JP2005344452A - Vibration control device, vibration control method, and long-sized structure - Google Patents

Vibration control device, vibration control method, and long-sized structure Download PDF

Info

Publication number
JP2005344452A
JP2005344452A JP2004168100A JP2004168100A JP2005344452A JP 2005344452 A JP2005344452 A JP 2005344452A JP 2004168100 A JP2004168100 A JP 2004168100A JP 2004168100 A JP2004168100 A JP 2004168100A JP 2005344452 A JP2005344452 A JP 2005344452A
Authority
JP
Japan
Prior art keywords
vibration damping
damping device
vibration
long structure
natural frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004168100A
Other languages
Japanese (ja)
Other versions
JP4070213B2 (en
Inventor
秀雄 ▲高▼畠
Hideo Takahata
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kanazawa Institute of Technology (KIT)
Original Assignee
Kanazawa Institute of Technology (KIT)
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kanazawa Institute of Technology (KIT) filed Critical Kanazawa Institute of Technology (KIT)
Priority to JP2004168100A priority Critical patent/JP4070213B2/en
Priority to US11/100,967 priority patent/US20050268565A1/en
Publication of JP2005344452A publication Critical patent/JP2005344452A/en
Application granted granted Critical
Publication of JP4070213B2 publication Critical patent/JP4070213B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • EFIXED CONSTRUCTIONS
    • E04BUILDING
    • E04HBUILDINGS OR LIKE STRUCTURES FOR PARTICULAR PURPOSES; SWIMMING OR SPLASH BATHS OR POOLS; MASTS; FENCING; TENTS OR CANOPIES, IN GENERAL
    • E04H9/00Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate
    • E04H9/02Buildings, groups of buildings or shelters adapted to withstand or provide protection against abnormal external influences, e.g. war-like action, earthquake or extreme climate withstanding earthquake or sinking of ground
    • E04H9/021Bearing, supporting or connecting constructions specially adapted for such buildings
    • E04H9/0215Bearing, supporting or connecting constructions specially adapted for such buildings involving active or passive dynamic mass damping systems

Landscapes

  • Engineering & Computer Science (AREA)
  • Architecture (AREA)
  • Business, Economics & Management (AREA)
  • Emergency Management (AREA)
  • Environmental & Geological Engineering (AREA)
  • Civil Engineering (AREA)
  • Structural Engineering (AREA)
  • Buildings Adapted To Withstand Abnormal External Influences (AREA)
  • Vibration Prevention Devices (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To easily control the vibration of a long-sized structure such as a utility pole. <P>SOLUTION: This vibration control device 10 installed at the long-sized structure is provided with an added mass part 20 having predetermined mass; a single post part 22 positioning the added mass part spaced in the longitudinal direction of the long-sized structure; a vibration damping part 24 provided in contact with the post part; and a mounting part 26. The natural frequency of the vibration control device 10 is adjusted to be approximately equal to the natural frequency of the long-sized structure. When earthquake motion is inputted, the vibration control device 10 resonates, and the vibrational energy of the post part 22 is absorbed by the vibration damping part 24. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

この発明は、電柱や鉄塔等の長尺構造物に設置される制振装置および制振方法に関する。   The present invention relates to a vibration damping device and a vibration damping method installed in a long structure such as a utility pole or a steel tower.

地震により電柱や鉄塔などの構造物が損傷、倒壊すると、長期間にわたって生活インフラが失われることになる。そこで、地震による構造物の損傷、倒壊を防止するために、多数の耐震、免震、制振技術が開発されている。これらのうち制振技術は、地盤の変動による加速度エネルギーを、衝撃、熱、材料の塑性変形などにエネルギー変換して吸収する技術の総称である。   If structures such as utility poles and steel towers are damaged or collapsed by an earthquake, life infrastructure will be lost over a long period of time. Therefore, a number of seismic, seismic isolation and vibration control technologies have been developed to prevent damage and collapse of structures due to earthquakes. Among these, the damping technology is a general term for technologies that absorb and absorb acceleration energy due to ground fluctuations into impact, heat, plastic deformation of materials, and the like.

制振技術のひとつとして、付加質量機構によるものが知られている(例えば、特許文献1参照)。付加質量機構は、構造物頂部に共振質量を設け、地震発生時にこの共振質量を振動させることで構造物本体の振動を抑制するもので、「TMD(Tuned Mass Damper)」または「動吸振器」とも呼ばれる。共振質量は、構造物頂部にレール、バネ、積層ゴムなどで支持され、多くの場合オイルダンパなどの付加減衰が付加されている。付加質量機構は、構造物の形状が細長であり、曲げ変形による頂部振動が顕著な振動の制御に有効である。
特開2003―278827号公報
As one of the vibration damping techniques, an additive mass mechanism is known (see, for example, Patent Document 1). The additional mass mechanism suppresses the vibration of the structure body by providing a resonance mass at the top of the structure and vibrating this resonance mass when an earthquake occurs. It is called “TMD (Tuned Mass Damper)” or “Dynamic Vibration Absorber”. Also called. The resonance mass is supported on the top of the structure by rails, springs, laminated rubber or the like, and in many cases, additional damping such as an oil damper is added. The additional mass mechanism is effective in controlling vibrations in which the shape of the structure is elongated and the top vibration due to bending deformation is significant.
Japanese Patent Laid-Open No. 2003-278827

しかしながら、例えば電柱や鉄塔のように多数設置される構造物に、上記特許文献1のような大型で複雑な機構を備えることは、設置の手間やコストの面から現実的でない。また、そのような複雑な機構を、既設の構造物に後から設置することは困難である。また、振動のエネルギーを衝撃や音などにより発散させるものも知られているが、これらは騒音を発するため好ましくない。   However, it is not realistic to install a large and complex mechanism such as Patent Document 1 in a large number of structures such as utility poles and steel towers from the viewpoint of installation effort and cost. In addition, it is difficult to later install such a complicated mechanism in an existing structure. Further, there are known devices that diverge vibration energy by impact or sound, but these are not preferable because they emit noise.

本発明はこうした点に鑑みてなされたもので、簡便な構造で電柱や鉄塔等の長尺構造物を制振する技術を提供することを目的とする。   This invention is made | formed in view of such a point, and it aims at providing the technique which controls long structures, such as a utility pole and a steel tower, with a simple structure.

本発明のある態様は、一端を制振対象の構造物に取り付け他端を自由端とし、この自由端に質量を付加した支柱と、前記支柱の片持ち振動を減衰させる減衰部材とを備えることを特徴とする制振装置である。この態様によれば、長尺構造物の一部に支柱と減衰部材という簡便な構造の制振装置を備えるだけで制振効果を得ることができる。また、従来の制振装置に比べてわずかな設置面積しか必要としない。   An aspect of the present invention includes a column having one end attached to a structure to be controlled and having the other end as a free end, and a mass added to the free end, and a damping member for damping cantilever vibration of the column. Is a vibration damping device characterized by According to this aspect, it is possible to obtain a vibration damping effect by simply providing a vibration damping device having a simple structure such as a column and a damping member in a part of the long structure. In addition, a small installation area is required as compared with the conventional vibration damping device.

本発明の別の態様は、長尺構造物に設置される制振装置である。この制振装置は、所定の質量を有する付加質量部と、前記付加質量部を長尺構造物の長手方向に離間して位置せしめる単一の支柱部と、前記支柱部に接して設けられる振動減衰部と、を備え、当該制振装置の固有振動数が、前記長尺構造物の固有振動数と略等しくなるように調整されている。   Another aspect of the present invention is a vibration damping device installed in a long structure. The vibration damping device includes an additional mass unit having a predetermined mass, a single support unit that positions the additional mass unit spaced apart in the longitudinal direction of the long structure, and a vibration that is provided in contact with the support unit. And a natural frequency of the damping device is adjusted so as to be substantially equal to the natural frequency of the long structure.

ここで、「長尺構造物」とは、解析上一次元近似できる縦長形状の構造物をいい、例えば、電柱、照明ポール、広告塔、クレーン、信号機、鉄道架線柱、鉄塔、道路標識柱、高層ビルなどを含む。   Here, the “long structure” refers to a vertically long structure that can be approximated one-dimensionally in analysis, for example, a utility pole, a lighting pole, an advertising tower, a crane, a traffic light, a railway overhead pole, a steel tower, a road sign pillar, Including high-rise buildings.

この態様によれば、制振装置の固有振動数を長尺構造物の固有振動数と一致させることによって制振装置を共振させ、付加質量部を含む支柱部の振動のエネルギーをダンパ等の振動減衰部によって吸収するので、従来の付加質量機構による制振技術に比べて簡易な構成で長尺構造物の制振を達成することができる。   According to this aspect, the vibration damping device is made to resonate by matching the natural frequency of the vibration damping device with the natural frequency of the long structure, and the vibration energy of the support column including the additional mass portion is oscillated by a damper or the like. Since it is absorbed by the damping part, it is possible to achieve the vibration suppression of the long structure with a simple structure as compared with the vibration suppression technique using the conventional additional mass mechanism.

制振装置は、長尺構造物ごとの振動性状に応じて、当該制振装置の固有振動数を設置時および設置後に可変であるように構成してもよい。ここで、「振動性状に応じて」とは、長尺構造物の長さ、断面積、重量、トランス等の付属構造物の有無、電柱等に架けられている架線の本数などによって変化する長尺構造物の振動性状に合うように、固有振動数を変更できるという意味である。こうすれば、制振対象の長尺構造物の固有振動数に合わせて、設置現場で制振装置の固有振動数を調整することができるので、作業効率が向上する。   The vibration damping device may be configured such that the natural frequency of the vibration damping device is variable at the time of installation and after the installation according to the vibration property of each long structure. Here, “according to vibration properties” means a length that varies depending on the length, cross-sectional area, weight, presence or absence of an auxiliary structure such as a transformer, the number of overhead wires laid on a power pole, etc. This means that the natural frequency can be changed to match the vibration properties of the scale structure. In this way, the natural frequency of the vibration damping device can be adjusted at the installation site in accordance with the natural frequency of the long structure to be damped, so that work efficiency is improved.

固有振動数を可変にすることには、付加質量部の取り付け位置を移動可能にすること、支柱部の曲げ合成を可変とすること、付加質量部の質量を可変とすることが含まれる。固有振動数を可変にしない場合には、付加質量部と支柱部とを一体成形してもよい。   Making the natural frequency variable includes making the attachment position of the additional mass portion movable, making the bending composition of the support column variable, and making the mass of the additional mass portion variable. If the natural frequency is not variable, the additional mass part and the support part may be integrally formed.

支柱部に二以上の付加質量部を装着可能な構造とするなどして、支柱部に複数の質点を持たせてもよい。これによって、長尺構造物の複数の振動モードに対応した制振効果を発揮することができる。   A plurality of mass points may be given to the support part by, for example, a structure in which two or more additional mass parts can be attached to the support part. As a result, it is possible to exhibit a damping effect corresponding to a plurality of vibration modes of the long structure.

本発明のさらに別の態様は、長尺構造物の制振方法である。この方法は、長尺構造物の固有振動数と略等しい固有振動数を持ち、一端を該長尺構造物に固定し他端を自由端とした長手部材を設置し、この長手部材の振動を減衰する減衰部材を設けることによって、長尺構造物の制振をする。この態様によれば、既設の長尺構造物に対し、簡単な設置工事を施すだけで、長尺構造物の制振をすることが可能になる。   Yet another embodiment of the present invention is a method for damping a long structure. In this method, a longitudinal member having a natural frequency substantially equal to the natural frequency of a long structure, one end fixed to the long structure and the other end being a free end is installed, and the vibration of the longitudinal member is set. By providing a damping member that attenuates, the long structure is damped. According to this aspect, the long structure can be damped only by performing simple installation work on the existing long structure.

本発明によれば、簡易な構成の制振装置によって、長尺構造物の制振を達成することができる。   ADVANTAGE OF THE INVENTION According to this invention, the damping of a long structure can be achieved with the damping device of a simple structure.

本発明は、電柱や鉄塔などの長尺構造物の振動を制振するために、既設および新設の長尺構造物の固有振動数にほぼ等しい固有振動数を持つように設定した制振装置を長尺構造物に設置し、地震動が入力されたときに長尺構造物と制振装置を共振させることによって、長尺構造物の振動を低減する制振技術である。   The present invention provides a vibration damping device that is set to have a natural frequency substantially equal to the natural frequency of existing and new long structures in order to control vibrations of long structures such as utility poles and steel towers. This is a vibration control technology that reduces vibration of a long structure by installing it on a long structure and resonating the long structure with a vibration control device when seismic motion is input.

構造物と制振装置とを共振させる技術として、従来、付加質量機構による制振構造が知られている。これは、構造物の頂部に構造物本体の数%に当たる付加質量を水平に移動するように取り付け、その固有振動数を構造物本体の固有振動数と一致させることによって付加質量を共振させ、ここに各種のダンパを付加してエネルギーを吸収する機構である。本発明は、このような付加質量機構による制振構造とは異なり、可動部分を設ける代わりに付加質量を支柱により片持ちで支持させ、この支柱を共振させるようにした制振装置を提供する。   Conventionally, a damping structure using an additional mass mechanism is known as a technique for resonating a structure with a damping device. This is done by attaching an additional mass equivalent to several percent of the structure body to the top of the structure so that it moves horizontally, and resonating the additional mass by matching its natural frequency with the natural frequency of the structure body. It is a mechanism that absorbs energy by adding various dampers to. The present invention provides a vibration damping device in which an additional mass is supported by a cantilever with a support instead of providing a movable part and the support is made to resonate, unlike the vibration suppression structure with such an additional mass mechanism.

図1は、本発明の一実施形態に係る制振装置10の全体図である。制振装置10は、付加質量部20と、支柱部22と、振動減衰部24と、取り付け部26とから構成される。図1では、付加質量部20は球体であるが、直方体など他の形状をしていてもよい。しかし、拡がりが少なく質点に近似できる形状とする方が制振効果は高い。付加質量部20は、例えば金属で作成されるが、ゴム、プラスチックなどの樹脂材料で作成されてもよい。または、中空の容器として付加質量部20を形成しておき、その内部に水、油、砂などの流動物を注入することで所定の質量を持たせるようにしてもよい。   FIG. 1 is an overall view of a vibration damping device 10 according to an embodiment of the present invention. The vibration damping device 10 includes an additional mass unit 20, a support column unit 22, a vibration damping unit 24, and an attachment unit 26. In FIG. 1, the additional mass unit 20 is a sphere, but may have another shape such as a rectangular parallelepiped. However, the vibration suppression effect is higher when the shape is less spread and approximate to the mass point. The additional mass unit 20 is made of, for example, a metal, but may be made of a resin material such as rubber or plastic. Alternatively, the additional mass unit 20 may be formed as a hollow container, and a predetermined mass may be provided by injecting a fluid such as water, oil, sand, or the like.

支柱部22は、主に、付加質量部20を取り付け部26から離間して位置させる役割を有する。支柱部22は、一端が取り付け部26と固定されており、他端は自由端とされている。支柱部22の自由端側に付加質量部20が取り付けられる。支柱部22は、図1では正方形断面であるが、他の断面形状でもよい。主に、この支柱部22と付加質量部20とによって、制振装置10の固有振動数が決定される。これについては、数式を参照して後述する。制振装置10の固有振動数と長尺構造物の固有振動数とは、ほぼ等しくなるように、予め調整される、   The support column 22 mainly has a role of positioning the additional mass unit 20 apart from the attachment unit 26. One end of the column portion 22 is fixed to the mounting portion 26, and the other end is a free end. The additional mass unit 20 is attached to the free end side of the column unit 22. The column portion 22 has a square cross section in FIG. 1, but may have other cross sectional shapes. Mainly, the natural frequency of the vibration damping device 10 is determined by the support column 22 and the additional mass unit 20. This will be described later with reference to mathematical expressions. The natural frequency of the damping device 10 and the natural frequency of the long structure are adjusted in advance so as to be substantially equal.

支柱部22への付加質量部20の取り付け位置は、可変とされていることが好ましい。例えば、図1に示すように、付加質量部20の中心を通る貫通穴28を形成しておき、支柱部22と遊嵌可能としておく。支柱部22には、予め数cm毎に雌ネジが切られており、支柱部22を貫通穴28に通した後、雌ネジにボルトを螺合することによって、ボルトの上部に付加質量部20を位置させることができる。または、支柱部22に予め数cmごとに穴を設けておくとともに、付加質量部20の貫通穴28内部に、押圧により出入り自在な突起を設けておき、付加質量部20を支柱部22に対して押し込むかまたは引っ張ることで、その突起を支柱部22に設けたいずれかの穴に嵌合させるようにして、付加質量部20を固定してもよい。または、支柱部22を上部材と下部材に分け、上部材と付加質量部20とを結合させておくとともに、上部材が下部材からスライドして延び出すような機構とし、上部材のスライドする長さを変えることで付加質量部20の位置を設定できるようにしてもよい。しかしながら、本発明はこれらの構成に限定されず、付加質量部20を支柱部22に沿って上下方向に移動可能とできる任意の構造を採用することができる。別の実施形態では、付加質量部と支柱部とが一体成形されていてもよい。   It is preferable that the attachment position of the additional mass unit 20 to the support column 22 is variable. For example, as shown in FIG. 1, a through-hole 28 that passes through the center of the additional mass portion 20 is formed so that it can be loosely fitted to the column portion 22. A female screw is cut in advance every several centimeters in the column portion 22, and after passing the column portion 22 through the through hole 28, a bolt is screwed into the female screw, whereby the additional mass portion 20 is formed on the upper portion of the bolt. Can be positioned. Alternatively, a hole is provided in the support column 22 every several centimeters in advance, and a protrusion that can be freely moved by pressing is provided in the through hole 28 of the additional mass unit 20, so that the additional mass unit 20 is attached to the support column 22. The additional mass portion 20 may be fixed so that the protrusion is fitted into any of the holes provided in the column portion 22 by being pushed in or pulled. Alternatively, the strut portion 22 is divided into an upper member and a lower member, the upper member and the additional mass portion 20 are combined, and the upper member is slid from the lower member to extend and the upper member slides. You may enable it to set the position of the additional mass part 20 by changing length. However, the present invention is not limited to these configurations, and any structure that can move the additional mass unit 20 in the vertical direction along the support column 22 can be adopted. In another embodiment, the additional mass portion and the column portion may be integrally formed.

振動減衰部24は、支柱部22の振動を減衰させる部材である。振動減衰部24は、支柱部22と接して設けられる。支柱部22がいずれの方向に振動しても確実に減衰効果を発揮できるように、振動減衰部24は支柱部22の全方向にわたって設けられることが好ましいが、支柱部22の周囲の一部のみに設けられていてもよい。図1では、円柱形状に形成された制振ゴムに形成された穴に支柱部22を貫通させる構造になっている。この振動減衰部24の大きさ、材質などによって、制振装置10の減衰定数が決定される。振動減衰部24としては、種々の材料を用いることができ、一例として、鋼材、オイル、ブタン系高分子等の粘性流体、シリコンなどの粘性体、アクリル、高減衰ゴムなどの粘弾性体が挙げられるが、これらに限定されない。   The vibration attenuating unit 24 is a member that attenuates the vibration of the column unit 22. The vibration damping unit 24 is provided in contact with the support column 22. The vibration damping unit 24 is preferably provided in all directions of the support column 22 so that the support unit 22 can surely exhibit a damping effect regardless of the direction of vibration, but only a part of the periphery of the support unit 22 is provided. May be provided. In FIG. 1, it has the structure which makes the support | pillar part 22 penetrate the hole formed in the damping rubber formed in the column shape. The damping constant of the vibration damping device 10 is determined by the size and material of the vibration damping unit 24. Various materials can be used as the vibration damping unit 24, and examples thereof include steel materials, viscous fluids such as oil and butane-based polymers, viscous materials such as silicon, and viscoelastic materials such as acrylic and high-damping rubber. However, it is not limited to these.

振動減衰部24と支柱部22の重なりの長さ(図1中に「l」で示す)は、制振装置10が設置される長尺構造物の一次モードの固有振動数に等しいか、それに近い値になるように、制振装置の一次モードの減衰を考慮した固有振動数から決定する。振動減衰部の減衰定数は、例えば0.1〜0.5に設定される。   The length of the overlap between the vibration damping unit 24 and the support column 22 (indicated by “l” in FIG. 1) is equal to the natural frequency of the primary mode of the long structure in which the vibration damping device 10 is installed, It is determined from the natural frequency in consideration of the damping of the primary mode of the damping device so as to be close. The damping constant of the vibration damping unit is set to 0.1 to 0.5, for example.

取り付け部26は、制振装置10を長尺構造物に取り付けるとともに、長尺構造物の振動を支柱部22へ伝達する機能を有する。図1では、取り付け部26は長方形形状の板として示されているが、この形状に限定されるわけではない。取り付け部26と支柱部22とは、例えば溶接、ネジ止め、嵌め込みなどのいずれかの方法により固定される。長尺構造物の振動が支柱部22および付加質量部20に確実に伝達されるように、取り付け部26と支柱部22とは遊びのないように固定されていることが望ましい。   The attachment portion 26 has a function of attaching the vibration damping device 10 to the long structure and transmitting the vibration of the long structure to the column portion 22. In FIG. 1, the attachment portion 26 is shown as a rectangular plate, but is not limited to this shape. The attachment portion 26 and the column portion 22 are fixed by any method such as welding, screwing, or fitting. It is desirable that the attachment portion 26 and the column portion 22 are fixed so as not to play so that the vibration of the long structure is reliably transmitted to the column portion 22 and the additional mass portion 20.

図2に示すように、制振装置10は、長尺構造物30の頂部に、支柱部22が鉛直方向に起立するように設置される。制振装置10は、取り付け部26の長方形板の四辺を長尺構造物頂部の床面とボルト締結したり、または、取り付け部26をコンクリート等により長尺構造物頂部の床面に埋設したりして、長尺構造物30に設置される。しかしながら、支柱部22を直接長尺構造物30に取り付けるようにしてもよく、この場合取り付け部26は不要である。従って、取り付け部26は必須の構成要素ではなく、制振装置の設置形態に応じて選択されるが、制振装置10の取り付け性を重視する場合は、取り付け部26を有していた方がよい。制振装置10が取り付け部26を有さない場合、支柱部22を長尺構造物頂部の床面に設けられた穴に打ち込んだり、長尺構造物の頂部の構造鉄材と溶接したりして、制振装置10を設置する。   As shown in FIG. 2, the vibration damping device 10 is installed on the top of the long structure 30 so that the support column 22 stands in the vertical direction. The vibration damping device 10 is fastened with bolts on the four sides of the rectangular plate of the attachment portion 26 to the floor surface of the long structure top, or is embedded in the floor surface of the long structure top portion with concrete or the like. Then, it is installed in the long structure 30. However, you may make it attach the support | pillar part 22 to the elongate structure 30 directly, and the attachment part 26 is unnecessary in this case. Therefore, the attachment portion 26 is not an essential component, and is selected according to the installation form of the vibration damping device. However, when attaching importance to the vibration damping device 10, it is preferable to have the attachment portion 26. Good. When the vibration damping device 10 does not have the attachment portion 26, the support column portion 22 is driven into a hole provided in the floor surface of the long structure top or welded to the structural iron material on the top of the long structure. The vibration damping device 10 is installed.

次に、制振装置10の概略作用を述べる。地震動により長尺構造物30が振動すると、その頂部に設置された制振装置の支柱部22が、取り付け部26を介してまたは直接に振動する。制振装置10の固有振動数と長尺構造物30の固有振動数がほぼ等しくなるように制振装置10を調整してあるため、制振装置10の支柱部22は、共振して大きく振動する。支柱部22の固定端側に設けてある振動減衰部24は、変形して、エネルギー消費することでこの振動を減衰させる。すると、長尺構造物30の振動エネルギーが振動減衰部24において消費されて、長尺構造物30全体の振動が、制振装置10を設置していない場合と比べて短期間で減衰する。これによって、長尺構造物30に生じる変位量、曲げモーメント、剪断力などが、制振装置10を設置していない場合よりも大きく低下し、地震による長尺構造物の損傷や倒壊を防止することができる。   Next, the general operation of the vibration damping device 10 will be described. When the long structure 30 vibrates due to the earthquake motion, the strut portion 22 of the vibration damping device installed on the top vibrates via the attachment portion 26 or directly. Since the vibration damping device 10 is adjusted so that the natural frequency of the vibration damping device 10 and the natural frequency of the long structure 30 are substantially equal, the column portion 22 of the vibration damping device 10 resonates and greatly vibrates. To do. The vibration damping unit 24 provided on the fixed end side of the support column 22 is deformed and attenuates this vibration by consuming energy. Then, the vibration energy of the long structure 30 is consumed in the vibration attenuating unit 24, and the vibration of the entire long structure 30 is attenuated in a short period of time compared to the case where the vibration damping device 10 is not installed. As a result, the displacement amount, bending moment, shearing force, etc. generated in the long structure 30 are greatly reduced as compared with the case where the vibration control device 10 is not installed, and the long structure is prevented from being damaged or collapsed by an earthquake. be able to.

制振装置10の固有振動数ωは、以下に示す数1により計算される。

Figure 2005344452
ここで、「k」は片持ち梁の場合の固有振動数の係数であり、制振装置10が一様な曲げ剛性を有する場合、k=1.8751041である。「L」は、支柱部22の固定端から付加質量部20の重心までの長さ、「EI」は支柱部22の曲げ剛性、「E」は支柱部22のヤング率、「I」は支柱部22の断面二次モーメント、「m」は付加質量部20の質量である。振動減衰部24の減衰定数をhとしたとき、減衰を考慮した制振装置10の固有振動数ω1Dは、次式で表される。
Figure 2005344452
The natural frequency ω 1 of the damping device 10 is calculated by the following formula 1.
Figure 2005344452
Here, “k” is a coefficient of the natural frequency in the case of a cantilever, and k = 1.8751041 when the vibration damping device 10 has a uniform bending rigidity. “L” is the length from the fixed end of the support column 22 to the center of gravity of the additional mass unit 20, “EI” is the bending rigidity of the support column 22, “E” is the Young's modulus of the support column 22, and “I” is the support column The sectional moment of inertia of the portion 22, “m”, is the mass of the additional mass portion 20. When the damping constant of the vibration damping unit 24 is h, the natural frequency ω 1D of the vibration damping device 10 considering damping is expressed by the following equation.
Figure 2005344452

制振装置10のユーザは、制振装置10が設置される長尺構造物の固有振動数ωを予め算出しておき、ωとほぼ等しくなるように制振装置10の固有振動数を調節する。ω1D=ωより、次式が導かれる。

Figure 2005344452
数3を満たすように、付加質量部20の質量m、支柱部22の断面二次モーメントI、支柱部22の長さLを適宜選択すればよい。 The user of the vibration damping device 10 calculates in advance the natural frequency ω 0 of the long structure on which the vibration damping device 10 is installed, and sets the natural frequency of the vibration damping device 10 to be approximately equal to ω 0. Adjust. From ω 1D = ω 0 , the following equation is derived.
Figure 2005344452
What is necessary is just to select suitably the mass m of the additional mass part 20, the cross-sectional secondary moment I of the support | pillar part 22, and the length L of the support | pillar part 22 so that several 3 may be satisfy | filled.

制振装置10の固有振動数を可変とするには、上述したように、付加質量部20の取り付け位置Lを可変とする機構を採用することが最も簡単であり、好ましい。しかし、この機構とは別に、またはこの機構とともに、他の固有振動数可変機構を備えていてもよい。第1に、付加質量部20の質量mを可変とすることができる。例えば、上述のように、付加質量部20を中空に形成しておけば、中空部分に注入する流動物の量を変えることで、付加質量部20の質量を可変とすることができる。または、予め質量の異なる多数の付加質量部20を準備しておき、それらを適宜交換するようにしてもよい。第2に、支柱部22の曲げ剛性EIを可変とすることができる。例えば、異なる材質で作られた支柱部22を多数準備しておくか、または直径の異なる支柱部22を準備しておき、それらを適宜交換するようにしてもよい。付加質量部と支柱部とが一体成形されているときは、付加質量部の取り付け位置と質量を様々に変えた一体部材を多数準備しておき、これを付け替えることで制振装置10の固有振動数を可変としてもよい。   In order to make the natural frequency of the vibration damping device 10 variable, as described above, it is simplest and preferable to employ a mechanism that makes the attachment position L of the additional mass portion 20 variable. However, another natural frequency variable mechanism may be provided separately from or together with this mechanism. First, the mass m of the additional mass unit 20 can be made variable. For example, as described above, if the additional mass portion 20 is formed in a hollow shape, the mass of the additional mass portion 20 can be made variable by changing the amount of fluid injected into the hollow portion. Alternatively, a large number of additional mass units 20 having different masses may be prepared in advance and replaced as appropriate. Second, the bending rigidity EI of the support column 22 can be made variable. For example, a large number of support pillars 22 made of different materials may be prepared, or support pillars 22 having different diameters may be prepared and exchanged as appropriate. When the additional mass portion and the column portion are integrally formed, a number of integrated members having various attachment positions and masses are prepared, and the natural vibration of the vibration damping device 10 can be changed by replacing them. The number may be variable.

ユーザは、制振装置10を設置する長尺構造物30の固有振動数に合わせて、付加質量部20の取り付け位置Lを変えたりして、制振装置10の固有振動数を変えることができるので、制振装置の製造者は固有振動数に合わせて他種類の装置を製造する必要がない。また、固有振動数の変更が容易なので、ユーザは、設置現場の実際の状況に合わせて固有振動数を微調整することもできる。例えば、長尺構造物が電柱の場合であれば、その電柱に設置されているトランスの数、懸架されている電線の数、電柱自体の直径や高さなどによって、たとえ同じ種類の電柱でも固有振動数が異なるが、これらを予め計算して作成されたグラフなどを参照して、付加質量部20の取り付け位置を上下させたり、付加質量部20の中空部分に注入する流動物の量を増減させたりすることで、制振装置10の固有振動数を設置現場で変更することができる。   The user can change the natural frequency of the vibration damping device 10 by changing the attachment position L of the additional mass unit 20 according to the natural frequency of the long structure 30 where the vibration damping device 10 is installed. Therefore, the manufacturer of the vibration control device does not need to manufacture other types of devices in accordance with the natural frequency. Further, since the natural frequency can be easily changed, the user can finely adjust the natural frequency according to the actual situation of the installation site. For example, if the long structure is a utility pole, the same type of utility pole may be unique depending on the number of transformers installed on the utility pole, the number of suspended wires, the diameter and height of the utility pole itself, etc. Although the frequency is different, referring to a graph created by calculating these in advance, the attachment position of the additional mass unit 20 is moved up and down, or the amount of fluid injected into the hollow portion of the additional mass unit 20 is increased or decreased. By doing so, the natural frequency of the vibration damping device 10 can be changed at the installation site.

例えば、上述したTMDでは、共振質量を水平移動させるためにレールや滑車などの構造が必要となり、設備が大型になる。また、水平移動させるためには、ある程度の設置面積が必要なので、電柱や鉄塔などの頂部が狭い構造物には設置するのが困難である。つまり、適用対象となる構造物が限定される。   For example, in the above-described TMD, a structure such as a rail or a pulley is required to horizontally move the resonance mass, and the facility becomes large. Moreover, since a certain installation area is required in order to move horizontally, it is difficult to install in structures with narrow tops, such as a utility pole and a steel tower. That is, the structure to be applied is limited.

これに対し、本実施形態による制振装置は、片持ちの支柱の自由端を固定端に対して揺動させる構造をとっているので、設置面積は、最低限、支柱部と振動減衰部の底面積分あれば十分であり、頂部が狭い構造物にも設置が容易である。また、構造的にも非常に簡単であり、重量も従来のものに比べて小さい。後述するように、例えば制振装置の設置される長尺構造物が電柱であれば、500g程度の付加質量部があれば十分な制振効果を発揮する。これは、電柱自体の重量の1%未満、つまり数百分の1のオーダーである。   On the other hand, the vibration damping device according to the present embodiment has a structure in which the free end of the cantilevered column is swung with respect to the fixed end. Therefore, the installation area is at least between the column unit and the vibration damping unit. Bottom integration is sufficient, and installation is easy even for structures with narrow tops. In addition, it is very simple in structure, and its weight is small compared to the conventional one. As will be described later, for example, if the long structure on which the vibration damping device is installed is a utility pole, a sufficient damping effect is exhibited if there is an additional mass part of about 500 g. This is on the order of less than 1% of the weight of the utility pole itself, that is, one hundredth.

次に、本実施形態の制振装置を長尺構造物の頂点に設けたことによる減衰の効果をシミュレーションした結果を説明する。   Next, the result of simulating the effect of attenuation by providing the vibration damping device of the present embodiment at the apex of the long structure will be described.

図3(a)は、地震による電柱の振動をシミュレーションするための計算モデル40を示す。モデルとするのは全長12mの標準的な大きさの電柱42である。電柱42の頂部に制振装置50を設置する。電柱42の構造は、プレストレストコンクリートで、図3(b)に示すように、中央は空洞であり壁の厚さは0.04mである。電柱42は、頂部から底面部へ向かってその断面の直径が一様に増加していく構造とする。頂部の直径は0.19mであり、底面部の直径は0.35mである。電柱42のうち、地上に露出している部分は10mであり、下部2mは地中に埋設されており、計算モデル上はこの埋設部分は固定されているものとする。図3(a)には、地上から8mの位置にトランス44を電柱42の片側のみに設けた計算モデルを描いている。なお、図3(a)は横方向を強調して描かれている。シミュレーションに使用した電柱42の材料特性を表1に示す。

Figure 2005344452
FIG. 3A shows a calculation model 40 for simulating the vibration of a power pole due to an earthquake. The model is a utility pole 42 of a standard size with a total length of 12 m. A vibration damping device 50 is installed on the top of the utility pole 42. The structure of the utility pole 42 is prestressed concrete, and as shown in FIG. 3B, the center is a hollow and the wall thickness is 0.04 m. The utility pole 42 has a structure in which the diameter of the cross section increases uniformly from the top to the bottom. The diameter of the top part is 0.19 m, and the diameter of the bottom part is 0.35 m. Of the utility pole 42, the part exposed to the ground is 10 m, and the lower part 2 m is buried in the ground, and this buried part is fixed on the calculation model. FIG. 3A shows a calculation model in which the transformer 44 is provided only on one side of the utility pole 42 at a position 8 m from the ground. In FIG. 3A, the horizontal direction is emphasized. Table 1 shows the material characteristics of the utility pole 42 used in the simulation.
Figure 2005344452

シミュレーション対象として、制振装置のないモデル(以下、「非制振電柱」と呼ぶ)と、制振装置を頂部に備えた電柱(以下、「制振電柱」と呼ぶ)の三つのモデルM0〜M2を準備した。モデルM0はトランスがない電柱、モデルM1はトランスを片側のみに備えた電柱(図3に示したモデル)、モデルM2はトランスを両側に備えた電柱である。   As models to be simulated, there are three models M0 to M0: a model without a damping device (hereinafter referred to as “non-damping power pole”) and a power pole having a damping device at the top (hereinafter referred to as “damping power pole”). M2 was prepared. The model M0 is a utility pole without a transformer, the model M1 is a utility pole with a transformer only on one side (model shown in FIG. 3), and the model M2 is a utility pole with a transformer on both sides.

図4は、計算モデル40の制振装置50の拡大図である。制振装置50の高さは1mである。この計算モデル40では、付加質量部52と支柱部54のみを考慮し、取り付け部および振動減衰部の形状は考慮していない。付加質量部52の質量はm=0.5(kg)、支柱部54の固定端から付加質量部52の重心までの距離はL=1(m)に固定し、支柱部54の断面二次モーメントIを変化させることで、制振装置50の固有振動数を一定にしている。なお、支柱部54は正方形断面とし、材料は鉄とする。制振装置50の減衰定数は、10%減衰、20%減衰の二種類を設定した。解析モデルM0、M1、M2に対する支柱部54の曲げ剛性EIを、以下の表2に示す。

Figure 2005344452
FIG. 4 is an enlarged view of the vibration damping device 50 of the calculation model 40. The height of the vibration damping device 50 is 1 m. In this calculation model 40, only the additional mass portion 52 and the support portion 54 are considered, and the shapes of the attachment portion and the vibration damping portion are not considered. The mass of the additional mass portion 52 is m = 0.5 (kg), and the distance from the fixed end of the support portion 54 to the center of gravity of the additional mass portion 52 is fixed at L = 1 (m). By changing the moment I, the natural frequency of the vibration damping device 50 is made constant. In addition, the support | pillar part 54 is made into a square cross section and a material is made into iron. The damping constant of the damping device 50 was set to two types of 10% attenuation and 20% attenuation. Table 2 below shows the bending rigidity EI of the support column 54 with respect to the analysis models M0, M1, and M2.
Figure 2005344452

入力地震波としては、直下型地震の神戸海洋気象台NS波の原波(90.90kine(cm/s))を使用した。剪断変形を無視した曲げ系は、Bernoulli-Euler beam理論により、剪断変形を考慮した曲げ系は、Timoshenko beam理論により解析した。以上の条件の下に、制振電柱モデルM0〜M2の変位、層剪断力、曲げモーメントについてのシミュレーション結果を順に説明する。   As the input seismic wave, the original wave (90.90 kine (cm / s)) of the Kobe Ocean Meteorological Observatory NS wave of a direct earthquake was used. The bending system ignoring shear deformation was analyzed by Bernoulli-Euler beam theory, and the bending system considering shear deformation was analyzed by Timoshenko beam theory. Under the above conditions, simulation results on the displacement, laminar shear force, and bending moment of the damping pole model M0 to M2 will be described in order.

モデルM0(トランスなし).
図5(a)〜(c)は、モデルM0のシミュレーション結果である。図5(a)は、電柱の高さ方向の各位置における最大変位を示しており、横軸は変位量(m)、縦軸は地面からの電柱の高さ(m)を表す。グラフから分かるように、電柱の頂部の最大変位は、10%減衰の場合で30%、20%減衰の場合は50%も減少しており、制振装置を設置したことによる制振効果が非常に高いことが分かる。
Model M0 (no transformer).
5A to 5C show simulation results of the model M0. FIG. 5A shows the maximum displacement at each position in the height direction of the utility pole, where the horizontal axis represents the amount of displacement (m) and the vertical axis represents the height (m) of the utility pole from the ground. As can be seen from the graph, the maximum displacement at the top of the utility pole is reduced by 30% in the case of 10% attenuation, and by 50% in the case of 20% attenuation. It is clear that it is expensive.

図5(b)は、電柱に生じる層剪断力を示しており、横軸は剪断力(N)、縦軸は地面からの電柱の高さ(m)を表す。層剪断力は、電柱の基部で最大値をとるが、10%減衰、20%減衰のいずれの場合も、基部において約17%減少している。   FIG.5 (b) has shown the layer shear force which arises in a utility pole, a horizontal axis represents shear force (N), and a vertical axis | shaft represents the height (m) of the utility pole from the ground. The laminar shear force takes the maximum value at the base of the utility pole, but decreases by about 17% at the base in both cases of 10% attenuation and 20% attenuation.

図5(c)は、電柱に生じる曲げモーメントを示しており、横軸はモーメント値(N・m)、縦軸は地面からの電柱の高さ(m)を表す。曲げモーメントも電柱の基部で最大値をとるが、10%減衰の場合で30%、20%減衰の場合は40%程度、それぞれ減少している。   FIG.5 (c) has shown the bending moment which arises in a utility pole, a horizontal axis represents moment value (N * m) and a vertical axis | shaft represents the height (m) of the utility pole from the ground. The bending moment also takes the maximum value at the base of the utility pole, but decreases by 30% for 10% attenuation and by about 40% for 20% attenuation.

以上のシミュレーション結果をまとめたものを表3に示す。表3は、非制振電柱と、10%減衰、20%減衰の制振電柱の最大曲げモーメントと最大剪断力を示す。表3中の括弧内の値は、電柱の短期許容曲げモーメントまたは短期許容剪断力に対する比率を表す。この比率が1以下であれば、電柱が損傷することはない。

Figure 2005344452
Table 3 summarizes the above simulation results. Table 3 shows the maximum bending moment and the maximum shear force of the non-damping power pole and the damping pole having 10% damping and 20% damping. The values in parentheses in Table 3 represent the ratio of the utility pole to the short-term allowable bending moment or short-term allowable shear force. If this ratio is 1 or less, the utility pole will not be damaged.
Figure 2005344452

表3から、非制振電柱では最大曲げモーメントが短期許容曲げモーメントを上回るので、電柱の損傷、倒壊のおそれがあるのに対し、制振電柱では、10%減衰の設定では損傷、倒壊のおそれがほとんどなく、20%の減衰ではその危険がなくなることが分かる。   From Table 3, the maximum bending moment exceeds the short-term allowable bending moment for the non-damping power poles, which may cause damage and collapse of the power poles, whereas for the damping poles, there is a risk of damage and collapse at the setting of 10% attenuation. It can be seen that there is almost no loss and that the risk disappears at 20% attenuation.

モデルM1(片側トランス).
図6(a)〜(c)は、モデルM1のシミュレーション結果である。各グラフの横軸、縦軸は、図5(a)〜(c)と同様である。図5(a)と図6(a)を比較すると分かるように、トランスを備えた電柱の方が高さ方向の最大変位が増加するが、制振装置による減衰の効果も大きく、10%減衰の場合でも約50%減少する。図6(b)、図6(c)を見ると、制振装置を設置することで層剪断力と曲げモーメントについても10%減衰で約50%減少しており、トランスを備えた電柱の方が制振装置を設置したことによる制振効果が増すことが分かる。以上のシミュレーション結果をまとめたものを表4に示す。

Figure 2005344452
Model M1 (one side transformer).
6A to 6C show simulation results of the model M1. The horizontal axis and the vertical axis of each graph are the same as those in FIGS. As can be seen from a comparison between FIG. 5A and FIG. 6A, the maximum displacement in the height direction of the utility pole with the transformer increases, but the damping effect by the vibration damping device is also large, and the attenuation is 10%. Even in the case of, it is reduced by about 50%. As shown in FIGS. 6B and 6C, the installation of the vibration control device reduces the layer shear force and bending moment by about 50% with 10% attenuation. It can be seen that the vibration damping effect is increased by installing the vibration damping device. Table 4 summarizes the above simulation results.
Figure 2005344452

表4から、制振電柱の10%減衰の場合は電柱の損傷のおそれがあるが、20%減衰にすれば安全であることが分かる。   From Table 4, it can be seen that there is a risk of damage to the power pole when the damping pole is 10% attenuated, but it is safe if the damping pole is 20% attenuated.

モデルM2(両側トランス).
図7(a)〜(c)は、モデルM2のシミュレーション結果である。各グラフの横軸、縦軸は、図5(a)〜(c)と同様である。図6(a)と図7(a)を比較すると分かるように、トランスを片側に備えた電柱よりもトランスを両側に備えた電柱の方がさらに高さ方向の最大変位が増加するが、制振装置による減衰の効果も大きく、10%減衰の場合で約62%減少する。図7(b)、図7(c)を見ると、制振装置を設置することで層剪断力は約50%、曲げモーメントは約60%も減少しており、トランスを両側に備えた電柱に対しても、本実施形態の制振装置の効果が非常に高いことが分かる。以上のシミュレーション結果をまとめたものを表5に示す。

Figure 2005344452
Model M2 (bilateral transformer).
7A to 7C show simulation results of the model M2. The horizontal axis and the vertical axis of each graph are the same as those in FIGS. As can be seen by comparing FIG. 6 (a) and FIG. 7 (a), the maximum displacement in the height direction is further increased in the utility pole with the transformer on both sides than the utility pole with the transformer on one side. The effect of attenuation by the vibration device is also large, and it decreases by about 62% when the attenuation is 10%. 7 (b) and 7 (c), the installation of the damping device reduces the layer shear force by about 50% and the bending moment by about 60%, and the utility pole with transformers on both sides However, it can be seen that the effect of the vibration damping device of the present embodiment is very high. Table 5 summarizes the above simulation results.
Figure 2005344452

表5から、制振電柱の10%減衰の場合は電柱の損傷のおそれがあるが、20%減衰にすればほぼ安全であることが分かる。なお、制振装置の減衰定数をさらに大きくすれば、最大曲げモーメント、最大剪断力はともに減少する。   From Table 5, it can be seen that there is a risk of damage to the power pole when the damping pole is 10% attenuated, but it is almost safe if the damping pole is 20% attenuated. If the damping constant of the damping device is further increased, both the maximum bending moment and the maximum shearing force are reduced.

同様のシミュレーションを、海洋型地震であるエルセントロNS波、長周期を含む地震波であるタフトEW波を、弾塑性振動解析(レベル2)相当の50kineとしたものについても実施した。いずれの地震波の場合も、最大曲げモーメント、最大剪断力とも短期許容値以下に低下し、制振装置により損傷が防げることが分かった。最大曲げモーメントの計算結果をモデルM0〜M2について以下の表6に示す。表6中の括弧内の値は、電柱の短期許容曲げモーメント(42990N・m)に対する比率を表す。

Figure 2005344452
表6から、エルセントロNS波、タフトEW波の場合は、10%減衰で十分に安全になることが分かる。 Similar simulations were performed for El Centro NS waves, which are ocean type earthquakes, and Tuft EW waves, which are long-period seismic waves, with 50 kine equivalent to elasto-plastic vibration analysis (level 2). In both cases, the maximum bending moment and the maximum shearing force decreased below the short-term allowable values, and it was found that the damping device could prevent damage. The calculation results of the maximum bending moment are shown in Table 6 below for the models M0 to M2. The values in parentheses in Table 6 represent the ratio of the utility pole to the short-term allowable bending moment (42990 N · m).
Figure 2005344452
From Table 6, it can be seen that the El Centro NS wave and the Tuft EW wave are sufficiently safe with 10% attenuation.

電柱や鉄塔などの長尺構造物については、一本だけが単独で建てられているわけではなく、連続する複数の構造物間に電線が懸架されている。この場合、隣接する2本の電柱が互いに逆向きに振動したとき、または、一方の電柱の変位が他方の電柱の同一方向の変位より大きいとき、電線により電柱が引っ張られる状態になるため、長尺構造物の振動を議論するに当たっては、電線の影響も考慮する必要がある。本願発明者は、この影響についてもシミュレーションを実施したが、結果にはほとんど影響を与えなかったので、ここでは記載を省略する。   About long structures, such as a utility pole and a steel tower, not only one is built independently, but the electric wire is suspended between several continuous structures. In this case, when two adjacent power poles vibrate in opposite directions, or when the displacement of one power pole is larger than the displacement in the same direction of the other power pole, the power pole is pulled by the electric wire. In discussing the vibration of the long structure, it is necessary to consider the influence of electric wires. The inventor of the present application also performed a simulation for this effect, but the result was omitted because it hardly affected the result.

以上説明したように、本発明の制振装置によれば、簡便な構造ながら、長尺構造物を有効に制振することができる。また、制振装置の付加質量部または支柱部を可変構造とすることで、制振装置を取り付ける長尺構造物の長さ、断面積、重量、トランス等の付属構造物の有無、電柱等に架けられている架線の本数などに応じて、現場で固有振動数を容易に調整可能である。   As described above, according to the vibration damping device of the present invention, a long structure can be effectively damped with a simple structure. Also, by making the additional mass part or strut part of the vibration damping device variable, the length of the long structure to which the vibration damping device is attached, the cross-sectional area, the weight, the presence or absence of auxiliary structures such as a transformer, The natural frequency can be easily adjusted in the field according to the number of overhead wires.

上述のシミュレーション結果で示したように、長尺構造物が電柱であれば、制振装置の重さは、たかだか500gの重りを1mの支柱の先に設ける程度で十分である。したがって、電柱のような細い構造物の頂部にも設置することができ、設置の制約が少ない。また、構造が簡単なため、低コストで実施できるとともに、新設と既設のいずれの構造物にも設置が容易である。また、制振装置自体の大きさが長尺構造物に対して十分小さいので、景観を大きく損なうことがない。さらに、駆動部分がないので、メンテナンスも容易である。   As shown in the simulation results described above, if the long structure is a utility pole, it is sufficient that the damping device has a weight of 500 g at the tip of a 1 m support. Therefore, it can be installed at the top of a thin structure such as a utility pole, and there are few restrictions on installation. In addition, since the structure is simple, it can be implemented at low cost, and can be easily installed in both new and existing structures. Moreover, since the magnitude | size of damping device itself is sufficiently small with respect to a long structure, a landscape is not spoiled greatly. Furthermore, since there is no drive part, maintenance is also easy.

以上、本発明を実施の形態をもとに説明した。この実施の形態は例示であり、それらの各構成要素の組合せにいろいろな変形例が可能なこと、またそうした変形例も本発明の範囲にあることは当業者に理解されるところである。以下、そのような変形例について述べる。   The present invention has been described based on the embodiments. This embodiment is an exemplification, and it is understood by those skilled in the art that various modifications can be made to the combinations of the respective constituent elements, and such modifications are also within the scope of the present invention. Hereinafter, such modifications will be described.

実施の形態では、主に電柱に設置するものとして制振装置を説明したが、トラス構造をした鉄塔や高層ビルなどでも、一次元のモデルに帰着させることで、上述と同様のシミュレーションを実行することができ、したがって、本発明の制振装置をこれらの構造物にも設置可能である。   In the embodiment, the vibration damping device has been described as being mainly installed on a utility pole. However, a simulation similar to that described above is executed by reducing a truss-structured steel tower or high-rise building to a one-dimensional model. Therefore, the vibration damping device of the present invention can also be installed in these structures.

実施の形態では、制振装置を長尺構造物の頂部に設置するものとして説明したが、振動が伝達されれば制振装置を頂部以外に設けてもよい。例えば、構造物の内部に設置したり、または、構造物の任意の位置から水平方向に張り出す張り出し部材を設けて、そこに制振装置を設置するようにしてもよい。しかしながら、長尺構造物は頂部で振動が最大となるので、制振装置を頂部に設置する方が制振効果は高い。   In the embodiment, the vibration damping device is described as being installed on the top of the long structure. However, if vibration is transmitted, the vibration damping device may be provided on a portion other than the top. For example, the vibration control device may be installed inside a structure or by providing a projecting member that projects horizontally from an arbitrary position of the structure. However, since the vibration of the long structure is maximized at the top, it is more effective to install the vibration control device at the top.

実施の形態では、制振装置の固有振動数を長尺構造物の一次モードの固有振動数に等しくするものとして説明したが、本発明の制振装置を長尺構造物の複数の振動モードに対応させることもできる。一例として、図8に、支柱部に複数の付加質量部を取り付けることで二質点系とした制振装置150を、電柱142の頂部に取り付けた計算モデル140を示す。制振装置150は、支柱部154と、複数の付加質量部152、156とからなる。付加質量部152は、電柱142の一次モードの固有振動数と制振装置150の固有振動数とを等しくするような位置に配置し、付加質量部156は、電柱142の二次モードの固有振動数と制振装置150の固有振動数とを等しくするような位置に配置する。シミュレーションの解析手法は、上述のものと同様である。   In the embodiment, the description has been given on the assumption that the natural frequency of the vibration damping device is equal to the natural frequency of the primary mode of the long structure. However, the vibration damping device of the present invention is changed to a plurality of vibration modes of the long structure. It can be made to correspond. As an example, FIG. 8 shows a calculation model 140 in which a vibration damping device 150 that has a two-mass system by attaching a plurality of additional mass parts to a support part is attached to the top of a utility pole 142. The vibration damping device 150 includes a support column 154 and a plurality of additional mass units 152 and 156. The additional mass unit 152 is disposed at a position where the natural frequency of the primary mode of the utility pole 142 is equal to the natural frequency of the damping device 150, and the additional mass unit 156 is the natural mode of the secondary mode of the utility pole 142. It arrange | positions in the position which makes a number and the natural frequency of the damping device 150 equal. The simulation analysis method is the same as that described above.

図3に示した、一質点系の制振装置50を備えた電柱42の計算モデル40に対して実行したのと同様のシミュレーションを、図8の二質点系の制振装置150を備えた電柱142の計算モデル140に対して実行した。その結果、一質点系の制振装置に比べて、二質点系の制振装置の方が、電柱の頂部の水平方向の変位を小さくすることが分かった。しかし、電柱の耐震性に大きく関係する柱脚部の曲げモーメントおよび剪断力については、二質点系の制振装置でも応答値がわずかに小さくなる程度であった。これは、電柱程度の高さの構造物では、一次モードの振動が支配的であるためである。これに対し、例えば、高さが100mを超えるような高層建築物では、一次モードの振動の周期が数十秒というオーダーになることから、二次モードの振動の方が支配的になる。このようなケースでは、二質点系の制振装置を備えたことによる制振の効果は高い。   A simulation similar to that performed for the calculation model 40 of the utility pole 42 provided with the one-mass system damping device 50 shown in FIG. The calculation was performed on 142 calculation models 140. As a result, it was found that the horizontal displacement of the top of the utility pole is smaller in the two-mass system damping device than in the one-mass system damping device. However, with regard to the bending moment and shearing force of the column base, which are greatly related to the seismic resistance of the utility pole, the response value was only slightly smaller even with the two mass system damping device. This is because the vibration of the primary mode is dominant in a structure having a height of a utility pole. On the other hand, for example, in a high-rise building having a height exceeding 100 m, the vibration of the primary mode is on the order of several tens of seconds, so the vibration of the secondary mode becomes dominant. In such a case, the vibration suppression effect due to the provision of the two-mass system vibration suppression device is high.

上記のシミュレーションで制振装置の質点の数を二つとしていても、制振装置の固有振動数を長尺構造物の一次モードおよび二次モードの固有振動数と等しくしなければならないわけではない。質点は、長尺構造物の動的応答に支配的な振動モードと共振させることを目的とするものなので、例えば、一次モードが長尺構造物において支配的でなければ、制振装置の二つの質点を長尺構造物の二次モードと三次モードの固有振動数と等しくなるように配置してもよい。当然、四次以上のモードの振動の制振も可能である。   Even if the number of mass points of the damping device is two in the above simulation, the natural frequency of the damping device must not be equal to the natural frequency of the primary mode and secondary mode of the long structure. . The mass point is intended to resonate with the vibration mode that dominates the dynamic response of the long structure. For example, if the primary mode is not dominant in the long structure, You may arrange | position a mass point so that it may become equal to the natural frequency of the secondary mode and tertiary mode of a long structure. Naturally, vibrations in the fourth and higher modes can be suppressed.

一般に、高さが数十mまでの長尺構造物であれば、一次モードと二次モードの振動の影響を考慮すれば十分である。しかしながら、本発明の制振装置は、質点の数に制限はないので、長尺構造物の動的応答を支配する振動モードが三つ以上あるときは、質点の数をそれに合わせて増加させればよい。   In general, for a long structure having a height of up to several tens of meters, it is sufficient to consider the influence of vibrations in the primary mode and the secondary mode. However, since the damping device of the present invention has no limitation on the number of mass points, when there are three or more vibration modes that govern the dynamic response of a long structure, the number of mass points can be increased accordingly. That's fine.

二質点系の制振装置を実現するための具体的な構成については、特に限定されるものではなく、任意の形態を取ることができる。例えば、上述したように、支柱部に予め数cmごとに穴を設けておくとともに、付加質量部の貫通穴内部に、押圧により出入り自在な突起を設けておくような構造を採用していれば、複数の付加質量部を支柱部に取り付けることによって、二質点系の制振装置を容易に得ることができる。   The specific configuration for realizing the two-mass point system damping device is not particularly limited, and can take any form. For example, as described above, if a structure is adopted in which holes are provided in advance every several centimeters in the support column, and protrusions that are freely accessible by pressing are provided in the through holes of the additional mass unit. By attaching a plurality of additional mass parts to the column part, a two-mass point type vibration damping device can be easily obtained.

実施の形態では、振動減衰部として円柱形状をなした制振ゴムを示したが、振動減衰部は他の構造をしていてもよい。以下、そのような変形例について述べる。   In the embodiment, the vibration damping rubber having a cylindrical shape is shown as the vibration damping part, but the vibration damping part may have another structure. Hereinafter, such modifications will be described.

変形例1.
図9は、振動減衰部を、層状の粘性体で構成した変形例である。振動減衰部を、それぞれ材料の異なる粘性体である80a、80b、80cを積層した構成とする。こうして、例えば、下層80cを上層80aよりも柔らかい材料とすると、構造物の振動時に上層80aが下層よりも大きく振動するので、減衰性能を高めることができる。
Modification 1
FIG. 9 is a modified example in which the vibration attenuating portion is composed of a layered viscous material. The vibration attenuating portion is configured by laminating 80a, 80b, and 80c, which are viscous bodies having different materials. Thus, for example, when the lower layer 80c is made of a softer material than the upper layer 80a, the upper layer 80a vibrates more greatly than the lower layer when the structure vibrates, so that the damping performance can be improved.

この応用として、図10に示すように、粘性体を同心円の多層の筒状に構成してもよい。この場合、外側の層90bに内側の層90aよりも剛性の高い材料を使用して、内側の層90aの粘性体の移動を拘束することで、減衰性能を高めることができる。一例として、内側の層90aをゴム、外側の層90bを金属で作成してもよい。   As this application, as shown in FIG. 10, the viscous body may be formed in a concentric multilayered cylindrical shape. In this case, the damping performance can be improved by using a material having higher rigidity than the inner layer 90a for the outer layer 90b and restraining the movement of the viscous body of the inner layer 90a. As an example, the inner layer 90a may be made of rubber and the outer layer 90b may be made of metal.

変形例2.
減衰性能を支柱部22の長手方向で変化させるために、図11(a)、(b)のような構成としてもよい。図11(a)は振動減衰部の変形例の正面図であり、図11(b)は図11(a)のA−A断面図である。中空の外殻100は金属等で作成され、図示するように途中から中空部分の断面積が変化している。この中に粘性体102を流し込むことで、支柱部22の上方でより減衰性能を高めることができる。粘性体102は、油のような流体でもよいし、または急速凝結性のゴムを流し込むようにすれば、設置現場での作業性が向上する。
Modification 2
In order to change the damping performance in the longitudinal direction of the support column 22, a configuration as shown in FIGS. Fig.11 (a) is a front view of the modification of a vibration damping part, FIG.11 (b) is AA sectional drawing of Fig.11 (a). The hollow outer shell 100 is made of metal or the like, and the cross-sectional area of the hollow portion changes from the middle as shown in the figure. By pouring the viscous body 102 into this, the damping performance can be further enhanced above the support column 22. The viscous body 102 may be a fluid such as oil, or if a rapidly setting rubber is poured, the workability at the installation site is improved.

変形例3.
図12は、設置現場での作業性を考慮した振動減衰部の変形例である。予め、粘性体を袋に詰めた球体112を多数個準備しておき、支柱部22と外殻110を設置した後、外殻110の内側の中空部分に球体112を複数個詰め、最後に、粘性体の移動を規制すべく、外殻110を覆うように蓋114を設置する。外殻110の内側に詰める球体112の個数を調節することで、減衰定数を変化させることができる。また、球体112の空隙部分に砂、油等を入れて、減衰性能を高めるようにしてもよい。この変形例3によれば、設置現場での作業性が向上する。
Modification 3
FIG. 12 is a modified example of the vibration damping unit in consideration of workability at the installation site. Prepare a large number of spheres 112 filled with a viscous body in advance, and after installing the support column 22 and the outer shell 110, pack a plurality of spheres 112 in the hollow portion inside the outer shell 110, finally, In order to restrict the movement of the viscous body, the lid 114 is installed so as to cover the outer shell 110. The damping constant can be changed by adjusting the number of spheres 112 packed inside the outer shell 110. In addition, sand, oil, or the like may be put in the space of the sphere 112 to improve the damping performance. According to the third modification, the workability at the installation site is improved.

変形例4.
図13(a)は、振動減衰部の別の変形例の正面図であり、図13(b)は図13(a)のA−A断面図である。この例の振動減衰部は、金属やゴムなどから作成された板120を支柱部22から翼状に張り出させ、この板に複数の穴122を設けたものである。地震による振動時にこれらの穴122によって板120が局部的に大きく変形することによって、減衰効果を発揮する。図14(a)に示すように、穴122の中に、粘性部材124を嵌め込むようにしてもよい。こうすると、温度変化時には図14(b)に示すように粘性部材124が変形するので、板120の減衰性能の温度依存性を低減することができる。なお、図14(a)、(b)では、粘性部材124の変形量を強調して描いている。
Modification 4
Fig.13 (a) is a front view of another modification of a vibration damping part, FIG.13 (b) is AA sectional drawing of Fig.13 (a). The vibration damping portion of this example is obtained by projecting a plate 120 made of metal, rubber, or the like from a support portion 22 in a wing shape, and providing a plurality of holes 122 on this plate. When the plate 120 is greatly deformed locally by these holes 122 during vibration due to an earthquake, a damping effect is exhibited. As shown in FIG. 14A, the viscous member 124 may be fitted into the hole 122. In this way, when the temperature changes, the viscous member 124 is deformed as shown in FIG. 14B, so that the temperature dependence of the damping performance of the plate 120 can be reduced. In FIGS. 14A and 14B, the deformation amount of the viscous member 124 is emphasized.

変形例5.
外気温度の変化に対して、振動減衰部の減衰性能を一定に維持できるようにしてもよい。その一例を図15に示す。外殻130の内側に粘性体136を入れ、その上部に蓋138を配置し、外殻130の上部を塞ぐ天板132と蓋138とを伸縮部材134により結合する。伸縮部材134は、形状記憶合金で作成されており、温度変化により伸縮する。温度変化に応じて伸縮部材134が伸縮して、粘性体136の変形可能な体積を変化させることで、粘性体136の減衰性能の温度依存性を低減することができる。
Modification 5
The damping performance of the vibration damping unit may be maintained constant with respect to changes in the outside air temperature. An example is shown in FIG. A viscous body 136 is placed inside the outer shell 130, a lid 138 is disposed on the viscous body 136, and the top plate 132 that closes the upper portion of the outer shell 130 and the lid 138 are coupled by an elastic member 134. The elastic member 134 is made of a shape memory alloy, and expands and contracts due to a temperature change. The temperature dependency of the damping performance of the viscous body 136 can be reduced by expanding and contracting the elastic member 134 according to the temperature change and changing the deformable volume of the viscous body 136.

本発明の一実施形態に係る制振装置の全体図である。1 is an overall view of a vibration damping device according to an embodiment of the present invention. 制振装置を長尺構造物に取り付けた様子を示す図である。It is a figure which shows a mode that the damping device was attached to the elongate structure. (a)、(b)は、振動シミュレーションのための計算モデルを示す図である。(A), (b) is a figure which shows the calculation model for vibration simulation. 振動シミュレーションのための計算モデルを示す図である。It is a figure which shows the calculation model for vibration simulation. モデルM0のシミュレーション結果を示すグラフであり、(a)は高さ方向の最大変位を、(b)は層剪断力を、(c)は曲げモーメントのシミュレーション結果である。It is a graph which shows the simulation result of the model M0, (a) is the maximum displacement of a height direction, (b) is a laminar shear force, (c) is a simulation result of a bending moment. モデルM1のシミュレーション結果を示すグラフであり、(a)は高さ方向の最大変位を、(b)は層剪断力を、(c)は曲げモーメントのシミュレーション結果である。It is a graph which shows the simulation result of the model M1, (a) is the maximum displacement of a height direction, (b) is a laminar shear force, (c) is a simulation result of a bending moment. モデルM2のシミュレーション結果を示すグラフであり、(a)は高さ方向の最大変位を、(b)は層剪断力を、(c)は曲げモーメントのシミュレーション結果である。It is a graph which shows the simulation result of the model M2, (a) is the maximum displacement of a height direction, (b) is a laminar shear force, (c) is a simulation result of a bending moment. 二質点系の制振装置を備えた電柱の計算モデルを示す図である。It is a figure which shows the calculation model of the utility pole provided with the damping device of the two mass point system. 振動減衰部の変形例を示す図である。It is a figure which shows the modification of a vibration damping part. 振動減衰部の別の変形例を示す図である。It is a figure which shows another modification of a vibration damping part. (a)、(b)は、振動減衰部の別の変形例を示す図である。(A), (b) is a figure which shows another modification of a vibration damping part. 振動減衰部の別の変形例を示す図である。It is a figure which shows another modification of a vibration damping part. (a)、(b)は、振動減衰部の別の変形例を示す図である。(A), (b) is a figure which shows another modification of a vibration damping part. (a)、(b)は、振動減衰部の別の変形例を示す図である。(A), (b) is a figure which shows another modification of a vibration damping part. 振動減衰部の別の変形例を示す図である。It is a figure which shows another modification of a vibration damping part.

符号の説明Explanation of symbols

10 制振装置、 20 付加質量部、 22 支柱部、 24 振動減衰部、 26 取り付け部、 30 長尺構造物、 40、140 計算モデル、 42、142 電柱、 44 トランス、 50、150 制振装置、 52、152、156 付加質量部、 54、154 支柱部。   DESCRIPTION OF SYMBOLS 10 Damping device, 20 Additional mass part, 22 Support | pillar part, 24 Vibration damping part, 26 Mounting part, 30 Long structure, 40, 140 Calculation model, 42, 142 Electric pole, 44 Transformer, 50, 150 Damping device, 52, 152, 156 Additional mass part, 54, 154 Post part.

Claims (16)

一端を制振対象の構造物に取り付け他端を自由端とし、この自由端に質量を付加した支柱と、
前記支柱の片持ち振動を減衰させる減衰部材と、
を備えることを特徴とする制振装置。
One end is attached to the structure to be damped, the other end is a free end, and a mass added to the free end,
A damping member for damping cantilever vibration of the support;
A vibration damping device comprising:
長尺構造物に設置される制振装置であって、
所定の質量を有する付加質量部と、
前記付加質量部を長尺構造物の長手方向に離間して位置せしめる単一の支柱部と、
前記支柱部に接して設けられる振動減衰部と、を備え、
当該制振装置の固有振動数が、前記長尺構造物の固有振動数と略等しくなるように調整されていることを特徴とする長尺構造物の制振装置。
A vibration damping device installed in a long structure,
An additional mass part having a predetermined mass;
A single column part that positions the additional mass part spaced apart in the longitudinal direction of the long structure;
A vibration damping unit provided in contact with the support column,
The long structure vibration damping device, wherein the natural frequency of the vibration damping device is adjusted to be substantially equal to the natural frequency of the long structure.
前記長尺構造物ごとの振動性状に応じて、当該制振装置の固有振動数を設置時および設置後に可変であるように構成されることを特徴とする請求項2に記載の制振装置。   The vibration damping device according to claim 2, wherein the vibration damping device is configured such that the natural frequency of the vibration damping device is variable at the time of installation and after installation according to the vibration property of each long structure. 前記支柱部における前記付加質量部の取り付け位置を移動可能とすることによって、当該制振装置の固有振動数を可変としたことを特徴とする請求項3に記載の制振装置。   The vibration damping device according to claim 3, wherein the natural frequency of the vibration damping device is made variable by making the attachment position of the additional mass portion in the support column movable. 前記付加質量部の取り付け位置が連続的に移動可能であることを特徴とする請求項4に記載の制振装置。   The vibration damping device according to claim 4, wherein the attachment position of the additional mass portion is continuously movable. 前記支柱部の曲げ剛性を可変とすることによって、当該制振装置の固有振動数を可変としたことを特徴とする請求項3に記載の制振装置。   4. The vibration damping device according to claim 3, wherein the natural frequency of the vibration damping device is made variable by making the bending rigidity of the support column variable. 前記付加質量部の質量を可変とすることによって、当該制振装置の固有振動数を可変としたことを特徴とする請求項3に記載の制振装置。   The vibration damping device according to claim 3, wherein the natural frequency of the vibration damping device is made variable by making the mass of the additional mass portion variable. 前記付加質量部と前記支柱部とが一体成形されてなることを特徴とする請求項2に記載の制振装置。   The vibration damping device according to claim 2, wherein the additional mass portion and the column portion are integrally formed. 前記振動減衰部の減衰定数を可変とする機構を備えたことを特徴とする請求項2ないし8のいずれかに記載の制振装置。   The vibration damping device according to any one of claims 2 to 8, further comprising a mechanism that makes a damping constant of the vibration damping unit variable. 前記振動減衰部の減衰定数の温度変化を吸収する機構を備えたことを特徴とする請求項9に記載の制振装置。   The vibration damping device according to claim 9, further comprising a mechanism that absorbs a temperature change of a damping constant of the vibration damping unit. 前記支柱部に複数の質点を持たせることで、前記長尺構造物の複数の振動モードに対応した制振効果を発揮せしめることを特徴とする請求項2ないし4のいずれかに記載の制振装置。   The vibration damping effect according to any one of claims 2 to 4, wherein a vibration damping effect corresponding to a plurality of vibration modes of the long structure is exhibited by providing the column portion with a plurality of mass points. apparatus. 前記支柱部が、2つ以上の付加質量部を装着可能な構造を有することを特徴とする請求項11に記載の制振装置。   The vibration control device according to claim 11, wherein the support portion has a structure capable of mounting two or more additional mass portions. 前記長尺構造物が電柱であることを特徴とする請求項2ないし12のいずれかに記載の制振装置。   13. The vibration damping device according to claim 2, wherein the long structure is a utility pole. 前記付加質量部の質量が前記長尺構造物の重量の数百分の1のオーダーであることを特徴とする請求項2ないし13のいずれかに記載の制振装置。   14. The vibration damping device according to claim 2, wherein the mass of the additional mass part is an order of one hundredth of the weight of the long structure. 長尺構造物の一部分に、
所定の質量を有する付加質量部と、
前記付加質量部を長尺構造物の長手方向に離間して位置せしめる支柱部と、
前記支柱部に接して設けられる振動減衰部と、を備える制振装置が設置されており、
前記長尺構造物の固有振動数と前記制振装置の固有振動数とが略等しいことを特徴とする長尺構造物。
In a part of the long structure,
An additional mass part having a predetermined mass;
A supporting column portion that positions the additional mass portion spaced apart in the longitudinal direction of the long structure;
A vibration damping device provided with a vibration damping unit provided in contact with the support column,
The long structure, wherein the natural frequency of the long structure and the natural frequency of the damping device are substantially equal.
長尺構造物の固有振動数と略等しい固有振動数を持ち、一端を該長尺構造物に固定し他端を自由端とした長手部材を設置し、この長手部材の振動を減衰する減衰部材を設けて該長尺構造物の制振をすることを特徴とする既設の長尺構造物の制振方法。
A damping member having a natural frequency substantially equal to the natural frequency of the long structure, a longitudinal member having one end fixed to the long structure and the other end being a free end, and damping the vibration of the longitudinal member A vibration damping method for an existing long structure, characterized in that the long structure is vibration-damped.
JP2004168100A 2004-06-07 2004-06-07 Vibration control device and long structure Expired - Fee Related JP4070213B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2004168100A JP4070213B2 (en) 2004-06-07 2004-06-07 Vibration control device and long structure
US11/100,967 US20050268565A1 (en) 2004-06-07 2005-04-07 Vibration control apparatus and method, and high-rise building

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004168100A JP4070213B2 (en) 2004-06-07 2004-06-07 Vibration control device and long structure

Publications (2)

Publication Number Publication Date
JP2005344452A true JP2005344452A (en) 2005-12-15
JP4070213B2 JP4070213B2 (en) 2008-04-02

Family

ID=35446149

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004168100A Expired - Fee Related JP4070213B2 (en) 2004-06-07 2004-06-07 Vibration control device and long structure

Country Status (2)

Country Link
US (1) US20050268565A1 (en)
JP (1) JP4070213B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234457A (en) * 2012-05-07 2013-11-21 Hayashi Bussan Hatsumei Kenkyusho:Kk Base isolation device for gravestone
JP2016156716A (en) * 2015-02-25 2016-09-01 日立Geニュークリア・エナジー株式会社 Spent fuel rack, nuclear power plant, and operation method of spent fuel rack
JP2019124039A (en) * 2018-01-16 2019-07-25 株式会社竹中工務店 Stair

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1182300A1 (en) * 2000-08-23 2002-02-27 Gerling-Konzern, Globale Rückversicherungs-AG Method for assessing the seismic safeness of constructions
WO2021051372A1 (en) * 2019-09-20 2021-03-25 大连理工大学 Self-reset tuned mass damper based on eddy current and shape memory alloy technology
CN112942682B (en) * 2021-01-27 2022-06-14 上海绿地建设(集团)有限公司 Multicavity steel core concrete column
CN116876688B (en) * 2023-07-21 2024-07-23 中联西北工程设计研究院有限公司 Light compound pendulum damping structure and method suitable for super high-rise building

Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102758U (en) * 1982-12-27 1984-07-11 千代田化工建設株式会社 Pendulum type seismic isolation or damping device for structures
JPS6140975A (en) * 1984-08-03 1986-02-27 三菱重工業株式会社 Tower shaped structure
JPS6242654U (en) * 1985-08-30 1987-03-14
JPS6249038U (en) * 1985-09-12 1987-03-26
JPS6357838U (en) * 1986-10-02 1988-04-18
JPH03213742A (en) * 1990-01-16 1991-09-19 Kajima Corp Multipledegree-of-freedom dynamic vibration damper
JPH04136373A (en) * 1990-09-27 1992-05-11 Shin Meiwa Ind Co Ltd Vibration isolating structure of building
JPH0544772A (en) * 1991-08-12 1993-02-23 Kobe Steel Ltd Vibration controller
JPH07127306A (en) * 1993-11-02 1995-05-16 Kajima Corp Vibration controller
JPH07286640A (en) * 1994-04-18 1995-10-31 Sumitomo Heavy Ind Ltd Vibration control method and vibration controller capable of coping with lower order mode vibration and higher order mode vibration
JP2001200881A (en) * 1999-11-08 2001-07-27 Thk Co Ltd Damping device
JP2002129775A (en) * 2000-10-24 2002-05-09 Matsushita Electric Works Ltd Pole-shaped structure
JP2002295579A (en) * 2001-04-03 2002-10-09 Isanari Soda Viscoelastic damper

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US992134A (en) * 1910-10-05 1911-05-09 William Ashley Kelly Momentum and inertia equalizer.
US1951217A (en) * 1931-01-10 1934-03-13 Stephen E Slocum Vibration dampener and isolator
US3826340A (en) * 1973-09-19 1974-07-30 H Brokaw Vibration damper for slender vertical structures
US4033566A (en) * 1976-04-26 1977-07-05 Mts Systems Corporation Pneumatic linear spring device
US4633628A (en) * 1985-10-31 1987-01-06 University Of Utah Device for base isolating structures from lateral and rotational support motion
JP2617106B2 (en) * 1987-10-16 1997-06-04 株式会社ブリヂストン Building vibration control device
US6192649B1 (en) * 1995-05-12 2001-02-27 General Electric Company Elastomeric seismic isolation of structures and components

Patent Citations (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS59102758U (en) * 1982-12-27 1984-07-11 千代田化工建設株式会社 Pendulum type seismic isolation or damping device for structures
JPS6140975A (en) * 1984-08-03 1986-02-27 三菱重工業株式会社 Tower shaped structure
JPS6242654U (en) * 1985-08-30 1987-03-14
JPS6249038U (en) * 1985-09-12 1987-03-26
JPS6357838U (en) * 1986-10-02 1988-04-18
JPH03213742A (en) * 1990-01-16 1991-09-19 Kajima Corp Multipledegree-of-freedom dynamic vibration damper
JPH04136373A (en) * 1990-09-27 1992-05-11 Shin Meiwa Ind Co Ltd Vibration isolating structure of building
JPH0544772A (en) * 1991-08-12 1993-02-23 Kobe Steel Ltd Vibration controller
JPH07127306A (en) * 1993-11-02 1995-05-16 Kajima Corp Vibration controller
JPH07286640A (en) * 1994-04-18 1995-10-31 Sumitomo Heavy Ind Ltd Vibration control method and vibration controller capable of coping with lower order mode vibration and higher order mode vibration
JP2001200881A (en) * 1999-11-08 2001-07-27 Thk Co Ltd Damping device
JP2002129775A (en) * 2000-10-24 2002-05-09 Matsushita Electric Works Ltd Pole-shaped structure
JP2002295579A (en) * 2001-04-03 2002-10-09 Isanari Soda Viscoelastic damper

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013234457A (en) * 2012-05-07 2013-11-21 Hayashi Bussan Hatsumei Kenkyusho:Kk Base isolation device for gravestone
JP2016156716A (en) * 2015-02-25 2016-09-01 日立Geニュークリア・エナジー株式会社 Spent fuel rack, nuclear power plant, and operation method of spent fuel rack
JP2019124039A (en) * 2018-01-16 2019-07-25 株式会社竹中工務店 Stair
JP7066947B2 (en) 2018-01-16 2022-05-16 株式会社竹中工務店 Stairs

Also Published As

Publication number Publication date
US20050268565A1 (en) 2005-12-08
JP4070213B2 (en) 2008-04-02

Similar Documents

Publication Publication Date Title
Lu et al. Experimental and analytical study on the performance of particle tuned mass dampers under seismic excitation
US20050268565A1 (en) Vibration control apparatus and method, and high-rise building
JP5403372B2 (en) Truss beam structure
Madhekar et al. Passive vibration control of structures
JP2008031735A (en) Vibration damping device of towery structure
Liu et al. Seismic vibration control of novel prefabricated industrial equipment suspension structures with tuned mass damper
JP2002155991A (en) Three-dimensional base isolating device
Tornello et al. Base-isolated building with high-damping spring system subjected to near fault earthquakes
KR101399397B1 (en) A Tuned Pendulum Slab Damper system for seismic structure and the method of using this system
Li et al. Vibration Control Performance Analysis and Shake‐Table Test of a Pounding Tuned Rotary Mass Damper under the Earthquake
JP7248243B2 (en) Damping device and damping structure
Ju et al. Experimental evaluation of a tuned liquid damper system
CN107338882B (en) Local sideslip shaking structure
JP2005090101A (en) Seismic response control structure
JP5251936B2 (en) Damping structure of structure
JP4788134B2 (en) Damping structure of structure
JP2013039873A (en) Seismic control beam and gate type beam including the seismic control beam
JP3690450B2 (en) Building vibration control method and damping structure
Zhang et al. Experimental study of vibration mitigation of mast arm signal structures with particle-thrust damping based tuned mass damper
CN104652647B (en) tuned mass damper
JP2012202510A (en) Base isolation structure
Qiu et al. Study on the seismic behavior of self-anchored suspension bridges
Erdle et al. Effectiveness of distributed mass damper systems for lightweight superstructures
Shivarani et al. Comparative Study Of RC Building With And Without Dampers By Varying Heights Using E-Tabs.
Melkumyan Experimental investigation of efficiency of tuned single and double mass damper and its application in the form of an additional upper floor for seismic protection of existing multistory buildings

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051228

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20070306

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070529

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20070720

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071002

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071127

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20080108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20080111

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110125

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120125

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130125

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140125

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees