JP2005347582A - Vacuum container, exposure device, and inspection device - Google Patents

Vacuum container, exposure device, and inspection device Download PDF

Info

Publication number
JP2005347582A
JP2005347582A JP2004166489A JP2004166489A JP2005347582A JP 2005347582 A JP2005347582 A JP 2005347582A JP 2004166489 A JP2004166489 A JP 2004166489A JP 2004166489 A JP2004166489 A JP 2004166489A JP 2005347582 A JP2005347582 A JP 2005347582A
Authority
JP
Japan
Prior art keywords
chamber
vacuum vessel
vacuum
low
advanced
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004166489A
Other languages
Japanese (ja)
Other versions
JP4547997B2 (en
Inventor
Toshimasa Shimoda
敏正 下田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nikon Corp
Original Assignee
Nikon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nikon Corp filed Critical Nikon Corp
Priority to JP2004166489A priority Critical patent/JP4547997B2/en
Publication of JP2005347582A publication Critical patent/JP2005347582A/en
Application granted granted Critical
Publication of JP4547997B2 publication Critical patent/JP4547997B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Abstract

<P>PROBLEM TO BE SOLVED: To provide a vacuum container where vibration is less likely to be transmitted to a housed device. <P>SOLUTION: A diaphragm mechanism 15 is provided between a first part 9a and a second part 9b to communicate the first part 9a and the second part 9b through the diaphragm mechanism 15. Thus, a reticle chamber 5, a wafer chamber 7 and a highly vacuum container 8 can be separated from a chamber 9, and the pressure difference between the first part 9a and the second part 9b can be kept by the diaphragm mechanism 15. Since the reticle chamber 5, the wafer chamber 7 and the highly vacuum container 8 are connected to the chamber 9 only through a seismic isolation stand 11, the vibration of a turbo molecular pump 12, a dry pump 13 and a dry pump 14 is less likely to be transmitted. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、荷電粒子線やEUV光を使用した露光装置、検査装置等に使用するのに好適な真空容器、及びこの真空容器を使用した露光装置、検査装置に関するものである。   The present invention relates to a vacuum container suitable for use in an exposure apparatus and inspection apparatus using charged particle beams and EUV light, and an exposure apparatus and inspection apparatus using this vacuum container.

近年、半導体集積回路の微細化に伴い、光の回折限界によって制限される光学系の解像力を向上させるために、13nm程度の波長を有するEUV光を使用したEUV露光装置、荷電粒子線を使用した荷電粒子線露光装置が開発されている。このようなEUV露光装置、荷電粒子線露光装置は、原版上のパターンを感応基板上に投影する投影光学系を収めた鏡筒や、原版を移動・位置決めする原版ステージ、感応基板を移動・位置決めする感応基板ステージ等を具備している。これらのステージ等のコンポーネントは、EUV光や荷電粒子線の空気による吸収を防ぐために、真空チャンバ内に配置されるのが一般的である。この真空チャンバには、真空引きのための真空ポンプが接続されている。     In recent years, with the miniaturization of semiconductor integrated circuits, in order to improve the resolving power of an optical system limited by the diffraction limit of light, an EUV exposure apparatus using a EUV light having a wavelength of about 13 nm and a charged particle beam are used. A charged particle beam exposure apparatus has been developed. Such an EUV exposure apparatus and charged particle beam exposure apparatus include a lens barrel containing a projection optical system that projects a pattern on an original plate onto a sensitive substrate, an original stage that moves and positions the original plate, and moves and positions the sensitive substrate. It has a sensitive substrate stage. These components such as stages are generally placed in a vacuum chamber in order to prevent absorption of EUV light or charged particle beams by air. A vacuum pump for evacuation is connected to the vacuum chamber.

同様、検査装置においても、照明光学系からの光又は荷電粒子線を試料に導き、試料から反射される光又は荷電粒子線、あるいは前記荷電粒子線の照射によって発生する粒子線を結像面に結像させる照明・投影光学系を納めた鏡筒と、試料を移動・位置決めする試料ステージとを有しており、これらの構成部分は、真空チャンバ内に収納されるのが普通である。この真空チャンバには、真空引きのための真空ポンプが接続されている。   Similarly, in the inspection apparatus, the light or charged particle beam from the illumination optical system is guided to the sample, and the light or charged particle beam reflected from the sample or the particle beam generated by the irradiation of the charged particle beam is used as the imaging surface. It has a lens barrel containing an illumination / projection optical system for forming an image and a sample stage for moving and positioning the sample, and these components are usually housed in a vacuum chamber. A vacuum pump for evacuation is connected to the vacuum chamber.

しかしながら、真空引きのための真空ポンプの振動が前記真空チャンバに伝わると、その振動のために、露光性能や検査性能が阻害される恐れがある。   However, when the vibration of the vacuum pump for evacuation is transmitted to the vacuum chamber, the vibration and exposure performance and inspection performance may be hindered.

本発明はこのような事情に鑑みてなされたもので、真空ポンプの振動が、収納されている装置に伝わりにくい真空容器、及びこの真空容器を使用した露光装置、検査装置を提供することを課題とする。   The present invention has been made in view of such circumstances, and it is an object of the present invention to provide a vacuum vessel in which the vibration of the vacuum pump is difficult to be transmitted to the accommodated device, and an exposure device and an inspection device using the vacuum vessel. And

前記課題を解決するための第1の手段は、防振性を必要とする真空容器であって、高度の真空度を必要とする高度真空容器と、前記高度真空容器が必要とする真空度よりは低い真空度を必要とする低度真空容器が結合されており、これら高度真空容器と低度真空容器の双方を収納するチャンバを有し、当該チャンバは、前記高度真空容器に連通する第1の部分と、前記低度真空容器に連通する第2の部分に分けられ、前記第1の部分と前記第2の部分の間には絞り機構が設けられ、前記高度真空容器と低度真空容器は、防振構造体のみを介して前記チャンバに接続され、前記低度真空容器は、前記チャンバに連通しており、かつ、前記チャンバの前記第2の部分内の気体を排気するドライポンプと、前記チャンバの前記第1の部分内の気体を排気する、ドライポンプとターボ分子ポンプを直列接続した排気系を有することを特徴とする真空容器(請求項1)である。   The first means for solving the above problems is a vacuum container that requires vibration-proofing properties, and an advanced vacuum container that requires a high degree of vacuum and a degree of vacuum that the advanced vacuum container requires. Is connected to a low vacuum container that requires a low degree of vacuum, and has a chamber that accommodates both the high vacuum container and the low vacuum container, and the chamber communicates with the first vacuum container. And a second part communicating with the low-pressure vacuum container, and a throttle mechanism is provided between the first part and the second part, and the advanced vacuum container and the low-pressure vacuum container Is connected to the chamber only through an anti-vibration structure, the low-temperature vacuum vessel is in communication with the chamber, and a dry pump that exhausts gas in the second portion of the chamber; , The gas in the first part of the chamber To the gas, a vacuum container and having an exhaust system connected in series with a dry pump and a turbo molecular pump (claim 1).

本手段においては、チャンバの第1の部分気体は、ドライポンプとターボ分子ポンプを直列接続した排気系により排気されるので、この部分は高度の真空となる。それに対し、チャンバの第2の部分は、ドライポンプのみによって排気されるので真空度は低くなる。よって、前記第1の部分に連通する高度真空容器内では真空度が高く、前記第2の部分に連通する低度真空容器内では真空度が低くなる。   In this means, since the first partial gas in the chamber is exhausted by an exhaust system in which a dry pump and a turbo molecular pump are connected in series, this part becomes a high vacuum. On the other hand, since the second part of the chamber is evacuated only by the dry pump, the degree of vacuum is low. Therefore, the degree of vacuum is high in the advanced vacuum vessel communicating with the first part, and the degree of vacuum is low in the low degree vacuum container communicating with the second part.

そして、チャンバと、高度真空容器、低度真空容器とは、防振構造体のみを介して接続されているので、高度真空容器、低度真空容器には、ドライポンプやターボ分子ポンプの振動は伝わりにくい。   Since the chamber, the advanced vacuum vessel, and the low vacuum vessel are connected only through the vibration-proof structure, the dry pump and the turbo molecular pump are not vibrated in the advanced vacuum vessel and the low vacuum vessel. Difficult to communicate.

しかし、このような構造にするだけでは、チャンバの第1の部分と第2の部分が連通してしまい、両者の真空度を異ならせることが困難になる。よって、第1の部分と第2の部分の間に絞り機構を設け、絞り機構を介して連通させるようにしている。このようにすることにより、チャンバと高度真空容器、低度真空容器との接続を避けながら、チャンバの第1の部分と第2の部分の真空度を異ならせることができる。   However, if only such a structure is used, the first part and the second part of the chamber communicate with each other, and it becomes difficult to make the degree of vacuum different between them. Therefore, a diaphragm mechanism is provided between the first part and the second part so as to communicate with each other via the diaphragm mechanism. By doing in this way, the vacuum degree of the 1st part of a chamber and a 2nd part can be varied, avoiding a connection with a chamber, a high vacuum container, and a low vacuum container.

なお、本明細書及び特許請求の範囲において単に「連通」といった場合、実質的に気体の流通の抵抗となるものが無く、両者の間に問題となるような真空度の差が生じない程度の大きさの開口が設けられていることを意味する。   In the present specification and claims, in the case of simply “communication”, there is substantially no resistance to gas flow, and there is no difference in the degree of vacuum that causes a problem between the two. It means that an opening having a size is provided.

前記課題を解決するための第2の手段は、防振性を必要とする真空容器であって、高度の真空度を必要とする高度真空容器と、前記高度真空容器が必要とする真空度よりは低い真空度を必要とする低度真空容器が結合されており、これら高度真空容器と低度真空容器の双方を収納するチャンバを有し、当該チャンバは、前記高度真空容器に連通する第1の部分と、前記低度真空容器に連通する第2の部分と、前記第1の部分と前記第2の部分の中間に設けられた中間室に分けられ、前記第1の部分と前記中間室の間、及び前記中間室と前記第2の部分の間には、それぞれ絞り機構が設けられ、前記高度真空容器と低度真空容器は、防振構造体のみを介して前記チャンバに接続され、前記低度真空容器は、前記チャンバに連通しており、前記チャンバ内の第2の部分内の気体を排気するドライポンプと、前記チャンバの第1の部分内の気体を排気する、ドライポンプとターボ分子ポンプを直列接続した第1の排気系と、前記中間室内の気体を排気する、ドライポンプとターボ分子ポンプを直列接続した第2の排気系とを有することを特徴とする真空容器(請求項2)である。   The second means for solving the above problems is a vacuum container that requires vibration proofing, an advanced vacuum container that requires a high degree of vacuum, and a degree of vacuum that the advanced vacuum container requires. Is connected to a low vacuum container that requires a low degree of vacuum, and has a chamber that accommodates both the high vacuum container and the low vacuum container, and the chamber communicates with the first vacuum container. , A second portion communicating with the low-level vacuum vessel, and an intermediate chamber provided between the first portion and the second portion, the first portion and the intermediate chamber And between the intermediate chamber and the second part, a throttle mechanism is provided, respectively, and the high vacuum vessel and the low vacuum vessel are connected to the chamber only through a vibration-proof structure, The low-pressure vacuum vessel communicates with the chamber, and the A dry pump that exhausts the gas in the second portion of the chamber, a first exhaust system that exhausts the gas in the first portion of the chamber, in which a dry pump and a turbo molecular pump are connected in series, and the intermediate A vacuum container (Claim 2) having a second exhaust system in which a dry pump and a turbo molecular pump are connected in series for exhausting an indoor gas.

本手段の技術的思想は、基本的には前記第1の手段と同じであるが、チャンバの第1の部分と第2の部分の間に、これらの部分と絞り機構を介して連通する中間室が設けられ、この中間室の気体がドライポンプとターボ分子ポンプを直列接続した第2の排気系により高度の真空にされているところが異なっている。よって、第1の部分と第2の部分を絞り機構を介して直接連通させた第1の手段より、高度真空容器内の真空度をより安定して高めることができる。   The technical idea of this means is basically the same as that of the first means, but between the first part and the second part of the chamber, these parts communicate with each other via a throttle mechanism. There is a difference in that a chamber is provided and the gas in this intermediate chamber is evacuated to a high level by a second exhaust system in which a dry pump and a turbo molecular pump are connected in series. Therefore, the degree of vacuum in the advanced vacuum vessel can be increased more stably than the first means in which the first part and the second part are directly communicated with each other via the throttle mechanism.

前記課題を解決するための第3の手段は、防振性を必要とする真空容器であって、高度の真空度を必要とする高度真空容器と、前記高度真空容器が必要とする真空度よりは低い真空度を必要とする低度真空容器が結合されており、これら高度真空容器と低度真空容器の双方を収納するチャンバを有し、前記高度真空容器と低度真空容器は、防振構造体のみを介して前記チャンバに接続され、前記低度真空容器は、前記チャンバに連通しており、前記高度真空容器は、中空凸部を介して前記チャンバと連通しており、前記チャンバ内の気体を排気するドライポンプと、前記高度真空容器内の気体を排気する、ドライポンプとターボ分子ポンプを直列接続した排気系を有し、前記ターボ分子ポンプから前記高度真空容器に至る配管は、前記中空凸部の中を通って、前記中空凸部との間で絞り機構を構成し、かつ、前記真空容器に接触していないことを特徴とする真空容器(請求項3)である。   The third means for solving the above-mentioned problem is a vacuum container that requires vibration-proofing properties, and an advanced vacuum container that requires a high degree of vacuum and a degree of vacuum that the advanced vacuum container requires. Is connected to a low-level vacuum vessel that requires a low degree of vacuum, and has a chamber for storing both the high-level vacuum vessel and the low-level vacuum vessel. It is connected to the chamber only through a structure, the low-level vacuum vessel communicates with the chamber, and the high-level vacuum vessel communicates with the chamber via a hollow convex portion. A dry pump that exhausts the gas of the gas, and an exhaust system in which a dry pump and a turbo molecular pump are connected in series to exhaust the gas in the advanced vacuum vessel, and a pipe from the turbo molecular pump to the advanced vacuum vessel is Hollow convex Through the inside of, and constitutes a mechanism squeezed between said hollow convex portion, and a vacuum vessel which is characterized in that no contact with the vacuum vessel (claim 3).

本手段の技術的思想は、基本的には前記第1の手段と同じであるが、チャンバ内に第1の部分、第2の部分に相当するような区分された部分が設けられておらず、高度真空容器とチャンバの間が、絞り機構を介して連通するようになっている。そして、この絞り機構が、中空凸部とターボ分子ポンプから前記高度真空容器に至る配管の間に設けられた隙間を小さくすることによって形成されるようになっている。このような手段においても、チャンバと高度真空容器、程度真空容器とは防振構造体のみを介して接続されるようにすることができるので、ポンプ類の振動が、各真空容器に伝わりにくくすることができる。   The technical idea of this means is basically the same as that of the first means, but there are no divided parts corresponding to the first part and the second part in the chamber. The advanced vacuum vessel and the chamber communicate with each other through a throttle mechanism. The throttle mechanism is formed by reducing the gap provided between the hollow convex portion and the pipe from the turbo molecular pump to the advanced vacuum vessel. Even in such a means, the chamber and the advanced vacuum vessel and the degree vacuum vessel can be connected only through the vibration-proof structure, so that the vibrations of the pumps are not easily transmitted to each vacuum vessel. be able to.

前記課題を解決するための第4の手段は、前防振性を必要とする真空容器であって、高度の真空度を必要とする高度真空容器と、前記高度真空容器が必要とする真空度よりは低い真空度を必要とする低度真空容器が結合されており、これら高度真空容器と低度真空容器の双方を収納するチャンバを有し、前記チャンバと前記高度真空室はべローズによって連結され、前記低度真空容器は、前記チャンバに連通しており、前記チャンバ内の気体を排気するドライポンプと、前記ベローズを介して前記高度真空容器内の気体を排気するドライポンプとターボ分子ポンプを直列接続した排気系を有し、前記高度真空容器と低度真空容器は、前記防振構造体と前記べローズのみを介して前記チャンバに接続されていることを特徴とする真空容器(請求項4)である。   A fourth means for solving the above problems is a vacuum container that requires pre-vibration resistance, and an advanced vacuum container that requires a high degree of vacuum, and a degree of vacuum that the advanced vacuum container requires. A low-level vacuum vessel that requires a lower degree of vacuum is combined, and has a chamber that accommodates both the high-level vacuum vessel and the low-level vacuum vessel. The chamber and the high-level vacuum chamber are connected by a bellows. The low-level vacuum vessel communicates with the chamber, and a dry pump that exhausts the gas in the chamber, a dry pump that exhausts the gas in the advanced vacuum vessel via the bellows, and a turbo molecular pump A vacuum vessel characterized in that the advanced vacuum vessel and the low vacuum vessel are connected to the chamber only through the vibration-proof structure and the bellows. 4).

本手段においては、高度真空容器と低度真空容器とはベローズにより隔離されているので、互いの真空度を独立に制御することができる。そして、チャンバと高度真空容器とはベローズと防振構造体のみによって結合されているので、ポンプ類の振動が、各真空容器に伝わりにくくすることができる。   In this means, the high-vacuum vessel and the low-vacuum vessel are separated by the bellows, so that the degree of vacuum can be controlled independently. Since the chamber and the advanced vacuum vessel are coupled only by the bellows and the vibration isolating structure, the vibrations of the pumps can be hardly transmitted to each vacuum vessel.

前記課題を解決するための第5の手段は、原版上のパターンを感応基板上に投影する投影光学系を収めた鏡筒と、前記原版を移動・位置決めする原版ステージと、前記感応基板を移動・位置決めする感応基板ステージと、前記原版ステージ及び前記感応基板ステージをそれぞれ収容する原版ステージ容器、感応基板ステージ容器とを有する露光装置であって、前記鏡筒又は前記鏡筒を収納する容器を前記高度真空容器、前記原版ステージ容器、感応基板ステージ容器をそれぞれ前記低度真空容器とする前記第1の手段から第4の手段のいずれかの真空容器を有することを特徴とする露光装置(請求項5)である。   The fifth means for solving the above-mentioned problems includes a barrel containing a projection optical system for projecting a pattern on the original plate onto the sensitive substrate, an original stage for moving and positioning the original plate, and moving the sensitive substrate. An exposure apparatus having a sensitive substrate stage for positioning, an original stage stage container for accommodating the original stage and the sensitive substrate stage, and a sensitive substrate stage container, wherein the lens barrel or the container for accommodating the lens barrel is An exposure apparatus comprising: a vacuum container of any one of the first to fourth means, wherein the advanced vacuum container, the original stage container, and the sensitive substrate stage container are the low-pressure vacuum containers, respectively. 5).

本手段においては、ポンプ類の振動が露光装置に伝わるのを抑えることができ、かつ、鏡筒及び各ステージ容器内を、所定の真空度に保つことができる。   In this means, the vibration of the pumps can be prevented from being transmitted to the exposure apparatus, and the inside of the lens barrel and each stage container can be kept at a predetermined degree of vacuum.

前記課題を解決するための第6の手段は、試料を照明する照明光を形成する照明光学系と、当該照明光学系からの光又は荷電粒子線を前記試料に導き、前記試料から反射される前記光又は荷電粒子線、あるいは前記荷電粒子線の照射によって発生する粒子線を結像面に結像させる照明・投影光学系を納めた鏡筒と、前記試料を移動・位置決めする試料ステージと、前記照明光学系を収納する照明容器、前記試料ステージを収納する試料ステージ容器とを有する検査装置であって、前記鏡筒又は前記鏡筒を収納する容器を前記高度真空容器、前記照明容器、試料ステージ容器をそれぞれ前記低度真空容器とする前記第1の手段から第4の手段のいずれかの真空容器を有することを特徴とする検査装置(請求項6)である。   A sixth means for solving the above problems includes an illumination optical system that forms illumination light for illuminating the sample, and a light or charged particle beam from the illumination optical system is guided to the sample and reflected from the sample A lens barrel containing an illumination / projection optical system for forming an image on the imaging plane of the light or charged particle beam, or a particle beam generated by irradiation of the charged particle beam, a sample stage for moving and positioning the sample, An inspection apparatus having an illumination container that houses the illumination optical system and a sample stage container that houses the sample stage, wherein the barrel or the container that houses the barrel is the advanced vacuum container, the illumination container, or a sample An inspection apparatus (Claim 6) comprising the vacuum container of any one of the first to fourth means, wherein each of the stage containers is the low-pressure vacuum container.

本手段においては、ポンプ類の振動が検査装置に伝わるのを抑えることができ、かつ、鏡筒及び各容器内を、所定の真空度に保つことができる。   In this means, it is possible to suppress the vibrations of the pumps from being transmitted to the inspection apparatus, and to keep the inside of the lens barrel and each container at a predetermined degree of vacuum.

本発明によれば、真空ポンプの振動が、収納されている装置に伝わりにくい真空容器、及びこの真空容器を使用した露光装置、検査装置を提供することができる。   According to the present invention, it is possible to provide a vacuum vessel in which the vibration of the vacuum pump is difficult to be transmitted to the accommodated device, and an exposure apparatus and an inspection device using the vacuum vessel.

以下、本発明の実施の形態の例を、図を用いて説明する。図1は、本発明の第1の実施の形態である真空容器及び露光装置の概要を示す図である。   Hereinafter, an example of an embodiment of the present invention will be described with reference to the drawings. FIG. 1 is a view showing an outline of a vacuum container and an exposure apparatus according to the first embodiment of the present invention.

露光装置の照明光学系1から照射された荷電粒子線又はEUV光は、レチクルステージ2に搭載されたレチクルを照明し、レチクルに形成されたパターンを、投影光学系3を介して、ウエハステージ4に搭載されたウエハ上に露光転写する。   The charged particle beam or EUV light irradiated from the illumination optical system 1 of the exposure apparatus illuminates the reticle mounted on the reticle stage 2, and the pattern formed on the reticle is transferred to the wafer stage 4 via the projection optical system 3. Exposure transfer onto the wafer mounted on the substrate.

レチクルステージ2は、レチクルチャンバ5内に収納され、投影光学系3は鏡筒6内に収納され、ウエハステージ4はウエハチャンバ7内に収納されている。さらに、鏡筒6は高度真空容器8内に収納されている。ここで、レチクルチャンバ5、鏡筒6、ウエハチャンバ7とも高度の真空を要求されるが、特にこの中で鏡筒6に対しては、レチクルチャンバ5、ウエハチャンバ7よりも高度の真空が要求される。よって、レチクルチャンバ5、ウエハチャンバ7が請求項中の低度真空容器に、高度真空容器8が請求項中の高度真空容器に対応する。レチクルチャンバ5、ウエハチャンバ7、高度真空容器8は一体化されており、それらを収納するチャンバ9がさらに設けられている。   The reticle stage 2 is housed in a reticle chamber 5, the projection optical system 3 is housed in a lens barrel 6, and the wafer stage 4 is housed in a wafer chamber 7. Further, the lens barrel 6 is housed in an advanced vacuum vessel 8. Here, a high degree of vacuum is required for the reticle chamber 5, the lens barrel 6, and the wafer chamber 7. In particular, a higher degree of vacuum is required for the lens barrel 6 than for the reticle chamber 5 and the wafer chamber 7. Is done. Therefore, the reticle chamber 5 and the wafer chamber 7 correspond to the low vacuum container in the claims, and the advanced vacuum container 8 corresponds to the advanced vacuum container in the claims. The reticle chamber 5, the wafer chamber 7, and the advanced vacuum vessel 8 are integrated, and a chamber 9 for storing them is further provided.

そして、レチクルチャンバ5、ウエハチャンバ7、高度真空容器8は、チャンバ9のベースプレート10の上に、防振台11(真空エアマウント)を介して支持されている。高度真空容器8は、チャンバ9の第1の部分9aと連通しており、第1の部分9aには、ターボ分子ポンプ12が接続されて、第1の部分9a内の気体を排気するようになっている。そして、ターボ分子ポンプ12にはドライポンプ13が直列接続されており、これらターボ分子ポンプ12とドライポンプ13が直列接続された排気系により、第1の部分9a内を高度の真空に保つようになっている。よって、第1の部分9aと連通する高度真空容器8、鏡筒6内も、高度の真空に保たれる。   The reticle chamber 5, the wafer chamber 7, and the advanced vacuum vessel 8 are supported on the base plate 10 of the chamber 9 via a vibration isolator 11 (vacuum air mount). The advanced vacuum vessel 8 communicates with the first portion 9a of the chamber 9, and the turbo molecular pump 12 is connected to the first portion 9a so as to exhaust the gas in the first portion 9a. It has become. A dry pump 13 is connected in series to the turbo molecular pump 12, and an exhaust system in which the turbo molecular pump 12 and the dry pump 13 are connected in series is used to maintain a high vacuum in the first portion 9a. It has become. Therefore, the advanced vacuum vessel 8 and the lens barrel 6 communicating with the first portion 9a are also maintained at a high vacuum.

レチクルチャンバ5には開口5aが形成され、レチクルチャンバ5の内部はチャンバ9の第2の部分9bと連通していて、それにより、レチクルチャンバ5の内部の圧力は第2の部分9bの内部の圧力と等しくなるようにされている。同様、ウエハチャンバ7には開口7aが形成され、ウエハチャンバ7の内部は第2の部分9bと連通していて、それにより、ウエハチャンバ7の内部の圧力は第2の部分9bの内部の圧力と等しくなるようにされている。第2の部分9bには、ドライポンプ14が接続されており、第2の部分9b内の排気を行うようになっている。しかし、この排気系にはターボ分子ポンプが設けられていないので、前記第1の部分に対して真空度が劣るもの(10Pa程度)となっている。   An opening 5a is formed in the reticle chamber 5, and the interior of the reticle chamber 5 is in communication with the second portion 9b of the chamber 9, so that the pressure inside the reticle chamber 5 is within the second portion 9b. It is made equal to the pressure. Similarly, an opening 7a is formed in the wafer chamber 7, and the interior of the wafer chamber 7 communicates with the second portion 9b, so that the pressure inside the wafer chamber 7 is the pressure inside the second portion 9b. To be equal. A dry pump 14 is connected to the second portion 9b, and the second portion 9b is evacuated. However, since this exhaust system is not provided with a turbo molecular pump, the degree of vacuum is inferior to that of the first part (about 10 Pa).

ところで、第1の部分9aと、第2の部分9bとを完全に隔壁により分離するわけにはいかない。このようにすると、レチクルチャンバ5、ウエハチャンバ7、高度真空容器8とチャンバ9との間を隔壁で結合しなければならず、ターボ分子ポンプ12、ドライポンプ13、ドライポンプ14の振動がチャンバ9を通してレチクルチャンバ5、ウエハチャンバ7、高度真空容器8に伝わってしまうためである。   By the way, the first portion 9a and the second portion 9b cannot be completely separated by the partition wall. In this case, the reticle chamber 5, wafer chamber 7, advanced vacuum vessel 8 and chamber 9 must be coupled by the partition wall, and vibrations of the turbo molecular pump 12, the dry pump 13, and the dry pump 14 are caused by the chamber 9. This is because the light is transmitted to the reticle chamber 5, the wafer chamber 7, and the advanced vacuum vessel 8 through.

そこで、本実施の形態においては、第1の部分9aと第2の部分9bとの間に絞り機構15を設けて、絞り機構15を介して第1の部分9aと第2の部分9bとを連通させるようにしている。このようにすると、レチクルチャンバ5、ウエハチャンバ7、高度真空容器8とチャンバ9とを切り離すことができ、かつ、絞り機構15により、第1の部分9aと第2の部分9bとの圧力差を保つことができる。図1においてハッチングを施した領域が高度真空領域10−5Pa程度)となる。そして、図1を見ると分かるように、レチクルチャンバ5、ウエハチャンバ7、高度真空容器8は、防振台11を介してしかチャンバ9と結合されていないので、ターボ分子ポンプ12、ドライポンプ13、ドライポンプ14の振動が伝わりにくくなっている。 Therefore, in the present embodiment, the aperture mechanism 15 is provided between the first portion 9a and the second portion 9b, and the first portion 9a and the second portion 9b are connected via the aperture mechanism 15. I try to communicate. In this way, the reticle chamber 5, the wafer chamber 7, the advanced vacuum vessel 8 and the chamber 9 can be separated from each other, and the pressure difference between the first portion 9a and the second portion 9b is reduced by the throttle mechanism 15. Can keep. In FIG. 1, the hatched area is a high vacuum area of about 10 −5 Pa). As can be seen from FIG. 1, the reticle chamber 5, the wafer chamber 7, and the advanced vacuum vessel 8 are coupled to the chamber 9 only through the vibration isolator 11, so that the turbo molecular pump 12, the dry pump 13 The vibration of the dry pump 14 is difficult to be transmitted.

図2は本発明の第2の実施の形態である真空容器及び露光装置の概要を示す図である。以下の図において、前出の図に示された構成要素と同じ構成要素には、同じ符号を付してその説明を省略する。   FIG. 2 is a view showing an outline of a vacuum vessel and an exposure apparatus according to the second embodiment of the present invention. In the following drawings, the same components as those shown in the previous drawings are denoted by the same reference numerals and description thereof is omitted.

図2に示す実施の形態においては、第1の部分9aと第2の部分9bの間に中間室16が設けられ、第1の部分9aと中間室16の間は絞り機構17を介して、中間室16と第2の部分9bの間は絞り機構18を介して連通するようにされていること、この中間室16中の気体を排気するために、ターボ分子ポンプ19とドライポンプ20を直列に配列した排気系が設けられていることが、図1に示した実施の形態と異なっている。   In the embodiment shown in FIG. 2, an intermediate chamber 16 is provided between the first portion 9a and the second portion 9b, and a space between the first portion 9a and the intermediate chamber 16 is provided via a throttle mechanism 17. The intermediate chamber 16 and the second portion 9b communicate with each other via a throttle mechanism 18, and a turbo molecular pump 19 and a dry pump 20 are connected in series to exhaust the gas in the intermediate chamber 16. 1 is different from the embodiment shown in FIG.

第1の実施の形態では、約10−5Pa程度の内圧を有する第1の部分9aと、約10Paの内圧を有する第2の部分9bの部分を絞り機構15で結合して、その抵抗により両者の圧力差を保つようになっているので、絞り機構15の抵抗を非常に大きくしなければならず、従って、チャンバ9とレチクルチャンバ5、ウエハチャンバ7、高度真空容器8の隙間が微小になるという問題点があった。 In the first embodiment, the first portion 9a having an internal pressure of about 10 −5 Pa and the second portion 9b having an internal pressure of about 10 Pa are coupled by the throttle mechanism 15 and the resistance is used. Since the pressure difference between the two is maintained, the resistance of the throttle mechanism 15 must be made very large. Therefore, the gaps between the chamber 9 and the reticle chamber 5, the wafer chamber 7, and the advanced vacuum vessel 8 are very small. There was a problem of becoming.

本実施の形態においては、第1の部分9aと第2の部分9bを直接絞り機構を介して連通させず、中間室16を介在させて連通させ、第1の部分9aと中間室16の間は絞り機構17を介して、中間室16と第2の部分9bの間は絞り機構18を介して連通するようにすると共に、ターボ分子ポンプ19とドライポンプ20を直列に配列した排気系により中間室16の内部を10−3Pa程度の圧力にしている。よって、第1の実施の形態に比して、より安定に第1の部分9a内の圧力を10−5Pa程度に保てると共に、チャンバ9とレチクルチャンバ5、ウエハチャンバ7、高度真空容器8の隙間を大きくすることができる。 In the present embodiment, the first portion 9a and the second portion 9b are not directly communicated with each other through the throttle mechanism, but are communicated with each other through the intermediate chamber 16 so that the first portion 9a and the intermediate chamber 16 are communicated with each other. The intermediate chamber 16 and the second portion 9b communicate with each other through the throttle mechanism 18 through the throttle mechanism 17, and the turbo molecular pump 19 and the dry pump 20 are arranged in series by an exhaust system arranged in series. The inside of the chamber 16 is set to a pressure of about 10 −3 Pa. Therefore, as compared with the first embodiment, the pressure in the first portion 9a can be maintained at about 10 −5 Pa more stably, and the chamber 9, the reticle chamber 5, the wafer chamber 7, and the advanced vacuum vessel 8 can be maintained. The gap can be increased.

図3は本発明の第3の実施の形態である真空容器及び露光装置の概要を示す図である。図3に示す実施の形態においては、図1に示すチャンバ9の第1の部分9aと第2の部分9bが設けられておらず、高度真空容器8に中空凸部8aが設けられて高度真空容器8が中空凸部8aを介してチャンバ9と連通しており、ターボ分子ポンプ12からの配管21が、中空凸部8aの中を通って、高度真空容器8中の気体を排気するようになっている。そして、中空凸部8aと配管21との間は狭くされて絞り機構を構成している。この絞り機構は、図1、図2に示したものと異なり、長さが長いのでその分抵抗を大きくしてコンダクタンスを小さくすることができる。よって、高度真空容器8内とチャンバ9内の気圧の差を大きく保つことができる。   FIG. 3 is a view showing an outline of a vacuum vessel and an exposure apparatus according to the third embodiment of the present invention. In the embodiment shown in FIG. 3, the first portion 9a and the second portion 9b of the chamber 9 shown in FIG. 1 are not provided, and the advanced vacuum vessel 8 is provided with a hollow convex portion 8a, and the advanced vacuum is provided. The container 8 communicates with the chamber 9 through the hollow convex portion 8a, and the pipe 21 from the turbo molecular pump 12 passes through the hollow convex portion 8a to exhaust the gas in the advanced vacuum vessel 8. It has become. And between the hollow convex part 8a and the piping 21 is narrowed, and the aperture mechanism is comprised. Unlike the one shown in FIGS. 1 and 2, this diaphragm mechanism has a long length, so that the resistance can be increased and the conductance can be reduced accordingly. Therefore, it is possible to keep a large difference in atmospheric pressure in the advanced vacuum vessel 8 and the chamber 9.

図4は本発明の第4の実施の形態である真空容器及び露光装置の概要を示す図である。図3に示す実施の形態においては、図1に示すチャンバ9の第1の部分9aと第2の部分9bが設けられておらず、高度真空容器8内の気体を排気するターボ分子ポンプ12の配管がベローズ22により高度真空容器8に連結されていて、高度真空容器8とチャンバ9とが遮断されているところが異なっている。   FIG. 4 is a view showing an outline of a vacuum vessel and an exposure apparatus according to the fourth embodiment of the present invention. In the embodiment shown in FIG. 3, the first portion 9a and the second portion 9b of the chamber 9 shown in FIG. 1 are not provided, and the turbo molecular pump 12 that exhausts the gas in the advanced vacuum vessel 8 is provided. The difference is that the piping is connected to the advanced vacuum vessel 8 by the bellows 22 and the advanced vacuum vessel 8 and the chamber 9 are blocked.

従って、この実施の形態においては、図1〜図3に示した実施の形態と異なり、レチクルチャンバ5、ウエハチャンバ7、高度真空容器8とチャンバ9とが、防振台11以外にベローズ22によっても連結されている。よって、図1〜図3に示した実施の形態に比して、ターボ分子ポンプ12、ドライポンプ13、ドライポンプ14の振動がレチクルチャンバ5、ウエハチャンバ7、高度真空容器8に伝わり易いという欠点を有するが、高度真空容器8とチャンバ9とが完全に分離されているので、高度真空容器8とチャンバ9とを異なる真空度に保つことが容易となる。   Therefore, in this embodiment, unlike the embodiment shown in FIGS. 1 to 3, the reticle chamber 5, the wafer chamber 7, the advanced vacuum vessel 8 and the chamber 9 are separated by the bellows 22 in addition to the vibration isolator 11. Are also linked. Therefore, as compared with the embodiment shown in FIGS. 1 to 3, the vibration of the turbo molecular pump 12, the dry pump 13, and the dry pump 14 is easily transmitted to the reticle chamber 5, the wafer chamber 7, and the advanced vacuum vessel 8. However, since the advanced vacuum vessel 8 and the chamber 9 are completely separated, it is easy to maintain the advanced vacuum vessel 8 and the chamber 9 at different degrees of vacuum.

以上の実施の形態においては、露光装置を例として説明したが、検査装置においても、同様の構成とすることができる。又、鏡筒を高度真空容器内に収納していたが、鏡筒の構造によっては、鏡筒を高度真空容器内に収納するのでなく、鏡筒そのものを高度真空容器として使用することもできる。さらに、本発明の真空容器は、露光装置や検査装置に限られず、収納される装置に、真空ポンプの振動をなるべく伝えないことが要求される装置用に使用することができる。   In the above embodiment, the exposure apparatus has been described as an example, but the inspection apparatus can be configured similarly. Although the lens barrel is housed in the advanced vacuum container, depending on the structure of the lens barrel, the lens barrel itself can be used as the advanced vacuum container instead of being housed in the advanced vacuum container. Furthermore, the vacuum container of the present invention is not limited to an exposure apparatus or an inspection apparatus, and can be used for an apparatus that is required to transmit as little vibration of the vacuum pump as possible to an apparatus to be stored.

本発明の第1の実施の形態である真空容器及び露光装置の概要を示す図である。It is a figure which shows the outline | summary of the vacuum vessel and exposure apparatus which are the 1st Embodiment of this invention. 本発明の第2の実施の形態である真空容器及び露光装置の概要を示す図である。It is a figure which shows the outline | summary of the vacuum vessel and exposure apparatus which are the 2nd Embodiment of this invention. 本発明の第3の実施の形態である真空容器及び露光装置の概要を示す図である。It is a figure which shows the outline | summary of the vacuum vessel and exposure apparatus which are the 3rd Embodiment of this invention. 本発明の第1の実施の形態である真空容器及び露光装置の概要を示す図である。It is a figure which shows the outline | summary of the vacuum vessel and exposure apparatus which are the 1st Embodiment of this invention.

符号の説明Explanation of symbols

1…照明光学系、2…レチクルステージ、3…投影光学系、4…ウエハステージ、5…レチクルチャンバ、5a…開口、6…鏡筒、7…ウエハチャンバ、7a…開口、8…高度真空容器、8a…中空凸部、9…チャンバ、9a…第1の部分、9b…第2の部分、10…ベースプレート、11…防振台、12…ターボ分子ポンプ、13…ドライポンプ、14…ドライポンプ、15…絞り機構、16…中間室、17…絞り機構、18…絞り機構、19…ターボ分子ポンプ、20…ドライポンプ、21…配管、22…ベローズ
DESCRIPTION OF SYMBOLS 1 ... Illumination optical system, 2 ... Reticle stage, 3 ... Projection optical system, 4 ... Wafer stage, 5 ... Reticle chamber, 5a ... Opening, 6 ... Lens barrel, 7 ... Wafer chamber, 7a ... Opening, 8 ... Advanced vacuum vessel , 8a ... hollow convex part, 9 ... chamber, 9a ... first part, 9b ... second part, 10 ... base plate, 11 ... anti-vibration table, 12 ... turbo molecular pump, 13 ... dry pump, 14 ... dry pump , 15 ... throttle mechanism, 16 ... intermediate chamber, 17 ... throttle mechanism, 18 ... throttle mechanism, 19 ... turbo molecular pump, 20 ... dry pump, 21 ... piping, 22 ... bellows

Claims (6)

防振性を必要とする真空容器であって、高度の真空度を必要とする高度真空容器と、前記高度真空容器が必要とする真空度よりは低い真空度を必要とする低度真空容器が結合されており、これら高度真空容器と低度真空容器の双方を収納するチャンバを有し、当該チャンバは、前記高度真空容器に連通する第1の部分と、前記低度真空容器に連通する第2の部分に分けられ、前記第1の部分と前記第2の部分の間には絞り機構が設けられ、前記高度真空容器と低度真空容器は、防振構造体のみを介して前記チャンバに接続され、前記低度真空容器は、前記チャンバの第2の部分に連通しており、かつ、前記チャンバの前記第2の部分内の気体を排気するドライポンプと、前記チャンバの前記第1の部分内の気体を排気する、ドライポンプとターボ分子ポンプを直列接続した排気系を有することを特徴とする真空容器。 A vacuum vessel that requires anti-vibration properties, an advanced vacuum vessel that requires a high degree of vacuum, and a low-degree vacuum vessel that requires a vacuum level lower than that required by the advanced vacuum vessel. And a chamber for accommodating both the high vacuum vessel and the low vacuum vessel, the chamber having a first portion communicating with the high vacuum vessel and a first portion communicating with the low vacuum vessel. Divided into two parts, and a throttle mechanism is provided between the first part and the second part, and the advanced vacuum vessel and the low vacuum vessel are connected to the chamber through the vibration-proof structure only. A low-pressure vacuum vessel connected to the second portion of the chamber and exhausting gas in the second portion of the chamber; and Dry pumps and tanks that exhaust the gas in the section Vacuum chamber and having an exhaust system that the turbomolecular pump are connected in series. 防振性を必要とする真空容器であって、高度の真空度を必要とする高度真空容器と、前記高度真空容器が必要とする真空度よりは低い真空度を必要とする低度真空容器が結合されており、これら高度真空容器と低度真空容器の双方を収納するチャンバを有し、当該チャンバは、前記高度真空容器に連通する第1の部分と、前記低度真空容器に連通する第2の部分と、前記第1の部分と前記第2の部分の中間に設けられた中間室に分けられ、前記第1の部分と前記中間室の間、及び前記中間室と前記第2の部分の間には、それぞれ絞り機構が設けられ、前記高度真空容器と低度真空容器は、防振構造体のみを介して前記チャンバに接続され、前記低度真空容器は、前記チャンバの第2の部分に連通しており、前記チャンバ内の第2の部分内の気体を排気するドライポンプと、前記チャンバの第1の部分内の気体を排気する、ドライポンプとターボ分子ポンプを直列接続した第1の排気系と、前記中間室内の気体を排気する、ドライポンプとターボ分子ポンプを直列接続した第2の排気系とを有することを特徴とする真空容器。 A vacuum vessel that requires anti-vibration properties, an advanced vacuum vessel that requires a high degree of vacuum, and a low-degree vacuum vessel that requires a vacuum level lower than that required by the advanced vacuum vessel. And a chamber for accommodating both the high vacuum vessel and the low vacuum vessel, the chamber having a first portion communicating with the high vacuum vessel and a first portion communicating with the low vacuum vessel. 2 and an intermediate chamber provided between the first portion and the second portion, and between the first portion and the intermediate chamber and between the intermediate chamber and the second portion. In between, the throttle mechanism is provided, and the advanced vacuum vessel and the low vacuum vessel are connected to the chamber only through the vibration-proof structure, and the low vacuum vessel is connected to the second chamber of the chamber. Communicating with the portion, and the air in the second portion within the chamber. A dry pump for exhausting the gas, a first exhaust system in which a dry pump and a turbo molecular pump are connected in series for exhausting the gas in the first portion of the chamber, and a dry pump for exhausting the gas in the intermediate chamber And a second exhaust system in which turbo molecular pumps are connected in series. 防振性を必要とする真空容器であって、高度の真空度を必要とする高度真空容器と、前記高度真空容器が必要とする真空度よりは低い真空度を必要とする低度真空容器が結合されており、これら高度真空容器と低度真空容器の双方を収納するチャンバを有し、前記高度真空容器と低度真空容器は、防振構造体のみを介して前記チャンバに接続され、前記低度真空容器は、前記チャンバに連通しており、前記高度真空容器は、中空凸部を介して前記チャンバと連通しており、前記チャンバ内の気体を排気するドライポンプと、前記高度真空容器内の気体を排気する、ドライポンプとターボ分子ポンプを直列接続した排気系を有し、前記ターボ分子ポンプから前記高度真空容器に至る配管は、前記中空凸部の中を通って、前記中空凸部との間で絞り機構を構成し、かつ、前記真空容器に接触していないことを特徴とする真空容器。 A vacuum vessel that requires anti-vibration properties, an advanced vacuum vessel that requires a high degree of vacuum, and a low-degree vacuum vessel that requires a vacuum level lower than that required by the advanced vacuum vessel. And has a chamber for storing both the advanced vacuum vessel and the low vacuum vessel, and the advanced vacuum vessel and the low vacuum vessel are connected to the chamber only through a vibration-proof structure, The low degree vacuum vessel communicates with the chamber, the advanced vacuum vessel communicates with the chamber via a hollow convex portion, and a dry pump that exhausts gas in the chamber, and the advanced vacuum vessel An exhaust system in which a dry pump and a turbo molecular pump are connected in series for exhausting the gas in the interior, and a pipe from the turbo molecular pump to the advanced vacuum vessel passes through the hollow convex portion, and the hollow convex portion Squeeze between Vacuum vessel constitutes a mechanism, and is characterized in that not in contact with the vacuum vessel. 防振性を必要とする真空容器であって、高度の真空度を必要とする高度真空容器と、前記高度真空容器が必要とする真空度よりは低い真空度を必要とする低度真空容器が結合されており、これら高度真空容器と低度真空容器の双方を収納するチャンバを有し、前記チャンバと前記高度真空室はべローズによって連結され、前記低度真空容器は、前記チャンバに連通しており、前記チャンバ内の気体を排気するドライポンプと、前記ベローズを介して前記高度真空容器内の気体を排気するドライポンプとターボ分子ポンプを直列接続した排気系を有し、前記高度真空容器と低度真空容器は、前記防振構造体と前記べローズのみを介して前記チャンバに接続されていることを特徴とする真空容器。 A vacuum vessel that requires anti-vibration properties, an advanced vacuum vessel that requires a high degree of vacuum, and a low-degree vacuum vessel that requires a vacuum level lower than that required by the advanced vacuum vessel. And a chamber for storing both the high vacuum vessel and the low vacuum chamber, the chamber and the high vacuum chamber are connected by a bellows, and the low vacuum vessel communicates with the chamber. A dry pump for exhausting the gas in the chamber; and an exhaust system in which a dry pump for exhausting the gas in the advanced vacuum vessel via the bellows and a turbo molecular pump are connected in series. The low-temperature vacuum vessel is connected to the chamber only through the vibration-proof structure and the bellows. 原版上のパターンを感応基板上に投影する投影光学系を収めた鏡筒と、前記原版を移動・位置決めする原版ステージと、前記感応基板を移動・位置決めする感応基板ステージと、前記原版ステージ及び前記感応基板ステージをそれぞれ収容する原版ステージ容器、感応基板ステージ容器とを有する露光装置であって、前記鏡筒又は前記鏡筒を収納する容器を前記高度真空容器、前記原版ステージ容器、感応基板ステージ容器をそれぞれ前記低度真空容器とする請求項1から請求項4のうちいずれか1項に記載の真空容器を有することを特徴とする露光装置。 A lens barrel containing a projection optical system that projects a pattern on an original plate onto a sensitive substrate, an original stage that moves and positions the original plate, a sensitive substrate stage that moves and positions the sensitive substrate, the original stage and the An exposure apparatus having an original stage container and a sensitive substrate stage container each containing a sensitive substrate stage, wherein the lens barrel or a container containing the lens barrel is the advanced vacuum container, the master stage container, or a sensitive substrate stage container An exposure apparatus having the vacuum container according to any one of claims 1 to 4, wherein each of the low-vacuum containers is the low-pressure vacuum container. 試料を照明する照明光を形成する照明光学系と、当該照明光学系からの光又は荷電粒子線を前記試料に導き、前記試料から反射される前記光又は荷電粒子線、あるいは前記荷電粒子線の照射によって発生する粒子線を結像面に結像させる照明・投影光学系を納めた鏡筒と、前記試料を移動・位置決めする試料ステージと、前記照明光学系を収納する照明容器、前記試料ステージを収納する試料ステージ容器とを有する検査装置であって、前記鏡筒又は前記鏡筒を収納する容器を前記高度真空容器、前記照明容器、感応試料ステージ容器をそれぞれ前記低度真空容器とする請求項1から請求項4のうちいずれか1項に記載の真空容器を有することを特徴とする検査装置。
An illumination optical system for forming illumination light for illuminating the sample, light or a charged particle beam from the illumination optical system is guided to the sample, and the light or the charged particle beam reflected from the sample or the charged particle beam A lens barrel that houses an illumination / projection optical system that forms an image of a particle beam generated by irradiation on an imaging plane, a sample stage that moves and positions the sample, an illumination container that houses the illumination optical system, and the sample stage And a sample stage container for storing the lens barrel or the container for storing the lens barrel as the low-pressure vacuum container for the advanced vacuum container, the illumination container, and the sensitive sample stage container, respectively. An inspection apparatus comprising the vacuum container according to any one of claims 1 to 4.
JP2004166489A 2004-06-04 2004-06-04 Vacuum container, exposure apparatus, and inspection apparatus Active JP4547997B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166489A JP4547997B2 (en) 2004-06-04 2004-06-04 Vacuum container, exposure apparatus, and inspection apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166489A JP4547997B2 (en) 2004-06-04 2004-06-04 Vacuum container, exposure apparatus, and inspection apparatus

Publications (2)

Publication Number Publication Date
JP2005347582A true JP2005347582A (en) 2005-12-15
JP4547997B2 JP4547997B2 (en) 2010-09-22

Family

ID=35499657

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166489A Active JP4547997B2 (en) 2004-06-04 2004-06-04 Vacuum container, exposure apparatus, and inspection apparatus

Country Status (1)

Country Link
JP (1) JP4547997B2 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081224A (en) * 2005-09-15 2007-03-29 Canon Inc Exposure device
US7932990B2 (en) 2006-08-01 2011-04-26 Canon Kabushiki Kaisha Exposure apparatus
CN103940589A (en) * 2014-03-25 2014-07-23 中国科学院长春光学精密机械与物理研究所 Vibration isolation mechanism of optical detection frame in vacuum container
JP2015517735A (en) * 2012-05-14 2015-06-22 マッパー・リソグラフィー・アイピー・ビー.ブイ. Charged particle lithography system and beam generator
US11094426B2 (en) 2012-05-14 2021-08-17 Asml Netherlands B.V. Vacuum chamber arrangement for charged particle beam generator
US11348756B2 (en) 2012-05-14 2022-05-31 Asml Netherlands B.V. Aberration correction in charged particle system

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291965A (en) * 1985-06-18 1986-12-22 Fujitsu Ltd Superhigh-vacuum chamber
JPH0817709A (en) * 1994-06-29 1996-01-19 Jeol Ltd Charged-particle beam apparatus
JPH08139010A (en) * 1993-12-29 1996-05-31 Toshiba Corp Charged beam apparatus with cleaning function and method of cleaning charged beam apparatus
JPH11223757A (en) * 1998-02-09 1999-08-17 Canon Inc Lens control system, method therefor and storage medium
JP2001345262A (en) * 2000-03-30 2001-12-14 Canon Inc Aligner, gas substitution method, semiconductor device- manufacturing method, semiconductor-manufacturing factory, and maintenance method of aligner
JP2003282423A (en) * 2002-03-27 2003-10-03 Hitachi High-Technologies Corp Constant-pressure chamber, irradiation device employing the same, device for manufacturing circuit pattern, and device for inspecting circuit pattern
JP2005101492A (en) * 2003-08-27 2005-04-14 Nikon Corp Vacuum equipment, operation method, exposure system, and operation method thereof

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61291965A (en) * 1985-06-18 1986-12-22 Fujitsu Ltd Superhigh-vacuum chamber
JPH08139010A (en) * 1993-12-29 1996-05-31 Toshiba Corp Charged beam apparatus with cleaning function and method of cleaning charged beam apparatus
JPH0817709A (en) * 1994-06-29 1996-01-19 Jeol Ltd Charged-particle beam apparatus
JPH11223757A (en) * 1998-02-09 1999-08-17 Canon Inc Lens control system, method therefor and storage medium
JP2001345262A (en) * 2000-03-30 2001-12-14 Canon Inc Aligner, gas substitution method, semiconductor device- manufacturing method, semiconductor-manufacturing factory, and maintenance method of aligner
JP2003282423A (en) * 2002-03-27 2003-10-03 Hitachi High-Technologies Corp Constant-pressure chamber, irradiation device employing the same, device for manufacturing circuit pattern, and device for inspecting circuit pattern
JP2005101492A (en) * 2003-08-27 2005-04-14 Nikon Corp Vacuum equipment, operation method, exposure system, and operation method thereof

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007081224A (en) * 2005-09-15 2007-03-29 Canon Inc Exposure device
US7932990B2 (en) 2006-08-01 2011-04-26 Canon Kabushiki Kaisha Exposure apparatus
JP2015517735A (en) * 2012-05-14 2015-06-22 マッパー・リソグラフィー・アイピー・ビー.ブイ. Charged particle lithography system and beam generator
US9653261B2 (en) 2012-05-14 2017-05-16 Mapper Lithography Ip B.V. Charged particle lithography system and beam generator
US10037864B2 (en) 2012-05-14 2018-07-31 Mapper Lithography Ip B.V. High voltage shielding and cooling in a charged particle beam generator
US11094426B2 (en) 2012-05-14 2021-08-17 Asml Netherlands B.V. Vacuum chamber arrangement for charged particle beam generator
US11348756B2 (en) 2012-05-14 2022-05-31 Asml Netherlands B.V. Aberration correction in charged particle system
US11705252B2 (en) 2012-05-14 2023-07-18 Asml Netherlands B.V. Vacuum chamber arrangement for charged particle beam generator
US11961627B2 (en) 2012-05-14 2024-04-16 Asml Netherlands B.V. Vacuum chamber arrangement for charged particle beam generator
CN103940589A (en) * 2014-03-25 2014-07-23 中国科学院长春光学精密机械与物理研究所 Vibration isolation mechanism of optical detection frame in vacuum container
CN103940589B (en) * 2014-03-25 2016-06-01 中国科学院长春光学精密机械与物理研究所 The vibration isolating mechanism of optical detection frame in a kind of vacuum vessel

Also Published As

Publication number Publication date
JP4547997B2 (en) 2010-09-22

Similar Documents

Publication Publication Date Title
US7821617B2 (en) Exposure apparatus and device manufacturing method
US20100181498A1 (en) Differential evacuation system
JP4370924B2 (en) Vacuum apparatus, operating method of vacuum apparatus, exposure apparatus, and operating method of exposure apparatus
JP4547997B2 (en) Vacuum container, exposure apparatus, and inspection apparatus
KR100917968B1 (en) Exposure method and apparatus, and device manufacturing method
US20090033901A1 (en) Driving apparatus and exposure apparatus using the same and device manufacturing method
JP2004303808A (en) Aligner, exposure method, and film structure
JP2009004647A (en) Vacuum container, evaluation method and euv lithography
JP2008147280A (en) Exposure apparatus
JP2004111567A (en) Exposure system
JP2005005395A (en) Gas feeding evacuation method and apparatus, mirror cylinder, exposure device, and method
JPWO2003054936A1 (en) Gas purge method, exposure apparatus, and device manufacturing method
US7110088B2 (en) Exposure apparatus and device manufacturing method
JP2007518261A (en) Lithographic apparatus and device manufacturing method
JP2004063547A (en) Aligner under vacuum atmosphere
JP2005106166A (en) Active vibration cancellation device and exposing device
JP4496730B2 (en) Method of packing exposure apparatus, exposure apparatus packed by the method, and packing structure of the exposure apparatus
JP2001173654A (en) Hydrostatic bearing device and optical device using it
JP2006261212A (en) Aligner
US20050147204A1 (en) Optical unit and X-ray exposure system
JP2911864B2 (en) Device manufacturing method and exposure apparatus
JP2009071055A (en) Exposure device and electronic apparatus
WO2010038780A1 (en) Exposure apparatus, supporting apparatus, and device manufacturing method
TW559892B (en) Lens barrel, exposure device, and method of manufacturing device
JP2004214527A (en) Bellows unit for canceling differential pressure and exposure device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070222

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20080729

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100311

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100316

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100514

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20100615

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20100628

R150 Certificate of patent or registration of utility model

Ref document number: 4547997

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130716

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250