JP2005346475A - 電力制御装置及びヒータ制御装置および画像形成装置 - Google Patents

電力制御装置及びヒータ制御装置および画像形成装置 Download PDF

Info

Publication number
JP2005346475A
JP2005346475A JP2004166143A JP2004166143A JP2005346475A JP 2005346475 A JP2005346475 A JP 2005346475A JP 2004166143 A JP2004166143 A JP 2004166143A JP 2004166143 A JP2004166143 A JP 2004166143A JP 2005346475 A JP2005346475 A JP 2005346475A
Authority
JP
Japan
Prior art keywords
signal
zero
heater
level
power supply
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004166143A
Other languages
English (en)
Other versions
JP4630576B2 (ja
Inventor
Masao Watabe
昌雄 渡部
Hajime Kaji
一 鍛治
Hisafumi Sumiya
寿文 角谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Canon Inc
Original Assignee
Canon Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Canon Inc filed Critical Canon Inc
Priority to JP2004166143A priority Critical patent/JP4630576B2/ja
Publication of JP2005346475A publication Critical patent/JP2005346475A/ja
Application granted granted Critical
Publication of JP4630576B2 publication Critical patent/JP4630576B2/ja
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Landscapes

  • Fixing For Electrophotography (AREA)
  • Control Of Resistance Heating (AREA)
  • Control Of Electrical Variables (AREA)

Abstract

【課題】交流電源の電圧波形が歪んだ国や地域においてもゼロクロス信号の誤動作をなくしかつトライアックの最適オンオフタイミング信号生成をに実現する。
【解決手段】セラミックヒータ701への通電制御は、交流電源901から正電圧が入力される時、ゼロクロス信号の立ち上がりエッジ(オフからオンに変化するポイント)を基準に、第1の遅延時間(略2ms)後にトライアックのオンオフ切り替えを行う。一方、交流電源901から負電圧が入力される時、ゼロクロス信号の立ち下がりエッジ(オンからオフに変化するポイント)を基準に、第2の遅延時間(略4ms)後にトライアックのオンオフ切り替えを行う。
【選択図】図6

Description

本発明は、たとえばトナー像を転写紙上に定着させるセラミックヒータ等のヒータ制御を行うヒータ制御装置及びこのヒータ制御装置を有して電子写真プロセスを用いた画像形成を行う画像形成装置およびヒータ制御装置に用いられる電力制御装置に関するものである。
電子写真プロセスを用いたレーザプリンタ等の電子写真方式の画像形成装置は、トナー画像を用紙上に熱定着させる熱定着器を有している。この熱定着器は、電子写真プロセスなどの画像形成手段により転写紙上に形成された未定着画像(トナー像)を転写紙上に定着させるものであり、その種類としてはハロゲンヒータを熱源とする熱ローラ式の熱定着器やセラミック面発ヒータを熱源とするフィルム加熱式の熱定着器が知られている。
一般的に、上記のような熱定着器のヒータは、トライアック等のスイッチング制御素子を介して商用電源等の交流電源に接続されており、この交流電源により電力が供給される。また、熱定着器には温度検出素子、例えばサーミスタ感温素子が設けられており、この温度検出素子により熱定着器の温度が検出される。その検出温度情報をもとに、エンジンコントローラがスイッチング素子をオン/オフ制御することにより、ヒータへの電力供給をオン/オフし、熱定着器の温度が目標の一定温度に温度制御される(特許文献1等参照)。ヒータのオン/オフ制御は、単位時間あたりに通電される交流の波数を制御する波数制御または各周期において通電される位相を制御する位相制御に従って行われる。この波数制御又は位相制御は、入力された交流電源の正から負又は負から正に切替わるポイントを含み、電源電圧の大きさがあるしきい値以下になったことを報知する信号(以下、「ゼロクロス信号」という。)を基にして行われる。
特開平10−105254号公報
このように、熱定着器の熱源であるヒータを波数制御で駆動、制御する場合、交流電源電圧が、「あるしきい値以下であり、正負が切替わる電圧(ゼロクロス)あるいはゼロクロス近傍の電圧」(以下、総じてゼロクロスと呼ぶ)であることを検知する必要がある。このための回路(ゼロクロス検知回路)として、全波整流した交流電圧を所定のしきい値電圧と比較し、一致した時点でゼロクロス信号を出力する全波整流方式がある。しかしながら、電源事情の悪い国や地域では、電源電圧の波形が図20や図16や図17のような歪んだ波形になる場合がある。このような歪んだ交流電源に対して、全波整流方式のゼロクロス検知回路は、図20に示すように誤ったゼロクロス信号を生成してしまうことがあった。すなわち、本来のゼロクロス点における電圧の立ち上がりや立ち下がりが急峻な場合など、全波整流した結果、本来電圧が0となるべきところでしきい値電圧以上の電圧となってしまうことがあった。また、正負が切り替わるゼロクロス点付近では、ゼロクロス信号を生成した際、そのエッジ部にチャタリングが生じやすい。そこでチャタリング除去が必要である。チャタリングの除去は、たとえばゼロクロス信号が一定時間一定レベルで安定した時点でそのレベルをチャタリング除去後のゼロクロス信号として出力することなどにより実現される。そのため、チャタリング除去後のゼロクロス信号は電源電圧のゼロクロス点から相当時間遅延した信号となる。波数制御においては、ゼロクロス信号の位相と交流電源の位相とが一定の関係にあるものとして制御が行われるが、電源周波数に変動があると、この位相の関係がくずれ、本来行われるべき制御が行われない場合があり得る。
本発明は上記従来例に鑑みてなされたものであり、ゼロクロス検知のために半波整流方式を用いるとともに、ゼロクロス信号の立ち上がり立下りエッジそれぞれに対して最適なタイミングでスイッチング素子のオンオフを切り替えることで良好にヒータ制御を行うことが可能な電力制御装置及びヒータ制御装置及び画像形成装置を提供することを目的とする。
上記目的を達成するために本発明は以下の構成を有する。
交流電源から供給される電源電圧と閾値との大小を比較して、比較結果に応じたレベルの信号をゼロクロス信号として出力するゼロクロス検出回路と、
前記交流電源と負荷との間に配置され、前記電源電圧の正負の切り換わりに同期して、ゲート信号のレベルに応じて交流半波分の電力通電/非通電を制御するゼロクロス同期スイッチング素子と、
前記ゼロクロス信号の立ち上がりエッジから第1の遅延時間遅延したタイミング、または、前記ゼロクロス信号の立ち下がりエッジから第2の遅延時間遅延したタイミングに同期して、前記負荷に与える電力に応じて前記ゲート信号のレベルを切り換えて出力する電力制御手段とを備える。
さらに好ましくは、前記ゼロクロス検出回路は、前記電源電圧が前記閾値より大きいときに高レベル信号を、小さいときに低レベル信号をゼロクロス信号として出力し、前記遅延手段は、前記交流電源の第1の半周期の期間内に前記ゲート信号の立ち上がりエッジ又は立ち下がりエッジが納まり、かつ、前記第1の半周期の直後の半周期に、前記第1の半周期に立ち上がったゲート信号の立ち下がりエッジ、又は前記第1の半周期に立ち下がったゲート信号の立ち上がりエッジが納まるように、前記ゼロクロス信号のエッジを遅延させたゲート信号を出力する。
さらに好ましくは、前記ゼロクロス検出回路は、前記電源電圧が前記閾値より大きいときに高レベル信号を、小さいときに低レベル信号をゼロクロス信号として出力し、前記遅延手段は、前記ゲート信号のレベルの切り換えのタイミングが前記交流電源のゼロクロス点と一致せず、かつ、ゲート信号の位相と交流電源の位相とが時間に関係なく一定であるように前記ゼロクロス信号のエッジを遅延させたゲート信号を出力する。
さらに好ましくは、前記ゼロクロス検出回路は、前記電源電圧が前記閾値より大きいときに高レベル信号を、小さいときに低レベル信号をゼロクロス信号として出力し、前記遅延手段は、第1の遅延時間aと前記第2の遅延時間bとの関係がa<4msかつ2ms<b<7.7msかつa<bとなるようにゼロクロス信号のエッジを遅延させたゲート信号を出力する。
さらに好ましくは、前記負荷はヒータであり、前記電力制御手段は、前記ヒータの温度に応じた電力を通電するよう前記ゼロクロス同期スイッチング素子のゲート信号をオンレベルに制御する。
あるいは、本発明は、上記電力制御装置により、ヒータを前記負荷としてその温度を制御することを特徴とするヒータ制御装置にある。
あるいは、本発明は、画像データに応じた顕像を、色材によって印刷媒体上に形成する画像形成手段と、
前記印刷媒体上の色材を熱定着させるためのヒータと、
前記ヒータを制御するための請求項4または5に記載のヒータ制御装置と
を備える画像形成装置にある。
本発明によれば、交流電源電圧の波形が歪んでいる場合でも良好なヒータの波数制御が可能となる。また、電源周波数の変動が生じても、良好なヒータの波数制御が可能となる。
<画像形成装置の構成および動作>
図1は、本発明の電子写真方式でインライン型の中間転写ベルト(中間転写手段)を有するフルカラー画像形成装置(フルカラープリンタ)の一例を示す概略構成図である。
この画像形成装置1000は、イエロー色の画像を形成する画像形成部1Yと、マゼンタ色の画像を形成する画像形成部1Mと、シアン色の画像を形成する画像形成部1Cと、ブラック色の画像を形成する画像形成部1Bkの4つの画像形成部(画像形成ユニット)を備えており、これら4つの画像形成部1Y,1M,1C,1Bkは一定の間隔において一列に配置される。
各画像形成部1Y,1M,1C,1Bkには、それぞれ像担持体としてのドラム型の電子写真感光体(以下、感光ドラムという)2a,2b,2c,2dが設置されている。各感光ドラム2a,2b,2c,2dの周囲には、一次帯電器3a,3b,3c,3d、現像装置4a,4b,4c,4d、転写手段としての転写ローラ5a,5b,5c,5d、ドラムクリーナ装置6a、6b、6c、6dがそれぞれ配置されており、一次帯電器3a,3b,3c,3dと現像装置4a,4b,4c,4dとの間の下方には、レーザー露光部7が設置されている。
各感光ドラム2a,2b,2c,2dは、負帯電のOPC(有機光導電体)感光体でアルミニウム製のドラム基体上に光導電層を有しており、不図示の駆動装置によって図2の時計回り方向に所定のプロセススピードで回転駆動される。
一次帯電手段としての一次帯電器3a,3b,3c,3dは、帯電バイアス電源(不図示)から印加される帯電バイアスによって各感光ドラム2a,2b,2c,2dの表面を負極性の所定電位に均一に帯電する。
各現像装置4a,4b,4c,4dには、それぞれイエロートナー、シアントナー、マゼンタトナー、ブラックトナーが収納されている。現像装置4a,4b,4c,4dは、それぞれ各色の感光ドラム2a,2b,2c,2d上に形成される各静電潜像に各色のトナーを付着させてトナー像として現像(可視像化)する。
一次転写手段としての転写ローラ5a,5b,5c,5dは、各一次転写部32a〜32dにて中間転写ベルト8を介して各感光ドラム2a,2b,2c,2dに当接可能に配置されている。
ドラムクリーナ装置6a、6b、6c、6dは、感光ドラム2上で一次転写時の残留した転写残トナーを、該感光ドラム2から除去するためのクリーニングブレード等を有している。
中間転写ベルト8は、ポリカーボネート、ポリエチレンテレフタレート樹脂フィルム、ポリフッ化ビニリデン樹脂フィルム等のような誘電体樹脂によって構成されている。この中間転写ベルト8は、各感光ドラム2a,2b,2c,2dの上面側に配置されて、二次転写対向ローラ10とテンションローラ11間に張架されていて、該二次転写対向ローラ10は、二次転写部34において、中間転写ベルト8を介して二次転写ローラ12と当接可能に配置されている。
二次転写対向ローラ10は、二次転写部34にて中間転写ベルト8を介して二次転写ローラ12と当接可能に配置されている。また、無端状の中間転写ベルト8の外側で、テンションローラ11の近傍には、該中間転写ベルト8の表面に残った転写残トナーを除去して回収するベルトクリーニング装置(不図示)が設置されている。また、二次転写部34よりも転写材Pの搬送方向の下流側には、定着ローラ16aと加圧ローラ16bを有する定着器16が縦パス構成で設置されている。
露光部7は、与えられる画像情報の時系列電気デジタル画素信号に対応した発光を行う半導体レーザ等のレーザー発光手段と、ポリゴンレンズ、反射ミラー等で構成される。各感光ドラム2a、2b、2c、2dを画像信号で変調されたレーザ光で露光することによって、各一次帯電器3a,3b,3c,3dで帯電された各感光ドラム2a,2b,2c,2dの表面に画像情報に応じた各色ごとの静電潜像を形成する。
図2に露光部(レーザースキャナユニット)7の上視図を記す。図2においてBDセンサ214はレーザドライバ117基板上に実装されておりBk用感光ドラム2dの走査開始側に取り付けられている。
Bk用感光ドラム以外へのレーザ露光走査もBDセンサ214でのビーム検知信号をもとに行われる。図2のようにレーザ光を同じ方向から照射した場合は、Y用、M用感光体へのレーザ露光走査は、主走査の後端側から露光することになり、C用、Bk用感光体への露光とは逆方向となる。この場合はY用、M用ビデオデータの1ライン分をLIFO(Last In First Out)メモリ等に入れ画像の順番を入れ替えるのが普通である。もちろん全ての感光体について主走査ラインの先頭から照射されるのであればLIFOを用いる必要はない。
さて、本実施形態の画像形成装置は以上のように構成され動作するが、トナー等の色材の熱定着器を備える画像形成装置であればその画像形成機構が本実施形態と相違するものであっても、本発明は適用可能である。
図1の画像形成装置(電子写真式プリンタ)による画像形成は以下のように行われる。画像形成開始信号が発せられると、所定のプロセススピードで回転駆動される各画像形成部1Y,1M,1C,1Bkの各感光ドラム2a,2b,2c,2dは、それぞれ一次帯電器3a,3b,3c,3dによって一様に負極性に帯電される。そして、露光装置7は、外部から入力されるカラー色分解された画像信号をレーザー発光素子から照射し、ポリゴンレンズ、反射ミラー等を経由し各感光ドラム2a,2b,2c,2d上に各色の静電潜像を形成する。
そして、まず感光ドラム2a上に形成された静電潜像に、感光ドラム2aの帯電極性(負極性)と同極性の現像バイアスが印加された現像装置4aにより、イエローのトナーを付着させてトナー像として可視像化する。このイエローのトナー像は、感光ドラム2aと転写ローラ5aとの間の一次転写部32aにて、一次転写バイアス(トナーと逆極性(正極性))が印加された転写ローラ5aにより、駆動されている中間転写ベルト8上に一次転写される。
イエローのトナー像が転写された中間転写ベルト8は、画像形成部1M側に移動される。そして、画像形成部1Mにおいても、前記と同様にして、感光ドラム2bに形成されたマゼンタのトナー像が、中間転写ベルト8上のイエローのトナー像上に重ね合わせて、一次転写部32bにて転写される。この時、各感光体ドラム2上に残留した転写残トナーは、ドラムクリーナ装置6a、6b、6c、6dに設けられたクリーナブレード等により掻き落とされ、回収される。
以下、同様にして、中間転写ベルト8上に重畳転写されたイエロー、マゼンタのトナー像上に画像形成部1C,1Bkの感光ドラム2c,2dで形成されたシアン、ブラックのトナー像を各一次転写部32a〜32dにて順次重ね合わせて、フルカラーのトナー像を中間転写ベルト8上に形成する。
そして、中間転写ベルト8上のフルカラーのトナー像先端が、二次転写対向ローラ10と二次転写ローラ12間の二次転写部34に移動されるタイミングに合わせて、給紙カセット17又は手差しトレイ20から選択されて搬送パス18を通して給紙される転写材(用紙)Pが、レジストローラ19により二次転写部34に搬送される。二次転写部34に搬送された転写材Pに、二次転写バイアス(トナーと逆極性(正極性))が印加された二次転写ローラ12により、フルカラーのトナー像が一括して二次転写される。
フルカラーのトナー像が形成された転写材Pは、定着器16に搬送されて、定着ローラ16aと加圧ローラ16bとの間の定着ニップ部でフルカラーのトナー像が加熱、加圧されて転写材Pの表面に熱定着された後に、排紙ローラ21によって本体上面の排紙トレイ22上に排出されて、一連の画像形成動作を終了する。
<コントローラ部の構成>
図3は従来の画像形成装置1000におけるコントローラ部150および画像処理部300のブロック図である。画像形成装置1000は、コンピュータ106等のホスト装置から所定形式の印刷命令を受信すると、画像処理部300においてその命令の解析や、画像形成装置の階調表現能力等に応じたビットマップ画像データの生成等を行う。生成された画像データは、コントローラ150からの画像処理部300に入力されるBD信号や垂直同期信号などを同期信号に応じてコントローラ部150に入力される。コントローラ部150では、まずPWM部215において、画像信号にパルス幅変調を施してレーザユニット117によるレーザのオンオフ信号となるPWM信号を生成し、レーザユニット117に入力する。
コントローラ部150においては、CPU201は、I/Oインターフェース206に接続されたデバイスにより構成されるエンジン部を含めてコントローラ150全体の制御を行う。CPU201は、画像形成装置1000の制御手順(制御プログラム)を記憶した読み取り専用メモリ203(ROM)からプログラムを順次読み取り、実行する。CPU201のアドレスバスおよびデータバスは202のバスドライバー回路、アドレスデコーダ回路をへて各負荷に接続されている。また、RAM204は、入力データの記憶や作業用記憶領域等として用いる主記憶装置を構成するランダムアクセスメモリである。
I/Oインターフェース206は各種入出力デバイスに接続されている。入出力デバイスには、操作者が操作を行うためのタッチパネルやスイッチおよび装置の状態等を表示する液晶やLEDを含む操作パネル151や、給紙系、搬送系、光学系の駆動を行うモーター類207、搬送系等におけるクラッチ類208、ソレノイド類209、また、搬送される用紙を検知するための紙検知センサ類210等の画像形成装置の各負荷が含まれる。そのほか、現像器118に配置された、現像器内のトナー量を検知するトナー残検センサ211や、各負荷のホームポジション、ドアの開閉状態等を検知するためのスイッチ類212、高圧ユニット213、ビーム検知(BD)センサ214もI/Oポート206に接続される。高圧ユニット213は、CPU201の指示に従って、1次帯電器113、現像器118、転写前帯電器121、転写帯電器133、分離帯電器134へ高圧を出力する。また、熱定着器16のヒータ温度を測定するための温度センサ218の入力信号もIOインターフェース206に入力される。
CPU201には、ヒータ駆動回路216およびゼロクロス検出回路217が接続されている。ヒータ駆動回路216にはさらにオンデマンドヒータ701が接続されている。本実施形態では、ヒータ駆動回路216およびゼロクロス検出回路217はCPU201に直接接続されているが、IOインターフェース206を介して接続しても良い。CPU201は、ゼロクロス検出回路217に対して、チャタリング除去のためのレジスタ設定値を入力する。ゼロクロス検出回路217は、電源電圧のゼロクロス点を検出して、レジスタ設定に従ってチャタリングを除去し、ゼロクロス信号ZERO_OUTとしてCPU201に入力する。CPU201からヒータ駆動回路216に対しては、ヒータ701に対する通電/切断を制御するためのヒータ制御信号が入力される。CPU201は、入力されたゼロクロス信号ZERO_OUTに基づいてヒータ制御信号を生成する。ヒータ駆動回路216は、ヒータ駆動信号のオンのときにヒータ701へと交流電源901からの電源電圧を供給する。
また、ホスト装置106がコンピュータではなく、画像スキャナなどである場合には、そのCCDユニット等のイメージセンサから出力された画像信号が画像処理部300に入力される。画像処理部300では所定の画像処理を行い、PWM部215に入力する。PWM部215は、入力された画像データに従ってレーザーユニット117の制御信号を出力する。レーザーユニット117から出力されるレーザー光は感光ドラム110を照射し、露光するとともに非画像領域において受光センサであるところの214のビーム検知センサによって発光状態が検知され、その出力信号がI/Oポート206に入力される。前述の通りその信号が画像処理部300に入力される同期信号の基準信号となる。
<画像形成動作>
次に画像形成装置の動作の説明を行う。画像形成動作開始信号が発せられると、選択された用紙サイズ等により選択された給紙段から給紙動作を開始する。たとえば上段の給紙段から給紙された場合について説明すると、まず給紙ローラにより、カセットから転写材Pが一枚ずつ送り出される。そして転写材Pが給紙ガイド18の間を案内されてレジストローラ19まで搬送される。その時レジストローラは停止されており、紙先端はニップ部に突き当たる。その後、画像形成部が画像の形成を開始するタイミング信号に基づいてレジストローラは回転を始める。この回転時期は、転写材Pと画像形成部より中間転写ベルト8上に一次転写されたトナー画像とが二次転写領域においてちょうど一致するようにそのタイミングが設定されている。
一方画像形成部では、画像形成動作開始信号が発せられると、既述の動作によって各色のドラム上に静電潜像が形成される。すなわち、副走査方向の形成タイミングは中間転写ベルト8の回転方向において一番上流にある感光ドラム(本実施形態の場合はY)から順に各画像形成部間の距離に応じて決定され、制御される。また各ドラムの主走査方向の書き出しタイミングについては図示しない回路動作により1つのBDセンサ信号(本実施形態ではBkに配置されている)を用いて、擬似BDセンサ信号を生成し制御する。形成された静電潜像は、前述したプロセスにより現像される。そして前記一番上流にある感光ドラム2a上に形成されたトナー画像が、高電圧が印加された一次転写用帯電器5aによって一次転写領域において中間転写ベルト8に一次転写される。一次転写されたトナー像は次の一次転写領域まで搬送される。そこでは前記したタイミング信号により、各画像形成部間をトナー像が搬送される時間だけ遅延して画像形成が行われており、前画像の上にレジストを合わせて次のトナー像が転写される事になる。以下も同様の工程が繰り返され、結局4色のトナー像が中間転写ベルト8上において一次転写される。
その後記録材Pが二次転写領域に進入して、中間転写ベルト8に接触すると、記録材Pの通過タイミングに合わせて二次転写ローラ12に、高電圧を印加させる。そして前述したプロセスにより中間転写ベルト上に形成された4色のトナー画像が記録材Pの表面に転写される。その後記録材Pは搬送ガイド34によって定着ローラニップ部まで正確に案内される。そしてローラ対16a,16bの熱及びニップの圧力によってトナー画像が紙表面に定着される。その後、内外排紙ローラ21により搬送され、紙は機外に排出される。
次に図4以下を用いて本発明のオンデマンドヒータの波数制御について説明する。図4は図1のオンデマンドヒータ16の構成図である。オンデマンドヒータ16は、セラミックヒータ701、定着フィルム702、加圧ローラ703、コの字板金711、サーミスタ712、ホルダ713、セルフバイアス回路714を備えている。セラミックヒータ701は、セラミックに発熱パターンを印刷したヒータであり、1秒間で50℃ほど温度上昇する極めて応答性の高いヒータである。定着フィルム702は金属を基材とし、その上に300μmほどのゴム層を設け、さらにフッ素表面処理を施したフィルムで、熱容量が極めて小さく、ニップ部(接触部位)のみヒーターの熱を伝える。加圧ローラ703は硬度60度程度のローラで、定着フィルム702を摩擦駆動している。コの字板金711は定着フィルム702を内側から加圧ローラ703に加圧しており、その加圧力は180N程度である。サーミスタ712はヒータ701の温度を検知する。ヒーター中央に配置されたメインサーミスタは定着温度制御のための温度を検知している。ヒーター端部に配置されるサブサーミスタは、小サイズ紙などを通紙した際の非通紙部の温度上昇を検知している。サーミスタ712は温度センサ218を構成しており、サーミスタ712の出力はたとえばAD変換器によりディジタル信号に変換された温度信号として温度センサ218から出力される。図5は図4のヒータ701の平面図である。図中、発熱体704は、電極705の両端に電圧を印加することで発熱する。
<ヒータ駆動回路>
次に、定着器16におけるセラミックヒータ701の駆動、制御を行うヒータ駆動回路216について説明する。図6は、本発明にかかるセラミックヒータ701の駆動、制御を行うヒータ駆動回路の回路図である。図6に示したように、ヒータ駆動回路216は、ACフィルタ902と、交流電源901にACフィルタ902を介して接続されたセラミックヒータ701、ACフィルタ902及びセラミックヒータ701間に接続されたトライアック904,抵抗905,906、この抵抗905,906間に直列接続されたフォトトライアックカプラ907、このフォトトライアックカプラ907に一端が接続された抵抗908、フォトトライアックカプラ907にコレクタ端子を接続したトランジスタ909、このトランジスタ909のベース端子に接続された抵抗910を有する。抵抗910の一端にはCPU201が接続される。
商用電源等の交流電源901は、ACフィルタ902を介してセラミックヒータ701へ電力を供給することによりセラミックヒータ701を発熱させる。このセラミックヒータ701への供給電力は、トライアック904により通電、遮断が行われる。抵抗905,906は、トライアック904のためのバイアス抵抗であり、また、フォトトライアックカプラ907は、1次、2次間の沿面距離を確保するためのデバイスである。フォトトライアックカプラ7はトライアック904のゲート信号のスイッチを構成しており、その発光ダイオードに通電することにより受光素子が導通状態となってトライアック904のゲート信号がオン(導通状態)となり、トライアック904自体がオンされる。
抵抗908は、フォトトライアックカプラ907の電流を制限するための抵抗であり、トランジスタ909によりオン(導通状態)/オフ(非道通状態)される。トランジスタ909は、抵抗910を介してCPU201からのヒータ制御信号にしたがって動作し、ヒータ制御信号がオンであればオンとなり、フォトトライアックカプラ7の発光ダイオードに通電され、ひいてはトライアック904がオンされる。ヒータ制御信号がオフであればトランジスタ909もオフとなってトライアック904もオフされる。
図4の構成図で説明したようにヒータの熱応答は極めて速い。したがってオンデマンドヒータではAC波形の波数を制御する波数制御やオン位相を制御する位相制御を行って温調することが一般的である。位相制御は高調波や端子雑音が厳しくコスト的にも高い。そのため本実施形態では、コストやノイズ面で有利な波数制御を用いている。しかしながらゼロクロスに対する考え方は位相制御においても同じである。
ヒータの波数制御について図7を用いて説明する。図6で用いているトライアック904はゼロクロス同期タイプのもので、AC入力波形のゼロクロス点より前からオン信号が入っていれば、すなわちゼロクロス点においてゲート信号がオンであれば、そのゼロクロス点から次のゼロクロス点までの半波分の電流を導通する。
図7に示すようにタイミングt1でヒータ制御信号がオンとなり、そのレベルをゼロクロス点z1まで保持すると、トライアック904はゼロクロス点z1から次のゼロクロス点z2までの半波波形W1を導通(オン)する。ゼロクロス点z2でヒータ制御信号がオンのままだと半波波形W2も通電する。タイミングt2でヒータ制御信号をオフすると、トライアック904はゼロクロス点z3で非導通(オフ)となる。次にゼロクロス点z3とz4との間のタイミングt3でヒータ制御信号をオンすると、その次のゼロクロス点z4から半波波形W3が通電される。このようにトライアック904によって交流の半波を通電する際は、そのゼロクロス点よりも前のタイミングでヒータ制御信号をオンに切り替えて少なくともゼロクロス点においてそのレベルを保持している必要がある。逆にトライアック904を非道通とする際は、非道通とするタイミングであるゼロクロス点よりも前のタイミングでヒータ制御信号をオフに切り替えて少なくともゼロクロス点においてそのレベルを保持している必要がある。
次に図8を用いて波数制御のレベルについて説明する。オンデマンドヒーターに印加する交流波形は、本実施形態では15半波を1ブロックとし、1ブロック内の半波をどれだけオンさせるかによって15レベルの値を持っている。レベル1は15半波のうち1半波だけをオンし、レベル2は2半波をオンする。以下同様にオンする半波の数に応じて、15レベルの値を持つ。前述したメインサーミスタによる温度検知結果に応じて、図8の温調レベルを使い分ける。なお、本実施形態のセラミックヒータは印加電圧に対する応答性が極めて高いために、1ブロック中においてできるだけ一様な間隔でオンするのが望ましい。電源が50Hzであれば1半波に相当する時間は10ミリ秒であり、60Hzであれば8.3ミリ秒である。したがって、電源が50Hzの場合には150ミリ秒、60Hzの場合には125ミリ秒を1周期として、図8に示した各温調レベルに応じた波形の電流がヒータ701に導通される。なお、このほかレベル0として無通電状態が含まれる。
CPU201は、この15レベルのいずれかでヒータを駆動するために、ヒータ制御信号のオンオフを切り換える。ヒータ制御信号の位相と電源電圧の位相とは、本発明に依れば一定の時間的関係となり、それについては、図11、図12、図14、図15などを参照して後で説明する。この位相の関係を別とすれば、ヒータに通電する波数とヒータ制御信号のオンレベルとは対応関係があり、ヒータの温度制御はヒータ制御信号のオン/オフの切替を制御することで行われる。すなわち、CPU201は、図8の各レベルに対応したパターンでヒータ制御信号を出力する。本実施形態では、ヒーターの温度を温度センサ218により検出して、CPU201によりヒータ701が目標温度になるようにPID制御を行い温調レベル(図8に示した。)を使い分けている。目標温度より低い場合は温調レベルを上げ、ヒータに通電させる波数を増やし、目標温度より高い場合は温調レベルを下げ、ヒータに通電させる波数を減らすのがP制御である。すなわち、一定時間あたりのヒータ温度の変動に比例した制御出力(波数)を負荷に与えることで、フィードバック制御を行う。目標温度に対する温度差の累積値によって温調に使う温調レベルの中心レベルをきめるのがI制御である。これにより定常偏差を解決することができる。急激な温度変化があった場合に中心レベルを変えるのがD制御である。これにより大きな偏差が実際に発生する前にそれを予測制御することができる。
CPU201によるヒータ制御はたとえば次のような制御となる。CPU201は、温度センサ218から入力される温度(温度データ)に基づいて、セラミックヒータを所定の設定温度に維持すべく、図8のレベル0〜レベル15のいずれかとなるよう制御信号の出力パターンを決定し、その出力パターンに応じてヒータ制御信号のオンオフを切り換える。たとえば、印刷開始時にヒータをオンとし昇温させるために、まずCPU201は、所定レベルたとえば最高レベルであるレベル15に対応するパターンでヒータ制御信号を出力する。レベル15では、15半波に相当する時間(以下、この15半波を1サイクル、15半波に相当する時間を1サイクル時間と呼ぶことにする。)、ヒータ制御信号をオンレベルに維持する。これを温度データを所定サンプリングレートで監視しつつ予め定めたサイクル数、繰り返す。ヒータ701が50度/秒程度で昇温するとし、例えば目標温度が150度であり室温が25度であれば、レベル15を250サイクル繰り返せばヒータは125度程度昇温して目標温度となる。その時点で定常状態に移行し、CPU201は予め定めた中心レベル(たとえばそのときの室温に対応して決定しておく。)の駆動パターンにしたがってヒータ制御信号を出力する。そして、CPU201は所定時間おきにヒータ温度を監視し、ヒータ温度が低下したなら低下した温度に応じたレベルに対応するパターンでヒータ駆動信号を出力する。また、過熱したなら超過した温度に応じたレベルに対応するパターンでヒータ駆動信号を出力する。この変化した温度と温調レベルとの対応関係がPID制御により決定される。
なお、本実施形態では各レベルに対応するパターンでヒータ駆動信号を出力するとしたが、特にパターンは定めず、波数を各パターンに対応させて駆動してもよい。
<ゼロクロス検出回路>
次に、ゼロクロス検出回路の詳細な回路構成を説明する。まず本願発明との対比のために、図18に、従来のゼロクロス検出回路の回路図を示す。図18に示したように、ゼロクロス検出回路は、ACフィルタ902を介して交流電源901が入力されるダイオードブリッジ931、このダイオードブリッジ931の出力端子に接続される保護抵抗932、この保護抵抗932とダイオードブリッジ31のマイナス端子間に接続され交流電源901に対してループ形成する抵抗933,コンデンサ935及び抵抗936、これらループを形成する回路素子に並列接続されたトランジスタ937、抵抗938、このトランジスタ937によって抵抗938を介して駆動されるフォトカプラ942、このフォトカプラ942で構成される。ダイオードブリッジ931には、ACフィルタ902を介して交流電源901が入力される。このダイオードブリッジ931により全波整流された交流信号は保護抵抗932を介して、抵抗933,コンデンサ935,抵抗936を通り、ダイオードブリッジ931のマイナス端子に入力され、交流電源901に対して電流ループが形成される。
トランジスタ937には、交流電源901の電圧と、抵抗932,933,コンデンサ935,抵抗936によって決定される電圧が入力される。ここで、交流電源901の電圧が、抵抗932,933,コンデンサ935,抵抗936,トランジスタ937によって決定されるスライス電圧Vth以下であれば、トランジスタ937はオフとなり、上記スライス電圧Vth以上であればオンとなる。トランジスタ937の出力は、フォトカプラ942を駆動する。フォトカプラ942は、1次,2次間の沿面距離を確保するためのデバイスである。
上記のようなゼロクロス検出回路において、交流電源901がスライス電圧Vth以下であるとき、トランジスタ937はオフし、フォトカプラ942はオンとなり、ゼロクロス検出回路の出力ZEROXAはLowとなる。すなわち、ゼロクロス信号ZEROXAは、「交流電源901の電圧がゼロボルトを中心として上下にスライス電圧Vth以内」であること、すなわちゼロクロス付近の電圧値であることを示す信号である。ここで、トランジスタ937のスイッチングスピードは、抵抗933,936及びコンデンサ935により制御される。
図18の回路での波形の様子を図19に示す。図18の全波整流回路を用いたゼロクロス検出回路は、AC波形のゼロクロス近傍点のみにパルスが現れるようなゼロクロス信号を生成し、図19ZEROXA信号に示すようなアクティブローのゼロクロス信号が生成される。図20のような歪んだAC入力正弦波の場合に全波整流回路によるゼロクロス信号生成を行うと、整流後の波形が図20a点波形のようになり、トランジスタの閾値レベルに達しない部分が出来てしまう場合がある。その結果、生成されるゼロクロス信号は図20ZEROXAのようにり、本来ほしい点線部分のパルスが出力されない。このようなゼロクロス信号を用いて図8の波数制御を行った場合、PID制御を用いても思うように目標温度に収束させられない場合が出たり、リプルが大きく出たりすることがある。
<本発明に係るゼロクロス検出回路>
図9は、本実施形態にかかる半波整流によるゼロクロス検知を行うゼロクロス検知回路の回路図である。この回路は、図20のようにAC入力正弦波が歪んでいる場合の誤動作を防ぐことができる。図9に示した回路において、ダイオード961には、ACフィルタ902(不図示)を介して、HOT端子側のAC信号が入力され半波整流される。この半波整流された信号は、抵抗965,コンデンサ963,抵抗968を介して、ダイオードブリッジ960のマイナス端子に入力され、交流電源901に対してループを形成する。なおブリッジ960の出力は、平滑回路や降圧回路を介して直流電源として画像形成装置の各部に供給される。
フォトカプラ966は、1次、2次間の沿面距離を確保するためのデバイスである。フォトカプラ966からの信号に応じて抵抗962,964で決まる閾値レベルに応じてトランジスタ967がオン/オフされて図10のZEROXの波形が得られる。
図10は、この回路により送出されるZEROX信号を説明する図である。図10に示すように、抵抗962,964で決められた閾値レベルと半波整流した電圧とが比較され、半波ごとにHレベルとLレベルが切り換わるゼロクロス信号が生成される。図18の回路ではAC入力正弦波のゼロクロス点でアクティブローのパルス状のゼロクロス信号を発生していたが、図9の回路ではACの略半波分のデューティーでゼロクロス信号が切り換わるため、ゼロクロス点はZEROX信号の立ち上がり、立下り部分になる。
図9の半波整流回路を用いたゼロクロス検知回路は、図21に示すように、ゼロクロス点での立ち上がり、立下りが確保されたゼロクロス信号を出力する。したがって歪み波形に対しては、半波整流によるゼロクロス信号生成のほうが有利である。
本実施形態では、歪み波形として図20を用いて説明したが図16、図17に示すように他の歪み波形についても同様の効果が得られる。すなわち、電源波形が歪んでいても、確実にゼロクロス点を検出して、ゼロクロス信号の立ち上がりあるいは立ち下がりエッジとして出力することができる。
しかし、図11に示すように、b点波形の閾値部分ではチャタリングが発生することがある。また、整流波形からトランジスタの閾値レベルでゼロクロス信号を生成しているため、ゼロクロス信号の立ち上がりエッジ、立ち下がりエッジは厳密に言うと図13に拡大したようにAC正弦波のゼロクロスポイント(○印の点)と少しずれている。本実施形態では、ゼロクロス点からゼロクロス信号立ち下がりまでの遅延時間Tzs、ゼロクロス信号立ち上がりからゼロクロス点までの遅延時間Tzeは、約500μsから1msになるよう閾値レベルを決めている。従来のゼロクロス回路(図18)でのゼロクロス信号ZEROXAのパルス幅は500μsから1ms程度とされている。それ以上短いと、パルスがうまく出なかったりチャタリングの影響が出たりし、また長すぎるとひずみ波の高調波成分の影響を受けたりするため、パルス幅は略500μs〜1msとされている。本実施形態では、スレッシュレベル(閾値)付近のゼロクロス信号に生じるチャタリングを防止するため、Tzs、Tzeをそれぞれ500μs〜1msとした。したがって電源周波数が60Hzの場合、ZEROXのH区間は7.333ms〜6.333msということになる。一般化すると、Tzs、Tzeをd秒とするための閾値Vthは、電源電圧が理想的な正弦波の実効値がV、周波数がfであれば、Vth=√2・V・sin(2πfd)となる。すなわち、Tzs、Tzeをそれぞれ500μs〜1msとするための閾値Vthは、実行電圧100V、周波数50Hzの交流電源の場合には、Vthは22.5V〜44.5V程度となる。
本実施形態ではヒーターに給電するためのトライアックとして、ゲート信号がオンであるゼロクロス点からゲート信号がオフであるゼロクロス点までを導通するゼロクロス同期のものを用いているため、トライアックをオンオフするゲート信号の切替のタイミングはトライアックによるゼロクロス検知ポイントより早いタイミングである必要がある。そこで本実施形態では図11のX,Yの値を最適に設定することでゼロクロス点の問題を解決している。本実施形態では、チャタリング除去はゼロクロス検出回路により行っている。もちろん、いずれもゼロクロス信号の位相の遅延を伴うものであり、ゼロクロス検出回路のみにより実現することも、CPUのみにより実現することもできる。
本実施形態の方式では、ゼロクロス検出回路217に、図9の回路に加えてチャタリング除去回路を備える。すなわち、図12に示すように、図9のZEROX信号をASIC1201に入力してチャタリングを除去し、その信号を出力ゼロクロス信号ZEROX_OUTとして出力する。このように図9の回路と図12の回路とが一体となってゼロクロス検出回路217を構成する。このASIC1201は、CPUから設定可能なレジスタを備えており、たとえば次のような構成を有する。すなわち、レジスタに設定された値をrとして、入力されるZEROX信号を一定周期でサンプリングし、サンプリングした値がr回連続して同一のレベルであったなら、そのレベルを出力ゼロクロス信号ZEROX_OUTとして出力する。このようにして、図12のようにASIC1201で半波整流回路からのゼロクロス信号を受信し、CPUによって設定されるレジスタ値のサンプリング数だけ同一レベルが連続した場合にそのレベルを示すZEROX_OUTという信号が出力される。したがって、チャタリングが収束してからサンプリング数に応じた時間、出力される信号の位相は遅延する。
しかしながら実際はゼロクロス検知回路内の容量成分などにより、チャタリングが発生することはほとんどなく、CPUによるサンプリング数rは大きな値にする必要はない。またCPUのサンプリング周波数はゼロクロス信号の周波数に対して充分早いため、このチャタリング除去に要する時間はわずかで、ヒーターオンオフ信号生成のための遅延時間X,Yに影響を及ぼすほどの長さではない。このサンプリング数rは出荷時に設定されている固定値である。
信号ZEROX_OUTはCPU201に入力され、さらに一定時間遅延されてヒータ制御信号となる。CPUによる遅延は、内蔵あるいは外付けのタイマによって所望時間測定し、測定した時間だけ遅延させて出力するという方法によって行う。なお、信号ZEROX_OUTは、商用電源の交流周波数と同じ程度(50〜60Hz)の周波数を持ち、CPUの同期信号の周波数(数MHz〜数百MHz程度)と比較すると相当低周波である。したがって、信号ZEROX_OUTの変動により割り込みを発生させるまでもなく、CPU201が一定周期でレベルの変化を監視すれば実用的には十分であろう。もちろん号ZEROX_OUTの変動による割込み駆動にしてもよい。
さて、信号ZEROX_OUTが入力されたCPU201は、その立ち上がりエッジ及び立ち下がりエッジをそれぞれ設定値X,Yずつ遅延させてヒータ制御信号を生成する(図11参照)。X、Yの値は、図14、図15の双方の波形を満たすような遅延量に設定される。図14は45Hz,図15は65Hzの波形である。日本における商用電源の周波数は通常50Hzまたは60Hzであるため、電源周波数として45Hzから65Hzまでを想定して、その範囲で正常動作することを保証しておけば実用的には十分である。
図14においては、半波の長さが11.1ミリ秒である。ゼロクロス信号にはチャタリング除去分の遅延(図14には表れていない)が生じている。さらに、閾値レベルによるエッジのずれ(立ち上がり立ち下がりで合わせて1ミリ秒〜2ミリ秒の長さ半波の長さより短い)のため、図14のオンレベルの長さは9.1ミリ秒〜10.1ミリ秒程度となり、信号のデューティ比は0.5より小さくなっている。そのために、このままでは、ZEROX_OUT信号の遅延量によってはオンレベルが電源電圧の互いに隣接するゼロクロス点の間にすべて収まることもあり得る。その場合、ZEROX_OUT信号の立ち上がりや立ち下がりエッジに同期してヒータ制御信号をオン/オフしても、オンオフしたそのレベルが電源電圧のゼロクロス点では保持されておらず、通電されないということも生じ得る。そこで、ゼロクロス点におけるヒータのオン/オフを確実に行うべく、ヒータ制御信号をZEROX_OUT信号のエッジに同期してオン/オフさせず、しかもヒータ制御信号の位相と電源電圧の位相とが時間に関係なく一定となるようにヒータ制御信号の位相をずらす。そのために、ヒータ制御信号の立ち上げ/立ち下げタイミングをZEROX_OUT信号のエッジから一定時間X,Yずつ遅延させることで、ゼロクロス点においてはヒータ制御信号が確実に所望のレベルにあらしめる。これは図15についても同様である。具体的には以下の通りとする。なお、以下の例では、ゼロクロス信号の閾値Vthの値は、ゼロクロス信号と実際のゼロクロス点とのずれが、0.8ミリ秒〜1.8ミリ秒程度になるように決定されている。これはゼロクロス点の検出精度を上げるためである。
図14,図15を満たすためには高い周波数側で考えればよい。a点はAC半波上昇のゼロクロス点より遅いタイミングであり、b点はAC半波下降ゼロクロス点より早いタイミングである。そのため、Y>Xの関係が望ましい。なお、このX、Yには、ASIC1201によるチャタリング除去に要した時間も含まれている。そのため必ずしもY>Xの関係になっている必要はないが、Y<Xとなった場合、設定時間によっては立ち下がりエッジのチャタリング除去時間のマージンが充分に取れない(時間YがASIC1201によるチャタリング除去時間以下になる)タイミングが出てくる可能性がある。
また図15ではゼロクロス信号のH部分が7.7msのうちの4〜6ms程度、逆にLの部分が7.7msに対し11.4〜9.4ms程度といった関係になるように閾値Vthが与えられている。遅延量Xが次のトライアックオンのためのゼロクロスより遅れてはいけないのでX<4msとなる。つまり時間Xは、図13の半波周期からTzs、Tze時間を引いた数値の最小値(この場合ゼロクロス信号のH部分を4〜6ms程度と想定しているので最低値である4ms)以上の値になってはいけない。もし4ms以上の時間を取った場合、次の半波のためのオフ信号(ヒータ制御信号がオフになること)が出る前に、ヒータ制御信号がオンのままトライアックがゼロクロスを検知して通電してしまう。
逆に時間Yは一番短くてもトライアックのゼロクロス点を過ぎる時間(Y>Tzeすなわち2ms程度)が必要で、かつ次のトライアックオンまでの時間7.7msより短い時間(Y<7.7ms)が必要である。この場合も7.7ms以上の値を設定してしまうと次のトライアックのゼロクロス検知よりも遅れてしまい、通電できない可能性が出てきてしまう。
以上の関係からX,Yの設定値を決定すればよい。本実施形態の場合、X=2ms、Y=4ms程度の時間にしておけばチャタリングも除去する時間的余裕も持つことができるとともに、トライアックオンのためのゼロクロス点に対する時間も充分確保される。なお、本実施形態では、X=2ms、Y=4msからASIC1201によるチャタリング除去のための遅延時間を差し引いた時間、CPU201は、ゼロクロス信号ZEROX_OUTの立ち上がり、立ち下がり各エッジをそれぞれ遅延させる。チャタリング除去のための遅延時間としては、たとえば実験的に決定した固定値を与えておく。そして、CPU201は、そのタイミングに合わせて、図8のように決定された調温レベルに応じたパターンでヒータ制御信号のオンレベルとオフレベルとを切り換える。たとえば、レベル8であれば、オフ,オン,オフ,オン,オフ,オン,オフ,オン,オン,オフ,オン,オフ,オン,オフ,オンというパターンでヒータ制御信号のオンレベルとオフレベルとを切り換える。そして切替のタイミングは、図14、図15に示したヒータ制御信号のタイミングである。
この様な構成により、本実施形態の画像形成装置は、半波整流波を用いてゼロクロス信号を生成することで、交流電源電圧の波形が歪んでいる場合でも良好なヒータの波数制御が可能となる。
また、ヒータ制御信号の交流電源波形に対する遅延時間を一定の範囲に収めることで、電源周波数の変動があってそれに対する動的な制御を行うことなく、正常な温度制御が可能となる。
なお、本実施形態では、Yの値はヒータ制御信号のデューティ比がほぼ0.5となるように与えられている。これにより、ヒータ制御信号の一方のエッジ(たとえば立ち上がりエッジ)を、電源の相隣接するゼロクロス点間のタイミングとなるようにXの値を決定すれば、他方のエッジ(たとえば立ち下がりエッジ)も相隣接するゼロクロス点間のタイミングとなる。
<変形例>
本発明は電子写真方式の画像形成装置における熱定着器のみならず、交流電源を用いたヒータの温度制御一般に適用することができる。たとえばインクジェット方式において、インク吐出時にあるいは吐出直後に用紙を加熱することでインクの浸透性を制御する技術において、その場合の用紙加熱用のヒータに本発明を適用して温度制御することができる。
本発明によるカラー画像形成装置の模式断面図 本発明のレーザスキャナ上視図 本発明の制御を司る電装系の構成図 本発明のオンデマンドヒーターユニットの構成図 本発明のセラミックヒーターの上視図 ヒーターオンオフ制御回路を示す図 ゼロクロス同期のトライアックを用いたときのヒーター通電波形を示す図 ヒーター温調に用いる波数制御テーブルを示す図 半波整流のゼロクロス検知回路を示す図 半波整流のゼロクロス検知回路によるゼロクロス信号生成の波形の様子を示す図 半波整流回路でのゼロクロスのチャタリングの様子を示した図 本発明のゼロクロス信号を遅延させてヒーターオンオフ信号を生成する場合の構成図 半波整流波形からゼロクロス信号を作った場合のゼロクロスポイントのずれを説明した図 45Hzでのゼロクロス信号とトライアックオンオフ信号の関係を示した図 65Hzでのゼロクロス信号とトライアックオンオフ信号の関係を示した図 交流電圧波形の別の歪み波を示した図 交流電圧波形の別の歪み波を示した図 全波整流のゼロクロス検知回路を示す図 全波整流のゼロクロス検知回路によるゼロクロス信号生成の波形の様子を示す図 全波整流回路での歪み波の場合のゼロクロス誤動作を示した図 半波整流回路での歪み波の場合の正しいゼロクロス信号生成を示した図
符号の説明
150 DCコントローラ部
201 CPU
215 PWM部
300 画像処理部
106 ホストコンピュータ
701 セラミックヒータ
702 定着フィルム
703 加圧ローラ
901 交流電源
902 ノイズフィルタ
904 トライアック
904 フォトトライアックカプラ
931 ダイオードブリッジ

Claims (7)

  1. 交流電源から供給される電源電圧と閾値との大小を比較して、比較結果に応じたレベルの信号をゼロクロス信号として出力するゼロクロス検出回路と、
    前記交流電源と負荷との間に配置され、前記電源電圧の正負の切り換わりに同期して、ゲート信号のレベルに応じて交流半波分の電力通電/非通電を制御するゼロクロス同期スイッチング素子と、
    前記ゼロクロス信号の立ち上がりエッジから第1の遅延時間遅延したタイミング、または、前記ゼロクロス信号の立ち下がりエッジから第2の遅延時間遅延したタイミングに同期して、前記負荷に与える電力に応じて前記ゲート信号のレベルを切り換えて出力する電力制御手段と
    を備えることを特徴とする電力制御装置。
  2. 前記ゼロクロス検出回路は、前記電源電圧が前記閾値より大きいときに高レベル信号を、小さいときに低レベル信号をゼロクロス信号として出力し、前記遅延手段は、前記交流電源の第1の半周期の期間内に前記ゲート信号の立ち上がりエッジ又は立ち下がりエッジが納まり、かつ、前記第1の半周期の直後の半周期に、前記第1の半周期に立ち上がったゲート信号の立ち下がりエッジ、又は前記第1の半周期に立ち下がったゲート信号の立ち上がりエッジが納まるように、前記ゼロクロス信号のエッジを遅延させたゲート信号を出力することを特徴とする請求項1に記載の電力制御装置。
  3. 前記ゼロクロス検出回路は、前記電源電圧が前記閾値より大きいときに高レベル信号を、小さいときに低レベル信号をゼロクロス信号として出力し、前記遅延手段は、前記ゲート信号のレベルの切り換えのタイミングが前記交流電源のゼロクロス点と一致せず、かつ、ゲート信号の位相と交流電源の位相とが時間に関係なく一定であるように前記ゼロクロス信号のエッジを遅延させたゲート信号を出力することを特徴とする請求項1に記載の電力制御装置。
  4. 前記ゼロクロス検出回路は、前記電源電圧が前記閾値より大きいときに高レベル信号を、小さいときに低レベル信号をゼロクロス信号として出力し、前記遅延手段は、第1の遅延時間aと前記第2の遅延時間bとの関係がa<4msかつ2ms<b<7.7msかつa<bとなるようにゼロクロス信号のエッジを遅延させたゲート信号を出力することを特徴とする請求項1に記載の電力制御装置。
  5. 前記負荷はヒータであり、前記電力制御手段は、前記ヒータの温度に応じた電力を通電するよう前記ゼロクロス同期スイッチング素子のゲート信号をオンレベルに制御することを特徴とする請求項1乃至4のいずれか1項に記載の電力制御装置。
  6. 請求項1乃至5のいずれか1項に記載の電力制御装置により、ヒータを前記負荷としてその温度を制御することを特徴とするヒータ制御装置。
  7. 画像データに応じた顕像を、色材によって印刷媒体上に形成する画像形成手段と、
    前記印刷媒体上の色材を熱定着させるためのヒータと、
    前記ヒータを制御するための請求項5または6に記載のヒータ制御装置と
    を備えることを特徴とする画像形成装置。
JP2004166143A 2004-06-03 2004-06-03 電力制御装置 Expired - Fee Related JP4630576B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004166143A JP4630576B2 (ja) 2004-06-03 2004-06-03 電力制御装置

