JPS63184040A - Apparatus for detecting pollution of liquid - Google Patents

Apparatus for detecting pollution of liquid

Info

Publication number
JPS63184040A
JPS63184040A JP1669287A JP1669287A JPS63184040A JP S63184040 A JPS63184040 A JP S63184040A JP 1669287 A JP1669287 A JP 1669287A JP 1669287 A JP1669287 A JP 1669287A JP S63184040 A JPS63184040 A JP S63184040A
Authority
JP
Japan
Prior art keywords
light
receiving element
emitting
emitting element
light receiving
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP1669287A
Other languages
Japanese (ja)
Inventor
Hirofumi Yanagi
柳 弘文
Nakanobu Moriya
中宣 森谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seikosha KK
Original Assignee
Seikosha KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seikosha KK filed Critical Seikosha KK
Priority to JP1669287A priority Critical patent/JPS63184040A/en
Publication of JPS63184040A publication Critical patent/JPS63184040A/en
Pending legal-status Critical Current

Links

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N21/00Investigating or analysing materials by the use of optical means, i.e. using sub-millimetre waves, infrared, visible or ultraviolet light
    • G01N21/17Systems in which incident light is modified in accordance with the properties of the material investigated
    • G01N21/25Colour; Spectral properties, i.e. comparison of effect of material on the light at two or more different wavelengths or wavelength bands
    • G01N21/255Details, e.g. use of specially adapted sources, lighting or optical systems

Landscapes

  • Physics & Mathematics (AREA)
  • Spectroscopy & Molecular Physics (AREA)
  • Health & Medical Sciences (AREA)
  • Life Sciences & Earth Sciences (AREA)
  • Chemical & Material Sciences (AREA)
  • Analytical Chemistry (AREA)
  • Biochemistry (AREA)
  • General Health & Medical Sciences (AREA)
  • General Physics & Mathematics (AREA)
  • Immunology (AREA)
  • Pathology (AREA)
  • Investigating Or Analysing Materials By Optical Means (AREA)

Abstract

PURPOSE:To accurately detect a pollution degree, by a method wherein the light from a light emitting element is split into two and one of them is received by the first light receiving element through a liquid layer to detect the light transmissivity of the liquid layer and the other light is received by the second light receiving element to detect the quantity of the emitting light from the light emitting element and the quantity of the emitting light from the light emitting element is controlled on the basis of the detection output. CONSTITUTION:Glass tubes 9, 10 are inserted in oil being an object to be inspected along with a light blocking case. The light transmitting through a half mirror 4 in the light from a light emitting element 5 passes through a glass rod 1 and is reflected from the leading end of said glass rod 1 to be incident to a rod 2 through the oil layer between the tubes 9, 10. This light is reflected from the leading end surface of the rod 2 to reach the first light receiving element 6. Therefore, the quantity of the light reaching the element 6 corresponds to the pollution degree of the oil layer. The reflected light by a mirror 4a is supplied to the second light receiving element 7 to detect the quantity of the emitting light from the element 5. The output of the element 7 is compared with reference voltage and, by the output corresponding to the difference between both of them, the quantity of the emitting light from the element 5 is controlled. Therefore, even when the element 5 generates heat, the quantity of the emitting light thereof is always kept constant and accurate measurement can be performed.

Description

【発明の詳細な説明】 [産業上の利用分野] 本発明は食用油等の液体の汚濁検出装置に関するもので
ある。
DETAILED DESCRIPTION OF THE INVENTION [Industrial Field of Application] The present invention relates to a contamination detection device for liquids such as edible oil.

[従来の技術] 近来、外食産業が盛況を呈しており、大量の加工食品が
消費されている。その中でも特に食用油を使った揚げ物
が多く消費されている。そこで食用油を大量に消費する
所では、品質の維持およびコスト低減のために、油の交
換時期を適切に判定することが厳しく要求される。この
判定のために従来は、試験管に採取した油を発光素子お
よびブオトダイオード間に挿入し、フォトダイオードの
出力によってメータを振らせ、光の透過量を検出して浦
の良否を判定するものがあった。
[Prior Art] Recently, the restaurant industry has been booming, and large amounts of processed foods are being consumed. Among these, fried foods using edible oil are especially consumed. Therefore, in places where large amounts of edible oil are consumed, it is strictly required to appropriately determine when to change the oil in order to maintain quality and reduce costs. Conventionally, to make this determination, oil sampled in a test tube is inserted between a light emitting element and a photodiode, and a meter is made to swing based on the output of the photodiode, and the amount of light transmitted is detected to determine whether the ura is good or bad. There was something.

[発明が解決しようとする問題点コ 上記のものでは、正確な判定を行うためには発光素子の
発光量を常に一定にしておく必要があり、そのために、
定電流回路を用いて発光素子を一定電流で駆動するよう
に構成されていた。ところが、ランプ、発光ダイオード
等の発光素子はそれ自体の発熱量が大きく、駆動電流が
一定でもその発熱温度によって発光量が変動してしまう
特性を有している。そのため、発光素子に電源を投入し
た直後とある程度時間が経過した後とではメータの振れ
に誤差が生じ、正確な判定が難しいものであった。
[Problems to be solved by the invention] In the above problem, in order to make accurate judgments, it is necessary to always keep the amount of light emitted from the light emitting element constant;
It was configured to use a constant current circuit to drive the light emitting element with a constant current. However, light-emitting elements such as lamps and light-emitting diodes themselves generate a large amount of heat, and even if the drive current is constant, the amount of light emitted varies depending on the temperature of the emitted light. Therefore, an error occurs in the meter's deflection immediately after power is applied to the light emitting element and after a certain period of time has elapsed, making accurate determination difficult.

本発明は、液体の汚濁検出の正確性の向上を目的とする
ものである。
The present invention aims to improve the accuracy of liquid contamination detection.

[問題点を解決するための手段] 本発明は、発光素子からの光をノ1−フミラーによって
分割し、一方の光を液体層を介して第1の受光素子に供
給して液体層の光透過率を検出し、他方の光は第2の受
光素子に供給して発光素子の発光量を検出し、この第2
の受光素子の出力によって発光素子の発光量を一定に制
御するようにしたものである。
[Means for Solving the Problems] The present invention splits light from a light emitting element by a first mirror, supplies one of the lights to a first light receiving element via a liquid layer, and collects the light from the liquid layer. The transmittance is detected, and the other light is supplied to a second light receiving element to detect the amount of light emitted from the light emitting element.
The amount of light emitted from the light emitting element is controlled to be constant based on the output of the light receiving element.

[実施例] 第1図において、1,2は先端を斜めにカットしたガラ
ス棒で、ケース3内に挿入しである。ガラス棒1は上端
も斜めにカットしてあり、この端面にプリズム4を載置
しである。このプリズム4の、ガラス棒1との接触面4
aはハーフミラ−としである。5は青色のランプあるい
は発光ダイオード等の発光素子であり、その光がプリズ
ム4内に入射される。6,7はそれぞれ第1および第2
の受光素子を構成するフォトダイオードで、受光素子6
はガラス棒2の上端面に設けてあり、受光素子7はハー
フミラ−4aからの反射光を受光する位置に設けである
。各受光素子は回路基板8にて他の回路構成に接続され
ている。9,10はそれぞれガラス棒1,2に被せたガ
ラス管で、ガラス棒1,2との間に適宜の間隙を設けて
断熱効果を持たせである。ガラス管9,10およびガラ
ス棒1,2とケース3間にはゴムパツキン11〜11を
介在させて密封性を持たせ、ケース3内への油等の浸透
を防止している。12は外来光の影響を除去するための
遮光ケースである。
[Example] In FIG. 1, numerals 1 and 2 are glass rods with obliquely cut ends, which are inserted into the case 3. The upper end of the glass rod 1 is also cut diagonally, and a prism 4 is placed on this end face. The contact surface 4 of this prism 4 with the glass rod 1
A is a half mirror. 5 is a light emitting element such as a blue lamp or a light emitting diode, and its light is input into the prism 4. 6 and 7 are the first and second respectively
A photodiode constituting the light receiving element of the light receiving element 6.
is provided on the upper end surface of the glass rod 2, and the light receiving element 7 is provided at a position to receive the reflected light from the half mirror 4a. Each light receiving element is connected to other circuit components via a circuit board 8. Reference numerals 9 and 10 are glass tubes placed over the glass rods 1 and 2, respectively, with an appropriate gap provided between the glass rods 1 and 2 to provide a heat insulating effect. Rubber gaskets 11 to 11 are interposed between the glass tubes 9, 10 and the glass rods 1, 2 and the case 3 to provide sealing properties and prevent oil etc. from penetrating into the case 3. 12 is a light shielding case for removing the influence of external light.

第2図において、13は受光素子7の電流を電圧に変換
する変換回路、14はコンパレータ、15は発光素子5
の駆動回路である。16は受光素子6の電流を電圧に変
換する変換回路、17はアンプ、18は油等の汚濁度を
表示するメータである。このメータ18は第11図の回
路基板8からケース3外にリード線を導出して接続した
ものである。
In FIG. 2, 13 is a conversion circuit that converts the current of the light receiving element 7 into voltage, 14 is a comparator, and 15 is a light emitting element 5.
This is the drive circuit. 16 is a conversion circuit that converts the current of the light receiving element 6 into voltage, 17 is an amplifier, and 18 is a meter that displays the degree of contamination of oil or the like. This meter 18 is constructed by connecting a lead wire to the outside of the case 3 from the circuit board 8 shown in FIG.

つぎに動作について説明する。検出対象となる油等の中
に、遮光ケース12をつけたままガラス管9,10を差
し入れる。発光素子5からの光の内、ハーフミラ−4a
を透過した光はガラス棒1内を通り、その先端面で反射
されて、ガラス管9゜10間の油層を介してガラス棒2
に入射される。
Next, the operation will be explained. The glass tubes 9 and 10 are inserted into the oil or the like to be detected, with the light shielding case 12 attached. Of the light from the light emitting element 5, the half mirror 4a
The light that has passed through the glass rod 1 passes through the glass rod 1, is reflected at its tip, and passes through the glass rod 2 through the oil layer between the glass tubes 9 and 10.
is incident on the

この光はガラス棒2の先端面で反射され、その中を通っ
て受光素子6に到達する。したがって受光素子6に到達
する光量は油層の汚濁度に応じたものとなり、その出力
によって、第2図のメータ18の指針が振られ、汚濁度
が表示される。
This light is reflected by the tip of the glass rod 2 and reaches the light receiving element 6 through it. Therefore, the amount of light that reaches the light receiving element 6 depends on the degree of contamination of the oil layer, and the pointer of the meter 18 shown in FIG. 2 is swung according to the output, and the degree of contamination is displayed.

一方、ハーフミラ−4aによって反射された光は受光素
子7に供給され、発光素子5の発光量が検出される。受
光素子7の出力電流は第2図の変換回路13によって電
圧に変換され、コンパレータ14によって基準電圧と比
較される。両者の差に応じた出力がコンパレータ14か
ら発生し、これによって発光素子5の発光量が一定にな
るように制御される。
On the other hand, the light reflected by the half mirror 4a is supplied to the light receiving element 7, and the amount of light emitted from the light emitting element 5 is detected. The output current of the light receiving element 7 is converted into a voltage by the conversion circuit 13 shown in FIG. 2, and compared with a reference voltage by the comparator 14. An output corresponding to the difference between the two is generated from the comparator 14, and thereby the amount of light emitted from the light emitting element 5 is controlled to be constant.

したがって発光素子5が発熱しても、その発光量は常に
一定に保持され、正確な測定を行うことが可能になる。
Therefore, even if the light emitting element 5 generates heat, the amount of light emitted is always kept constant, making it possible to perform accurate measurements.

ところで測定対象となる油は高温に加熱されている場合
が多く、この場合ケース3内に熱が伝わって回路等に悪
影響を及ぼす危険性があるが、本例ではガラス管9,1
0を用いているためこの影響を大きく緩和することがで
きるのである。すなわち、ガラス管とガラス棒間には間
隙を持たせであるため、断熱効果があり、ガラス棒1,
2に伝達される熱量を著しく低下させることができるの
である。
By the way, the oil to be measured is often heated to a high temperature, and in this case, there is a risk that the heat will be transmitted into the case 3 and have an adverse effect on the circuit, etc. In this example, the glass tubes 9 and 1
Since 0 is used, this effect can be greatly alleviated. In other words, since there is a gap between the glass tube and the glass rod, there is a heat insulating effect, and the glass rod 1,
This makes it possible to significantly reduce the amount of heat transferred to the

なお上記の実施例では、ケース3内に受光素子6を設け
た例について述べたが、第3図のように、ガラス管10
の先端部に第1の受光素子6を設けるようにしてもよい
。この場合には、ガラス管10内にアルミ管19を挿入
し、その先端に受光素子6を固定するものである。これ
によれば、油層を介した光が直接受光素子6に到達する
ため、ガラス棒を介するのに比べて感度をよくすること
ができる。
In the above embodiment, an example was described in which the light receiving element 6 was provided inside the case 3, but as shown in FIG.
The first light receiving element 6 may be provided at the tip. In this case, an aluminum tube 19 is inserted into the glass tube 10, and the light receiving element 6 is fixed to the tip thereof. According to this, since the light passes through the oil layer and reaches the light receiving element 6 directly, the sensitivity can be improved compared to the case where the light passes through the glass rod.

