JP2005340441A - Wafer supporting member - Google Patents

Wafer supporting member Download PDF

Info

Publication number
JP2005340441A
JP2005340441A JP2004156190A JP2004156190A JP2005340441A JP 2005340441 A JP2005340441 A JP 2005340441A JP 2004156190 A JP2004156190 A JP 2004156190A JP 2004156190 A JP2004156190 A JP 2004156190A JP 2005340441 A JP2005340441 A JP 2005340441A
Authority
JP
Japan
Prior art keywords
wafer
plate
ceramic body
convex portion
resistance heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2004156190A
Other languages
Japanese (ja)
Other versions
JP4721658B2 (en
Inventor
Tsunehiko Nakamura
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004156190A priority Critical patent/JP4721658B2/en
Publication of JP2005340441A publication Critical patent/JP2005340441A/en
Application granted granted Critical
Publication of JP4721658B2 publication Critical patent/JP4721658B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Landscapes

  • Resistance Heating (AREA)
  • Exposure Of Semiconductors, Excluding Electron Or Ion Beam Exposure (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a wafer supporting member that has a small temperature difference in a wafer surface and can obtain required soaking properties and temperature responsiveness. <P>SOLUTION: The wafer supporting member, having a plurality of resistance electrical heating elements on one main surface of or in a flat ceramic body and a placement surface for placing a wafer on the other main surface, has at least three periphery projections at the periphery of the placement surface and an inner projection that is lower in height than the peripheral projection inside the peripheral projection, thus moving the peripheral projection in at least one direction of radial and vertical directions of the flat ceramic body. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、主にウェハを加熱する際に用いるウェハ加熱装置に関するものであり、例えば半導体ウェハや液晶装置あるいは回路基板等のウェハ上に薄膜を形成したり、前記ウェハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成する際に好適なウェハ支持部材に関するものである。   The present invention relates to a wafer heating apparatus mainly used for heating a wafer. For example, a thin film is formed on a wafer such as a semiconductor wafer, a liquid crystal device or a circuit board, or a resist solution applied on the wafer. The present invention relates to a wafer support member suitable for forming a resist film by dry baking.

半導体製造装置の製造工程における、半導体薄膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等においては、半導体ウェハ(以下、ウェハと略す)を加熱するためのウェハ支持部材が用いられている。   A wafer support member for heating a semiconductor wafer (hereinafter abbreviated as a wafer) is used in a semiconductor thin film forming process, an etching process, a resist film baking process, and the like in a manufacturing process of a semiconductor manufacturing apparatus.

従来の半導体製造装置は、複数のウェハを一括して加熱するバッチ式と、1枚ずつ加熱する枚様式とがあり、枚葉式には、温度制御性に優れているので、半導体素子の配線の微細化とウェハ熱処理温度の精度向上が要求されるに伴い、ウェハ支持部材が広く使用されている。   The conventional semiconductor manufacturing apparatus has a batch type that heats a plurality of wafers at once and a sheet type that heats one wafer at a time. The single wafer type has excellent temperature controllability, so wiring of semiconductor elements is possible. Wafer support members have been widely used in accordance with demands for miniaturization of wafers and improved accuracy of wafer heat treatment temperature.

このようなウェハ支持部材として、例えば特許文献1、特許文献2や特許文献3には、図8に示すようなウェハ支持部材71が提案されている。   As such a wafer support member, for example, Patent Document 1, Patent Document 2, and Patent Document 3 propose a wafer support member 71 as shown in FIG.

このウェハ支持部材71は、板状セラミック体72、金属製のケース79、を主要な構成要素としたもので、アルミニウム等の金属からなる有底状の金属製のケース79の開口部に、窒化物セラミックスや炭化物セラミックスからなる板状セラミック体72を樹脂製の断熱性の接続部材74を介してボルト80で固定され、その上面をウェハWを載せる載置面73とするとともに、板状セラミック体72の下面に、例えば図9に示すような同心円状の抵抗発熱体75を備えていた。   This wafer support member 71 is composed mainly of a plate-shaped ceramic body 72 and a metal case 79, and is nitrided at the opening of a bottomed metal case 79 made of a metal such as aluminum. A plate-like ceramic body 72 made of ceramic or carbide ceramics is fixed with a bolt 80 via a heat insulating connecting member 74 made of resin, and its upper surface is used as a mounting surface 73 on which a wafer W is placed, and a plate-like ceramic body. For example, a concentric resistance heating element 75 as shown in FIG.

さらに、抵抗発熱体75の端子部には、給電端子77がロウ付けされており、この給電端子77が金属製のケース79の底部79aに形成されたリード線引出用の孔76に挿通されたリード線78と電気的に接続されていた。   Furthermore, a power supply terminal 77 is brazed to the terminal portion of the resistance heating element 75, and the power supply terminal 77 is inserted into a lead wire drawing hole 76 formed in the bottom 79 a of a metal case 79. The lead wire 78 was electrically connected.

ところで、このようなウェハ支持部材71において、ウェハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質にするためには、ウェハの温度分布を均一にすることが重要である。その為、これまでウェハの面内の温度差を小さくするため、載置面73にウェハW支持ピン(不図示)を設け、ウェハWを載置面73から微小な距離浮かしたウェハ支持部材71が特許文献4に記載されている。   By the way, in such a wafer support member 71, it is important to make the temperature distribution of the wafer uniform in order to form a homogeneous film on the entire surface of the wafer W and to make the heating reaction state of the resist film uniform. It is. For this reason, in order to reduce the temperature difference in the surface of the wafer, wafer support pins 71 (not shown) are provided on the mounting surface 73 so that the wafer W is floated by a small distance from the mounting surface 73. Is described in Patent Document 4.

特許文献5には、板状セラミック体72の周縁にウェハWを取り囲む壁を設け、ウェハWの横ずれを防ぐウェハ支持部材が開示されている。   Patent Document 5 discloses a wafer support member that prevents a lateral shift of the wafer W by providing a wall surrounding the wafer W on the periphery of the plate-like ceramic body 72.

また、特許文献6には、図9に示すように、板状セラミック体72の外縁部にウェハWと嵌合させるための突部を形成し、該突部の内側には、ウェハWと抵触する多数の凸状体を形成することで均一な温度分布を実現するウェハ支持部材が開示されている。   Further, in Patent Document 6, as shown in FIG. 9, a protrusion for fitting with the wafer W is formed on the outer edge of the plate-like ceramic body 72, and the wafer W conflicts with the inside of the protrusion. A wafer support member that realizes a uniform temperature distribution by forming a large number of convex bodies is disclosed.

また、特許文献7には板状セラミック体の周辺にウェハWの位置決めを行うガイドピンを備えることで、ウェハWを均一な温度分布としたウェハ支持部材が開示されている。   Further, Patent Document 7 discloses a wafer support member having a uniform temperature distribution of the wafer W by providing guide pins for positioning the wafer W around the plate-shaped ceramic body.

更に、特許文献8にはウェハWの支持ピンの高さを自由に調整することでウェハWの温度分布を調整できるウェハ支持部材が開示されている。また、支持ピンにガイドピンを嵌合させたウェハ支持部材が開示されている。   Further, Patent Document 8 discloses a wafer support member that can adjust the temperature distribution of the wafer W by freely adjusting the height of the support pins of the wafer W. Also disclosed is a wafer support member in which guide pins are fitted to the support pins.

しかし、いずれも非常に複雑で微妙な構造、制御が必要になるという課題があり、簡単な構造で温度分布を更に均一に加熱できるようなウェハ支持部材が求められていた。
特開2001−203156号公報 特開2001−313249号公報 特開2002−76102号公報 特開平10−223642号公報 特開平10−229114号公報 特開2002−237375号公報 特開2002−184683号公報 特開2001−68407号公報
However, both have the problem that a very complicated and delicate structure and control are required, and a wafer support member that can heat the temperature distribution more uniformly with a simple structure has been demanded.
JP 2001-203156 A JP 2001-313249 A JP 2002-76102 A JP-A-10-223642 JP-A-10-229114 JP 2002-237375 A JP 2002-184683 A JP 2001-68407 A

近年半導体素子の配線微細化に伴い使用され始めた化学増幅型レジストにおいては、ウェハの温度の均一性は勿論のこと、ウェハを熱処理装置に載置した瞬間から離脱し熱処理を終了させるまでの過渡的な温度履歴も極めて重要となり、ウェハ載置直後から概ね60秒以内にウェハの温度が均一に安定することが望まれている。   In chemically amplified resists that have begun to be used in recent years due to the miniaturization of wiring of semiconductor elements, not only the uniformity of the temperature of the wafer but also the transition from the moment the wafer is placed on the heat treatment apparatus to the end of the heat treatment. The temperature history is also extremely important, and it is desired that the wafer temperature be stabilized uniformly within about 60 seconds immediately after the wafer is placed.

しかしながら、特許文献5や特許文献6に紹介されている装置では、板状セラミック体の周辺部の肉厚が大きく熱容量が大きいことからウェハW面内の過渡温度が不均一で、ウェハの面内の温度差は0.4〜1.2℃と大きく、また、板状セラミック体の外周の放熱の影響から温度が安定するまでの応答時間が大きくなる虞があった。   However, in the devices introduced in Patent Document 5 and Patent Document 6, since the thickness of the peripheral portion of the plate-like ceramic body is large and the heat capacity is large, the transient temperature in the wafer W plane is not uniform, and the in-plane of the wafer The temperature difference is as large as 0.4 to 1.2 ° C., and the response time until the temperature stabilizes may increase due to the influence of heat radiation on the outer periphery of the plate-like ceramic body.

また、特許文献8に記載のウェハ支持部材では、ウェハWの周辺部と中心部の温度差を調整することができない虞があり、しかも支持ピンの高さを微調整することは困難であり、調整できてもウェハ表面の温度差は1℃以上と大きなものであった。   Further, in the wafer support member described in Patent Document 8, there is a possibility that the temperature difference between the peripheral portion and the central portion of the wafer W cannot be adjusted, and it is difficult to finely adjust the height of the support pins, Even if it could be adjusted, the temperature difference on the wafer surface was as large as 1 ° C. or more.

更に、何れのウェハ支持部材も、ウェハWを均一に加熱したり、ウェハWを急速に昇温したり急速に降温させる時間が大きくなる虞があった。   Furthermore, any wafer support member may have a longer time for uniformly heating the wafer W, rapidly raising the temperature of the wafer W, or rapidly lowering the temperature.

本発明者等は、上記の課題について鋭意検討した結果、板状セラミック体の一方の主面または内部に複数の抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたウェハ支持部材であって、上記載置面の周辺部に3個以上の周辺凸部と、該周辺凸部の内側に該周辺凸部より高さの低い内側凸部を備え、前記周辺凸部が、板状セラミック体の半径方向または垂直方向の少なくとも一方向に移動可能となるように保持されていることを特徴とする。   As a result of intensive studies on the above problems, the present inventors have provided a plurality of resistance heating elements on one main surface or inside of the plate-like ceramic body, and a wafer having a mounting surface on which the wafer is placed on the other main surface. A supporting member, comprising three or more peripheral convex portions in the peripheral portion of the placement surface, and an inner convex portion having a height lower than the peripheral convex portion inside the peripheral convex portion, wherein the peripheral convex portion is The plate-like ceramic body is held so as to be movable in at least one of the radial direction and the vertical direction.

また、前記周辺凸部の固定穴と前記周辺凸部を固定するボルトとの間に隙間を備えたことを特徴とする。   In addition, a gap is provided between a fixing hole of the peripheral convex portion and a bolt for fixing the peripheral convex portion.

また、上記周辺の凸部の載置面に平行な外形を示す断面が円形であることを特徴とする。   The cross section showing the outer shape parallel to the mounting surface of the peripheral convex portion is circular.

また、上記周辺の凸部は柱状で頂部の径が小さく、底面の径が大きいことを特徴とする。   In addition, the peripheral convex portion is columnar and has a small top diameter and a large bottom surface diameter.

また、板状セラミック体の一方の主面に抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたヒータ部と、前記抵抗発熱体に電力を供給する給電端子と、該給電端子を包むように板状セラミック体と接続したケースと、該ケースに前記ヒータ部を冷却するノズルと開口部とを備え、上記周辺凸部を固定する固定ボルトが上記板状セラミック体を貫通しケースと接続固定することを特徴とする。   In addition, a heater unit having a resistance heating element on one main surface of the plate-like ceramic body and a mounting surface on which the wafer is placed on the other main surface, a power supply terminal for supplying electric power to the resistance heating element, A case connected to the plate-like ceramic body so as to wrap the power supply terminal, a nozzle for cooling the heater portion and an opening in the case, and a fixing bolt for fixing the peripheral convex portion penetrates the plate-like ceramic body. It is characterized by being connected and fixed to the case.

また、上記周辺の凸部の外周面の平均表面粗さRaが3.0より小さいことを特徴とする。   Further, the average surface roughness Ra of the outer peripheral surface of the peripheral convex portion is smaller than 3.0.

また、上記3個以上の周辺凸部の内面で形成される内接円の直径が200.2〜206.0mmまたは300.3〜309.0mmの範囲にあることを特徴とする。   The diameter of the inscribed circle formed by the inner surfaces of the three or more peripheral convex portions is in the range of 200.2 to 206.0 mm or 300.3 to 309.0 mm.

また、上記周辺凸部は円形のセラミック部材からなり、該セラミック部材の熱容量が上記周辺凸部と上記板状セラミック体が接触する面に対応する上記板状セラミック体の熱容量の3倍より小さいことを特徴とする。   The peripheral convex portion is made of a circular ceramic member, and the heat capacity of the ceramic member is smaller than three times the thermal capacity of the plate ceramic body corresponding to the surface where the peripheral convex portion and the plate ceramic body are in contact with each other. It is characterized by.

また、上記板状セラミック体が上記ケースに固定された押さえ金具で押圧されたことを特徴とする。   Further, the plate-like ceramic body is pressed by a pressing metal member fixed to the case.

また、上記押圧する部分が点接触であることを特徴とする。   Further, the pressed portion is a point contact.

また、上記抵抗発熱体を囲む外接円の内側に上記周辺凸部が占めることを特徴とする。   Further, the peripheral convex portion occupies an inner side of a circumscribed circle surrounding the resistance heating element.

また、上記内側凸部の載置面からの突出高さは0.05〜0.5mmであり、上記内側凸部は、上記周辺凸部に内接する内接円の直径の0.5倍の範囲内に少なくとも1個、前記内接円の直径の0.5〜1倍の範囲内に少なくとも3個以上それぞれ同心円状に配置されていることを特徴とする。   The protruding height of the inner convex portion from the mounting surface is 0.05 to 0.5 mm, and the inner convex portion is 0.5 times the diameter of the inscribed circle inscribed in the peripheral convex portion. At least one in the range and at least three in the range of 0.5 to 1 times the diameter of the inscribed circle are arranged concentrically.

また、上記抵抗発熱体の外接円の直径Dが上記板状セラミック体の直径DPの90〜99%であることを特徴とする。   The diameter D of the circumscribed circle of the resistance heating element is 90 to 99% of the diameter DP of the plate-like ceramic body.

以上のように、本発明によれば、板状セラミック体の一方の主面または内部に複数の抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたウェハ支持部材であって、上記載置面の周辺部に3個以上の周辺凸部と、該周辺凸部の内側に該周辺凸部より高さの低い内側凸部を備え、前記周辺凸部が板状セラミック体の半径方向に移動可能となるように保持されていることによって、ウェハW面内の温度差を小さくできる。更に、過渡時のウェハW面の温度が安定するまでの応答時間を小さくできる。   As described above, according to the present invention, there is provided a wafer support member including a plurality of resistance heating elements on one main surface or inside of a plate-like ceramic body and a mounting surface on which the wafer is placed on the other main surface. Three or more peripheral convex portions at the peripheral portion of the mounting surface, and an inner convex portion having a height lower than the peripheral convex portion inside the peripheral convex portion, the peripheral convex portion being a plate-like ceramic body The temperature difference in the wafer W plane can be reduced by being held so as to be movable in the radial direction. Furthermore, the response time until the temperature of the wafer W surface during the transition is stabilized can be reduced.

また、上記周辺部の凸部を構成する部材は載置面の凹部に取り付けることにより更にウェハW面内の温度を小さく、過渡時の応答時間を小さくできる。   Further, by attaching the members constituting the convex portion of the peripheral portion to the concave portion of the mounting surface, the temperature in the wafer W surface can be further reduced, and the response time at the time of transition can be reduced.

また、周辺凸部の熱伝導率を板状セラミック体の熱伝導率の2倍以下とするとウェハW表面の温度差を小さく、温度応答時間が小さくなる。   Further, if the thermal conductivity of the peripheral convex portion is set to be twice or less the thermal conductivity of the plate-like ceramic body, the temperature difference on the surface of the wafer W is reduced and the temperature response time is reduced.

更に、周辺凸部の一部は板状セラミック体の抵抗発熱体を囲む外接円の内部に設けると好ましい。   Further, it is preferable that a part of the peripheral convex portion is provided inside a circumscribed circle surrounding the resistance heating element of the plate-like ceramic body.

以下、本発明の実施の形態について説明する。   Hereinafter, embodiments of the present invention will be described.

図1(a)は本発明に係るウェハ支持部材1の1例を示す断面図で、炭化珪素または窒化アルミニウムを主成分とするセラミックスからなる板状セラミック体2の一方の主面あるいは内部に複数の抵抗発熱体5を形成し、他方の主面をウェハWを載せる載置面3とするとともに、上記抵抗発熱体5に電気的に接続する給電部6を具備したヒータ部7からなり、給電部6に給電端子11が接続している。これらの給電部6を囲む金属製のケース19が断熱性の接続部材17を介して板状セラミック体2の他方の主面の周辺部に固定されている。   FIG. 1A is a cross-sectional view showing an example of a wafer support member 1 according to the present invention. A plurality of plates are formed on one main surface or inside of a plate-like ceramic body 2 made of ceramics mainly composed of silicon carbide or aluminum nitride. And the other main surface is a mounting surface 3 on which the wafer W is placed, and a heater unit 7 having a power supply unit 6 electrically connected to the resistance heat generator 5 is provided. The power supply terminal 11 is connected to the part 6. A metal case 19 surrounding these power feeding portions 6 is fixed to a peripheral portion of the other main surface of the plate-like ceramic body 2 via a heat insulating connecting member 17.

また、ウェハリフトピン25は板状セラミック体2を貫通する孔を通してウェハWを上下に移動させウェハWを載置面3に載せたり降ろしたりすることができる。そして、給電部6に給電端子11が接続し外部から電力が供給され、測温素子27で板状セラミック体2の温度を測定しながらウェハWを加熱することができる。   Further, the wafer lift pins 25 can move the wafer W up and down through the holes penetrating the plate-like ceramic body 2 to place or drop the wafer W on the mounting surface 3. Then, the power supply terminal 11 is connected to the power supply unit 6 and power is supplied from the outside, and the temperature W of the plate ceramic body 2 can be heated by the temperature measuring element 27 to heat the wafer W.

尚、抵抗発熱体5を複数のゾーンに分割する場合、それぞれのゾーンの温度を独立に制御することにより、各給電部6の給電端子11に電力を供給し、各測温素子27の温度が各設定値となるように給電端子11に加える電力を調整し、載置面3に載せたウェハWの表面温度が均一となるようにしている。   When the resistance heating element 5 is divided into a plurality of zones, the temperature of each zone is controlled independently to supply power to the feeding terminals 11 of each feeding section 6, and the temperature of each temperature measuring element 27 is The electric power applied to the power supply terminal 11 is adjusted so as to be each set value so that the surface temperature of the wafer W placed on the placement surface 3 is uniform.

抵抗発熱体5には、金や銀、パラジウム、白金等の材質からなる給電部6が形成され、該給電部6に給電端子11を接触させることにより、導通が確保されている。給電端子11と給電部6とは、導通が確保できる方法で有れば、はんだ付け、ロー付け等の手法を用いてもよい。   The resistance heating element 5 is formed with a power feeding portion 6 made of a material such as gold, silver, palladium, platinum or the like, and the power feeding terminal 11 is brought into contact with the power feeding portion 6 to ensure conduction. As long as the power supply terminal 11 and the power supply unit 6 are a method that can ensure conduction, a method such as soldering or brazing may be used.

ウェハWの載置面3に対応して円板状のウェハWの表面を均一に加熱するにはウェハW周辺の雰囲気やウェハWに対抗する壁面やガスの流れの影響を受けるが、円板状のウェハWの表面温度をばらつかせないために、ウェハWの周囲や上面の対抗面や雰囲気ガスの流れはウェハWに対し中心対称となるように設計されている。ウェハWを均一に加熱するにはウェハWに対し中心対称な上記環境に合わせたウェハ支持部材1が必要で、載置面3を中心対称に分割し抵抗発熱体ゾーン4を形成することが好ましい。   In order to uniformly heat the surface of the disk-shaped wafer W corresponding to the mounting surface 3 of the wafer W, it is affected by the atmosphere around the wafer W, the wall surface facing the wafer W, and the flow of gas. In order to prevent the surface temperature of the wafer W from being varied, the periphery of the wafer W, the opposing surface of the upper surface, and the flow of the atmospheric gas are designed to be symmetrical with respect to the wafer W. In order to uniformly heat the wafer W, the wafer support member 1 matched to the above-mentioned environment that is symmetric with respect to the wafer W is necessary, and it is preferable to form the resistance heating element zone 4 by dividing the mounting surface 3 symmetrically. .

本発明のウェハ支持部材1は、図1(a)、(b)にその一例を示すように、板状セラミック体の一方の主面または内部に複数の抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたウェハ支持部材であって、上記載置面の周辺部に3個以上の周辺凸部4と、該周辺凸部4の内側に該周辺凸部4より高さの低い内側凸部8を備え、前記周辺凸部4が板状セラミック体の半径方向または垂直方向の少なくとも一方向に移動可能となるように保持されている。   As shown in FIGS. 1A and 1B, the wafer support member 1 of the present invention includes a plurality of resistance heating elements on one main surface or inside of a plate-shaped ceramic body, and the other main surface. A wafer supporting member having a mounting surface for placing a wafer on the peripheral surface of the mounting surface, and three or more peripheral convex portions 4 on the peripheral portion of the mounting surface, and higher on the inner side of the peripheral convex portion 4 than the peripheral convex portion 4 A low-side inner convex portion 8 is provided, and the peripheral convex portion 4 is held so as to be movable in at least one of the radial direction and the vertical direction of the plate-like ceramic body.

具体的には、周辺凸部4の固定穴12と前記周辺凸部4を固定するボルト10との間に隙間を備え、この隙間の分だけ周辺凸部4が板状セラミック体の半径方向および垂直方向の両方に移動可能となるようにしてある。   Specifically, a gap is provided between the fixing hole 12 of the peripheral convex portion 4 and the bolt 10 that fixes the peripheral convex portion 4, and the peripheral convex portion 4 corresponds to the radial direction of the plate-like ceramic body by this gap. It can be moved in both vertical directions.

特許文献5、6に記載のウェハ支持部材のようにウェハWの横ズレを防止する円環状の凸部は板状セラミック体の周辺部の厚みが大きくなることから、板状セラミック体の周辺部の熱容量が大きくなり、昇温途中の過渡時のウェハW面内の温度差が大きくなるとの問題がある。しかし、本発明のウェハ支持部材1のように板状セラミック体2の周辺部に孤立した周辺凸部4を備えることで、過渡時のウェハW面内の温度差の増大を防止し、しかもウェハWの横ズレを正確に防止できる。   As in the wafer support members described in Patent Documents 5 and 6, since the annular convex portion that prevents the lateral displacement of the wafer W increases the thickness of the peripheral portion of the plate-shaped ceramic body, the peripheral portion of the plate-shaped ceramic body There is a problem that the heat capacity of the wafer W increases and the temperature difference in the wafer W surface during the transition during the temperature rise increases. However, by providing the peripheral convex portion 4 isolated at the peripheral portion of the plate-like ceramic body 2 as in the wafer support member 1 of the present invention, an increase in the temperature difference in the wafer W plane during the transition can be prevented, and the wafer The lateral shift of W can be accurately prevented.

周辺凸部4は載置面3にウェハWを載せるに際して、ウェハWの位置決めを行う上で必要であるが、周辺凸部4そのものに熱容量があり、載置面3の上のウェハWを加熱する際に、熱が周辺凸部4からボルト10を介してケース19に流れウェハWの面内温度差が大きくなる虞があり、周辺凸部4からボルト10に流れる熱が少ないことが好ましい。載置面3の上に在る周辺凸部4を固定する固定孔12とボルト10の間に隙間があると、周辺凸部4からボルト10への熱が伝わり難くなり、ボルト10を介してケース19や接続部材17に流れる熱が少なくなり、周辺凸部4の周辺の温度低下を防ぐ事ができることから好ましい。隙間の大きさとしては貫通孔の直径とボルトの外径の差で0.3〜2mmあると断熱効果が優れ好ましい。更に好ましくは0.5〜1.5mmである。   The peripheral convex portion 4 is necessary for positioning the wafer W when the wafer W is placed on the mounting surface 3, but the peripheral convex portion 4 itself has a heat capacity and heats the wafer W on the mounting surface 3. In doing so, heat may flow from the peripheral convex portion 4 to the case 19 via the bolt 10, and the in-plane temperature difference of the wafer W may increase, and it is preferable that the heat flowing from the peripheral convex portion 4 to the bolt 10 is small. If there is a gap between the fixing hole 12 for fixing the peripheral convex portion 4 on the mounting surface 3 and the bolt 10, heat from the peripheral convex portion 4 to the bolt 10 becomes difficult to be transmitted. It is preferable because heat flowing through the case 19 and the connecting member 17 is reduced, and a temperature drop around the peripheral protrusion 4 can be prevented. As the size of the gap, the heat insulating effect is excellent when the difference between the diameter of the through hole and the outer diameter of the bolt is 0.3 to 2 mm. More preferably, it is 0.5-1.5 mm.