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004166143A JP4630576B2 (ja) 2004-06-03 2004-06-03 電力制御装置

Publications (2)

Publication Number Publication Date
JP2005346475A true JP2005346475A (ja) 2005-12-15
JP4630576B2 JP4630576B2 (ja) 2011-02-09

Family

ID=35498783

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004166143A Expired - Fee Related JP4630576B2 (ja) 2004-06-03 2004-06-03 電力制御装置

Country Status (1)

Country Link
JP (1) JP4630576B2 (ja)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199093A (ja) * 2006-01-23 2007-08-09 Kyocera Mita Corp 定着器の温度制御装置
JP2008226002A (ja) * 2007-03-14 2008-09-25 Omron Corp 電力調整装置
JP2009237070A (ja) * 2008-03-26 2009-10-15 Brother Ind Ltd ヒータ制御装置及び画像形成装置
JP2011167059A (ja) * 2010-02-09 2011-08-25 Power Integrations Inc 方法およびスイッチモード電源のためのコントローラ
JP2011528163A (ja) * 2008-07-17 2011-11-10 マイクロライフ・インテレクチュアル・プロパティ・ゲーエムベーハー ヒータ配線制御回路および加熱素子の作動方法
KR101235220B1 (ko) * 2006-07-28 2013-02-20 삼성전자주식회사 위상 감지 장치, 이를 구비한 위상 제어 장치 및 정착기제어 장치
JP2015011152A (ja) * 2013-06-28 2015-01-19 ブラザー工業株式会社 発熱装置、画像形成装置
CN110430624A (zh) * 2019-08-06 2019-11-08 卓明宗 陶瓷发热装置及控制方法
WO2020055590A1 (en) * 2018-09-10 2020-03-19 Hewlett-Packard Development Company, L.P. Power supply device to output zero-cross information of half ac wave
CN114442587A (zh) * 2021-12-21 2022-05-06 潍柴动力股份有限公司 发动机异常断电监控方法、***及存储介质
JP2023500984A (ja) * 2019-12-24 2023-01-17 追▲べき▼創新科技(蘇州)有限公司 設備制御方法、設備制御装置並びに記憶媒体

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186908A (ja) * 1996-12-24 1998-07-14 Canon Inc 加熱装置、及びこれを備えた画像形成装置
JP2003199399A (ja) * 2001-12-28 2003-07-11 Sanyo Denki Co Ltd 交流発電機の出力電力のサイクル制御装置

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10186908A (ja) * 1996-12-24 1998-07-14 Canon Inc 加熱装置、及びこれを備えた画像形成装置
JP2003199399A (ja) * 2001-12-28 2003-07-11 Sanyo Denki Co Ltd 交流発電機の出力電力のサイクル制御装置

Cited By (18)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007199093A (ja) * 2006-01-23 2007-08-09 Kyocera Mita Corp 定着器の温度制御装置
KR101235220B1 (ko) * 2006-07-28 2013-02-20 삼성전자주식회사 위상 감지 장치, 이를 구비한 위상 제어 장치 및 정착기제어 장치
US8494390B2 (en) 2006-07-28 2013-07-23 Samsung Electronics Co., Ltd. Phase detecting device, phase control device including the phase detecting device, and fuser control device including the phase control device
JP2008226002A (ja) * 2007-03-14 2008-09-25 Omron Corp 電力調整装置
JP2009237070A (ja) * 2008-03-26 2009-10-15 Brother Ind Ltd ヒータ制御装置及び画像形成装置
US8036558B2 (en) 2008-03-26 2011-10-11 Brother Kogyo Kabushiki Kaisha Heater controller and image forming apparatus
JP2011528163A (ja) * 2008-07-17 2011-11-10 マイクロライフ・インテレクチュアル・プロパティ・ゲーエムベーハー ヒータ配線制御回路および加熱素子の作動方法
US9263934B2 (en) 2010-02-09 2016-02-16 Power Integrations, Inc. Method and apparatus for determining zero-crossing of an ac input voltage to a power supply
JP2011167059A (ja) * 2010-02-09 2011-08-25 Power Integrations Inc 方法およびスイッチモード電源のためのコントローラ
JP2015011152A (ja) * 2013-06-28 2015-01-19 ブラザー工業株式会社 発熱装置、画像形成装置
WO2020055590A1 (en) * 2018-09-10 2020-03-19 Hewlett-Packard Development Company, L.P. Power supply device to output zero-cross information of half ac wave
CN112673319A (zh) * 2018-09-10 2021-04-16 惠普发展公司,有限责任合伙企业 输出半ac波的过零信息的电力供应设备
US11334018B2 (en) 2018-09-10 2022-05-17 Hewlett-Packard Development Company, L.P. Power supply device to output zero-cross information of half AC wave
CN112673319B (zh) * 2018-09-10 2023-10-10 惠普发展公司,有限责任合伙企业 输出半ac波的过零信息的电力供应设备
CN110430624A (zh) * 2019-08-06 2019-11-08 卓明宗 陶瓷发热装置及控制方法
JP2023500984A (ja) * 2019-12-24 2023-01-17 追▲べき▼創新科技(蘇州)有限公司 設備制御方法、設備制御装置並びに記憶媒体
CN114442587A (zh) * 2021-12-21 2022-05-06 潍柴动力股份有限公司 发动机异常断电监控方法、***及存储介质
CN114442587B (zh) * 2021-12-21 2024-04-16 潍柴动力股份有限公司 发动机异常断电监控方法、***及存储介质

Also Published As

Publication number Publication date
JP4630576B2 (ja) 2011-02-09

Similar Documents

Publication Publication Date Title
JP5697630B2 (ja) 画像形成装置
JP5305982B2 (ja) 通電制御装置及び画像形成装置
JP2010237283A (ja) 画像形成装置
JP5408190B2 (ja) 加熱装置および画像形成装置
JP5424066B2 (ja) 加熱装置および画像形成装置
JP4630576B2 (ja) 電力制御装置
JP6632330B2 (ja) 演算装置及び演算装置を備えた画像形成装置
US11054771B2 (en) Image formation apparatus and heater control method
JP7458901B2 (ja) 定着装置及び画像形成装置
CN106556999B (zh) 图像形成装置
JP7374637B2 (ja) 通電制御装置、及び画像形成装置
JP2006164615A (ja) ヒータ電力制御方法、および画像形成装置
JP2007109487A (ja) ヒーター制御装置及び画像形成装置
JP2013068803A (ja) 加熱定着装置及び画像形成装置
JP5389393B2 (ja) 画像形成装置およびゼロクロス検出制御方法
JP2022029723A (ja) 像加熱装置及び画像形成装置
JP2011164387A (ja) 画像形成装置
JP2006145978A (ja) 画像形成装置
JP5070736B2 (ja) 定着装置及びそれを用いた画像形成装置
JP6823816B2 (ja) 画像形成装置
US20230273561A1 (en) Power control device, fixing device, and image forming apparatus
JP2000047520A (ja) 画像形成装置及びその制御方法
JP2007047473A (ja) 画像形成装置、
JP2006171553A (ja) 画像形成装置
JP2000330653A (ja) 電力制御装置、電力制御方法、画像形成装置、及びコンピュータ読み出し可能な記憶媒体

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070601

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20070601

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100129

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100421

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20101105

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20101115

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131119

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees