JP2005351194A - Egr system - Google Patents

Egr system Download PDF

Info

Publication number
JP2005351194A
JP2005351194A JP2004173741A JP2004173741A JP2005351194A JP 2005351194 A JP2005351194 A JP 2005351194A JP 2004173741 A JP2004173741 A JP 2004173741A JP 2004173741 A JP2004173741 A JP 2004173741A JP 2005351194 A JP2005351194 A JP 2005351194A
Authority
JP
Japan
Prior art keywords
engine
cooling water
egr cooler
egr
water jacket
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004173741A
Other languages
Japanese (ja)
Inventor
Takashi Ishimori
崇 石森
Hiroyuki Sugihara
啓之 杉原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hino Motors Ltd
Original Assignee
Hino Motors Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hino Motors Ltd filed Critical Hino Motors Ltd
Priority to JP2004173741A priority Critical patent/JP2005351194A/en
Publication of JP2005351194A publication Critical patent/JP2005351194A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02TCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO TRANSPORTATION
    • Y02T10/00Road transport of goods or passengers
    • Y02T10/10Internal combustion engine [ICE] based vehicles
    • Y02T10/12Improving ICE efficiencies

Landscapes

  • Exhaust-Gas Circulating Devices (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an EGR system capable of increasing an amount of recirculation of exhaust gas when a load is low relative to the engine rotation speed. <P>SOLUTION: A cooling water inlet of an EGR cooler 1 is connected to an inlet flow passage 4 for supplying cooling water to a water jacket of an engine 3, a cooling water outlet of the EGR cooler 1 is connected to an outlet flow passage 5 for feeding the cooling water from the water jacket of the engine 3, a flow adjustment valve 9a is incorporated on a water jacket inlet side of the engine 3, and a control unit 8 capable of expanding/reducing the opening of the flow adjustment valve 9a based on the rotation speed and the load of the engine 3 is provided. When the load gets low relative to the rotation speed of the engine 3, the control unit 8 reduces the opening of the flow adjustment valve 9a to increase the supply of the cooling water to the EGR cooler 1. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明はEGR装置に関するものである。   The present invention relates to an EGR device.

従来、排気再循環(EGR:Exhaust Gas Recirculation)を適用した過給機付内燃機関では、エンジン排気経路から分流した排気を、EGRクーラ(水冷方式の管形熱交換器)が組み込んであるEGR管路によりエンジン吸気経路へ送給し、燃焼温度の低下を図ってNOxの発生を低減させている(例えば、特許文献1、非特許文献1参照)。   Conventionally, in an internal combustion engine with a supercharger to which exhaust gas recirculation (EGR) is applied, an EGR pipe into which an EGR cooler (water-cooled tubular heat exchanger) is incorporated into the exhaust gas diverted from the engine exhaust path The fuel is fed to the engine intake path by the road, and the generation of NOx is reduced by reducing the combustion temperature (for example, see Patent Document 1 and Non-Patent Document 1).

図5は従来のEGR装置の一例の冷却水流通系を示すもので、EGRクーラ1の冷却水入口を、ウォータポンプ2からエンジン3のウォータジャケットへ冷却水を送給する入口流路4に接続し、EGRクーラ1の冷却水出口を、エンジン3のウォータジャケットから冷却水を送出する出口流路5に接続している。   FIG. 5 shows a cooling water circulation system as an example of a conventional EGR device, in which the cooling water inlet of the EGR cooler 1 is connected to an inlet flow path 4 for supplying cooling water from the water pump 2 to the water jacket of the engine 3. The cooling water outlet of the EGR cooler 1 is connected to the outlet flow path 5 for sending the cooling water from the water jacket of the engine 3.

すなわち、EGRクーラ1を流れる冷却水によってエンジン排気経路から分流した排気を冷却している。   That is, the exhaust gas diverted from the engine exhaust path is cooled by the cooling water flowing through the EGR cooler 1.