そして、ウェハWの面内温度差を小さくするためには、板状セラミック体2に貫通孔9を形成し、その貫通孔9にボルト10を通し周辺凸部4や板状セラミック体2の横ずれを防止することが好ましい。特に、周辺凸部4をボルト10で強固に固定すると板状セラミック体2と周辺凸部4の下面の熱伝導が高まりボルト10を介して板状セラミック体2の熱がケース19に流れ、周辺凸部4の周りの板状セラミック体2の温度が低下し、ウェハWの温度も低下する虞があった。そこで、周辺凸部4は板状セラミック体2と強固に接続することなく、ボルト10で横ずれを大きく防止する程度に固定することが好ましい。従って、周辺凸部4は前後左右に0.3〜2mm程移動できることが好ましい。このように接続するとボルト10と周辺凸部4との接触面積も小さくなり周辺凸部4を介して熱が逃げる虞が小さくなり好ましい。そして、このように配設することで、載置面3の温度分布を均一に保つ事が可能となり、温度変更時の過渡時のウェハW面内の温度差を小さくできる。   In order to reduce the in-plane temperature difference of the wafer W, a through-hole 9 is formed in the plate-like ceramic body 2, and bolts 10 are passed through the through-hole 9 so that the lateral protrusions 4 and the plate-like ceramic body 2 are laterally displaced. It is preferable to prevent this. In particular, when the peripheral convex portion 4 is firmly fixed with the bolt 10, the heat conduction between the plate-shaped ceramic body 2 and the lower surface of the peripheral convex portion 4 is increased, and the heat of the plate-shaped ceramic body 2 flows to the case 19 through the bolt 10, There is a possibility that the temperature of the plate-like ceramic body 2 around the convex portion 4 is lowered and the temperature of the wafer W is also lowered. Therefore, it is preferable that the peripheral convex portion 4 is not firmly connected to the plate-like ceramic body 2 and is fixed to the extent that the lateral displacement is largely prevented by the bolt 10. Therefore, it is preferable that the peripheral convex part 4 can move about 0.3-2 mm from front to back, right and left. This connection is preferable because the contact area between the bolt 10 and the peripheral convex portion 4 is reduced, and the risk of heat escaping through the peripheral convex portion 4 is reduced. By disposing in this way, the temperature distribution on the mounting surface 3 can be kept uniform, and the temperature difference in the wafer W surface at the time of transition during temperature change can be reduced.

また、ウェハWは不図示のアームから移送され板状セラミック体2の載置面3に突出したウェハリフトピン25の上に載せられる。そしてウェハリフトピン25が降下し周辺凸部4にガイドされながら載置面3上の内側凸部8にウェハWは載せられる。ウェハWの面内温度差を小さくするのは抵抗発熱体5を備えた板状セラミック体2の中心位置に合わせ、板状セラミック体2に対して正確な位置にウェハWを載せることが重要であり、周辺凸部4をウェハガイドとして、ウェハWの周囲が周辺凸部4と接触しながらガイドされて内側凸部8で支えられることが好ましい。   Further, the wafer W is transferred from an arm (not shown) and placed on the wafer lift pins 25 protruding on the mounting surface 3 of the plate-like ceramic body 2. Then, the wafer lift pins 25 are lowered and guided to the peripheral convex portion 4, and the wafer W is placed on the inner convex portion 8 on the mounting surface 3. In order to reduce the in-plane temperature difference of the wafer W, it is important to place the wafer W at an accurate position with respect to the plate-like ceramic body 2 in accordance with the center position of the plate-like ceramic body 2 provided with the resistance heating element 5. It is preferable that the peripheral convex portion 4 is used as a wafer guide, and the periphery of the wafer W is guided while being in contact with the peripheral convex portion 4 and supported by the inner convex portion 8.

図2(a)(b)(c)(d)は周辺凸部4を示す拡大断面図である。図2(a)は円錐台形状の周辺凸部4を示し。図2(b)は円柱の上に円錐台が結合した形状の周辺凸部4を示す。図2(c)は周辺が湾曲面からなる周辺凸部4を示す。図2(d)は円柱形状の周辺凸部4を示す。   2A, 2B, 2C, and 2D are enlarged sectional views showing the peripheral convex portion 4. FIG. FIG. 2A shows the peripheral convex portion 4 having a truncated cone shape. FIG. 2B shows the peripheral convex portion 4 having a shape in which a truncated cone is coupled on a cylinder. FIG.2 (c) shows the peripheral convex part 4 whose periphery consists of curved surfaces. FIG. 2 (d) shows a cylindrical peripheral protrusion 4.

図2に示す様に、本発明の周辺凸部4の載置面3に平行な外形を示す断面が円形であることを特徴とする。この様な形状とすることで、周辺凸部4を小さくすることができて、ヒータ部7の周辺の温度を低下させる虞がなく、また、取り付けも容易となり好ましい。   As shown in FIG. 2, the cross section showing the outer shape parallel to the mounting surface 3 of the peripheral convex portion 4 of the present invention is circular. By adopting such a shape, the peripheral convex portion 4 can be made small, there is no possibility of lowering the temperature around the heater portion 7, and attachment is easy, which is preferable.

そして、周辺凸部4は柱状で頂部の直径が小さく、底面の直径が大きいことが好ましい。この様に頂部の径が小さいとウェハWがずれて載置面3に置かれようとしてもウェハWの位置を周辺凸部4の内面に沿ってウェハWの位置をガイドしながら内側凸部4に対し正確な位置に載せることができる。   And it is preferable that the peripheral convex part 4 is columnar, the diameter of a top part is small, and the diameter of a bottom face is large. Thus, if the diameter of the top is small, even if the wafer W is shifted and placed on the mounting surface 3, the position of the wafer W is guided along the inner surface of the peripheral convex portion 4 while guiding the position of the wafer W. Can be placed in an accurate position.

また、本発明のウェハ支持部材1は、ヒータ部7とケース19で囲まれた内面に冷却ガスを流通させるために、ヒータ部7を冷却するノズル24とノズル24から噴射された冷却ガスを排出する開口23をケース19に備えている事が好ましい。このようなノズル24と開口23を備える事で、ウェハ支持部材1の冷却スピードが大きくなり好ましい。   In addition, the wafer support member 1 of the present invention discharges the cooling gas injected from the nozzle 24 and the nozzle 24 for cooling the heater unit 7 in order to distribute the cooling gas to the inner surface surrounded by the heater unit 7 and the case 19. The opening 19 is preferably provided in the case 19. By providing such a nozzle 24 and opening 23, the cooling speed of the wafer support member 1 is increased, which is preferable.

また、周辺凸部4の外周面の平均表面粗さRaは3より小さいことが好ましい。表面粗さRaが3.0を越えるとウェハWの周辺端面と接触してウェハW位置を矯正する際にウェハWと接触しウェハWを磨耗させる可能性があり、パーティクルを発生しウェハWの歩留まりを低下させる虞があり好ましくない。また、平均表面粗さRaが0.01を下回ると、周辺凸部4の表面加工が困難である。   Further, the average surface roughness Ra of the outer peripheral surface of the peripheral convex portion 4 is preferably smaller than 3. If the surface roughness Ra exceeds 3.0, the wafer W may come into contact with the peripheral edge of the wafer W to correct the position of the wafer W, and the wafer W may be worn out. This is not preferable because the yield may be lowered. In addition, when the average surface roughness Ra is less than 0.01, it is difficult to perform the surface processing of the peripheral convex portion 4.

また、周辺凸部4がウェハWの横ズレを防ぐには周辺凸部4が同一円周上に少なくとも3個必要であり、周辺凸部4と接触する内接円の直径はウェハWの直径より1.001〜1.03倍の大きさであることが好ましい。より好ましくは1.001〜1.02倍である。このように配設することにより載置面3上の正確な位置にウェハWを載せることができることから抵抗発熱体5を備えた板状セラミック体2からの熱を均一に受けることが可能となりウェハWの表面温度差を小さくすることができる。より具体的には、直径200mmのシリコンウェハでは周辺凸部4の内接円の直径は200.2〜206mmであり、直径300mmのウェハW用では、上記内接円の直径は300.3〜309mmであることが好ましい。更に好ましくは200.2〜104mmであり、300.3〜306mmである。   Further, in order for the peripheral convex portion 4 to prevent lateral deviation of the wafer W, at least three peripheral convex portions 4 are required on the same circumference, and the diameter of the inscribed circle in contact with the peripheral convex portion 4 is the diameter of the wafer W. More preferably, the size is 1.001 to 1.03 times. More preferably, it is 1.001 to 1.02. By disposing in this way, the wafer W can be placed at an accurate position on the mounting surface 3, so that the heat from the plate-like ceramic body 2 provided with the resistance heating element 5 can be uniformly received. The surface temperature difference of W can be reduced. More specifically, the diameter of the inscribed circle of the peripheral convex portion 4 is 200.2 to 206 mm in a silicon wafer having a diameter of 200 mm, and the diameter of the inscribed circle is 300.3 to 200 mm for the wafer W having a diameter of 300 mm. It is preferable that it is 309 mm. More preferably, it is 200.2-104 mm, and is 300.3-306 mm.

本発明の周辺凸部4は円形のセラミック部材からなり、該セラミック部材の熱容量が上記周辺凸部4と上記板状セラミック体2が接触する面に対応する上記板状セラミック体2の熱容量の3倍より小さいことを特徴とする。周辺凸部4は板状セラミック体2の周辺の上面に載せられている。ウェハWの表面を均一に加熱するには板状セラミック体2の載置面3の温度分布が重要であり、載置面3の周辺に周辺凸部4があると周辺凸部4の熱容量に対応して板状セラミック体2から熱が周辺凸部4に移動したり、周辺凸部4から板状セラミック体2に移動する。この熱の移動により周辺凸部4の周囲の板状セラミック体2の温度が高くなったり、低くなったりすることが判明した。そして、主に周辺凸部4と板状セラミック体2の接触面4a、3aを介して熱が移動する。ウェハWの定常時の面内温度差を0.5℃以下としたり、過渡時の面内温度差を小さくするにはこの周辺凸部4の熱容量が小さいことが好ましく、接触面3aを上面とする板状セラミック体2の筒状部2aの熱容量の3倍より小さいと熱の流れが小さくなり、ウェハWの面内温度差が大きくなる虞が小さいことがわかった。   The peripheral convex portion 4 of the present invention is made of a circular ceramic member, and the heat capacity of the ceramic member is 3 of the heat capacity of the plate ceramic body 2 corresponding to the surface where the peripheral convex portion 4 and the plate ceramic body 2 are in contact. It is characterized by being smaller than twice. The peripheral convex portion 4 is placed on the upper surface around the plate-like ceramic body 2. In order to uniformly heat the surface of the wafer W, the temperature distribution of the mounting surface 3 of the plate-like ceramic body 2 is important. If there is a peripheral convex portion 4 around the mounting surface 3, the heat capacity of the peripheral convex portion 4 is increased. Correspondingly, heat moves from the plate-like ceramic body 2 to the peripheral convex portion 4 or moves from the peripheral convex portion 4 to the plate-like ceramic body 2. It has been found that the temperature of the plate-like ceramic body 2 around the peripheral convex portion 4 is increased or decreased by this heat transfer. Then, heat moves mainly through the contact surfaces 4 a and 3 a of the peripheral convex portion 4 and the plate-like ceramic body 2. In order to reduce the in-plane temperature difference at the time of steady state of the wafer W to 0.5 ° C. or less, or to reduce the in-plane temperature difference at the time of transition, it is preferable that the heat capacity of the peripheral protrusions 4 is small. It was found that if the heat capacity of the cylindrical portion 2a of the plate-like ceramic body 2 is smaller than three times the heat capacity, the heat flow becomes small and the in-plane temperature difference of the wafer W becomes small.