また検出対象としては、油に限るものではなく、種々の
液体の汚濁度検出に適用することができる。
Furthermore, the object to be detected is not limited to oil, but can be applied to detect the degree of contamination of various liquids.

[発明の効果コ 本発明によれば、発光素子の発熱状態に関わらず、その
発光量を常に一定に保持しておくことができ、正確な検
出が可能となる。
[Effects of the Invention] According to the present invention, the amount of light emitted by the light emitting element can be kept constant regardless of the heat generation state of the light emitting element, and accurate detection becomes possible.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明の一実施例を示した断面図、第2図は回
路構成の一例を示した電気回路図、第3図は第1図の一
部の他の実施例を示した一部破断断面図である。 4a・・・ハーフミラ− 5・・・発光素子 6・・・第1の受光素子 7・・・第2の受光素子 13・・・変換回路 14・・・コンパレータ 以  上 特許出願人   株式会社精工舎 第1図
FIG. 1 is a sectional view showing one embodiment of the present invention, FIG. 2 is an electric circuit diagram showing an example of the circuit configuration, and FIG. 3 is a diagram showing another embodiment of a part of FIG. 1. FIG. 4a...Half mirror 5...Light emitting element 6...First light receiving element 7...Second light receiving element 13...Conversion circuit 14...Comparator and above Patent applicant Seikosha Co., Ltd. Figure 1

Claims (1)

【特許請求の範囲】[Claims] 発光素子と、この発光素子からの光の光路に設けたハー
フミラーと、このハーフミラーによって分割された一方
の光を検出対象となる液体層を介して受光する第1の受
光素子と、この第1の受光素子の出力によって上記液体
の汚濁状態を検出する検出装置と、上記ハーフミラーに
よって分割された他方の光を受光する第2の受光素子と
、この第2の受光素子からの出力によって上記発光素子
の光量を一定に制御する制御回路とからなる液体の汚濁
検出装置。
A light-emitting element, a half mirror provided in the optical path of light from the light-emitting element, a first light-receiving element that receives one of the lights split by the half mirror via a liquid layer to be detected, and this first light-receiving element. a detection device that detects the contamination state of the liquid based on the output of the first light receiving element; a second light receiving element that receives the other light split by the half mirror; A liquid contamination detection device consisting of a control circuit that controls the amount of light from a light emitting element to a constant level.
JP1669287A 1987-01-27 1987-01-27 Apparatus for detecting pollution of liquid Pending JPS63184040A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1669287A JPS63184040A (en) 1987-01-27 1987-01-27 Apparatus for detecting pollution of liquid

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1669287A JPS63184040A (en) 1987-01-27 1987-01-27 Apparatus for detecting pollution of liquid

Publications (1)

Publication Number Publication Date
JPS63184040A true JPS63184040A (en) 1988-07-29

Family

ID=11923353

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1669287A Pending JPS63184040A (en) 1987-01-27 1987-01-27 Apparatus for detecting pollution of liquid

Country Status (1)

Country Link
JP (1) JPS63184040A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012074109A1 (en) * 2010-12-02 2012-06-07 ナブテスコ株式会社 Lubricating oil degradation sensor
WO2012074112A1 (en) * 2010-12-02 2012-06-07 ナブテスコ株式会社 Speed reducer for industrial robot
WO2013065783A1 (en) * 2011-11-04 2013-05-10 ナブテスコ株式会社 Lubricant oil degradation sensor, speed reducer for industrial robot, and industrial robot
WO2015060444A1 (en) * 2013-10-25 2015-04-30 ナブテスコ 株式会社 Lubricant deterioration sensor
US9272063B2 (en) 2009-04-16 2016-03-01 The Procter & Gamble Company Method for delivering a volatile material
US9439993B2 (en) 2009-04-16 2016-09-13 The Procter & Gamble Company Apparatus for delivering a volatile material
US10143766B2 (en) 2009-04-16 2018-12-04 The Procter & Gamble Company Volatile composition dispenser
US11911540B2 (en) 2009-04-16 2024-02-27 The Procter & Gamble Company Apparatus for delivering a volatile material

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9272063B2 (en) 2009-04-16 2016-03-01 The Procter & Gamble Company Method for delivering a volatile material
US11911540B2 (en) 2009-04-16 2024-02-27 The Procter & Gamble Company Apparatus for delivering a volatile material
US11517643B2 (en) 2009-04-16 2022-12-06 The Procter & Gamble Company Apparatus for delivering a volatile material
US10500298B2 (en) * 2009-04-16 2019-12-10 The Procter & Gamble Company Method for delivering a volatile material
US10143766B2 (en) 2009-04-16 2018-12-04 The Procter & Gamble Company Volatile composition dispenser
US9993574B2 (en) 2009-04-16 2018-06-12 The Procter & Gamble Company Method for delivering a volatile material
US9439993B2 (en) 2009-04-16 2016-09-13 The Procter & Gamble Company Apparatus for delivering a volatile material
US9329119B2 (en) 2010-12-02 2016-05-03 Nabtesco Corporation Speed reducer for industrial robot
CN103238059A (en) * 2010-12-02 2013-08-07 纳博特斯克有限公司 Speed reducer for industrial robot
WO2012074112A1 (en) * 2010-12-02 2012-06-07 ナブテスコ株式会社 Speed reducer for industrial robot
WO2012074109A1 (en) * 2010-12-02 2012-06-07 ナブテスコ株式会社 Lubricating oil degradation sensor
US20130250303A1 (en) * 2010-12-02 2013-09-26 Nabtesco Corporation Speed reducer for industrial robot
US9494530B2 (en) 2010-12-02 2016-11-15 Nabtesco Corporation Optical sensor for detecting lubricant deterioration
JP2012117951A (en) * 2010-12-02 2012-06-21 Nabtesco Corp Lubrication oil degradation sensor
US9201054B2 (en) 2010-12-02 2015-12-01 Nabtesco Corporation Lubricant sensor
JP2013096955A (en) * 2011-11-04 2013-05-20 Nabtesco Corp Lubricant deterioration sensor, speed reducer for industrial robot and industrial robot
WO2013065783A1 (en) * 2011-11-04 2013-05-10 ナブテスコ株式会社 Lubricant oil degradation sensor, speed reducer for industrial robot, and industrial robot
US9939369B2 (en) 2013-10-25 2018-04-10 Nabtesco Corporation Lubricant deterioration sensor
JP2017198717A (en) * 2013-10-25 2017-11-02 ナブテスコ株式会社 Lubricant deterioration sensor
JPWO2015060444A1 (en) * 2013-10-25 2017-03-09 ナブテスコ株式会社 Lubricant deterioration sensor
WO2015060444A1 (en) * 2013-10-25 2015-04-30 ナブテスコ 株式会社 Lubricant deterioration sensor

Similar Documents

Publication Publication Date Title
US8085401B2 (en) Ozone concentration sensor
US4753530A (en) Analytical optical instruments
WO1993006459A1 (en) Dual-wavelength photometer and fiber optic sensor probe
JPH0213735B2 (en)
JPH10508984A (en) Temperature compensation method for optoelectronic devices, especially for optoelectronic semiconductor devices
JPS63184040A (en) Apparatus for detecting pollution of liquid
JP2604754B2 (en) Spectrophotometer
EP3472596B1 (en) Turbidity sensor and method for measuring turbidity
CN110914671A (en) Method, apparatus and computer program product for controlling components of a detection device
CN1904588B (en) Microchip measurement device
JPS63184039A (en) Apparatus for detecting pollution of liquid
JPS63184038A (en) Apparatus for detecting pollution of liquid
US7295295B2 (en) Paste solids measurement in real time
JPS61264238A (en) Light-transmissive type lubricant abnormality detector
JPH09145617A (en) Densitometer
CN109883977B (en) Self-compensation infrared black body light source and compensation method
KR101850252B1 (en) Optical density analyzer
RU2245568C2 (en) Automatic refraction meter
SU1237917A1 (en) Device or measuring spectral absorption ability of electroconductive materials
SU144316A1 (en) Device for checking thread irregularities
SU1509619A1 (en) Device for photoelectrical analysis of concentration of mechanical impurities in lubricant-coolants
SU1045003A1 (en) Photometer
JP2019052924A (en) Dryness measuring device and dryness measurement method
RU1794247C (en) Method for paper nonuniformity standardized index detecting by transluminating using
JPS5821145A (en) Measuring appratus for concentration of sugar in blood or the like