出口流路5にはサーモスタット6とラジエータ7が付帯しており、エンジン3から送出される冷却水は、その温度が高いと、ラジエータ7を経てウォータポンプ2に戻り、反対に温度が低いと、ラジエータ7を経ずにウォータポンプ2に戻る。
特開平9−256915号公報 「エンジン解剖学」ワーキングビークルズ No.25 株式会社 ぽると出版、平成16年4月5日、p33−35
A thermostat 6 and a radiator 7 are attached to the outlet flow path 5. When the temperature of the cooling water sent from the engine 3 is high, the cooling water returns to the water pump 2 through the radiator 7. On the contrary, when the temperature is low, Return to the water pump 2 without passing through the radiator 7.
Japanese Patent Laid-Open No. 9-256915 “Engine Anatomy” Working Vehicles 25 POTO PUBLISHING, April 5, 2004, p33-35

ところが図5に示すEGR装置では、ウォータポンプ2の冷却水吐出量がエンジン3の回転数に応じて増減し、また、EGRクーラ1の冷却水流通経路をエンジン3のウォータジャケットに並列に接続しているので、EGRクーラ1に送給される冷却水とエンジン3のウォータジャケットに送給される冷却水との割合が、EGRクーラ1及びエンジン3のウォータジャケットの圧力損失の差によって一義的に決まってしまう。   However, in the EGR device shown in FIG. 5, the cooling water discharge amount of the water pump 2 increases or decreases according to the rotational speed of the engine 3, and the cooling water flow path of the EGR cooler 1 is connected in parallel to the water jacket of the engine 3. Therefore, the ratio of the cooling water supplied to the EGR cooler 1 and the cooling water supplied to the water jacket of the engine 3 is uniquely determined by the difference in pressure loss between the EGR cooler 1 and the water jacket of the engine 3. It will be decided.

このため、車両が通常走行していてエンジン3の負荷が低いときに、排気再循環の量を今まで以上に増やそうとすると、EGRクーラ1への冷却水の供給量が相対的に不足することになるし、排気再循環量の増加を見越してウォータポンプ2の能力を大きくした場合には、エンジン3のウォータジャケットへの冷却水の供給量が過剰になる。   For this reason, when the vehicle is running normally and the load on the engine 3 is low, if the amount of exhaust gas recirculation is increased more than before, the amount of cooling water supplied to the EGR cooler 1 is relatively short. When the capacity of the water pump 2 is increased in anticipation of an increase in the exhaust gas recirculation amount, the amount of cooling water supplied to the water jacket of the engine 3 becomes excessive.

本発明は上述した実情に鑑みてなしたもので、エンジン回転数に対して負荷が低いときに排気再循環の量を増やせるEGR装置を提供することを目的としている。   The present invention has been made in view of the above-described circumstances, and an object thereof is to provide an EGR device that can increase the amount of exhaust gas recirculation when the load is low with respect to the engine speed.

上記目的を達成するために、請求項1に記載の発明は、EGRクーラの冷却水入口を、エンジンのウォータジャケットへ冷却水を供給する入口流路に接続し、EGRクーラの冷却水出口を、エンジンのウォータジャケットから冷却水を送出する出口流路に接続し、ウォータジャケット入口側、ウォータジャケット出口側、EGRクーラの冷却水入口側、EGRクーラの冷却水出口側のうちの少なくともに一ヵ所に流量調整弁を組み込んでいる。   In order to achieve the above object, according to the first aspect of the present invention, the cooling water inlet of the EGR cooler is connected to an inlet flow path for supplying cooling water to the water jacket of the engine, and the cooling water outlet of the EGR cooler is Connected to the outlet flow path for sending cooling water from the engine water jacket, at least one of the water jacket inlet side, water jacket outlet side, EGR cooler cooling water inlet side, and EGR cooler cooling water outlet side A flow control valve is incorporated.

請求項2の記載の発明は、エンジン回転数及びエンジン負荷に基づいて流量調整弁の開度を拡縮し得る制御手段を備えている。   The invention described in claim 2 is provided with a control means capable of expanding and reducing the opening of the flow rate adjusting valve based on the engine speed and the engine load.

請求項1に記載の発明においては、流量調整弁の開度を適宜拡縮して、EGRクーラに送給される冷却水とエンジンのウォータジャケットに送給される冷却水との割合を最適な状態にする。   In the first aspect of the invention, the degree of opening of the flow rate adjustment valve is appropriately expanded and reduced so that the ratio of the cooling water supplied to the EGR cooler and the cooling water supplied to the water jacket of the engine is in an optimum state. To.