また、前記ボルト10で板状セラミック体2の横ずれを防止しても、板状セラミック体2が上下にずれる虞があるので、図3に示すように板状セラミック体2の周辺部を止め金具29で押圧されていることが好ましい。また、止め金具29から熱がケース19に流れることを防止するために止め金具29の凸部29aで点押しすることが好ましい。また、止め金具29の数は3〜5箇所が好ましい。   Further, even if the lateral displacement of the plate-shaped ceramic body 2 is prevented by the bolt 10, the plate-shaped ceramic body 2 may be displaced up and down. Therefore, as shown in FIG. 29 is preferably pressed. Further, in order to prevent heat from flowing from the fasteners 29 to the case 19, it is preferable that the projections 29 a of the fasteners 29 are dotted. Further, the number of the fasteners 29 is preferably 3 to 5.

そして、載置面3とウェハWの間隔は内側凸部8でウェハWを支持して保たれるが、ウェハW面と載置面3の間隔をできるだけ均一にするためには、内側凸部8が載置面3に均等に配設されていることが好ましい。内側凸部8は載置面3の中心から周辺凸部4に内接する内接円の直径の0.5倍の範囲内に少なくとも1個、前記内接円の直径の0.5〜1倍の範囲内に少なくとも3個配置されているとウェハW表面の変形が小さく、むら無く支持することが可能となり、ウェハWの自重による変形や反りを防止することができることから、ウェハW面内の温度差が小さくなり好ましい。   The distance between the mounting surface 3 and the wafer W is maintained by supporting the wafer W with the inner convex portion 8, but in order to make the distance between the wafer W surface and the mounting surface 3 as uniform as possible, the inner convex portion 8 are preferably arranged evenly on the mounting surface 3. The inner convex portion 8 is at least one in the range of 0.5 times the diameter of the inscribed circle inscribed from the center of the mounting surface 3 to the peripheral convex portion 4, and is 0.5 to 1 times the diameter of the inscribed circle. If at least three are arranged within the range, the deformation of the surface of the wafer W is small and can be supported uniformly, and deformation and warpage due to its own weight can be prevented. The temperature difference is preferably small.

また、ウェハWは内側凸部8を介して載置面3と一定の間隔で離間させることにより、載置面3と直接接触した場合の片あたりによるウェハW面内の温度バラツキの発生を防止できる。そして、載置面3上のガスを介してウェハWを加熱することによりウェハW面内の温度を均一に昇温させたり、ウェハW面内の温度を均一に保持することができる。   Further, the wafer W is spaced apart from the mounting surface 3 through the inner convex portion 8 at a constant interval, thereby preventing temperature variations in the wafer W surface due to one piece when directly contacting the mounting surface 3. it can. Then, by heating the wafer W via the gas on the mounting surface 3, the temperature in the wafer W surface can be raised uniformly, or the temperature in the wafer W surface can be kept uniform.

ウェハWの表面温度差を小さくするには、ウェハWと載置面3の間のパーティクルの噛み込みを防止したり載置面3の微妙な変形によるウェハW面の温度変化を防止する点から、ウェハWと載置面3の間隔を決める内側凸部8の載置面からの突出高さは0.05〜0.5mmが適切であり、0.05mmを下回ると載置面3の温度がウェハWに急激に伝わりウェハW面内の温度差を大きくする。また、0.5mmを越えると載置面3からウェハWへ伝わる熱の伝わりが遅くなりウェハW面内の温度差を大きくする。更に好ましくは0.07〜0.2mmである。   In order to reduce the surface temperature difference of the wafer W, it is possible to prevent the particles from being caught between the wafer W and the mounting surface 3 or to prevent the temperature change of the wafer W surface due to slight deformation of the mounting surface 3. The protrusion height from the mounting surface of the inner convex portion 8 that determines the distance between the wafer W and the mounting surface 3 is suitably 0.05 to 0.5 mm, and if it falls below 0.05 mm, the temperature of the mounting surface 3 Is rapidly transmitted to the wafer W to increase the temperature difference in the wafer W surface. On the other hand, if the thickness exceeds 0.5 mm, the transfer of heat transmitted from the mounting surface 3 to the wafer W is delayed, and the temperature difference in the wafer W surface is increased. More preferably, it is 0.07-0.2 mm.

尚、筒状部2aに接触した接続部17は断熱効果が大きく、熱の伝達を抑制していることから周辺凸部4と板状セラミック体2との関係から検討することが重要となる。また、周辺凸部4の直径は5〜15mmが好ましく、更に好ましくは7〜11mmである。そして、高さは3〜14mmが好ましい。そして、図2の(a)(b)(c)の様に外周面にテーパが備わっていると好ましいが、図2(d)のように外周が円柱状でも良い。そしてこれらの周辺凸部4はその内側に空間4bが形成されていることが好ましい。このような空間を形成することで周辺凸部4の熱容量を低減させることができるからである。更に、周辺凸部4の底面4aの平均表面粗さRaは0.1〜10で板状セラミック体2と接触面の平均表面粗さRaは同様に0.1〜10であると接触面からの熱伝導が小さくなりより好ましい。   In addition, since the connection part 17 which contacted the cylindrical part 2a has a large heat insulation effect and has suppressed heat transfer, it is important to examine from the relationship between the peripheral convex part 4 and the plate-shaped ceramic body 2. Moreover, 5-15 mm is preferable and the diameter of the peripheral convex part 4 is 7-11 mm more preferably. The height is preferably 3 to 14 mm. Then, it is preferable that the outer peripheral surface is tapered as shown in FIGS. 2A, 2B, and 2C, but the outer periphery may be cylindrical as shown in FIG. And it is preferable that the space | interval 4b is formed in the periphery convex part 4 in the inside. This is because the heat capacity of the peripheral protrusion 4 can be reduced by forming such a space. Further, the average surface roughness Ra of the bottom surface 4a of the peripheral convex portion 4 is 0.1 to 10, and the average surface roughness Ra of the plate-like ceramic body 2 and the contact surface is also 0.1 to 10 from the contact surface. This is more preferable because the heat conduction of the resin becomes smaller.

更に、板状セラミック体2の周辺凸部4の熱伝導率は板状セラミック体2の熱伝導率の2倍以下の熱伝導率を有することが好ましい。周辺凸部4の熱伝導率が板状セラミック体2の熱伝導率の2倍を越えると周辺凸部4の温度が上昇し易くなりウェハWを加熱する際の過渡時のウェハW面内温度差が大きくなる虞がある。好ましくは、板状セラミック体2の熱伝導率より小さくすると、周辺凸部4の周辺の温度低下や上昇を小さくすることができて好ましい。   Furthermore, it is preferable that the thermal conductivity of the peripheral convex portion 4 of the plate-like ceramic body 2 has a thermal conductivity not more than twice that of the plate-like ceramic body 2. If the thermal conductivity of the peripheral convex portion 4 exceeds twice the thermal conductivity of the plate-like ceramic body 2, the temperature of the peripheral convex portion 4 is likely to rise, and the wafer W in-plane temperature at the time of transition when heating the wafer W There is a risk that the difference will increase. Preferably, it is preferable to make it smaller than the thermal conductivity of the plate-like ceramic body 2 because the temperature drop and rise around the peripheral convex portion 4 can be reduced.

尚、ウェハWの表面温度差を小さくするには周辺凸部4の一部は板状セラミック体2の抵抗発熱体5を囲む外接円の内部にあることが好ましい。このような配置とすると抵抗発熱体5によりウェハWの表面積より広い範囲の載置面3を加熱することが可能となり、ウェハWの面内の温度差が小さくなり好ましい。   In order to reduce the surface temperature difference of the wafer W, it is preferable that a part of the peripheral protrusion 4 is inside a circumscribed circle surrounding the resistance heating element 5 of the plate-like ceramic body 2. Such an arrangement is preferable because the resistance heating element 5 can heat the mounting surface 3 in a range wider than the surface area of the wafer W, and the temperature difference in the surface of the wafer W is reduced.

図4(a)は本発明のウェハ支持部材1で、板状セラミック体の一方の主面に複数の抵抗発熱体ゾーン4を備え、中心部に円形の抵抗発熱体ゾーン4aと、その外側に同心円の2つの円環内に抵抗発熱体ゾーン4bcと抵抗発熱体ゾーン4dgとを備える各抵抗発熱体ゾーン4の配置例を示す。   FIG. 4A shows a wafer support member 1 according to the present invention, which includes a plurality of resistance heating element zones 4 on one main surface of a plate-like ceramic body, a circular resistance heating element zone 4a at the center, and an outer side thereof. The example of arrangement | positioning of each resistance heating element zone 4 provided with resistance heating element zone 4bc and resistance heating element zone 4dg in two concentric rings is shown.

図4(b)は、本発明のウェハ支持部材1の中心部の円形の抵抗発熱体ゾーン4aと、その外側に円環4bcを2等分した扇状の2個の抵抗発熱体ゾーン4b、4cを備え、更にその外側の円環4dg内にそれぞれ対抗する位置で円環を円周方向に4等分した扇状の4個の抵抗発熱体ゾーン4d、4e、4f、4gからなるウェハ支持部材1であり、ウェハWの表面温度がより均一となり好ましい。   FIG. 4 (b) shows a circular resistance heating element zone 4a at the center of the wafer support member 1 of the present invention and two fan-shaped resistance heating element zones 4b and 4c obtained by dividing the annular ring 4bc into two equal parts. Further, the wafer support member 1 is composed of four fan-shaped resistance heating element zones 4d, 4e, 4f, and 4g obtained by equally dividing the ring into four in the circumferential direction at positions facing each other in the outer ring 4dg. This is preferable because the surface temperature of the wafer W becomes more uniform.

上記ウェハ支持部材1の各抵抗発熱体ゾーン4a〜4gは独立して発熱でき、各抵抗発熱体ゾーン4a〜4gに対応して抵抗発熱体5a〜5gを備えている。   Each of the resistance heating element zones 4a to 4g of the wafer support member 1 can generate heat independently, and includes resistance heating elements 5a to 5g corresponding to the resistance heating element zones 4a to 4g.

尚、円環状の抵抗発熱体ゾーン4bc、4dgはそれぞれ放射方向に2分割、4分割したが、これに限るものではない。   The annular resistance heating element zones 4bc and 4dg are divided into two and four in the radial direction, respectively, but this is not restrictive.

図4(b)の抵発熱体ゾーン4b、4cの境界線は直線であるが、必ずしも直線である必要はなく、波線で有ってよい。抵抗発熱体ゾーン4b、4cが板状セラミック体2の中心に対して中心対称であることが好ましい。   Although the boundary line of the resistance heating element zones 4b and 4c in FIG. 4B is a straight line, it is not necessarily a straight line and may be a wavy line. It is preferable that the resistance heating element zones 4 b and 4 c are centrosymmetric with respect to the center of the plate-like ceramic body 2.

同様に、抵抗発熱体ゾーンの4dと4e、4eと4f、4fと4g、4gと4dとのそれぞれの境界線も必ずしも直線である必要はなく、それぞれの抵抗発熱体4dから4gは、板状セラミック体2の中心に対し中心対称であることが好ましい。   Similarly, the boundary lines of the resistance heating element zones 4d and 4e, 4e and 4f, 4f and 4g, 4g and 4d do not necessarily have to be straight lines, and each resistance heating element 4d to 4g has a plate shape. It is preferably centrosymmetric with respect to the center of the ceramic body 2.

上記の各抵抗発熱体5は、印刷法等で作製し、1〜5mmの巾で厚みが5〜50μmで形成することが好ましい。一度に印刷する印刷面が大きくなると、印刷面の左右や前後でスキージとスクリーンとの間の圧力の違いから印刷厚みが一定とならない虞が生じる。特に、抵抗発熱体5の大きさが大きくなると、抵抗発熱体5の左右前後の厚みが異なり設計した発熱量がバラツク虞があった。発熱量がバラツクとウェハWの面内温度差が大きくなり好ましくない。この抵抗発熱体の厚みのバラツキから生じる温度バラツキを防ぐには、一つの抵抗発熱体からなる外径の大きな個々の抵抗発熱体5を分割することが有効である事が判明した。   Each of the resistance heating elements 5 is preferably manufactured by a printing method or the like, and is formed to have a width of 1 to 5 mm and a thickness of 5 to 50 μm. When the printing surface to be printed at a time becomes large, there is a possibility that the printing thickness may not be constant due to the difference in pressure between the squeegee and the screen on the left, right, and back of the printing surface. In particular, when the size of the resistance heating element 5 is increased, the thickness of the resistance heating element 5 on the left and right sides is different and the designed heat generation may vary. The amount of heat generation varies, and the in-plane temperature difference between the wafer W increases, which is not preferable. In order to prevent the temperature variation caused by the variation in thickness of the resistance heating element, it has been found that it is effective to divide the individual resistance heating elements 5 having a large outer diameter, which is composed of one resistance heating element.

