JP2005345103A - Stringiness measuring instrument for liquid material - Google Patents

Stringiness measuring instrument for liquid material Download PDF

Info

Publication number
JP2005345103A
JP2005345103A JP2002150643A JP2002150643A JP2005345103A JP 2005345103 A JP2005345103 A JP 2005345103A JP 2002150643 A JP2002150643 A JP 2002150643A JP 2002150643 A JP2002150643 A JP 2002150643A JP 2005345103 A JP2005345103 A JP 2005345103A
Authority
JP
Japan
Prior art keywords
sample
liquid
liquid material
threading rod
string
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002150643A
Other languages
Japanese (ja)
Inventor
Tatsuji Nishihara
達次 西原
Yasuaki Kakigi
保明 柿木
Kichiji Kamei
吉次 亀井
Kiyomitsu Ishikawa
清光 石川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
ISHIKAWA TEKKOSHO KK
Kitakyushu Foundation for Advancement of Industry Science and Technology
Original Assignee
ISHIKAWA TEKKOSHO KK
Kitakyushu Foundation for Advancement of Industry Science and Technology
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by ISHIKAWA TEKKOSHO KK, Kitakyushu Foundation for Advancement of Industry Science and Technology filed Critical ISHIKAWA TEKKOSHO KK
Priority to JP2002150643A priority Critical patent/JP2005345103A/en
Priority to PCT/JP2003/006544 priority patent/WO2003100387A1/en
Priority to AU2003241768A priority patent/AU2003241768A1/en
Publication of JP2005345103A publication Critical patent/JP2005345103A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N13/00Investigating surface or boundary effects, e.g. wetting power; Investigating diffusion effects; Analysing materials by determining surface, boundary, or diffusion effects
    • G01N13/02Investigating surface tension of liquids
    • G01N2013/0241Investigating surface tension of liquids bubble, pendant drop, sessile drop methods

Landscapes

  • Physics & Mathematics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Biological Materials (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a device for measuring stringiness of a liquid material capable of measuring the stringiness of a sample of an amount as small as possible, allowing digital measuring and automatic measurement, capable of eliminating personal errors in measured results caused by measuring persons, and capable of measuring the sample irrespective of electric conductivity of the sample. <P>SOLUTION: This device for measuring the stringiness of the liquid material has a sample receiving dish for storing the examined liquid material, a stringing rod with a lower end brought in contact with the examined liquid material in the receiving dish, and functioned to detect a stringing length of the liquid material by lifting-up thereof, a stringing rod lifting-up means for elevating the stringing rod at a prescribed speed, and an optical detection means for confirming a measurement starting point of the examined liquid material and a height-directional position at a broken time point of the examined liquid material in a strung condition. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、医療分野における唾液、血液、リンパ液、関節液、尿といった各種体液、産業分野におけるインク、塗料、オイル、グリース等、食品分野における醤油、ソース、マヨネーズ、ケチャップ、ドレッシング、乳製品、練り物、スープ等種々のゲル、コロイド、スラリーを含む液状物(以下、液状物と称する。)の粘性のパラメータとしての曳糸性を測定する装置に関する。
【0002】
【従来の技術】
たとえば医療分野において、人の唾液の粘性と精神的、肉体的疲労度が相関関係にあり、疲労度が増すにつれて唾液の粘性が高くなることが知られている処から、唾液の粘性をはじめとする唾液の物性を検査することの必要性が認識されてきている。その際、口腔乾燥を来している患者に対して多量の唾液の採取は困難であった。
【0003】
唾液の粘性測定手段として、たとえばコーンプレート式回転粘度計によって、25℃の唾液を試料として、一定時間回転後のずり応力値(粘度:mPa・s単位)を測定値とする方法がある。しかしながら、試料の温度管理や測定機器の価格の問題で、一般には普及していない。一方、斜面板を用いる粘性計測方法もある。この方法は、一定量の唾液を斜面板の上に垂らし、斜面板の角度を徐々に大きくして唾液が流れ始めるときの角度を測定するか或いは斜面板の角度を一定に保って唾液を斜面板の上に垂らしてその流動長さを測定するものであるが、斜面板の表面性状や角度の評価や唾液を多量に必要とする問題があり、一般化されていない。唾液の物性測定に限らず、医療分野、産業分野、食品分野等で取り扱われる各種液状物の粘性を、簡便かつ精確に測定する手段が強く望まれていた。
【0004】
【発明が解決しようとする課題】
液状物の粘性を測定する手段として液状物の曳糸性を利用し、液状物の糸曳き長さを測定して、この測定値を粘性のパラメータとして用いる方法がある。この方法は、目視で液状物の先端に棒の先端を接触させ、この棒を上方向に引き上げてそのときの液状物の糸曳き長さを測定するものである。しかしながら、被検体である液状物に棒が接触したか否かは、人間の目視による判断に頼っていた。また、液状物の糸曳きが切れた瞬間の判定も人間によっていたため、測定値にかなりに個人差および誤差を生じる問題があった。そこで、発明者らは、特願2001−119474にて、液状物の導電性を利用し、液状物の糸曳きが切れた瞬間の、試料受皿と糸曳き棒間に印加した電圧の変化を検出しこの検出信号によって液状物の曳糸長さを測定する装置及び方法を提案した。しかし、導電性を有しない液状物を測定対象とできない問題があった。
【0005】
本発明は、▲1▼可及的に少ない量の試料で液状物の曳糸性を測定することができる。▲2▼ディジタルな計測ができる。▲3▼自動計測ができ、測定結果の個人差を排除できる。▲4▼試料である液状物が導電性を有すると否とに拘わらず液状物の曳糸性を測定することができる。 液状物の曳糸性測定手段を提供することを目的とする。
【0006】
【課題を解決するための手段】
上記課題を解決するための請求項1に記載の発明は、被検液状物を収容する試料受皿と、該試料受皿内の被検液状物にその下端部が接触しその上昇によって被検液状物の曳糸長さを検出すべく機能する糸曳き棒と、該糸曳き棒を所定の速度で昇降せしめる糸曳き棒昇降手段と、被検液状物の曳糸長さ測定開始時点および曳糸状被検液状物の切断時点の位置を確認する光学的検出手段とを有することを特徴とする液状物の曳糸性測定装置である。
【0007】
請求項2に記載の発明は、被検液状物の曳糸長さ測定開始時点および曳糸状被検液状物の切断時点の位置を確認する光学的検出手段が、糸曳き棒の昇降方向と交叉する方向に光を発する投光器と該投光器からの光を受光する受光器とを有する少なくとも一の光センサーである請求項1に記載の液状物の曳糸性測定装置である。
【0008】
請求項3に記載の発明は、試料受皿及び光センサーの何れか一方または双方に、糸曳き棒の昇降方向における位置調整手段が付設されたものである請求項1又は請求項2に記載の液状物の曳糸性測定装置である。
【0009】
請求項4に記載の発明は、被検液状物の曳糸長さ測定開始時点および曳糸状被検液状物の切断時点の位置を確認する光学的検出手段が、エリアセンサー又は画像処理装置である請求項1に記載の液状物の曳糸性測定装置である。
【0010】
請求項5に記載の発明は、被検液状物を収容する試料受皿と、該試料受皿内の被検液状物にその下端部が接触しその上昇によって被検液状物の曳糸長さを検出すべく機能する糸曳き棒と、該糸曳き棒を所定の速度で昇降せしめる糸曳き棒昇降手段と、該糸曳き棒の下端部が被検液状物に接触したときおよび曳糸状被検液状物の切断時点に糸曳き棒又は試料受皿に負荷される力の変化を検出する荷重測定器を糸曳き棒又は試料受皿に設けたことを特徴とする曳糸性測定装置である。
【0011】
請求項6に記載の発明は、糸曳き棒の下端部形状が、フラット状、凸球面状、凸円錐状、角錐状、球面状先端部を有する凸角錐状、凹球面状、凹円錐状、および凹角錐状の何れかである請求項1乃至請求項5に記載の曳糸性測定装置である。
【0012】
【発明の実施の形態】
以下、本発明をその好ましい実施形態に則して説明する。
【0013】
実施形態1
図1に、本発明の一実施例に係る液状物の曳糸性測定装置を示す。図2乃至図6に、本発明の一実施形態における液状物の曳糸性測定プロセスを示す。
【0014】
図1において、1はモーターであって、歯車列2を介して昇降用ねじ棒3を正逆回転させる。4は昇降テーブルであり、内設されている雌ねじが昇降用ねじ棒3と螺合して昇降用ねじ棒3の正逆回転によって昇降する。この実施例においては、昇降テーブル4は5mm/s〜20mm/sの速度範囲内で昇降する。5は保持器であって、昇降テーブル4に固定されるとともに、糸曳き棒6を着脱自在に嵌装している。これらモーター1、歯車列2、昇降用ねじ棒3、昇降テーブル4、保持器5、およびモーター1の回転速度制御系によって、糸曳き棒6の昇降手段が構成される。
【0015】
糸曳き棒6は、その下端部が試料(被検液状物)8に接し、上昇して試料が糸曳き状態となり切断するまでの曳糸長さを検出すべく機能する。糸曳き棒6の下端部は、発明者の知見によれば、試料(被検液状物)の曳糸長さ測定に先立って、試料によって湿潤状態にしておくことが好ましくまた、下端部を湿潤状態にした試料の表面張力による盛り上がり頂点が糸曳き棒6下端部横断面中心に存在することが、高精度の曳糸性測定にとって好ましい。而して、糸曳き棒6の下端部形状を、フラット状、凸球面状、凸円錐状、角錐状、球面状先端部を有する凸角錐状、凹球面状、凹円錐状、および凹角錐状の何れかの形状とすることが好ましい。
【0016】
7は試料受皿であって、浅い円筒状或いは逆円錐台状凹部が形成され、この凹部に試料(被検液状物)8が、所定量装入される。試料受皿7は、たとえばステンレス鋼製である。試料受皿7の縦断面形状を浅い円筒状或いは逆円錐台状凹部とすることによって、試料8の試料受皿7の平面上における位置の偏りを防止し得て試料(被検液状物)8の表面張力による盛り上がりの頂点が平面中心に位置し、高精度の測定を可能にするとともに、試料(被検液状物)8収容量の目視判断を容易にすることができる。
【0017】
9は投光器、10は受光器であり、この一対と信号処理システムで透過型光センサーを構成する。この実施形態にあっては、図2に示すように、試料(被検液状物)8の直上を光軸oa(optical axis)が水平に通る如く一対の投光器9と受光器10が配設される。この実施例においては、0.01mm(10μm)の物体を検出し得る感知能力をもつ透過型光センサーを用いている。
【0018】
11は投受光器取付台であって、投光器9および受光器10を支承している。この実施形態にあっては、投受光器取付台11は光軸位置微調整ねじ12に螺合され、光軸位置微調整ねじ12の回転によって高精度下に透過型光センサーが昇降せしめられ、光軸oaの高さ方向における位置が調整される。光軸oaの高さ方向における位置調整は、光センサーユニットを支承している投受光器取付台11および試料受皿7の何れか一方または双方を昇降せしめる手段によって行うことができる。
【0019】
13はモーター駆動回路であり、操作回路14からの出力信号を入力されてモーター1に、保持器5が固定されている昇降テーブル4を上昇方向或いは下降方向へ駆動すべく電力を投入する。モーター駆動回路13はまた、曳糸長さ測定回路15からの信号によって操作回路14を介して作動し、モーター1への電力を遮断する。さらに、モーター駆動回路13は上限リミッタ18および下限リミッタ19からの信号によって作動し、モーター1への電力を遮断する。操作回路14には、保持器5が固定されている昇降テーブル4を上昇方向或いは下降方向へ駆動する駆動スイッチが設けられている。
【0020】
16は演算回路であり、この実施形態においては、モーター1の回転速度を制御する帰還(フィードバック)制御系を構成するとともに、曳糸長さ測定回路15からの信号に基づいて、糸曳き棒6が上昇を開始して曳糸状態にある試料(被検液状物)8が切断するまでの糸曳き棒6の上昇変位量を演算算出し、ディジタル表示器17に表示すべく機能する。
【0021】
発明者らの知見によれば、試料(被検液状物)8の曳糸性測定においては、糸曳き棒6の上昇速度が測定精度に大きく影響する。そこで本発明においては、上記のように、モーター1の回転速度を制御する帰還制御系を、液状物の曳糸性測定測定装置に組み込んでいる。この帰還制御系は、この実施形態においては、次のように構成されている。即ち、外周面の周方向に所定間隔で黒白のコントラストが形成された反射円盤20に回帰反射型フォトインタラプタから赤外線を投射し、反射円盤20の白色部分からの反射赤外線をフィードバックパルスとして捉え、この時間当たりパルス数を演算回路16に入力し、所与の昇降速度を保持器5に与えるモーター1の回転速度目標値と比較して偏差があればそれを消去すべく、モーター1への投入パルスにおけるON−OFFの幅比率を変化させる操作量、即ちPWM(puls width modulation)パルス23をモーター駆動回路13を介してモーター1に入力する。即ち、パルス幅変調方式の速度制御を行っている。
【0022】
次に、実施形態1における液状物の曳糸性測定装置の動作を説明する。本発明においては、試料(被検液状物)8の曳糸性測定に先立って、個々の曳糸性測定装置について先に説明した帰還制御系によるモーター1の回転速度制御を行って、保持器5を所与の昇降速度で変位せしめるようにキャリブレーションしている。これは、電圧の変動、モーターの個体差、回転部分の摺動抵抗等に起因して、保持器5の昇降速度が所与の値に安定するまでに時間がかかるほか個体差によって目標速度に収束するまでの時間がばらつく問題を解決するためである。
【0023】
即ち、予め試料受皿7内に試料(被検液状物)8を装入しておき、糸曳き棒6の下端部が試料8に接するまで一定変位量保持器5を降下させ、次いで、一定変位量上昇させる。この過程で、前記帰還制御を実施して保持器5の昇降速度を所与の目標値に収束させておく。個々の曳糸性測定装置についてキャリブレーションを行った後に、試料(被検液状物)8の曳糸性測定を実施する。
【0024】
このキャリブレーションの過程で糸曳き棒6の下端部が湿潤状態となるので、実際の曳糸性測定に際して、糸曳き棒6の下端部が試料受皿7内の試料(被検液状物)8に接触したときに融合状態となり、糸曳き棒6下端部の表面性状に起因する測定値のばらつきをなくすことができる。
【0025】
キャリブレーションが終了した液状物の曳糸性測定装置を用いて、試料受皿7内に試料(被検液状物)8を装入する。次いで、図2に示すように、試料受皿7或いは透過型光センサーを昇降させて光軸oa透過の存否によって、試料受皿7内で表面張力によって盛り上がり状態となっている試料8の頭頂部の高さ方向における位置を検出し、その位置よりも10μm程度高い位置を水平に光軸oaが通るように、光軸位置調整ねじ12によって光センサーをセットする。
【0026】
この状態で、図3に示すように、糸曳き棒6降下させて行きその下端部が光軸oaを遮断したとき(遮光検知)に、糸曳き棒6の下降停止信号が出力され、曳糸長さ測定回路15、操作回路14、およびモーター駆動回路13を経てモーター1が停止せしめられる。糸曳き棒6は、光センサーによる遮光検知後も試料8に接触するまで下降する。この状態から糸曳き棒6が上昇する方向にモーター1が回転駆動され、図4に示すように、所与の上昇速度で糸曳き棒6が上昇せしめられ、試料(被検液状物)8は曳糸状態となる。図4に示すように、曳糸状態にある試料(被検液状物)8によって、光軸oaは遮断された状態となっている。
【0027】
伸びた試料8は、図5に示すように、粘性に対応する曳糸長さとなったときに切断される。切断後、試料8は、図6に示すように、瞬時に試料受皿7に戻り再び光軸oaが透過する状態となる。光軸oaの遮断から再び受光器10が光の検出信号を出力した瞬間までの糸曳き棒6の上昇変位量が、その試料8の曳糸長さ(粘性のパラメーター)となる。
【0028】
この実施形態においては、試料(被検液状物)8の粘性に対応して、曳糸状態が切断された瞬間から、試料8が、図6に示すような復元状態となるまでの時間に差違があることを考慮し、予め実験により、各種試料の粘性に対応する、曳糸状態が切断された瞬間から復元状態となるまでの時間データを採取しておき、差違を試料8の液質、粘性毎にソフトウェアによって補正するようにしている。
【0029】
而して、光センサーの遮光検出信号および再び受光器10が光軸oaを検出した信号が曳糸長さ測定回路15を経て、それに対応するモーター1駆動のON−OFF信号としてモーター駆動回路13を介して演算回路16に入力され、光センサーが遮光を検知したときから受光器10が再び光軸oaを検知したときまでのモーター1の回転数(パルス数)をカウントするとともに、これを糸曳き棒6の上昇変位量に変換(演算算出)して、ディジタル表示器17に出力する。
【0030】
実施形態2
曳糸性測定対象液状物(試料8)がゲル状の粘稠性に富むものである場合、曳糸状態にある試料8の切断から、図6に示すような測定開始前の状態に復元し難いか或いはばらつきが大きい。このような場合は、曳糸状態にある試料8の切断の瞬間そのものの位置を直接的に検出する必要がある。
【0031】
そこで、この実施形態においては、図1および図7に示すように、試料8の延伸(高さ)方向において複数箇の光センサーを配設し、曳糸状態にある試料8の切断位置(高さ)を直接的に検出できるようにしている。曳糸性測定の初期状態(試料受皿7内の試料8の頭頂部の位置の確認後その10μm程度上部を光軸oaが通るように光センサー(基点光センサー)がセットされた状態)における基点光センサーの遮光検知から糸曳き棒6上昇後、配設された複数箇の光センサーのうちの光軸oaを検出した光センサーと基点光センサーの間隔が、その試料8の曳糸長さとなる。基点光センサーの上方の光センサーの配設数およびその高さ方向における位置は、対象とする試料8の物性に対応して決めるとよい。
【0032】
実施形態3
これまで説明した実施形態は、試料(被検液状物)8の曳糸長さ測定開始時点における試料の頭頂部および曳糸状態にある試料8の切断時点の高さ方向における位置を確認する光学的検出手段を透過型光センサーとする実施形態である。しかし、本発明はこれに限るものではなく、エリアセンサー、たとえばCCDカメラやレーザーセンサーを用いる、液状物の曳糸性測定の開始時点および曳糸状態にある試料8の切断時点の高さ方向における位置を確認する光学的検出手段を採ることもできる。さらに、画像処理手段を用いる、液状物の曳糸性測定の開始時点および曳糸状態にある試料8の切断時点の高さ方向における位置を確認する光学的検出手段を採ることもできる。
【0033】
実施形態4
上記、本発明の液状物の曳糸性測定装置の実施形態においては、光学的検出手段によって、液状物の曳糸性測定の開始時点および曳糸状態にある試料8の切断時点の高さ方向における位置を確認するようにしている。しかし、本発明においては、前記確認手段として、試料受皿7または糸曳き棒6に、微少な荷重変動を感知する荷重測定器たとえば、電子天秤等の高度な分解能をもつ荷重測定器を装着し、糸曳き棒6が試料(被検液状物)8に接触した瞬間及び曳糸状態にある試料8の切断時点の荷重変化を0.1mgの単位で検出し、この検出信号をディジタルな処理信号として用いることもできる。
【0034】
本発明の液状物の曳糸性測定装置を用いる曳糸性測定は上記のように実施されるが、液状物の曳糸性測定に影響を及ぼす因子は、測定時の環境の温度、湿度、試料(被検液状物)の温度、糸曳き棒の試料に接触する部分の表面性状(表面粗さなど)、糸曳き棒の大きさ、形状、上昇速度などである。試料(被検液状物)に対応して、これら諸因子を総合的に判断して規格化することが必要である。
【0035】
図8に、本発明の液状物の曳糸性測定装置による測定結果と、シリンダーゲージによる実測値との対応関係を示す。図8から明らかなように、きわめてよい対応関係を示している。
【0036】
本発明の曳糸性測定装置が対象とし得る液状物は、医療分野における唾液、血液、リンパ液、関節液、尿といった各種体液、産業分野におけるインク、塗料、オイル、グリース等、食品分野における醤油、ソース、マヨネーズ、ケチャップ、ドレッシング、乳製品、練り物、スープ等種々のゲル、コロイド、スラリーを含む液状物など全ての流動性および延伸性を有する液状物である。
【0037】
【発明の効果】
本発明によれば、曳糸性を有する液状物の粘性を、液状物が導電性を有すると否とに拘わらず高い精度下に、測定者の個人差を生じることなく測定することができる。また、本発明の液状物の曳糸性測定装置によれば、可及的に少量の試料での自動測定が可能であり、測定結果はディジタルに表示されるから、針の位置を読む等の測定誤差を生じる因子を排除できる。さらに、糸曳き棒は保持器に着脱自在に嵌装されていて装置の組立が簡単であり、糸曳き棒の洗浄も容易に行える。
【0038】
請求項2に記載の発明によるときは、簡潔な装置構成にしてON−OFFのディジタル信号のみで確実にかつ高精度下に液状物の曳糸性測定が可能であり、測定者の熟練を必要とせず個人差による影響を受けない迅速かつ確度の高い測定ができる。
【0039】
請求項2に記載の発明によれば、測定の度毎に試料受皿内の試料(被検液状物)の盛り上がり頭頂部を高精度下に検出することができるから、高精度下に液状物の曳糸性測定をより精度高く行うことができる。
【0040】
請求項4に記載の発明によるときは、CCDカメラ、レーザーセンサー等のエリアセンサー或いは画像処理技術を用いて液状物の曳糸性測定を行うことができる。
【0041】
請求項5に記載の発明によれば、試料受皿または糸曳き棒に荷重測定器を装着することによって、液状物の曳糸性測定を行うことができる。
【0042】
請求項6に記載の発明によるときは、糸曳き棒下端部を湿潤状態とした試料頭頂部位置の、糸曳き棒の横断面中心からのずれに起因する液状物の曳糸性測定精度の低下を防止できる。
【図面の簡単な説明】
【図1】本発明の一実施例に係る液状物の曳糸性測定装置を示す模式図
【図2】本発明の一実施例に係る液状物の曳糸性測定装置を用いて液状物の曳糸長さを測定するときの、測定開始時点の試料受皿、試料、糸曳き棒、光軸oa、の位置関係を示す正面図
【図3】糸曳き棒が下降してきて、その下端部が試料に接触したときの状態を示す正面図
【図4】試料(被検液状物)の曳糸状態を示す正面図
【図5】曳糸状態にある試料が切断された瞬間の状態を示す正面図
【図6】切断後、試料が試料受皿内に復元した状態を死す正面図
【図7】本発明の他の実施形態における光センサーの配置の一例を示す正面図
【図8】本発明の液状物の曳糸性測定装置による測定結果と実測値との対応関係を示すグラフ
【符号の説明】
1 モーター
2 歯車列
3 昇降用ねじ軸
4 昇降テーブル
5 保持器
6 糸曳き棒
7 試料受皿
8 試料(被検液状物)
9 投光器
10 受光器
11 投受光器取付台
12 光軸位置微調整用ねじ
13 モーター駆動回路
14 操作回路
15 曳糸長さ測定回路
16 演算回路
17 ディジタル表示器
18 上限リミッタ
19 下限リミッタ
20 反射円盤
21 回帰反射式フォトインタラプタ
22 フィードバックパルス
23 PWMパルス
oa 光軸
[0001]
BACKGROUND OF THE INVENTION
The present invention relates to various body fluids such as saliva, blood, lymph, joint fluid, urine in the medical field, ink, paint, oil, grease, etc. in the industrial field, soy sauce, sauce, mayonnaise, ketchup, dressing, dairy product, paste in the food field. The present invention relates to an apparatus for measuring spinnability as a viscosity parameter of a liquid material (hereinafter referred to as a liquid material) containing various gels, colloids, and slurries such as soup.
[0002]
[Prior art]
For example, in the medical field, the viscosity of human saliva is correlated with mental and physical fatigue levels, and it is known that the viscosity of saliva increases as the fatigue level increases. The need to examine the physical properties of saliva is recognized. At that time, it was difficult to collect a large amount of saliva for a patient who had dry mouth.
[0003]
As a saliva viscosity measuring means, for example, there is a method in which a shear stress value (viscosity: mPa · s unit) after rotation for a certain period of time is measured using a cone plate type rotational viscometer with 25 ° C. saliva as a sample. However, it is generally not popular due to temperature management of samples and the price of measuring equipment. On the other hand, there is also a viscosity measurement method using a slope plate. This method hangs a certain amount of saliva on the slope plate and gradually increases the angle of the slope plate to measure the angle at which saliva begins to flow, or keeps the angle of the slope plate constant and tilts the saliva. Although it hangs down on a faceplate and the flow length is measured, there are problems that require evaluation of surface properties and angles of a sloped board and a large amount of saliva, and it is not generalized. There has been a strong demand for a simple and accurate means for measuring the viscosity of various liquid materials handled in the medical field, the industrial field, the food field, and the like as well as the measurement of saliva physical properties.
[0004]
[Problems to be solved by the invention]
As a means for measuring the viscosity of the liquid material, there is a method of using the spinnability of the liquid material, measuring the stringing length of the liquid material, and using this measured value as a viscosity parameter. In this method, the tip of a rod is brought into contact with the tip of the liquid material visually, the rod is pulled upward, and the stringing length of the liquid material at that time is measured. However, whether or not the stick has come into contact with the liquid material that is the subject depends on human visual judgment. Moreover, since the determination at the moment when the stringing of the liquid material is broken is also performed by humans, there is a problem that individual differences and errors occur in the measured values. Therefore, the inventors, in Japanese Patent Application No. 2001-119474, detected the change in the voltage applied between the sample tray and the threading rod at the moment when the stringing of the liquid material was broken using the electrical conductivity of the liquid material. An apparatus and a method for measuring the string length of a liquid material based on this detection signal have been proposed. However, there is a problem that a liquid material having no electrical conductivity cannot be measured.
[0005]
In the present invention, (1) the spinnability of a liquid substance can be measured with as little sample as possible. (2) Digital measurement is possible. (3) Automatic measurement is possible, and individual differences in measurement results can be eliminated. (4) The spinnability of the liquid material can be measured regardless of whether or not the liquid material as the sample has conductivity. An object of the present invention is to provide means for measuring the spinnability of a liquid material.
[0006]
[Means for Solving the Problems]
The invention according to claim 1 for solving the above-mentioned problem is that a sample pan for storing the liquid sample to be tested, and a liquid sample to be tested are brought into contact with the liquid sample in the sample pan at the lower end thereof and raised. A stringing rod that functions to detect the stringing length of the thread, a stringing bar lifting means for moving the stringing bar up and down at a predetermined speed, a time point at which the measurement of the string length of the liquid to be tested, and the string-like covering An apparatus for measuring the spinnability of a liquid material, comprising: an optical detection means for confirming a position at the time of cutting of the liquid test material.
[0007]