請求項2に記載の発明においては、エンジン回転数に対してエンジン負荷が低くなった際に制御手段が流量調整弁の開度を拡大または縮小し、EGRクーラへの冷却水の供給量を多くする。   In the second aspect of the present invention, when the engine load becomes lower than the engine speed, the control means enlarges or reduces the opening of the flow rate adjustment valve, and increases the amount of cooling water supplied to the EGR cooler. To do.

本発明のEGR装置によれば、下記のような優れた効果を奏し得る。   According to the EGR device of the present invention, the following excellent effects can be obtained.

(1)エンジンの回転数に対して負荷が低い場合に、EGRクーラへの冷却水の供給量を多くして排気再循環の量を増やせるので、より効果的なNOxの低減を達成することができる。   (1) When the load is low with respect to the engine speed, the amount of cooling water supplied to the EGR cooler can be increased to increase the amount of exhaust gas recirculation, thereby achieving more effective NOx reduction. it can.

(2)エンジンの回転数に対して負荷が高い場合に、エンジンのウォータジャケットへ送給される冷却水の割合を増やせるので、エンジンの冷却性能を確保することができる。   (2) Since the ratio of the cooling water supplied to the water jacket of the engine can be increased when the load is high with respect to the engine speed, the cooling performance of the engine can be ensured.

以下、本発明の実施の形態を図面に基づき説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明のEGR装置の実施の形態の第1の例の冷却水流通系を示すもので、図中、図5と同一の符号を付した部分は同一物を表わしている。   FIG. 1 shows a cooling water flow system according to a first example of an embodiment of the EGR apparatus of the present invention. In the figure, the same reference numerals as those in FIG. 5 denote the same parts.

このEGR装置は、EGRクーラ1のほうがエンジン3のウォータジャケットに比べて圧力損失が大きい場合を想定し、エンジン3の回転数と負荷をパラメータとして回転数に対して負荷が低くなるほど開度指令が小さくなるマップが予め設定してある制御ユニット(ECU:Electronic Control Unit)8と、エンジン3のウォータジャケット入口側に組み込まれ且つ制御ユニット8によって遠隔操作される流量調整弁9aを備えている。   This EGR device assumes that the pressure loss of the EGR cooler 1 is larger than that of the water jacket of the engine 3, and the opening degree command becomes smaller as the load becomes lower than the rotation speed with the rotation speed and load of the engine 3 as parameters. A control unit (ECU: Electronic Control Unit) 8 in which a smaller map is set in advance, and a flow rate adjusting valve 9 a incorporated in the water jacket inlet side of the engine 3 and remotely operated by the control unit 8 are provided.

この流量調整弁9aの存在によって、EGRクーラ1に送給される冷却水とエンジン3のウォータジャケットに送給される冷却水との割合が一義的には決まらないことになる。   Due to the presence of the flow rate adjusting valve 9a, the ratio of the cooling water supplied to the EGR cooler 1 and the cooling water supplied to the water jacket of the engine 3 is not uniquely determined.

制御ユニット8は、アクセル開度センサ10、エンジン回転センサ11で得た検出値、及び前述したマップに基づいて流量調整弁9aの開度を拡縮するように構成してある。   The control unit 8 is configured to expand and contract the opening of the flow rate adjusting valve 9a based on the detected value obtained by the accelerator opening sensor 10, the engine rotation sensor 11, and the map described above.

つまり、エンジン3の回転数に対して負荷が低くなるほど流量調整弁9aの開度が縮小し、見掛け上、エンジン3のウォータジャケットへの冷却水の流入が抑えられて、EGRクーラ1への冷却水の供給量が多くなり、ウォータポンプ2の能力を大きくしなくても、排気再循環の量を今まで以上に増やすことが可能になる。   In other words, the lower the load with respect to the rotational speed of the engine 3, the smaller the opening of the flow rate adjusting valve 9 a, and apparently the inflow of cooling water into the water jacket of the engine 3 is suppressed to cool the EGR cooler 1. Even if the water supply amount is increased and the capacity of the water pump 2 is not increased, the amount of exhaust gas recirculation can be increased more than ever.