そこで、ウェハW載置面3の中心部を除く同心円環状の抵抗発熱体ゾーンは左右に2分割し、更に大きな円環状の抵抗発熱体ゾーンは4分割することで抵抗発熱体ゾーン4にある抵抗発熱体5の印刷する大きさを小さくすることができることから、抵抗発熱体5の各部の厚みを均一にすることができ、更にウェハWの前後左右の微妙な温度差を補正しウェハWの表面温度を均一にすることができる。   Accordingly, the concentric annular resistance heating element zone excluding the central portion of the wafer W mounting surface 3 is divided into two parts on the left and right sides, and the larger annular resistance heating element zone is divided into four parts so that the resistance in the resistance heating element zone 4 is divided. Since the printing size of the heating element 5 can be reduced, the thickness of each part of the resistance heating element 5 can be made uniform, and a subtle temperature difference between the front, rear, left and right of the wafer W can be corrected to correct the surface of the wafer W. The temperature can be made uniform.

また、図5に示すように、前記抵抗発熱体5の外接円Cの直径Dが前記板状セラミック体2の直径DPの90〜99%であることが好ましい。抵抗発熱体5の外接円Cの直径Dが板状セラミック体2の直径DPの90%より小さいと、ウェハを急速に昇温したり急速に降温させる時間が大きくなりウェハWの温度応答特性が劣る。   Further, as shown in FIG. 5, the diameter D of the circumscribed circle C of the resistance heating element 5 is preferably 90 to 99% of the diameter DP of the plate-like ceramic body 2. If the diameter D of the circumscribed circle C of the resistance heating element 5 is smaller than 90% of the diameter DP of the plate-like ceramic body 2, the time for rapidly increasing or decreasing the temperature of the wafer increases, and the temperature response characteristics of the wafer W are increased. Inferior.

また、ウェハWの周辺部の温度を下げないようウェハWの表面温度を均一に加熱するには、直径DはウェハWの直径の1.02〜1.1倍程度が好ましいことから、ウェハWの大きさに対して板状セラミック体2の直径DPが大きくなり、均一に加熱できるウェハWの大きさが板状セラミック体2の直径DPに比較して小さくなり、ウェハWを加熱する投入電力に対しウェハWを加熱する加熱効率が悪くなる。更に、板状セラミック体2が大きくなることからウェハ製造装置の設置面積が大きくなり、最小の設置面積で最大の生産を行う必要がある半導体製造装置の設置面積に対する稼働率を低下させ好ましくない。   Further, in order to uniformly heat the surface temperature of the wafer W so as not to lower the temperature at the periphery of the wafer W, the diameter D is preferably about 1.02 to 1.1 times the diameter of the wafer W. The diameter DP of the plate-like ceramic body 2 increases with respect to the size of the wafer W, and the size of the wafer W that can be heated uniformly becomes smaller than the diameter DP of the plate-like ceramic body 2. On the other hand, the heating efficiency for heating the wafer W is deteriorated. Furthermore, since the plate-like ceramic body 2 becomes large, the installation area of the wafer manufacturing apparatus becomes large, which is not preferable because the operating rate with respect to the installation area of the semiconductor manufacturing apparatus that needs to perform the maximum production with the minimum installation area is lowered.

抵抗発熱体5の外接円Cの直径Dが板状セラミック体2の直径DPの99%より大きいと接触部材17と抵抗発熱体5の外周との間隔が小さく抵抗発熱体5の外周部から熱が接触部材17に不均一に流れ、特に、外周部の外接円Cに接する円弧状パターン51が存在しない部分からも熱が流れ、外周部の円弧状パターン51が板状セラミック体2の中心部へ曲がっていることから抵抗発熱体5を囲む外接円Cに沿って円弧状パターン51が欠落する部分Pの温度が低下しウェハWの面内温度差を大きくする虞がある。より好ましくは、抵抗発熱体5の外接円Cの直径Dが板状セラミック体2の直径DPの92〜97%である。   When the diameter D of the circumscribed circle C of the resistance heating element 5 is larger than 99% of the diameter DP of the plate-like ceramic body 2, the distance between the contact member 17 and the outer periphery of the resistance heating element 5 is small, and heat is generated from the outer periphery of the resistance heating element 5. Flows unevenly to the contact member 17, and in particular, heat flows from a portion where the arc-shaped pattern 51 in contact with the circumscribed circle C of the outer peripheral portion does not exist, and the arc-shaped pattern 51 of the outer peripheral portion is the central portion of the plate-like ceramic body 2. Since it bends, the temperature of the portion P where the arc-shaped pattern 51 is missing along the circumscribed circle C surrounding the resistance heating element 5 may be lowered, and the in-plane temperature difference of the wafer W may be increased. More preferably, the diameter D of the circumscribed circle C of the resistance heating element 5 is 92 to 97% of the diameter DP of the plate-like ceramic body 2.

また、図1(a)に示す様な板状セラミック体2の外周面を覆うように金属製のケース19が板状セラミック体2を下から支える場合には、抵抗発熱体5の外接円Cの直径Dが板状セラミック体2の直径DPの95〜98%が好ましく、更に好ましくは96〜97%である。   Further, when the metal case 19 supports the plate-like ceramic body 2 from below so as to cover the outer peripheral surface of the plate-like ceramic body 2 as shown in FIG. 1A, the circumscribed circle C of the resistance heating element 5 Is preferably 95 to 98% of the diameter DP of the plate-like ceramic body 2, more preferably 96 to 97%.

一方、図7に示す様に板状セラミック体2と金属製のケース19の外形が略同等で板状セラミック体2を下から金属製のケース19が支える場合、ウェハWの面内の温度差を小さくするには、抵抗発熱体5の外接円Cの直径Dが板状セラミック体2の直径DPの92〜95%であり、更に好ましくは93〜95%である。   On the other hand, when the plate-like ceramic body 2 and the metal case 19 have substantially the same outer shape and the metal-like case 19 supports the plate-like ceramic body 2 from below as shown in FIG. In order to reduce the diameter, the diameter D of the circumscribed circle C of the resistance heating element 5 is 92 to 95%, more preferably 93 to 95% of the diameter DP of the plate-like ceramic body 2.

板厚が1〜7mmの板状セラミック体2の一方の主面側を、ウェハを載せる載置面3とするとともに、上記板状セラミック体2の下面に抵抗発熱体5を備えたウェハ支持部材1において、上記抵抗発熱体5の厚みが5〜50μmであるとともに、上記抵抗発熱体を囲む外接円Cの面積に対し、上記外接円Cに占める抵抗発熱体5の面積の比率が5〜50%であることが好ましい。   One main surface side of a plate-like ceramic body 2 having a plate thickness of 1 to 7 mm is used as a mounting surface 3 on which a wafer is placed, and a wafer support member provided with a resistance heating element 5 on the lower surface of the plate-like ceramic body 2 1, the thickness of the resistance heating element 5 is 5 to 50 μm, and the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is 5 to 50. % Is preferred.

即ち、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率を5%未満とすると、抵抗発熱体5の相対向する対向領域において、対向領域の対向間隔S1が大きくなり過ぎることから、抵抗発熱体5のない間隔S1に対応した載置面3の表面温度が他の部分と比較して小さくなり、載置面3の温度を均一にすることが難しいからであり、逆に抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率が50%を超えると、板状セラミック体2と抵抗発熱体5との間の熱膨張差を3.0×10−6/℃以下に近似させたとしても、両者の間に作用する熱応力が大きすぎることから、板状セラミック体2は変形し難いセラミック焼結体からなるものの、その板厚tが1mm〜4mmと薄いことから抵抗発熱体5を発熱させると、載置面3側が凹となるように板状セラミック体2に反りが発生し、その結果、ウェハWの中心部の温度が周縁よりも小さくなり、温度バラツキが大きくなる恐れがあるからである。   That is, if the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is less than 5%, Since the facing interval S1 of the region becomes too large, the surface temperature of the mounting surface 3 corresponding to the interval S1 without the resistance heating element 5 becomes smaller than other portions, and the temperature of the mounting surface 3 is made uniform. Conversely, if the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 exceeds 50%, the plate-like ceramic body 2 Even if the difference in thermal expansion between the heating element 5 and the resistance heating element 5 is approximated to 3.0 × 10 −6 / ° C. or less, the thermal stress acting between the two is too large. Although it is made of a ceramic sintered body that is difficult to deform, its thickness t is from 1 mm to When the resistance heating element 5 is heated because it is as thin as mm, warpage occurs in the plate-like ceramic body 2 so that the mounting surface 3 side is concave, and as a result, the temperature of the central portion of the wafer W is lower than the peripheral edge. This is because there is a risk of temperature variation.

なお、好ましくは、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率を10%〜30%、さらには15%〜25%とすることが好ましい。   Preferably, the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is 10% to 30%, more preferably 15% to 25%. Is preferred.

さらに、このような効果を効率良く発現させるには、抵抗発熱体5の膜厚を5〜50μmとすることが好ましい。   Furthermore, in order to efficiently exhibit such an effect, the thickness of the resistance heating element 5 is preferably set to 5 to 50 μm.

抵抗発熱体5の膜厚が5μmを下回ると、抵抗発熱体5をスクリーン印刷法で膜厚を均一に印刷することが困難となるからであり、また、抵抗発熱体5の厚みが50μmを越えると、外接円P1に対し、抵抗発熱体5の占める面積の比率を50%以下としても抵抗発熱体5の厚みが大きく、抵抗発熱体5の剛性が大きくなり、板状セラミック体5の温度変化により抵抗発熱体5の伸び縮みによる影響で板状セラミック体2が変形する虞がある。また、スクリーン印刷で均一の厚みに印刷することが難しくウェハWの表面の温度差が大きくなったりする虞があるからである。なお、好ましい抵抗発熱体5の厚みは10〜30μmとすることが良い。   This is because if the thickness of the resistance heating element 5 is less than 5 μm, it becomes difficult to uniformly print the resistance heating element 5 by screen printing, and the thickness of the resistance heating element 5 exceeds 50 μm. Even if the ratio of the area occupied by the resistance heating element 5 to the circumscribed circle P1 is 50% or less, the thickness of the resistance heating element 5 is increased, the rigidity of the resistance heating element 5 is increased, and the temperature change of the plate-like ceramic body 5 Therefore, the plate-like ceramic body 2 may be deformed due to the influence of the expansion and contraction of the resistance heating element 5. In addition, it is difficult to print to a uniform thickness by screen printing, and the temperature difference on the surface of the wafer W may increase. A preferable thickness of the resistance heating element 5 is 10 to 30 μm.

本発明の抵抗発熱体5のパターン形状としては、図5に示したような折り返しパターン、あるいは図5や図6に示すような複数のブロックに分割され、個々のブロックが円弧状のパターンと直線状のパターンとからなる渦巻き状やジグザクな折り返し形状をしたもので、本願発明のウェハ支持部材1はウェハWを均一に加熱することが重要であることから、これらのパターン形状は帯状の抵抗発熱体5の各部の密度が均一なことが好ましい。図5に示すように板状セラミック体2の外周部に位置する前記抵抗発熱体5d、5e、5d、5fは板状セラミック体2の中心から遠い部位は同心円状をした円弧状パターン51とこれらと連続して繋がっている連結パターン52からなることが好ましい。ただし、図9に示すような、板状セラミック体22の中心から放射方向に見て、抵抗発熱体25の間隔が密な部分と粗な部分が交互に現れる抵抗発熱体パターンでは、粗な部分に対応するウェハWの表面温度は小さく、密な部分に対応するウェハWの温度は大きくなり、ウェハWの表面の全面を均一に加熱することはできないことから好ましくない。   As the pattern shape of the resistance heating element 5 of the present invention, the folded pattern as shown in FIG. 5 or a plurality of blocks as shown in FIG. 5 and FIG. 6 is divided into individual blocks and arc-shaped patterns and straight lines. Since the wafer support member 1 of the present invention is important to uniformly heat the wafer W, these pattern shapes have a strip-like resistance heat generation. It is preferable that the density of each part of the body 5 is uniform. As shown in FIG. 5, the resistance heating elements 5d, 5e, 5d, and 5f located on the outer periphery of the plate-like ceramic body 2 are arc-shaped patterns 51 that are concentric in the portion far from the center of the plate-like ceramic body 2. It is preferable that it consists of the connection pattern 52 connected continuously. However, as shown in FIG. 9, in the resistance heating element pattern in which the distances between the resistance heating elements 25 appear alternately in the radial direction from the center of the plate-like ceramic body 22, the rough portions The surface temperature of the wafer W corresponding to is small, the temperature of the wafer W corresponding to the dense portion is large, and the entire surface of the wafer W cannot be heated uniformly, which is not preferable.

また、抵抗発熱体5を複数のブロックに分割する場合、それぞれのブロックの温度を独立に制御することにより、載置面3上のウェハWを均一に加熱することが好ましい。   Further, when the resistance heating element 5 is divided into a plurality of blocks, it is preferable to uniformly heat the wafer W on the mounting surface 3 by independently controlling the temperature of each block.

抵抗発熱体5は、導電性の金属粒子にガラスフリットや金属酸化物を含む電極ペーストを印刷法で板状セラミック体2に印刷、焼き付けしたもので、金属粒子としては、Au、Ag、Cu、Pd、Pt、Rhの少なくとも一種の金属を用いることが好ましく、またガラスフリットとしては、B、Si、Znを含む酸化物からなり、板状セラミック体2の熱膨張係数より小さな4.5×10−6/℃以下の低膨張ガラスを用いることが好ましく、さらに金属酸化物としては、酸化珪素、酸化ホウ素、アルミナ、チタニアから選ばれた少なくとも一種を用いることが好ましい。   The resistance heating element 5 is obtained by printing and baking an electrode paste containing glass frit or metal oxide on conductive metal particles on the plate-like ceramic body 2 by a printing method. As the metal particles, Au, Ag, Cu, It is preferable to use at least one metal of Pd, Pt, and Rh, and the glass frit is made of an oxide containing B, Si, and Zn, and is 4.5 × 10 4 smaller than the thermal expansion coefficient of the plate-like ceramic body 2. It is preferable to use a low expansion glass of −6 / ° C. or less, and it is preferable to use at least one selected from silicon oxide, boron oxide, alumina, and titania as the metal oxide.

ここで、抵抗発熱体5を形成する金属粒子として、Au、Ag、Cu、Pd、Pt、Rhの少なくとも一種の金属を用いるのは、電気抵抗が小さいからである。   Here, the reason why at least one kind of metal of Au, Ag, Cu, Pd, Pt, Rh is used as the metal particles forming the resistance heating element 5 is that the electric resistance is small.

抵抗発熱体5を形成するガラスフリットとして、B、Si、Znを含む酸化物からなり、抵抗発熱体5を構成する金属粒子の熱膨張係数が板状セラミック体2の熱膨張係数より大きいことから、抵抗発熱体5の熱膨張係数を板状セラミック体2の熱膨張係数に近づけるには、板状セラミック体2の熱膨張係数より小さな4.5×10−6/℃以下の低膨張ガラスを用いることが好ましいからである。 The glass frit forming the resistance heating element 5 is made of an oxide containing B, Si, and Zn, and the thermal expansion coefficient of the metal particles constituting the resistance heating element 5 is larger than the thermal expansion coefficient of the plate-like ceramic body 2. In order to make the thermal expansion coefficient of the resistance heating element 5 close to the thermal expansion coefficient of the plate-like ceramic body 2, a low expansion glass of 4.5 × 10 −6 / ° C. or less which is smaller than the thermal expansion coefficient of the plate-like ceramic body 2 is used. It is because it is preferable to use.

また、抵抗発熱体5を形成する金属酸化物としては、酸化珪素、酸化ホウ素、アルミナ、チタニアから選ばれた少なくとも一種を用いるのは、抵抗発熱体5の中の金属粒子と密着性が優れ、しかも熱膨張係数が板状セラミック体2の熱膨張係数と近く、板状セラミック体2との密着性も優れるからである。   In addition, as the metal oxide forming the resistance heating element 5, using at least one selected from silicon oxide, boron oxide, alumina, and titania has excellent adhesion to the metal particles in the resistance heating element 5, In addition, the thermal expansion coefficient is close to the thermal expansion coefficient of the plate-like ceramic body 2 and the adhesiveness with the plate-like ceramic body 2 is also excellent.

ただし、抵抗発熱体5に対し、金属酸化物の含有量が80%を超えると、板状セラミック体2との密着力は増すものの、抵抗発熱体5の抵抗値が大きくなり好ましくない。その為、金属酸化物の含有量は60%以下とすることが良い。   However, if the content of the metal oxide exceeds 80% with respect to the resistance heating element 5, the adhesion with the plate-like ceramic body 2 is increased, but the resistance value of the resistance heating element 5 is not preferable. Therefore, the content of the metal oxide is preferably 60% or less.

そして、導電性の金属粒子とガラスフリットや金属酸化物からなる抵抗発熱体5は、板状セラミック体2との熱膨張差が3.0×10−6/℃以下であるものを用いることが好ましい。 The resistance heating element 5 made of conductive metal particles and glass frit or metal oxide should have a thermal expansion difference of 3.0 × 10 −6 / ° C. or less from the plate-like ceramic body 2. preferable.

即ち、抵抗発熱体5と板状セラミック体2との熱膨張差を0.1×10−6/℃とすることは製造上難しく、逆に抵抗発熱体5と板状セラミック体2との熱膨張差が3.0×10−6/℃を超えると、抵抗発熱体5を発熱させた時、板状セラミック体2との間に作用する熱応力によって、載置面3側が凹状に反る恐れがあるからである。 That is, it is difficult to make the difference in thermal expansion between the resistance heating element 5 and the plate-like ceramic body 2 to be 0.1 × 10 −6 / ° C. On the contrary, the heat between the resistance heating element 5 and the plate-like ceramic body 2 is difficult. When the difference in expansion exceeds 3.0 × 10 −6 / ° C., when the resistance heating element 5 is heated, the mounting surface 3 side warps in a concave shape due to thermal stress acting between the plate-like ceramic body 2. Because there is a fear.

更に、抵抗発熱体5への給電方法については、有底の金属製のケース19に設置した給電端子11を板状セラミック体2の表面に形成した給電部6にバネ(不図示)で押圧することにより接続を確保し給電する。これは、1〜4mmの厚みの板状セラミック体2に金属からなる端子部を埋設して形成すると、該端子部の熱容量により均熱性が悪くなるからである。そのため、本発明のように、給電端子11をバネで押圧して電気的接続を確保することにより、板状セラミック体2とその有底の金属製のケース19の間の温度差による熱応力を緩和し、高い信頼性で電気的導通を維持できる。さらに、接点が点接触となるのを防止するため、弾性のある導体を中間層として挿入しても構わない。この中間層は単に箔状のシートを挿入するだけでも効果がある。そして、給電端子11の給電部6側の径は、1.5〜5mmとすることが好ましい。   Further, regarding a method of supplying power to the resistance heating element 5, a power supply terminal 11 installed in a bottomed metal case 19 is pressed against a power supply portion 6 formed on the surface of the plate-like ceramic body 2 by a spring (not shown). This ensures the connection and supplies power. This is because if the terminal portion made of metal is embedded in the plate-like ceramic body 2 having a thickness of 1 to 4 mm, the thermal uniformity is deteriorated due to the heat capacity of the terminal portion. Therefore, as in the present invention, the thermal stress due to the temperature difference between the plate-like ceramic body 2 and the bottomed metal case 19 is secured by pressing the power supply terminal 11 with a spring to ensure electrical connection. Can relax and maintain electrical continuity with high reliability. Further, an elastic conductor may be inserted as an intermediate layer in order to prevent the contact from becoming a point contact. This intermediate layer is effective by simply inserting a foil-like sheet. And it is preferable that the diameter by the side of the electric power feeding part 6 of the electric power feeding terminal 11 shall be 1.5-5 mm.

また、板状セラミック体2の温度は、板状セラミック体2にその先端が埋め込まれた熱電対27により測定する。熱電対27としては、その応答性と保持の作業性の観点から、外径0.8mm以下のシース型の熱電対27を使用することが好ましい。この熱電対27の先端部は、板状セラミック体2に孔が形成され、この中に設置された固定部材により孔の内壁面に押圧固定することが測温の信頼性を向上させるために好ましい。同様に素線の熱電対やPt等の測温抵抗体を埋設して測温を行うことも可能である。   Further, the temperature of the plate-like ceramic body 2 is measured by a thermocouple 27 whose tip is embedded in the plate-like ceramic body 2. As the thermocouple 27, it is preferable to use a sheath-type thermocouple 27 having an outer diameter of 0.8 mm or less from the viewpoint of responsiveness and workability of holding. In order to improve the reliability of temperature measurement, it is preferable that the tip of the thermocouple 27 has a hole formed in the plate-like ceramic body 2 and is fixed to the inner wall surface of the hole by a fixing member installed therein. . Similarly, it is also possible to perform temperature measurement by embedding a temperature measuring resistor such as a thermocouple of a wire or Pt.

また、図1(a)では板状セラミック体2の他方の主面3に抵抗発熱体5のみを備えたウェハ支持部材1について示したが、本発明は、主面3と抵抗発熱体5との間に静電吸着用やプラズマ発生用としての電極を埋設したものであっても良いことは言うまでもない。   1A shows the wafer support member 1 having only the resistance heating element 5 on the other main surface 3 of the plate-like ceramic body 2, the present invention shows that the main surface 3, the resistance heating element 5, Needless to say, an electrode for electrostatic adsorption or plasma generation may be embedded in between.

更に詳細な構成について説明する。   A more detailed configuration will be described.

図1(a)は本発明に係るウェハ支持部材の一例を示す断面図で、板厚tが1〜4mm、100〜200℃のヤング率が200〜450MPaである板状セラミック体2の一方の主面を、ウェハWを載せる載置面3とするとともに、他方の主面に抵抗発熱体5を形成し、この抵抗発熱体5に電気的に接続する給電部6を備えたものである。   FIG. 1A is a cross-sectional view showing an example of a wafer support member according to the present invention. One of the plate-like ceramic bodies 2 having a plate thickness t of 1 to 4 mm and a Young's modulus of 100 to 200 ° C. of 200 to 450 MPa. The main surface is the mounting surface 3 on which the wafer W is placed, the resistance heating element 5 is formed on the other main surface, and the power feeding unit 6 electrically connected to the resistance heating element 5 is provided.

100〜200℃のヤング率が200〜450MPaである板状セラミック体2の材質としては、アルミナ、窒化珪素、サイアロン、窒化アルミニウムを用いることができ、この中でも特に窒化アルミニウムは50W/(m・K)以上、さらには100W/(m・K)以上の高い熱伝導率を有するとともに、フッ素系や塩素系等の腐食性ガスに対する耐蝕性や耐プレズマ性にも優れることから、板状セラミック体2の材質として好適である。   As the material of the plate-like ceramic body 2 having a Young's modulus of 100 to 200 ° C. of 200 to 450 MPa, alumina, silicon nitride, sialon, and aluminum nitride can be used. Of these, aluminum nitride is particularly 50 W / (m · K). In addition to having a high thermal conductivity of 100 W / (m · K) or more, and having excellent corrosion resistance and plasma resistance to corrosive gases such as fluorine and chlorine, the plate-like ceramic body 2 It is suitable as the material.

板状セラミック体2の厚みは、2〜4mmとすると更に好ましい。板状セラミック体2の厚みが2mmより薄いと、板状セラミック体2の強度がなくなり抵抗発熱体5の発熱による加熱時、ガス噴射口24らの冷却エアーを吹き付けた際に、冷却時の熱応力に耐えきれず、板状セラミック体2にクラックが発生する虞があるからである。また、板状セラミック体2の厚みが4mmを越えると、板状セラミック体2の熱容量が大きくなるので加熱および冷却時の温度が安定するまでの時間が長くなる虞がある。   The thickness of the plate-like ceramic body 2 is more preferably 2 to 4 mm. If the thickness of the plate-like ceramic body 2 is less than 2 mm, the strength of the plate-like ceramic body 2 is lost, and the heat generated during cooling when the cooling air from the gas injection port 24 is blown when the resistance heating element 5 is heated by heating. This is because the plate-like ceramic body 2 may not be able to endure the stress and may crack. On the other hand, if the thickness of the plate-like ceramic body 2 exceeds 4 mm, the heat capacity of the plate-like ceramic body 2 increases, so that there is a possibility that the time until the temperature at the time of heating and cooling becomes stable becomes longer.

板状セラミック体2は、有底の金属製のケース19開口部の外周にボルト16を貫通させ、板状セラミック体2と有底の金属製のケース19が直接当たらないように、リング状の接触部材17を介在させ、有底の金属製のケース19側より弾性体18を介在させてナット20を螺着することにより弾性的に固定している。これにより、板状セラミック体2の温度が変動した場合に有底の金属製のケース19が変形しても、上記弾性体18によってこれを吸収し、これにより板状セラミック体2の反りを抑制し、ウェハ表面に、板状セラミック体2の反りに起因する温度ばらつきが発生することを防止できるようになる。   The plate-like ceramic body 2 has a ring shape so that the bolt 16 passes through the outer periphery of the opening of the bottomed metal case 19 so that the plate-like ceramic body 2 and the bottomed metal case 19 do not directly contact each other. The contact member 17 is interposed, the elastic body 18 is interposed from the bottomed metal case 19 side, and the nut 20 is screwed to be elastically fixed. As a result, even if the bottomed metal case 19 is deformed when the temperature of the plate-like ceramic body 2 fluctuates, the elastic body 18 absorbs this and thereby suppresses the warpage of the plate-like ceramic body 2. As a result, it is possible to prevent temperature variations caused by warpage of the plate-like ceramic body 2 on the wafer surface.

リング状の接触部材17の断面は多角形や円形の何れでも良いが、板状セラミック体2と接触部材17が平面で接触する場合において、板状セラミック体2と接触部材17の接する接触部の巾は0.1mm〜13mmであれば、板状セラミック体2の熱が接触部材17を介して有底の金属製のケース19に流れ量を小さくすることができる。そして、ウェハWの面内の温度差が小さくウェハWを均一に加熱することができる。更に好ましくは0.1〜8mmである。接触部材17の接触部の巾が0.1mm以下では、板状セラミック体2と接触固定した際に接触部が変形し、接触部材が破損する虞がある。また、接触部材17の接触部の巾が13mmを越えると、板状セラミック体2の熱が接触部材に流れ、板状セラミック体2の周辺部の温度が低下しウェハWを均一に加熱することが難しくなる。好ましくは接触部材17と板状セラミック体2の接触部の巾は0.1mm〜8mmであり、更に好ましくは0.1〜2mmである。   The cross-section of the ring-shaped contact member 17 may be either polygonal or circular, but when the plate-shaped ceramic body 2 and the contact member 17 are in contact with each other in a plane, the contact portion of the plate-shaped ceramic body 2 and the contact member 17 is in contact. If the width is 0.1 mm to 13 mm, the amount of heat of the plate-shaped ceramic body 2 can be reduced to the bottomed metal case 19 via the contact member 17. And the temperature difference in the surface of the wafer W is small, and the wafer W can be heated uniformly. More preferably, it is 0.1-8 mm. If the width of the contact portion of the contact member 17 is 0.1 mm or less, the contact portion may be deformed when the plate-like ceramic body 2 is contacted and fixed, and the contact member may be damaged. If the width of the contact portion of the contact member 17 exceeds 13 mm, the heat of the plate-like ceramic body 2 flows to the contact member, the temperature of the peripheral portion of the plate-like ceramic body 2 is lowered, and the wafer W is uniformly heated. Becomes difficult. Preferably, the width of the contact portion between the contact member 17 and the plate-like ceramic body 2 is 0.1 mm to 8 mm, more preferably 0.1 to 2 mm.

また、接触部材17の熱伝導率は板状セラミック体2の熱伝導率より小さいことが好ましい。接触部材17の熱伝導率が板状セラミック体2の熱伝導率より小さければ板状セラミック体2に載せたウェハW面内の温度分布を均一に加熱することができると共に、板状セラミック体2の温度を上げたり下げたりする際に、接触部材17との熱の伝達量が小さく有底の金属製のケース19との熱的干渉が少なく、迅速に温度を変更することが容易となる。   Further, the thermal conductivity of the contact member 17 is preferably smaller than the thermal conductivity of the plate-like ceramic body 2. If the thermal conductivity of the contact member 17 is smaller than the thermal conductivity of the plate-like ceramic body 2, the temperature distribution in the wafer W surface placed on the plate-like ceramic body 2 can be heated uniformly, and the plate-like ceramic body 2. When raising or lowering the temperature, the amount of heat transmitted to the contact member 17 is small, and there is little thermal interference with the bottomed metal case 19, so that it is easy to change the temperature quickly.

接触部材17の熱伝導率が板状セラミック体2の熱伝導率の10%より小さいウェハ支持部材1では、板状セラミック体2の熱が有底の金属製のケース19に流れ難く、板状セラミック体2から有底の金属製のケース19に熱が、雰囲気ガス(ここでは空気)による伝熱や輻射伝熱により流れる熱が多くなり逆に効果が小さい。   In the wafer support member 1 in which the thermal conductivity of the contact member 17 is smaller than 10% of the thermal conductivity of the plate-like ceramic body 2, it is difficult for the heat of the plate-like ceramic body 2 to flow into the bottomed metal case 19. Heat is transferred from the ceramic body 2 to the bottomed metal case 19 due to heat transfer by atmospheric gas (air in this case) or radiation heat transfer, and the effect is small.

接触部材17の熱伝導率が板状セラミック体2の熱伝導率より大きい場合には、板状セラミック体2の周辺部の熱が接触部材17を介して有底の金属製のケース19に流れ、有底の金属製のケース19を加熱すると共に、板状セラミック体2の周辺部の温度が低下しウェハW面内の温度差が大きくなり好ましくない。また、有底の金属製のケース19が加熱されることからガス噴射口24からエアを噴射し板状セラミック体2を冷却しようとしても有底の金属製のケース19の温度が高いことから冷却する時間が大きくなったり、一定温度に加熱する際に一定温度になるまでの時間が大きくなる虞があった。   When the thermal conductivity of the contact member 17 is higher than the thermal conductivity of the plate-like ceramic body 2, the heat around the plate-like ceramic body 2 flows to the bottomed metal case 19 via the contact member 17. The bottomed metal case 19 is heated, and the temperature of the peripheral portion of the plate-like ceramic body 2 is lowered, so that the temperature difference in the wafer W plane becomes large. Further, since the bottomed metal case 19 is heated, even if it is attempted to cool the plate-like ceramic body 2 by injecting air from the gas injection port 24, the bottomed metal case 19 is cooled because the temperature is high. There is a possibility that the time required for the heat treatment increases or the time required for the heat treatment to reach a constant temperature increases.

一方、前記接触部材17を構成する材料としては、小さな接触部を保持するために、接触部材のヤング率は1GPa以上が好ましく、更に好ましくは10GPa以上である。このようなヤング率とすることで、接触部の巾が0.1mm〜8mmと小さく、板状セラミック体2を有底の金属製のケース19に接触部材17を介してボルト16で固定しても、接触部材17が変形することが無く、板状セラミック体2が位置ズレしたり平行度が変化したりすることなく、精度良く保持することができる。   On the other hand, as a material constituting the contact member 17, the Young's modulus of the contact member is preferably 1 GPa or more, and more preferably 10 GPa or more in order to hold a small contact portion. With such a Young's modulus, the width of the contact portion is as small as 0.1 mm to 8 mm, and the plate-shaped ceramic body 2 is fixed to the bottomed metal case 19 with the bolt 16 via the contact member 17. However, the contact member 17 is not deformed, and the plate-like ceramic body 2 can be held with high accuracy without being displaced or changing in parallelism.

尚、特許文献2に記載のような、フッ素系樹脂やガラス繊維を添加した樹脂からなる接触部材では得られない精度を達成することができる。   In addition, the precision which cannot be obtained with the contact member which consists of resin which added fluororesin and glass fiber like patent document 2 can be achieved.

前記接触部材17の材質としては鉄とカーボンからなる炭素鋼やニッケル、マンガン、クロムを加えた特殊鋼等の金属がヤング率が大きく好ましい。また、熱伝導率の小さな材料としては、ステンレス鋼やFe―Ni−Co系合金の所謂コバールが好ましく、板状セラミック体2の熱伝導率より小さくなるように接触部材17の材料を選択することが好ましい。   As the material of the contact member 17, metals such as carbon steel made of iron and carbon and special steel added with nickel, manganese, and chromium are preferable because of their large Young's modulus. Further, as the material having a low thermal conductivity, so-called Kovar of stainless steel or Fe—Ni—Co alloy is preferable, and the material of the contact member 17 is selected so as to be smaller than the thermal conductivity of the plate-like ceramic body 2. Is preferred.

更に、接触部材17と板状セラミック体2との接触部を小さく、且つ接触部が小さくても接触部が欠損しパーティクルを発生する虞が小さく安定な接触部を保持できるために、板状セラミック体2に垂直な面で切断した接触部材17の断面は多角形より円形が好ましく、断面の直径1mm以下の円形のワイヤを接触部材17として使用すると板状セラミック体2と有底の金属製のケース19の位置が変化することなくウェハWの表面温度を均一にしかも迅速に昇降温することが可能である。   Furthermore, since the contact portion between the contact member 17 and the plate-like ceramic body 2 is small, and even if the contact portion is small, the contact portion is lost and there is no possibility of generating particles, so that the plate-like ceramic can be held. The cross section of the contact member 17 cut along a plane perpendicular to the body 2 is preferably circular rather than polygonal. When a circular wire having a cross section diameter of 1 mm or less is used as the contact member 17, the plate-like ceramic body 2 and a bottomed metal made of metal are used. It is possible to raise and lower the temperature of the wafer W uniformly and quickly without changing the position of the case 19.

以上、接触部材17の構成と板状セラミック体2と抵抗発熱体5の配設の関係について説明したが、これらの配設は、前記周辺凸部4の一部が抵抗発熱体5を囲む直径Dの内側に存在することから、周辺凸部4のウェハW面内温度に対する影響を考慮していることは言うまでもない。   The relationship between the configuration of the contact member 17 and the arrangement of the plate-like ceramic body 2 and the resistance heating element 5 has been described above, but these arrangements have a diameter in which a part of the peripheral protrusion 4 surrounds the resistance heating element 5. Since it exists inside D, it is needless to say that the influence of the peripheral protrusion 4 on the in-plane temperature of the wafer W is taken into consideration.

次に、有底の金属製のケース19は側壁部22と底面21を有し、板状セラミック体2はその有底の金属製のケース19の開口部を覆うように設置してある。また、有底の金属製のケース19には冷却ガスを排出するための孔23が施されており、板状セラミック体2の抵抗発熱体5に給電するための給電部6に導通するための給電端子11,板状セラミック体2を冷却するためのガス噴射口24、板状セラミック体2の温度を測定するための熱電対27を設置してある。   Next, the bottomed metal case 19 has a side wall portion 22 and a bottom surface 21, and the plate-like ceramic body 2 is installed so as to cover the opening of the bottomed metal case 19. Further, the bottomed metal case 19 is provided with a hole 23 for discharging the cooling gas, and is connected to the power supply portion 6 for supplying power to the resistance heating element 5 of the plate-like ceramic body 2. A power supply terminal 11, a gas injection port 24 for cooling the plate-like ceramic body 2, and a thermocouple 27 for measuring the temperature of the plate-like ceramic body 2 are provided.

なお、有底の金属製のケース19の深さは10〜50mmで、底面21は、板状セラミック体2から10〜50mmの距離に設置することが望ましい。更に好ましくは20〜30mmである。これは、板状セラミック体2と有底の金属製のケース19相互の輻射熱により載置面3の均熱化が容易となると同時に、外部との断熱効果があるので、載置面3の温度が一定で均一な温度となるまでの時間が短くなるためである。   The bottomed metal case 19 has a depth of 10 to 50 mm, and the bottom surface 21 is preferably installed at a distance of 10 to 50 mm from the plate-like ceramic body 2. More preferably, it is 20-30 mm. This is because heat equalization of the mounting surface 3 is facilitated by the radiant heat between the plate-shaped ceramic body 2 and the bottomed metal case 19, and at the same time, there is a heat insulation effect from the outside. This is because the time until the temperature reaches a constant and uniform temperature is shortened.

そして、有底の金属製のケース19内に昇降自在に設置されたリフトピン25により、ウェハWを載置面3上に載せたり載置面3より持ち上げたりといった作業がなされる。そして、ウェハWは、ウェハ支持ピン8により載置面3から浮かした状態で保持され、片当たり等による温度バラツキを防止するようにしている。   Then, work such as placing the wafer W on the placement surface 3 or lifting it from the placement surface 3 is performed by lift pins 25 installed in the bottomed metal case 19 so as to be movable up and down. The wafer W is held in a state of being lifted from the mounting surface 3 by the wafer support pins 8 so as to prevent temperature variation due to contact with each other.

また、このウェハ加熱装置1によりウェハWを加熱するには、搬送アーム(不図示)にて載置面3の上方まで運ばれたウェハWをリフトピン25にて支持したあと、リフトピン25を降下させてウェハWを載置面3上に載せる。   Further, in order to heat the wafer W by the wafer heating apparatus 1, the lift pin 25 is lowered after the wafer W carried to the upper side of the mounting surface 3 by the transfer arm (not shown) is supported by the lift pin 25. The wafer W is then placed on the placement surface 3.

次に、ウェハ支持部材1をレジスト膜形成用として使用する場合は、板状セラミック体2の主成分を炭化珪素にすると、大気中の水分等と反応してガスを発生させることもないため、ウェハW上へのレジスト膜の貼付に用いたとしても、レジスト膜の組織に悪影響を与えることがなく、微細な配線を高密度に形成することが可能である。この際、焼結助剤に水と反応してアンモニアやアミンを形成する可能性のある窒化物を含まないようにすることが必要である。   Next, when the wafer support member 1 is used for forming a resist film, if the main component of the plate-like ceramic body 2 is silicon carbide, it does not react with moisture in the atmosphere and does not generate gas. Even when the resist film is applied to the wafer W, fine wirings can be formed at a high density without adversely affecting the structure of the resist film. At this time, it is necessary that the sintering aid does not contain nitrides that may react with water to form ammonia or amines.