According to a second aspect of the present invention, there is provided an optical detecting means for confirming a position at the time of starting the measurement of the string length of the liquid to be tested and a position at the time of cutting the string-like liquid to be tested. The liquid string spinnability measuring apparatus according to claim 1, which is at least one optical sensor having a light projector that emits light in a direction to receive light and a light receiver that receives light from the light projector.
[0008]
The invention according to claim 3 is the liquid according to claim 1 or 2, wherein a position adjusting means in the lifting / lowering direction of the threading rod is attached to one or both of the sample tray and the optical sensor. This is a device for measuring the stringiness of an object.
[0009]
According to a fourth aspect of the present invention, the optical detection means for confirming the position of the start of measuring the string length of the test liquid and the time of cutting the test liquid is an area sensor or an image processing device. The liquid thread measuring device according to claim 1.
[0010]
The invention according to claim 5 is a sample tray for storing the liquid sample to be tested, and the lower end of the sample liquid sample in the sample pan is in contact with the sample liquid to detect the string length of the liquid sample to be tested. A threading rod that functions as desired, a threading rod lifting / lowering means that raises and lowers the threading rod at a predetermined speed, and when the lower end portion of the threading rod comes into contact with the liquid to be tested and the string-like liquid to be tested The yarn measuring device is characterized in that a load measuring device for detecting a change in force applied to the threading rod or the sample tray at the time of cutting is provided on the threading rod or the sample tray.
[0011]
The invention according to claim 6 is such that the lower end portion shape of the threading rod is flat, convex spherical shape, convex conical shape, pyramid shape, convex pyramid shape having a spherical tip, concave spherical shape, concave conical shape, 6. The spinnability measuring device according to claim 1, wherein the measuring device is one of a pyramid shape and a concave pyramid shape.
[0012]
DETAILED DESCRIPTION OF THE INVENTION
Hereinafter, the present invention will be described according to preferred embodiments thereof.
[0013]
Embodiment 1
FIG. 1 shows an apparatus for measuring the spinnability of a liquid according to one embodiment of the present invention. 2 to 6 show a process for measuring the spinnability of a liquid material in one embodiment of the present invention.
[0014]
In FIG. 1, reference numeral 1 denotes a motor that rotates a lifting screw rod 3 forward and backward via a gear train 2. Reference numeral 4 denotes an elevating table, and an internal female screw is engaged with the elevating screw rod 3 and is moved up and down by forward / reverse rotation of the elevating screw rod 3. In this embodiment, the lifting table 4 moves up and down within a speed range of 5 mm / s to 20 mm / s. Reference numeral 5 denotes a cage, which is fixed to the lifting table 4 and has a threading rod 6 detachably fitted thereto. The motor 1, the gear train 2, the lifting screw rod 3, the lifting table 4, the cage 5, and the rotational speed control system of the motor 1 constitute lifting / lowering means for the threading rod 6.
[0015]
The threading rod 6 functions to detect the stringing length until the lower end of the threading rod 6 comes into contact with the sample (liquid to be tested) 8 and rises to break the sample into a stringed state. According to the inventor's knowledge, the lower end of the threading rod 6 is preferably wetted by the sample prior to measurement of the length of the sample (liquid to be tested). It is preferable for highly accurate measurement of the spinnability that the rising apex due to the surface tension of the sample in the state exists in the center of the cross section of the lower end portion of the threading rod 6. Thus, the lower end portion of the threading rod 6 has a flat shape, a convex spherical shape, a convex conical shape, a pyramid shape, a convex pyramid shape having a spherical tip, a concave spherical shape, a concave conical shape, and a concave pyramidal shape. Any one of the shapes is preferred.
[0016]
Reference numeral 7 denotes a sample tray in which a shallow cylindrical or inverted truncated cone-shaped concave portion is formed, and a predetermined amount of sample (liquid to be tested) 8 is charged into the concave portion. The sample tray 7 is made of stainless steel, for example. By making the vertical shape of the sample tray 7 into a shallow cylindrical or inverted frustoconical recess, the position of the sample 8 on the plane of the sample tray 7 can be prevented from being biased, and the surface of the sample (liquid sample) 8 The apex of the rise due to the tension is positioned at the center of the plane, enabling high-precision measurement and facilitating the visual judgment of the amount of the sample (liquid sample) 8 to be accommodated.
[0017]
9 is a projector, and 10 is a light receiver. The pair and a signal processing system constitute a transmissive optical sensor. In this embodiment, as shown in FIG. 2, a pair of light projectors 9 and light receivers 10 are disposed so that an optical axis oa (optical axis) passes directly above a sample (liquid to be tested) 8. The In this embodiment, a transmissive optical sensor having a sensing capability capable of detecting an object of 0.01 mm (10 μm) is used.
[0018]
Reference numeral 11 denotes a projector / receiver mounting base, which supports the projector 9 and the receiver 10. In this embodiment, the projector / receiver mounting base 11 is screwed into the optical axis position fine adjustment screw 12, and the transmission optical sensor is raised and lowered with high accuracy by the rotation of the optical axis position fine adjustment screw 12. The position in the height direction of the optical axis oa is adjusted. The position adjustment in the height direction of the optical axis oa can be performed by means for moving up or down one or both of the projector / receiver mounting base 11 and the sample tray 7 that support the optical sensor unit.
[0019]
A motor drive circuit 13 receives an output signal from the operation circuit 14 and supplies power to the motor 1 to drive the lift table 4 to which the retainer 5 is fixed in the upward or downward direction. The motor drive circuit 13 is also activated via the operation circuit 14 in response to a signal from the kite length measurement circuit 15 to cut off the power to the motor 1. Further, the motor drive circuit 13 is activated by signals from the upper limiter 18 and the lower limiter 19 to cut off the power to the motor 1. The operation circuit 14 is provided with a drive switch that drives the lifting table 4 to which the cage 5 is fixed in the upward or downward direction.
[0020]
Reference numeral 16 denotes an arithmetic circuit, and in this embodiment, a feedback control system for controlling the rotation speed of the motor 1 is configured, and the threading rod 6 is based on a signal from the thread length measuring circuit 15. Functions to calculate and display the ascending displacement amount of the threading rod 6 until the specimen (liquid to be tested) 8 in the state of stringing is cut and then to be displayed on the digital display 17.
[0021]
According to the knowledge of the inventors, in the measurement of the spinnability of the sample (liquid to be tested) 8, the ascending speed of the threading rod 6 greatly affects the measurement accuracy. Therefore, in the present invention, as described above, the feedback control system for controlling the rotational speed of the motor 1 is incorporated in the measurement device for measuring the spinnability of a liquid material. This feedback control system is configured as follows in this embodiment. That is, infrared light is projected from the retroreflective photointerrupter onto the reflective disk 20 in which black and white contrast is formed at predetermined intervals in the circumferential direction of the outer peripheral surface, and the reflected infrared light from the white portion of the reflective disk 20 is captured as a feedback pulse. The number of pulses per hour is input to the arithmetic circuit 16 and compared with the target rotational speed value of the motor 1 that gives a given ascending / descending speed to the cage 5, if there is a deviation, the applied pulse to the motor 1 is deleted. An operation amount for changing the ON-OFF width ratio, that is, a PWM (puls width modulation) pulse 23 is input to the motor 1 via the motor drive circuit 13. That is, speed control of the pulse width modulation method is performed.
[0022]
Next, the operation of the liquid material spinnability measuring apparatus according to Embodiment 1 will be described. In the present invention, prior to the measurement of the spinnability of the sample (liquid to be tested) 8, the rotational speed of the motor 1 is controlled by the feedback control system described above for each spinnability measuring device, and the cage 5 is calibrated to be displaced at a given lifting speed. This is due to voltage fluctuations, individual differences in the motor, sliding resistance of the rotating part, etc., and it takes time for the ascending / descending speed of the cage 5 to stabilize to a given value. This is to solve the problem that the time to convergence varies.
[0023]
That is, a sample (liquid to be tested) 8 is placed in the sample tray 7 in advance, and the constant displacement holder 5 is lowered until the lower end of the threading rod 6 contacts the sample 8, and then the constant displacement Increase the amount. In this process, the feedback control is performed to converge the ascending / descending speed of the cage 5 to a given target value. After the individual spinnability measuring apparatus is calibrated, the spinnability measurement of the sample (liquid to be tested) 8 is performed.
[0024]
Since the lower end portion of the threading rod 6 is in a wet state during the calibration process, the lower end portion of the threading rod 6 becomes a sample (liquid sample to be tested) 8 in the sample tray 7 in actual threading measurement. When they come into contact, they are in a fused state, and variations in measured values due to the surface properties of the lower end portion of the threading rod 6 can be eliminated.
[0025]
A sample (liquid to be tested) 8 is loaded into a sample tray 7 by using a liquid thread measuring device that has been calibrated. Next, as shown in FIG. 2, the height of the top of the sample 8 that is raised by the surface tension in the sample tray 7 depending on whether or not the sample tray 7 or the transmission type optical sensor is raised and lowered and the optical axis oa is transmitted. The position in the vertical direction is detected, and the optical sensor is set by the optical axis position adjusting screw 12 so that the optical axis oa passes horizontally through a position about 10 μm higher than the position.
[0026]
In this state, as shown in FIG. 3, when the threading rod 6 is lowered and the lower end thereof blocks the optical axis oa (light-shielding detection), a descending stop signal for the threading rod 6 is output and the threading rod 6 is output. The motor 1 is stopped through the length measurement circuit 15, the operation circuit 14, and the motor drive circuit 13. The threading rod 6 moves down until it comes into contact with the sample 8 even after the light is detected by the optical sensor. From this state, the motor 1 is rotationally driven in the direction in which the threading rod 6 is lifted, and as shown in FIG. 4, the threading rod 6 is lifted at a given lifting speed, and the sample (liquid to be tested) 8 is It becomes a string state. As shown in FIG. 4, the optical axis oa is blocked by the sample (test liquid material) 8 that is in a stringed state.
[0027]
As shown in FIG. 5, the stretched sample 8 is cut when the string length corresponding to the viscosity is reached. After the cutting, the sample 8 returns to the sample tray 7 instantaneously as shown in FIG. 6, and the optical axis oa is transmitted again. The ascending displacement amount of the threading rod 6 from the interruption of the optical axis oa to the moment when the light receiver 10 outputs the light detection signal again becomes the thread length (viscosity parameter) of the sample 8.
[0028]
In this embodiment, according to the viscosity of the sample (test liquid material) 8, there is a difference in the time from the moment when the threaded state is cut to the time when the sample 8 becomes a restored state as shown in FIG. In consideration of the fact that there is, time data from the moment when the stringed state is cut to the restored state corresponding to the viscosity of various samples is collected by experiment, and the difference is determined as the liquid quality of sample 8, Every viscosity is corrected by software.
[0029]
Thus, the light blocking detection signal of the optical sensor and the signal detected again by the light receiver 10 through the optical axis oa are passed through the thread length measuring circuit 15 and the motor drive circuit 13 as an ON-OFF signal for driving the motor 1 corresponding thereto. The number of rotations (number of pulses) of the motor 1 from when the light sensor detects light shielding until when the light receiver 10 detects the optical axis oa again is counted, It is converted (calculated and calculated) into the upward displacement amount of the bar 6 and output to the digital display 17.
[0030]
Embodiment 2
When the spinnability measurement target liquid (sample 8) is rich in gel-like consistency, it is difficult to restore the state before the start of measurement as shown in FIG. Or the variation is large. In such a case, it is necessary to directly detect the position of the cutting moment itself of the sample 8 in the stringed state.
[0031]
Therefore, in this embodiment, as shown in FIGS. 1 and 7, a plurality of optical sensors are arranged in the extending (height) direction of the sample 8, and the cutting position (high height) of the sample 8 in the stringed state is arranged. )) Can be detected directly. Base point in initial state of spinnability measurement (light sensor (base light sensor) set so that optical axis oa passes through about 10 μm after confirming the position of the top of sample 8 in sample pan 7) The distance between the light sensor that detects the optical axis oa and the base point light sensor among the plurality of light sensors after the ascent of the threading rod 6 from the light detection of the light sensor becomes the thread length of the sample 8. . The number of photosensors arranged above the base photosensor and the position in the height direction may be determined according to the physical properties of the target sample 8.
[0032]
Embodiment 3
In the embodiment described so far, the optical position for confirming the position in the height direction at the time of cutting of the top of the sample and the sample 8 in the stringed state at the time of starting the measurement of the string length of the sample (liquid to be tested) 8 is described. In this embodiment, the target detecting means is a transmissive optical sensor. However, the present invention is not limited to this, and an area sensor such as a CCD camera or a laser sensor is used in the height direction at the start of the measurement of the spinnability of the liquid material and at the time of cutting the sample 8 in the spinnage state. Optical detection means for confirming the position can also be adopted. Furthermore, an optical detection means for confirming the position in the height direction at the start time of the measurement of the spinnability of the liquid material and the cutting time of the sample 8 in the threaded state using the image processing means can be adopted.
[0033]
Embodiment 4
In the embodiment of the apparatus for measuring the spinnability of a liquid according to the present invention, the height direction at the start of measurement of the spinnability of the liquid and the cutting time of the sample 8 in the spinnage state is detected by the optical detection means. The position in is confirmed. However, in the present invention, as the confirmation means, a load measuring device that senses a slight load variation, for example, a load measuring device having a high resolution such as an electronic balance, is attached to the sample tray 7 or the stringing bar 6. The load change at the moment when the threading rod 6 contacts the sample (liquid to be tested) 8 and at the time of cutting the sample 8 in the stringed state is detected in units of 0.1 mg, and this detection signal is used as a digital processing signal. It can also be used.
[0034]
The spinnability measurement using the liquid spinnability measuring apparatus of the present invention is carried out as described above. Factors affecting the measurement of the liquid spinnability include the environmental temperature, humidity, These are the temperature of the sample (liquid to be tested), the surface properties (surface roughness, etc.) of the portion of the threading rod that contacts the sample, the size, shape, and rising speed of the threading rod. It is necessary to comprehensively judge and standardize these factors corresponding to the sample (liquid to be tested).
[0035]
FIG. 8 shows a correspondence relationship between the measurement result of the liquid material spinnability measuring apparatus of the present invention and the actual measurement value of the cylinder gauge. As is clear from FIG. 8, a very good correspondence is shown.
[0036]
Liquid substances that can be targeted by the spinnability measuring apparatus of the present invention include various body fluids such as saliva, blood, lymph, joint fluid, urine in the medical field, inks, paints, oils, greases, etc. in the industrial field, soy sauce in the food field, It is a liquid material having all fluidity and stretchability such as various gels such as sauces, mayonnaise, ketchups, dressings, dairy products, kneaded products, soups, and liquids containing slurries.
[0037]
【The invention's effect】
According to the present invention, the viscosity of a liquid material having spinnability can be measured with high accuracy regardless of whether the liquid material has electrical conductivity without causing individual differences of the measurer. In addition, according to the apparatus for measuring the spinnability of a liquid according to the present invention, automatic measurement with as small a sample as possible is possible, and the measurement result is displayed digitally. Factors causing measurement errors can be eliminated. Further, the threading rod is detachably fitted to the cage, the assembly of the device is simple, and the threading rod can be easily cleaned.
[0038]
According to the second aspect of the present invention, it is possible to measure the stringiness of a liquid material with high accuracy with a simple apparatus configuration and only with an ON-OFF digital signal, and the skill of the measurer is required. It is possible to measure quickly and accurately without being affected by individual differences.
[0039]
According to the second aspect of the present invention, since the rising top of the sample (liquid sample to be tested) in the sample tray can be detected with high accuracy for each measurement, the liquid material is detected with high accuracy. The stringiness can be measured with higher accuracy.
[0040]
According to the fourth aspect of the present invention, the spinnability of a liquid material can be measured using an area sensor such as a CCD camera or a laser sensor or an image processing technique.
[0041]
According to the fifth aspect of the present invention, it is possible to measure the spinnability of a liquid material by attaching a load measuring device to the sample tray or the stringing bar.
[0042]
When the invention according to claim 6 is used, the accuracy of measuring the spinnability of the liquid material is reduced due to the deviation of the top of the sample head in the wet state from the center of the cross-section of the threading rod. Can be prevented.
[Brief description of the drawings]
FIG. 1 is a schematic diagram showing an apparatus for measuring the spinnability of a liquid according to one embodiment of the present invention. FIG. 2 is a schematic view of the apparatus for measuring the spinnability of a liquid according to one embodiment of the present invention. Front view showing the positional relationship between the sample tray, the sample, the threading bar, and the optical axis oa at the time of starting the measurement when measuring the thread length. [FIG. 3] The threading bar descends and its lower end is FIG. 4 is a front view showing a state in which the sample (liquid to be tested) is threaded. FIG. 5 is a front view showing a state at the moment when the sample in the threaded state is cut. FIG. 6 is a front view showing a state in which the sample is restored in the sample tray after cutting. FIG. 7 is a front view showing an example of the arrangement of the photosensors according to another embodiment of the invention. A graph showing the correspondence between the measurement results and actual measurement values of the liquid stringiness measuring device 【Explanation of symbols】
DESCRIPTION OF SYMBOLS 1 Motor 2 Gear train 3 Elevating screw shaft 4 Elevating table 5 Cage 6 Stringing bar 7 Sample tray 8 Sample (liquid to be tested)
DESCRIPTION OF SYMBOLS 9 Emitter 10 Light receiver 11 Emitter / receiver mount 12 Optical axis position fine adjustment screw 13 Motor drive circuit 14 Operation circuit 15 Thread length measurement circuit 16 Arithmetic circuit 17 Digital display 18 Upper limiter 19 Lower limiter 20 Reflection disk 21 Retro-reflective photo interrupter 22 Feedback pulse 23 PWM pulse oa Optical axis

Claims (6)

被検液状物を収容する試料受皿と、該試料受皿内の被検液状物にその下端部が接触しその上昇によって被検液状物の曳糸長さを検出すべく機能する糸曳き棒と、該糸曳き棒を所定の速度で昇降せしめる糸曳き棒昇降手段と、被検液状物の曳糸長さ測定開始時点および曳糸状被検液状物の切断時点の位置を確認する光学的検出手段とを有することを特徴とする液状物の曳糸性測定装置。  A sample tray that contains the liquid sample to be tested, and a threading rod that functions to detect the length of the liquid string of the test liquid material when the lower end of the sample liquid sample comes into contact with the liquid sample in the sample tray and rises; A threading rod lifting means for moving the threading rod up and down at a predetermined speed, and an optical detection means for confirming the positions of the start of measurement of the string length of the test liquid and the cutting time of the string-like test liquid An apparatus for measuring the spinnability of a liquid material, comprising: 被検液状物の曳糸長さ測定開始時点および曳糸状被検液状物の切断時点の位置を確認する光学的検出手段が、糸曳き棒の昇降方向と交叉する方向に光を発する投光器と該投光器からの光を受光する受光器とを有する少なくとも一の光センサーである請求項1に記載の液状物の曳糸性測定装置。  An optical detection means for confirming the position of the start of measurement of the string length of the liquid sample to be tested and the position of the cutting time of the string-like liquid sample to be tested includes a projector that emits light in a direction crossing the ascending / descending direction of the stringer The liquid string spinnability measuring apparatus according to claim 1, which is at least one optical sensor having a light receiver that receives light from a projector. 試料受皿及び光センサーの何れか一方または双方に、糸曳き棒の昇降方向における位置調整手段が付設されたものである請求項1又は請求項2に記載の液状物の曳糸性測定装置。  The liquid string spinnability measuring apparatus according to claim 1 or 2, wherein a position adjusting means in the lifting / lowering direction of the threading rod is attached to either or both of the sample tray and the optical sensor. 被検液状物の曳糸長さ測定開始時点および曳糸状被検液状物の切断時点の位置を確認する光学的検出手段が、エリアセンサー又は画像処理装置である請求項1に記載の液状物の曳糸性測定装置。  2. The liquid material according to claim 1, wherein the optical detection means for confirming the position of the start of measurement of the string length of the test liquid and the position of the cutting time of the string-like test liquid is an area sensor or an image processing device. Spinnability measuring device. 被検液状物を収容する試料受皿と、該試料受皿内の被検液状物にその下端部が接触しその上昇によって被検液状物の曳糸長さを検出すべく機能する糸曳き棒と、該糸曳き棒を所定の速度で昇降せしめる糸曳き棒昇降手段と、該糸曳き棒の下端部が被検液状物に接触したときおよび曳糸状被検液状物の切断時点に糸曳き棒又は試料受皿に負荷される力の変化を検出する荷重測定器を糸曳き棒又は試料受皿に設けたことを特徴とする曳糸性測定装置。  A sample tray that contains the liquid sample to be tested, and a threading rod that functions to detect the length of the liquid string of the test liquid material when the lower end of the sample liquid sample comes into contact with the liquid sample in the sample tray and rises; A threading rod lifting / lowering means for moving the threading rod up and down at a predetermined speed, and a threading rod or a sample when the lower end of the threading rod comes into contact with the liquid sample to be tested and when the string-like liquid sample is cut. A spinnability measuring apparatus characterized in that a load measuring device for detecting a change in force applied to a receiving tray is provided on a threading rod or a sample receiving tray. 糸曳き棒の下端部形状が、フラット状、凸球面状、凸円錐状、角錐状、球面状先端部を有する凸角錐状、凹球面状、凹円錐状、および凹角錐状の何れかである請求項1乃至請求項5に記載の曳糸性測定装置。  The shape of the lower end of the threading rod is any of a flat shape, a convex spherical shape, a convex cone shape, a pyramid shape, a convex pyramid shape having a spherical tip, a concave spherical shape, a concave cone shape, and a concave pyramid shape. The spinnability measuring device according to any one of claims 1 to 5.
JP2002150643A 2002-05-24 2002-05-24 Stringiness measuring instrument for liquid material Pending JP2005345103A (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2002150643A JP2005345103A (en) 2002-05-24 2002-05-24 Stringiness measuring instrument for liquid material
PCT/JP2003/006544 WO2003100387A1 (en) 2002-05-24 2003-05-26 Device for measuring stringiness of liquid material and stringiness measuring method
AU2003241768A AU2003241768A1 (en) 2002-05-24 2003-05-26 Device for measuring stringiness of liquid material and stringiness measuring method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002150643A JP2005345103A (en) 2002-05-24 2002-05-24 Stringiness measuring instrument for liquid material

Publications (1)

Publication Number Publication Date
JP2005345103A true JP2005345103A (en) 2005-12-15

Family

ID=29561233

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002150643A Pending JP2005345103A (en) 2002-05-24 2002-05-24 Stringiness measuring instrument for liquid material

Country Status (3)

Country Link
JP (1) JP2005345103A (en)
AU (1) AU2003241768A1 (en)
WO (1) WO2003100387A1 (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN103592203A (en) * 2013-11-19 2014-02-19 河南海格尔高温材料有限公司 Experimental method and device for detecting relative viscosity of phenolic resin
JP2014106076A (en) * 2012-11-27 2014-06-09 Sumitomo Bakelite Co Ltd Viscosity characteristic evaluation method and viscosity characteristic evaluation device
CN106370560A (en) * 2016-08-18 2017-02-01 江南大学 Frying oil quality fast-evaluation method and device
CN110018086A (en) * 2019-05-13 2019-07-16 北京化工大学 A kind of device and method quantitative determining sluggish power between the surface of solids and bubble or drop
JP2019132758A (en) * 2018-02-01 2019-08-08 株式会社石川鉄工所 Stringiness measuring device
CN110196210A (en) * 2019-06-22 2019-09-03 南阳市中心医院 A kind of verifying attachment based on reproductive medicine section mankind spermatozoon

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59166156U (en) * 1983-04-20 1984-11-07 第一工業製薬株式会社 Threadability measuring machine
JP2002071542A (en) * 2000-08-25 2002-03-08 Kao Corp Apparatus for measuring threading quantity

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2014106076A (en) * 2012-11-27 2014-06-09 Sumitomo Bakelite Co Ltd Viscosity characteristic evaluation method and viscosity characteristic evaluation device
CN103592203A (en) * 2013-11-19 2014-02-19 河南海格尔高温材料有限公司 Experimental method and device for detecting relative viscosity of phenolic resin
CN103592203B (en) * 2013-11-19 2016-06-29 河南海格尔高温材料有限公司 A kind of experimental technique detecting relative viscosity of phenolic resin and device
CN106370560A (en) * 2016-08-18 2017-02-01 江南大学 Frying oil quality fast-evaluation method and device
CN106370560B (en) * 2016-08-18 2019-01-25 江南大学 A kind of evaluation method and its equipment of Fast Evaluation frying oil quality
JP2019132758A (en) * 2018-02-01 2019-08-08 株式会社石川鉄工所 Stringiness measuring device
CN110018086A (en) * 2019-05-13 2019-07-16 北京化工大学 A kind of device and method quantitative determining sluggish power between the surface of solids and bubble or drop
CN110018086B (en) * 2019-05-13 2020-07-24 北京化工大学 Device and method for quantitatively measuring hysteresis force between solid surface and bubbles or liquid drops
CN110196210A (en) * 2019-06-22 2019-09-03 南阳市中心医院 A kind of verifying attachment based on reproductive medicine section mankind spermatozoon
CN110196210B (en) * 2019-06-22 2023-04-07 南阳市中心医院 Verifying attachment based on procreation medical science branch of academic or vocational study male sex's sperm

Also Published As

Publication number Publication date
AU2003241768A1 (en) 2003-12-12
WO2003100387A1 (en) 2003-12-04
AU2003241768A8 (en) 2003-12-12

Similar Documents

Publication Publication Date Title
US8453496B2 (en) Rheometer and rheometric method for testing samples
US7521703B2 (en) Automatic analyzer
JP2005345103A (en) Stringiness measuring instrument for liquid material
JPH0547762B2 (en)
JPS5912138B2 (en) Blood sediment measurement method
US6145373A (en) Food viscometer and method of use
CN106840980B (en) Testing device and testing method for small-particle-size particle friction angle
KR950025827A (en) Automatic measuring device of electrode spacing of electron gun
CN103764014B (en) Axiallength measures device
JP2006300814A (en) Dispensing apparatus, suction abnormality determination method in the same, and method for setting threshold value for suction abnormality determination
US20030147079A1 (en) Light beam measurement of absorption by substrates
CN215678251U (en) Acid-base neutralization automatic titration system based on color identification
JP3962780B2 (en) Apparatus for measuring spinnability of liquid and method for measuring spinnability
WO2002086461A1 (en) Equipment for measuring stringiness of liquid material
CN112164357B (en) Display energy efficiency testing device and control method thereof
JP2006250919A (en) Device for measuring height of material in egg
JPS63184040A (en) Apparatus for detecting pollution of liquid
CN220772401U (en) Endoscope button distance measuring device
JP2628085B2 (en) Turbidity display device
JPH04328425A (en) Method and apparatus for measuring position of liquid level and method and apparatus for lifting up single crystal
CN211318099U (en) Practical viscosity measurement appearance
CN216791148U (en) Multifunctional thickness measuring device
US12038362B2 (en) Apparatus and method for viscosity measurements using a portable field viscometer
JP6650955B2 (en) Spinnability measuring device
CN114235685B (en) On-line biomass detection device for shake flask culture