請求項27記載の方法。
  29. 前記メタセシス触媒は、水分及び酸素の存在下で安定であって、室温での接触時にメタセシス性材料の重合を開始できることを特徴とする請求項1記載の方法。
  30. 主メタセシス材料が、少なくとも一つの反応性不飽和メタセシス性官能基を含むことを特徴とする請求項1記載の方法。
  31. 前記主メタセシス性材料がオレフィンから成ることを特徴とする請求項30記載の方法。
  32. 前記主メタセシス性材料は、エテン、α−アルケン、非環式アルケン、非環式ジエン、アセチレン、環式アルケン、環式ポリエン及びそれらの混合体から選択することを特徴とする請求項31記載の方法。
  33. 前記主メタセシス性材料がシクロオレフィンから成ることを特徴とする請求項32記載の方法。
  34. 前記主メタセシス性材料が、ノルボルネン、シクロアルケン、シクロアルカジエン、シクロアルカトリエン、シクロアルカテトラエン、芳香族−含有シクロオレフィン及びそれらの混合物から選択した単量体又はオリゴマ−であることを特徴とする請求項33記載の方法。
  35. 前記主メタセシス性材料が、ノルボルネン単量体又はオリゴマ−であることを特徴とする請求項34記載の方法。
  36. 前記ノルボルネンガが、次式によって表される構造を有することを特徴とする請求項35記載の方法:
    Figure 2005505654
    〔式中、XはCH2,CHR3,C(R32,O,S,N−R3,P−R3,O=P−R3,Si(R32,B−R3又はAs−R3であり;各R1は独立にH,CH2,アルキル、アルケニル、シクロアルキル、シクロアルケニル、アリ−ル、アルカリ−ル、アラルキル、ハロゲン、ハロゲン化アルキル、ハロゲン化アルケニル、アルコキシ、オキシアルキル、カルボキシル、カルボニル、アミド、(メタ)アクリレ−ト−含有基、無水物−含有基、チオアルコキシ、スルホキシド、ニトロ、ヒドロキシ、ケト、カルバメ−ト、スルホニル、スルフィニル、カルボキシレ−ト、シラニル、シャノ又はイミドであり;R2は縮合芳香族、脂肪族又は複素環式又は多環式環であり;R3はアルキル、アルケニル、シクロアルキル、シクロアルケニル、アリ−ル、アルカリ−ル、アラルキル又はアルコキシである〕。
  37. 前記主メタセシス性材料が、エチリデンノルボルネン単量体又はオリゴマ−であることを特徴とする請求項36記載の方法。
  38. 前記主メタセシス性材料が、液体エチリデンノルボルネン単量体であることを特徴とする請求項1記載の方法。
  39. 前記触媒が水性溶液又は混合体で塗布され、前記メタセシス性材料が実質的に100%反応性である液体の形態で塗布されることを特徴とする請求項1記載の方法。
  40. 前記方法が、揮発性有機溶媒を実質的に使用しないことを特徴とする請求項1記載の方法。
  41. 前記ノルボルネンガが、次式によって表される構造を有することを特徴とする請求項35記載の方法:
    Figure 2005505654
    〔式中、XはCH2,CHR3,C(R32,O,S,N−R3,P−R3,O=P−R3,Si(R32,B−R3又はAs−R3であり;各R1は独立にH,CH2,アルキル、アルケニル、シクロアルキル、シクロアルケニル、アリ−ル、アルカリ−ル、アラルキル、ハロゲン、ハロゲン化アルキル、ハロゲン化アルケニル、アルコキシ、オキシアルキル、カルボキシル、カルボニル、アミド、(メタ)アクリレ−ト−含有基、無水物−含有基、チオアルコキシ、スルホキシド、ニトロ、ヒドロキシ、ケト、カルバメ−ト、スルホニル、スルフィニル、カルボキシレ−ト、シラニル、シャノ又はイミドであり;R2は縮合芳香族、脂肪族又は複素環式又は多環式環であり;R3はアルキル、アルケニル、シクロアルキル、シクロアルケニル、アリ−ル、アルカリ−ル、アラルキル又はアルコキシであり;触媒はルテニウム化合物、モリブデン化合物及びオスミウム化合物から選択する〕。
  42. 工程(c)が室温で行なわれることを特徴とする請求項20記載の方法。
  43. 工程(a)が液体キャリヤ−中のルテニウム触媒を第1の支持体表面に塗布することからなり、工程(b)が前記第2の支持体に主メタセシス性液体ノルボルネン単量体を塗布することからなり、工程(c)が触媒塗布の第1の支持体表面と単量体塗布の第2の支持体表面を接触させることからなることを特徴とする請求項1記載の方法。
JP2003534484A 2001-10-11 2002-10-10 接触メタセシス重合 Pending JP2005505654A (ja)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
US09/975,761 US7025851B2 (en) 1998-12-11 2001-10-11 Contact metathesis polymerization
PCT/US2002/032279 WO2003031505A1 (en) 2001-10-11 2002-10-10 Contact metathesis polymerization

Publications (1)

Publication Number Publication Date
JP2005505654A true JP2005505654A (ja) 2005-02-24

Family

ID=25523361

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003534484A Pending JP2005505654A (ja) 2001-10-11 2002-10-10 接触メタセシス重合

Country Status (8)

Country Link
US (1) US7025851B2 (ja)
EP (1) EP1434816B1 (ja)
JP (1) JP2005505654A (ja)
KR (1) KR20050035123A (ja)
CA (1) CA2461350A1 (ja)
DE (1) DE60212419T2 (ja)
TW (1) TW593466B (ja)
WO (1) WO2003031505A1 (ja)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106276A (ja) * 2008-10-29 2010-05-13 Samsung Electronics Co Ltd 電解質組成物、触媒インク及びこれを使用して製造された固体電解質膜
KR20110103970A (ko) * 2008-12-23 2011-09-21 다우 글로벌 테크놀로지스 엘엘씨 다성분 반응성 시스템을 성형 작업으로 전달하는 방법
JP2013541438A (ja) * 2010-09-03 2013-11-14 ビーエーエスエフ ソシエタス・ヨーロピア シクロオレフィンコポリマーからのバリアーコーティング
JP2014506610A (ja) * 2011-02-11 2014-03-17 ビーエーエスエフ ソシエタス・ヨーロピア シクロオレフィン−コポリマーからのバリアー材料を有するゴム材料

Families Citing this family (37)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE602004026159D1 (de) * 2003-01-31 2010-05-06 Zeon Corp Polymerisierbare zusammensetzung, thermoplastische harzzusammensetzung, vernetztes harz und vernetztes harz enthaltende verbundwerkstoffe
KR101129739B1 (ko) * 2003-08-13 2012-03-23 니폰 제온 가부시키가이샤 중합성 조성물, 및 이것을 이용하여 제조된 성형체
WO2005017033A1 (ja) * 2003-08-13 2005-02-24 Zeon Corporation 架橋性樹脂組成物およびその樹脂成形体
US20050100712A1 (en) * 2003-11-12 2005-05-12 Simmons Blake A. Polymerization welding and application to microfluidics
ITBO20040021A1 (it) * 2004-01-20 2004-04-20 Gd Spa Metodo e foglio di incarto per la realizzazione di un pacchetto e pacchetto cosi' ottenuto
US7579046B2 (en) * 2005-12-30 2009-08-25 Intel Corporation Smart curing with a catalyst-functionalized surface
PL2042537T3 (pl) 2007-09-28 2015-02-27 Rimtec Corp Policyklolefinowy (PCO) układ termoutwardzalny i proces jego otrzymywania
EP2223361A1 (en) * 2007-11-28 2010-09-01 National University of Singapore Multilayer heterostructures for application in oleds and photovoltaic devices
US8795647B2 (en) * 2008-08-20 2014-08-05 The Research Foundation For The State University Of New York Alternating ring-opening metathesis polymerization
CA2742793C (en) * 2008-11-26 2016-05-10 Elevance Renewable Sciences, Inc. Methods of producing jet fuel from natural oil feedstocks through oxygen-cleaved reactions
MY156576A (en) * 2008-11-26 2016-03-15 Elevance Renewable Sciences Methods of producing jet fuel from natural oil feedstocks through metathesis reactions
RU2565057C2 (ru) 2009-10-12 2015-10-20 Елевансе Реневабле Сайенсез, Инк. Способы очистки и производства топлива из натурального масляного исходного сырья
US9382502B2 (en) 2009-10-12 2016-07-05 Elevance Renewable Sciences, Inc. Methods of refining and producing isomerized fatty acid esters and fatty acids from natural oil feedstocks
US9365487B2 (en) 2009-10-12 2016-06-14 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US9000246B2 (en) 2009-10-12 2015-04-07 Elevance Renewable Sciences, Inc. Methods of refining and producing dibasic esters and acids from natural oil feedstocks
US9051519B2 (en) 2009-10-12 2015-06-09 Elevance Renewable Sciences, Inc. Diene-selective hydrogenation of metathesis derived olefins and unsaturated esters
US9169447B2 (en) 2009-10-12 2015-10-27 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US9222056B2 (en) 2009-10-12 2015-12-29 Elevance Renewable Sciences, Inc. Methods of refining natural oils, and methods of producing fuel compositions
US9175231B2 (en) 2009-10-12 2015-11-03 Elevance Renewable Sciences, Inc. Methods of refining natural oils and methods of producing fuel compositions
US8735640B2 (en) 2009-10-12 2014-05-27 Elevance Renewable Sciences, Inc. Methods of refining and producing fuel and specialty chemicals from natural oil feedstocks
WO2012151085A1 (en) 2011-05-03 2012-11-08 Dow Global Technologies Llc Accelerated cure composition containing an isocyanate functional prepolymer
US9045672B2 (en) 2011-05-03 2015-06-02 Dow GlobalTechnologies LLC Dual cure adhesive useful for bonding to glass
ES2805289T3 (es) 2011-06-17 2021-02-11 Materia Inc Promotores de la adherencia y modificadores de la gelificación para composiciones de metátesis de olefinas
US9169174B2 (en) 2011-12-22 2015-10-27 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9133416B2 (en) 2011-12-22 2015-09-15 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
US9139493B2 (en) 2011-12-22 2015-09-22 Elevance Renewable Sciences, Inc. Methods for suppressing isomerization of olefin metathesis products
WO2014022454A1 (en) * 2012-07-31 2014-02-06 The Trustees Of Columbia University In The City Of New York Organocatalytic carbonyl-olefin and olefin-olefin metathesis
US9388098B2 (en) 2012-10-09 2016-07-12 Elevance Renewable Sciences, Inc. Methods of making high-weight esters, acids, and derivatives thereof
WO2014074140A1 (en) 2012-11-08 2014-05-15 Dow Global Technologies Llc Ultrafast dual cure adhesive useful for bonding to glass
US9598531B2 (en) 2013-02-27 2017-03-21 Materia, Inc. Olefin metathesis catalyst compositions comprising at least two metal carbene olefin metathesis catalysts
CN106795392B (zh) 2014-08-18 2020-09-08 洛德公司 弹性体的低温粘接方法
KR20190049724A (ko) 2016-09-09 2019-05-09 케빈 엠. 소렐스 보호 장갑 및 보호 장갑의 제조 방법
US11247424B1 (en) 2016-12-13 2022-02-15 Bridgestone Americas Tire Operations, Llc Methods for retreading tires
WO2021126691A1 (en) 2019-12-16 2021-06-24 Exxonmobil Chemical Patents. Inc. Tire tread compounds
JP2023516712A (ja) 2020-03-03 2023-04-20 エクソンモービル ケミカル パテンツ インコーポレイテッド 大型トラックおよびバスタイヤトレッドのためのゴム配合物ならびにそれに関する方法
WO2021242636A1 (en) 2020-05-29 2021-12-02 Exxonmobil Chemical Patents Inc. Processes for producing cyclic olefins from polymers and re-polymerization thereof
US11912861B2 (en) 2020-10-29 2024-02-27 ExxonMobil Engineering & Technology Co. Rubber composition for lighter weight tires and improved wet traction

Family Cites Families (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US2901099A (en) * 1956-07-02 1959-08-25 American Sealants Company Packaged metal fasteners and bonding agent
US2978354A (en) * 1958-03-18 1961-04-04 David K Lesser Method of applying a coating
US3485655A (en) * 1966-09-29 1969-12-23 Boeing Co Room temperature storable precatalyzed substrate for laminates
ZA822089B (en) 1981-04-09 1983-02-23 Goodyear Tire & Rubber Pneumatic tire
US4727215A (en) 1985-09-25 1988-02-23 Massachusetts Institute Of Technology Catalyst composition for effecting metathesis of olefins
JPH0624806B2 (ja) 1988-03-29 1994-04-06 日本ゼオン株式会社 複合成形品およびその製造法
US4902560A (en) 1988-06-01 1990-02-20 Hercules Incorporated Improving the physical properties of glass composite polydicyclopentadiene by heat treatment
US4898223A (en) 1989-01-30 1990-02-06 The Goodyear Tire & Rubber Company Stiff rubber composition and articles having components thereof
US5073597A (en) 1989-05-26 1991-12-17 Advanced Elastomer Systems, L. P. Dynamically vulcanized alloys having two copolymers in the crosslinked phase and a crystalline matrix
CA2028239A1 (en) 1989-10-24 1991-04-25 Brian L. Goodall Coated reinforcing material
US5198511A (en) 1991-12-20 1993-03-30 Minnesota Mining And Manufacturing Company Polymerizable compositions containing olefin metathesis catalysts and cocatalysts, and methods of use therefor
US5312940A (en) 1992-04-03 1994-05-17 California Institute Of Technology Ruthenium and osmium metal carbene complexes for olefin metathesis polymerization
CN1075799C (zh) 1994-11-17 2001-12-05 希巴特殊化学控股公司 可交联单体和组合物以及交联聚合物
WO1996016100A1 (de) 1994-11-17 1996-05-30 Ciba Specialty Chemicals Holding Inc. Thermisches metathesepolymerisationsverfahren und polymerisierbare zusammensetzung
EP0718347A1 (en) 1994-12-24 1996-06-26 Advanced Elastomer Systems, L.P. Method to adhere thermoplastic elastomer blends to polyester substrates
TW350851B (en) 1995-01-31 1999-01-21 Ciba Sc Holding Ag Polymerizable composition and process for the preparation of network polymer
US5728785A (en) 1995-07-07 1998-03-17 California Institute Of Technology Romp polymerization in the presence of peroxide crosslinking agents to form high-density crosslinked polymers
US5603985A (en) 1995-11-29 1997-02-18 Kent; Michael S. Block copolymer adhesion promoters via ring-opening metathesis polymerization
EP0891384A1 (en) 1996-04-04 1999-01-20 Ciba SC Holding AG Catalyst mixture and polymerisable composition
EP0889107A3 (de) 1997-07-03 1999-03-24 Ciba SC Holding AG Klebstoff aus Basis von Cycloolefin
US6962729B2 (en) * 1998-12-11 2005-11-08 Lord Corporation Contact metathesis polymerization
US20020015519A1 (en) * 1998-12-11 2002-02-07 Lord Corporation Fiber substrate adhesion and coatings by contact metathesis polymerization
KR20030051686A (ko) * 2000-09-25 2003-06-25 로드코포레이션 접촉 치환 중합

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2010106276A (ja) * 2008-10-29 2010-05-13 Samsung Electronics Co Ltd 電解質組成物、触媒インク及びこれを使用して製造された固体電解質膜
US9391342B2 (en) 2008-10-29 2016-07-12 Samsung Electronics Co., Ltc. Electrolyte composition and catalyst ink and solid electrolyte membrane formed by using the same
KR20110103970A (ko) * 2008-12-23 2011-09-21 다우 글로벌 테크놀로지스 엘엘씨 다성분 반응성 시스템을 성형 작업으로 전달하는 방법
JP2012513326A (ja) * 2008-12-23 2012-06-14 ダウ グローバル テクノロジーズ エルエルシー 多成分反応系を成形工程に送達する方法
KR101650600B1 (ko) * 2008-12-23 2016-08-23 다우 글로벌 테크놀로지스 엘엘씨 다성분 반응성 시스템을 성형 작업으로 전달하는 방법
JP2013541438A (ja) * 2010-09-03 2013-11-14 ビーエーエスエフ ソシエタス・ヨーロピア シクロオレフィンコポリマーからのバリアーコーティング
JP2014506610A (ja) * 2011-02-11 2014-03-17 ビーエーエスエフ ソシエタス・ヨーロピア シクロオレフィン−コポリマーからのバリアー材料を有するゴム材料

Also Published As

Publication number Publication date
KR20050035123A (ko) 2005-04-15
WO2003031505A1 (en) 2003-04-17
EP1434816B1 (en) 2006-06-14
EP1434816A1 (en) 2004-07-07
TW593466B (en) 2004-06-21
CA2461350A1 (en) 2003-04-17
US20020166629A1 (en) 2002-11-14
DE60212419D1 (de) 2006-07-27
US7025851B2 (en) 2006-04-11
DE60212419T2 (de) 2007-01-11

Similar Documents

Publication Publication Date Title
JP2005505654A (ja) 接触メタセシス重合
US6973949B1 (en) Tire laminate bonded by contact metathesis
EP1363967B1 (en) Improved fiber substrate adhesion to elastomeric substrates
EP1320566B1 (en) Contact metathesis polymerization
US6800170B2 (en) Metathesis polymerization adhesives and coatings
JP2022551722A (ja) 方法、物品並びに未重合環状オレフィン、触媒、及び接着促進剤ポリマーを含む接着剤組成物
WO2002026858A1 (en) Contact metathesis polymerization
EP2516516A1 (en) Methods of bonding articles together and the articles formed thereby
AU773449B2 (en) Contact metathesis polymerization
US20120205022A1 (en) Rubber material with barrier material made of cycloolefin copolymers
CA2825164A1 (en) Rubber material with barrier material made of cycloolefin copolymers
US20230014501A1 (en) Adhesive article comprising polymer and polymerizable cyclic olefins, adhesive compositions and methods
JP2676538B2 (ja) 耐酸化劣化性を改善した成形品の製造法
JP2509084B2 (ja) メッキされた架橋重合体成型物

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051006

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20090526

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20091027