反対に、エンジン3の回転数に対して負荷が高くなるほど流量調整弁9aの開度が拡大し、見掛け上、エンジン3のウォータジャケットへの冷却水の流入が多くなり、よって、エンジン3の冷却性能が確保される。   On the contrary, as the load increases with respect to the rotational speed of the engine 3, the opening degree of the flow rate adjusting valve 9 a increases, and apparently the inflow of cooling water into the water jacket of the engine 3 increases. Performance is ensured.

制御ユニット8は特にEGR装置だけのために独立した構成である必要はなく、通常の車載ECUを活用できる。   The control unit 8 is not particularly required to be an independent configuration only for the EGR device, and a normal in-vehicle ECU can be used.

図2は本発明のEGR装置の実施の形態の第2の例の冷却水流通系を示すもので、図中、図1と同一の符号を付した部分は同一物を表わしている。   FIG. 2 shows a cooling water flow system according to a second example of the embodiment of the EGR apparatus of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same parts.

このEGR装置は、エンジン3のウォータジャケットのほうがEGRクーラ1に比べて圧力損失が大きい場合を想定し、エンジン3の回転数と負荷をパラメータとして回転数に対して負荷が低くなるほど開度指令が大きくなるマップが予め設定してある制御ユニット12と、EGRクーラ1の冷却水入口側に組み込まれ且つ制御ユニット12によって遠隔操作される流量調整弁9bを備えている。   This EGR device assumes that the pressure loss of the water jacket of the engine 3 is larger than that of the EGR cooler 1, and the opening degree command becomes smaller as the load becomes lower than the rotation speed with the rotation speed and load of the engine 3 as parameters. A control unit 12 in which a map to be enlarged is set in advance, and a flow rate adjusting valve 9b incorporated in the cooling water inlet side of the EGR cooler 1 and remotely operated by the control unit 12 are provided.

この流量調整弁9bの存在によって、EGRクーラ1に送給される冷却水とエンジン3のウォータジャケットに送給される冷却水との割合が一義的には決まらないことになる。   Due to the presence of the flow regulating valve 9b, the ratio of the cooling water supplied to the EGR cooler 1 and the cooling water supplied to the water jacket of the engine 3 is not uniquely determined.

制御ユニット12は、アクセル開度センサ10、エンジン回転センサ11で得た検出値、及び前述したマップに基づいて流量調整弁9aの開度を拡縮するように構成してある。   The control unit 12 is configured to expand or contract the opening of the flow rate adjusting valve 9a based on the detected value obtained by the accelerator opening sensor 10, the engine rotation sensor 11, and the map described above.

つまり、エンジン3の回転数に対して負荷が低くなるほど流量調整弁9bの開度が拡大し、見掛け上、EGRクーラ1への冷却水の供給量が多くなり、ウォータポンプ2の能力を大きくしなくても、排気再循環の量を今まで以上に増やすことが可能になる。   That is, the lower the load with respect to the rotational speed of the engine 3, the larger the opening of the flow rate adjusting valve 9 b, and apparently the amount of cooling water supplied to the EGR cooler 1 increases and the capacity of the water pump 2 increases. Even without this, the amount of exhaust gas recirculation can be increased more than ever.

反対に、エンジン3の回転数に対して負荷が高くなるほど流量調整弁9bの開度が縮小し、見掛け上、EGRクーラ1への冷却水の流入が抑えられ、よって、エンジン3の冷却性能が確保される。   On the contrary, as the load increases with respect to the rotational speed of the engine 3, the opening degree of the flow rate adjusting valve 9b is reduced, and apparently the inflow of cooling water to the EGR cooler 1 is suppressed. Secured.

制御ユニット12は特にEGR装置だけのために独立した構成である必要はなく、通常の車載ECUを活用できる。   The control unit 12 does not need to have an independent configuration especially for the EGR device alone, and a normal in-vehicle ECU can be used.

図3は本発明のEGR装置の実施の形態の第3の例の冷却水流通系を示すもので、図中、図1と同一の符号を付した部分は同一物を表わしている。   FIG. 3 shows a third example of the cooling water flow system according to the embodiment of the EGR apparatus of the present invention. In the figure, the same reference numerals as those in FIG. 1 denote the same components.

このEGR装置は、EGRクーラ1のほうがエンジン3のウォータジャケットに比べて圧力損失が大きい場合を想定し、制御ユニット8により遠隔操作される流量調整弁9cをエンジン3のウォータジャケット出口側に組み込んでいる。   This EGR device assumes that the pressure loss of the EGR cooler 1 is larger than that of the water jacket of the engine 3, and incorporates a flow control valve 9 c remotely operated by the control unit 8 on the water jacket outlet side of the engine 3. Yes.

この流量調整弁9cの存在によって、EGRクーラ1に送給される冷却水とエンジン3のウォータジャケットに送給される冷却水との割合が一義的には決まらないことになる。   Due to the presence of the flow rate adjusting valve 9c, the ratio of the cooling water supplied to the EGR cooler 1 and the cooling water supplied to the water jacket of the engine 3 is not uniquely determined.

つまり、エンジン3の回転数に対して負荷が低くなるほど流量調整弁9cの開度が縮小してエンジン3のウォータジャケットの流路抵抗が増大し、当該ウォータジャケットへの冷却水の流入が抑えられる。   That is, the lower the load with respect to the rotational speed of the engine 3, the smaller the opening degree of the flow rate adjusting valve 9 c and the greater the flow resistance of the water jacket of the engine 3, thereby suppressing the inflow of cooling water into the water jacket. .

これにより、EGRクーラ1への冷却水の供給量が多くなり、ウォータポンプ2の能力を大きくしなくても、排気再循環の量を今まで以上に増やすことが可能になる。   As a result, the amount of cooling water supplied to the EGR cooler 1 increases, and the amount of exhaust gas recirculation can be increased more than before without increasing the capacity of the water pump 2.

反対に、エンジン3の回転数に対して負荷が高くなるほど流量調整弁9cの開度が拡大してエンジン3のウォータジャケットの流路抵抗が減少し、当該ウォータジャケットへの冷却水の流入が多くなり、よって、エンジン3の冷却性能が確保される。   On the contrary, as the load increases with respect to the rotational speed of the engine 3, the opening degree of the flow rate adjusting valve 9c increases, the flow resistance of the water jacket of the engine 3 decreases, and the flow of cooling water into the water jacket increases. Therefore, the cooling performance of the engine 3 is ensured.

図4は本発明のEGR装置の実施の形態の第4の例の冷却水流通系を示すもので、図中、図2と同一の符号を付した部分は同一物を表わしている。   FIG. 4 shows a cooling water flow system of a fourth example of the embodiment of the EGR device of the present invention, and in the figure, the parts denoted by the same reference numerals as those in FIG. 2 represent the same items.

このEGR装置は、エンジン3のウォータジャケットのほうがEGRクーラ1に比べて圧力損失が大きい場合を想定し、制御ユニット12により遠隔操作される流量調整弁9dをEGRクーラ1の冷却水出口側に組み込んでいる。   This EGR device assumes that the water jacket of the engine 3 has a larger pressure loss than the EGR cooler 1, and incorporates a flow rate adjusting valve 9d remotely operated by the control unit 12 on the cooling water outlet side of the EGR cooler 1. It is out.

この流量調整弁9dの存在によって、EGRクーラ1に送給される冷却水とエンジン3のウォータジャケットに送給される冷却水との割合が一義的には決まらないことになる。   Due to the presence of the flow rate adjusting valve 9d, the ratio of the cooling water supplied to the EGR cooler 1 and the cooling water supplied to the water jacket of the engine 3 is not uniquely determined.

つまり、エンジン3の回転数に対して負荷が低くなるほど流量調整弁9dの開度が拡大してEGRクーラ1の流路抵抗が減少し、見掛け上、EGRクーラ1への冷却水の供給量が多くなり、ウォータポンプ2の能力を大きくしなくても、排気再循環の量を今まで以上に増やすことが可能になる。   That is, as the load decreases with respect to the rotational speed of the engine 3, the opening degree of the flow rate adjusting valve 9d increases and the flow path resistance of the EGR cooler 1 decreases, so that the amount of cooling water supplied to the EGR cooler 1 apparently increases. Even if the capacity of the water pump 2 is not increased, the amount of exhaust gas recirculation can be increased more than ever.

反対に、エンジン3の回転数に対して負荷が高くなるほど流量調整弁9dの開度が縮小してEGRクーラ1の流路抵抗が増大し、見掛け上、EGRクーラ1への冷却水の流入が抑えられ、よって、エンジン3の冷却性能が確保される。   On the contrary, as the load increases with respect to the rotational speed of the engine 3, the opening degree of the flow rate adjusting valve 9 d decreases and the flow resistance of the EGR cooler 1 increases, and apparently the inflow of cooling water to the EGR cooler 1 flows. Therefore, the cooling performance of the engine 3 is ensured.

なお、本発明のEGR装置は上述の実施の形態のみに限定されるものではなく、本発明の要旨を逸脱しない範囲において変更を加え得ることは勿論である。   It should be noted that the EGR apparatus of the present invention is not limited to the above-described embodiment, and it goes without saying that modifications can be made without departing from the scope of the present invention.

本発明のEGR装置は、車両用のディーゼルエンジンをはじめとして各種の内燃機関に適用できる。   The EGR device of the present invention can be applied to various internal combustion engines including a diesel engine for vehicles.

本発明のEGR装置の実施の形態の第1の例を示す概念図である。It is a conceptual diagram which shows the 1st example of embodiment of the EGR apparatus of this invention. 本発明のEGR装置の実施の形態の第2の例を示す概念図である。It is a conceptual diagram which shows the 2nd example of embodiment of the EGR apparatus of this invention. 本発明のEGR装置の実施の形態の第3の例を示す概念図である。It is a conceptual diagram which shows the 3rd example of embodiment of the EGR apparatus of this invention. 本発明のEGR装置の実施の形態の第4の例を示す概念図である。It is a conceptual diagram which shows the 4th example of embodiment of the EGR apparatus of this invention. 従来のEGR装置の一例を示す概念図である。It is a conceptual diagram which shows an example of the conventional EGR apparatus.

符号の説明Explanation of symbols

1 EGRクーラ
3 エンジン排気経路
8 制御ユニット(制御手段)
9a 流量調整弁
9b 流量調整弁
9c 流量調整弁
9d 流量調整弁
10 制御ユニット(制御手段)
1 EGR cooler 3 Engine exhaust path 8 Control unit (control means)
9a Flow adjustment valve 9b Flow adjustment valve 9c Flow adjustment valve 9d Flow adjustment valve 10 Control unit (control means)

Claims (2)

EGRクーラの冷却水入口を、エンジンのウォータジャケットへ冷却水を供給する入口流路に接続し、EGRクーラの冷却水出口を、エンジンのウォータジャケットから冷却水を送出する出口流路に接続し、ウォータジャケット入口側、ウォータジャケット出口側、EGRクーラの冷却水入口側、EGRクーラの冷却水出口側のうちの少なくともに一ヵ所に流量調整弁を組み込んだことを特徴とするEGR装置。   The cooling water inlet of the EGR cooler is connected to an inlet flow path for supplying cooling water to the engine water jacket, the cooling water outlet of the EGR cooler is connected to an outlet flow path for sending cooling water from the engine water jacket, An EGR apparatus comprising a flow rate adjusting valve incorporated in at least one of a water jacket inlet side, a water jacket outlet side, a cooling water inlet side of the EGR cooler, and a cooling water outlet side of the EGR cooler. エンジン回転数及びエンジン負荷に基づいて流量調整弁の開度を拡縮し得る制御手段を備えた請求項1に記載のEGR装置。   The EGR device according to claim 1, further comprising a control unit that can expand and contract the opening of the flow rate adjustment valve based on the engine speed and the engine load.
JP2004173741A 2004-06-11 2004-06-11 Egr system Pending JP2005351194A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004173741A JP2005351194A (en) 2004-06-11 2004-06-11 Egr system

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004173741A JP2005351194A (en) 2004-06-11 2004-06-11 Egr system

Publications (1)

Publication Number Publication Date
JP2005351194A true JP2005351194A (en) 2005-12-22

Family

ID=35585870

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004173741A Pending JP2005351194A (en) 2004-06-11 2004-06-11 Egr system

Country Status (1)

Country Link
JP (1) JP2005351194A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051010A (en) * 2006-08-24 2008-03-06 Hino Motors Ltd Flow passage structure of coolant
JP2010038068A (en) * 2008-08-06 2010-02-18 Toyota Motor Corp Internal combustion engine, and control device for the same
WO2013011768A1 (en) * 2011-07-19 2013-01-24 いすゞ自動車株式会社 Engine cooling circuit
WO2013011767A1 (en) * 2011-07-19 2013-01-24 いすゞ自動車株式会社 Engine cooling circuit
FR2991715A1 (en) * 2012-06-12 2013-12-13 Peugeot Citroen Automobiles Sa Device for cooling thermal engine of vehicle, has coolant circuit including main loop with valve that does not block circulation of liquid coolant in cooling branch of exhaust gas recirculation system of engine
CN108397314A (en) * 2018-02-07 2018-08-14 贵阳吉利发动机有限公司 Cooling system for recycled exhaust gas, egr system and cooling system for recycled exhaust gas control method
KR20200011649A (en) * 2018-07-25 2020-02-04 현대자동차주식회사 Cooling system for engine and control method thereof
KR20200014538A (en) * 2018-08-01 2020-02-11 현대자동차주식회사 Control method of cooling system for vehicle

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008051010A (en) * 2006-08-24 2008-03-06 Hino Motors Ltd Flow passage structure of coolant
JP2010038068A (en) * 2008-08-06 2010-02-18 Toyota Motor Corp Internal combustion engine, and control device for the same
WO2013011768A1 (en) * 2011-07-19 2013-01-24 いすゞ自動車株式会社 Engine cooling circuit
WO2013011767A1 (en) * 2011-07-19 2013-01-24 いすゞ自動車株式会社 Engine cooling circuit
FR2991715A1 (en) * 2012-06-12 2013-12-13 Peugeot Citroen Automobiles Sa Device for cooling thermal engine of vehicle, has coolant circuit including main loop with valve that does not block circulation of liquid coolant in cooling branch of exhaust gas recirculation system of engine
CN108397314A (en) * 2018-02-07 2018-08-14 贵阳吉利发动机有限公司 Cooling system for recycled exhaust gas, egr system and cooling system for recycled exhaust gas control method
KR20200011649A (en) * 2018-07-25 2020-02-04 현대자동차주식회사 Cooling system for engine and control method thereof
KR102496796B1 (en) 2018-07-25 2023-02-06 현대자동차 주식회사 Cooling system for engine and control method thereof
KR20200014538A (en) * 2018-08-01 2020-02-11 현대자동차주식회사 Control method of cooling system for vehicle
KR102496811B1 (en) 2018-08-01 2023-02-06 현대자동차 주식회사 Control method of cooling system for vehicle

Similar Documents

Publication Publication Date Title
RU2678926C2 (en) Method (versions) of cooling vehicle engine and vehicle cabin heating system
JP2007040141A (en) Egr cooler system
RU2589556C2 (en) Engine system and method of reducing production cost thereof
JP2006336547A (en) Egr device
WO2016178302A1 (en) Low-water heating/cooling device for internal-combustion engine
JP2007138790A (en) Cooling medium circulation system for engine
US8061138B2 (en) System for controlling contaminant deposition in exhaust gas recirculation coolers
JP2007303381A (en) Exhaust gas circulation device for internal combustion engine
JP2006348793A (en) Exhaust gas recirculation device for internal combustion engine
US10823040B2 (en) Exhaust gas control system for internal combustion engine
JP2008121617A (en) Exhaust recirculation device for internal combustion engine
JP2005351194A (en) Egr system
JP4918898B2 (en) Internal combustion engine
JP6477615B2 (en) Exhaust purification system cooling system
JP2021161979A (en) Egr system of engine
CN111255595B (en) Engine system and vehicle with low pressure EGR
WO2013011768A1 (en) Engine cooling circuit
JP6131937B2 (en) Cooling device for rotary piston engine
JP2005127137A (en) Egr system of engine
JP2017082623A (en) EGR system
JP2006105105A (en) Engine cooling device
JP2016109081A (en) Temperature control device for intercooler
JP2007177651A (en) Egr device for internal combustion engine
JP2010209818A (en) Cooling device for internal combustion engine
JP5983453B2 (en) Intake air cooling system