なお、板状セラミック体2を形成する炭化珪素質焼結体は、主成分の炭化珪素に対し、焼結助剤として硼素(B)と炭素(C)を添加したり、もしくはアルミナ(Al)イットリア(Y)のような金属酸化物を添加して十分混合し、平板状に加工したのち、1900〜2100℃で焼成することにより得られる。炭化珪素はα型を主体とするものあるいはβ型を主体とするもののいずれであっても構わない。 In the silicon carbide sintered body forming the plate-like ceramic body 2, boron (B) and carbon (C) are added as sintering aids to the main component silicon carbide, or alumina (Al 2 It can be obtained by adding a metal oxide such as O 3 ) yttria (Y 2 O 3 ), mixing it well, processing it into a flat plate, and firing it at 1900-2100 ° C. Silicon carbide may be either mainly α-type or β-type.

一方、炭化珪素質焼結体を板状セラミック体2として使用する場合、半導電性を有する板状セラミック体2と抵抗発熱体5との間の絶縁を保つ絶縁層としては、ガラス又は樹脂を用いることが可能であり、ガラスを用いる場合、その厚みが100μm未満では耐電圧が1.5kVを下回り絶縁性が保てず、逆に厚みが400μmを越えると、板状セラミック体2を形成する炭化珪素質焼結体や窒化アルミニウム質焼結体との熱膨張差が大きくなり過ぎるために、クラックが発生して絶縁層として機能しなくなる。その為、絶縁層としてガラスを用いる場合、絶縁層4の厚みは100〜400μmの範囲で形成することが好ましく、望ましくは200μm〜350μmの範囲とすることが良い。   On the other hand, when the silicon carbide sintered body is used as the plate-like ceramic body 2, glass or resin is used as an insulating layer for maintaining insulation between the plate-like ceramic body 2 having semiconductivity and the resistance heating element 5. When glass is used, if the thickness is less than 100 μm, the withstand voltage is less than 1.5 kV and the insulation cannot be maintained. Conversely, if the thickness exceeds 400 μm, the plate-like ceramic body 2 is formed. Since the thermal expansion difference between the silicon carbide sintered body and the aluminum nitride sintered body becomes too large, cracks are generated and the insulating layer does not function. Therefore, when glass is used as the insulating layer, the thickness of the insulating layer 4 is preferably formed in the range of 100 to 400 μm, and desirably in the range of 200 μm to 350 μm.

さらに、板状セラミック体2の載置面3と反対側の主面は、ガラスや樹脂からなる絶縁層4との密着性を高める観点から、平面度20μm以下、面粗さを中心線平均粗さ(Ra)で0.1μm〜0.5μmに研磨しておくことが好ましい。   Furthermore, the main surface opposite to the mounting surface 3 of the plate-like ceramic body 2 has a flatness of 20 μm or less and a surface roughness of the center line average roughness from the viewpoint of improving the adhesion with the insulating layer 4 made of glass or resin. The thickness (Ra) is preferably polished to 0.1 μm to 0.5 μm.

また、板状セラミック体2を、窒化アルミニウムを主成分とする焼結体で形成する場合は、主成分の窒化アルミニウムに対し、焼結助剤としてYやYb等の希土類元素酸化物と必要に応じてCaO等のアルカリ土類金属酸化物を添加して十分混合し、平板状に加工した後、窒素ガス中1900〜2100℃で焼成することにより得られる。板状セラミック体2に対する抵抗発熱体5の密着性を向上させるために、ガラスからなる絶縁層を形成することもある。ただし、抵抗発熱体5の中に十分なガラスを添加し、これにより十分な密着強度が得られる場合は、省略することが可能である。 Further, when the plate-like ceramic body 2 is formed of a sintered body mainly composed of aluminum nitride, a rare earth such as Y 2 O 3 or Yb 2 O 3 is used as a sintering aid for the main component aluminum nitride. It is obtained by adding an elemental oxide and, if necessary, an alkaline earth metal oxide such as CaO and mixing them well, processing them into a flat plate, and then firing them in nitrogen gas at 1900-2100 ° C. In order to improve the adhesion of the resistance heating element 5 to the plate-like ceramic body 2, an insulating layer made of glass may be formed. However, when sufficient glass is added in the resistance heating element 5 and sufficient adhesion strength can be obtained by this, it can be omitted.

この絶縁層を形成するガラスの特性としては、結晶質又は非晶質のいずれでも良く、耐熱温度が200℃以上でかつ0℃〜200℃の温度域における熱膨張係数が板状セラミック体2を構成するセラミックスの熱膨張係数に対し−5×10−7/℃〜+5×10−7/℃の範囲にあるものを適宜選択して用いることが好ましい。即ち、熱膨張係数が前記範囲を外れたガラスを用いると、板状セラミック体2を形成するセラミックスとの熱膨張差が大きくなりすぎるため、ガラスの焼付け後の冷却時においてクラックや剥離等の欠陥が生じ易いからである。 The glass forming this insulating layer may be crystalline or amorphous, and has a heat expansion temperature of 200 ° C. or higher and a coefficient of thermal expansion in the temperature range of 0 ° C. to 200 ° C. It is preferable to select and use a material having a thermal expansion coefficient in the range of −5 × 10 −7 / ° C. to + 5 × 10 −7 / ° C. as appropriate. That is, if a glass whose thermal expansion coefficient is outside the above range is used, the difference in thermal expansion from the ceramic forming the plate-like ceramic body 2 becomes too large, so that defects such as cracks and delamination occur during cooling after baking of the glass. It is because it is easy to occur.

なお、ガラスからなる絶縁層を板状セラミック体2上に被着する手段としては、前記ガラスペーストを板状セラミック体2の中心部に適量落とし、スピンコーティング法にて伸ばして均一に塗布するか、あるいはスクリーン印刷法、ディッピング法、スプレーコーティング法等にて均一に塗布したあと、ガラスペーストを600℃以上の温度で焼き付けすれば良い。また、絶縁層としてガラスを用いる場合、予め炭化珪素質焼結体又は窒化アルミニウム質焼結体からなる板状セラミック体2を850〜1300℃程度の温度に加熱し、絶縁層を被着する表面を酸化処理しておくことで、ガラスからなる絶縁層との密着性を高めることができる。   In addition, as a means for depositing an insulating layer made of glass on the plate-like ceramic body 2, an appropriate amount of the glass paste is dropped on the center of the plate-like ceramic body 2, and is spread and applied uniformly by spin coating. Alternatively, the glass paste may be baked at a temperature of 600 ° C. or higher after being uniformly applied by a screen printing method, a dipping method, a spray coating method, or the like. Moreover, when using glass as an insulating layer, the surface which adheres the insulating layer by heating the plate-shaped ceramic body 2 which consists of a silicon carbide sintered body or an aluminum nitride sintered body to the temperature of about 850-1300 degreeC beforehand. By subjecting to an oxidation treatment, adhesion to an insulating layer made of glass can be enhanced.

窒化アルミニウム粉末に対し、重量換算で1.0質量%の酸化イットリウムを添加し、さらにイソプロピルアルコールとウレタンボールを用いてボールミルにより48時間混練することにより窒化アルミニウムのスラリーを製作した。   To the aluminum nitride powder, 1.0% by mass of yttrium oxide in terms of weight was added, and further, kneaded for 48 hours with a ball mill using isopropyl alcohol and urethane balls to produce an aluminum nitride slurry.

次に、窒化アルミニウムのスラリーを200メッシュに通し、ウレタンボールやボールミル壁の屑を取り除いた後、防爆乾燥機にて120℃で24時間乾燥した。   Next, the aluminum nitride slurry was passed through 200 mesh to remove urethane balls and ball mill wall debris, and then dried at 120 ° C. for 24 hours in an explosion-proof dryer.

次いで、得られた窒化アルミニウム粉末にアクリル系のバインダーと溶媒を混合して窒化アルミニムのスリップを作製し、ドクターブレード法にて窒化アルミニムのグリーンシートを複数枚製作した。   Next, the obtained aluminum nitride powder was mixed with an acrylic binder and a solvent to produce an aluminum nitride slip, and a plurality of aluminum nitride green sheets were produced by a doctor blade method.

そして、得られた窒化アルミニムのグリーンシートを複数枚積層熱圧着にて積層体を形成した。   A laminate was formed by laminating a plurality of obtained aluminum nitride green sheets.

しかる後、積層体を非酸化性ガス気流中にて500℃の温度で5時間脱脂を施した後、非酸化性雰囲気にて1900℃の温度で5時間の焼成を行い各種の熱伝導率を有する板状セラミック体を製作した。   Thereafter, the laminate is degreased at a temperature of 500 ° C. for 5 hours in a non-oxidizing gas stream, and then fired at a temperature of 1900 ° C. for 5 hours in a non-oxidizing atmosphere to obtain various thermal conductivities. A plate-shaped ceramic body having the same was manufactured.

そして、窒化アルミニウム焼結体に研削加工を施し、板厚3mm、直径330mmの円盤状をした板状セラミック体2と、板厚4mmで周辺部に円環状の凸部を備え直径301mmの中心部の板厚が3mmの板状セラミック体を作製した。   Then, the aluminum nitride sintered body is ground and a plate-like ceramic body 2 having a disc shape with a plate thickness of 3 mm and a diameter of 330 mm, and a central portion having a plate thickness of 4 mm and an annular convex portion at the periphery and a diameter of 301 mm. A plate-shaped ceramic body having a thickness of 3 mm was prepared.

更に、中心から60mmの同心円上に均等に3箇所貫通孔を形成した。貫通口径は、4mmとした。   Furthermore, three through-holes were uniformly formed on a concentric circle 60 mm from the center. The through-hole diameter was 4 mm.

次いで、板状セラミック体2の上に抵抗発熱体5を被着するため、導電材としてAu粉末とPd粉末と、前記同様の組成からなるバインダーを添加したガラスペーストを混練して作製した導電体ペーストをスクリーン印刷法にて所定のパターン形状に印刷したあと、150℃に加熱して有機溶剤を乾燥させ、さらに550℃で30分間脱脂処理を施したあと、700〜900℃の温度で焼き付けを行うことにより、厚みが50μmの抵抗発熱体5を形成した。   Next, in order to deposit the resistance heating element 5 on the plate-like ceramic body 2, a conductor prepared by kneading Au powder and Pd powder as a conductive material and a glass paste added with a binder having the same composition as described above. After the paste is printed in a predetermined pattern by screen printing, it is heated to 150 ° C. to dry the organic solvent, degreased at 550 ° C. for 30 minutes, and then baked at 700 to 900 ° C. By performing, the resistance heating element 5 having a thickness of 50 μm was formed.

抵抗発熱体ゾーン4の配置は、中心部に円形の1つに抵抗発熱体ゾーンを形成し、その外側の円環を扇状に2つの抵抗発熱体ゾーンに分割し、更にその外側に円環を4つの扇状の抵抗発熱体ゾーンに分割した計7個の抵抗発熱体ゾーン構成とした。   The resistance heating element zone 4 is arranged in such a manner that a resistance heating element zone is formed in one circular shape at the center, the outer ring is divided into two resistance heating element zones in a fan shape, and an annular ring is formed on the outer side. A total of seven resistance heating element zones were divided into four fan-like resistance heating element zones.

また、有底の金属製のケースの底面の厚みは2.0mmのアルミニウムと側壁部を構成する厚み1.0mmのアルミニウムからなり、底面に、ガス噴射口、熱電対、導通端子を所定の位置に取り付けた。また、底面から板状セラミック体までの距離は20mmとした。   The bottom of the bottomed metal case is made of 2.0 mm of aluminum and 1.0 mm of aluminum constituting the side wall, and a gas injection port, a thermocouple, and a conductive terminal are placed at predetermined positions on the bottom. Attached to. The distance from the bottom surface to the plate-like ceramic body was 20 mm.

その後、前記有底の金属製のケースの開口部に、板状セラミック体を重ね、その外周部にボルトを貫通させ、板状セラミック体と有底の金属製のケースが直接当たらないように、リング状の接触部材を介在させ固定することによりウェハ支持部材とした。   Then, a plate-like ceramic body is stacked on the opening of the bottomed metal case, and a bolt is passed through the outer periphery thereof, so that the plate-like ceramic body and the bottomed metal case do not directly hit, A wafer supporting member was obtained by interposing and fixing a ring-shaped contact member.

尚、接触部材17の断面はL字状で、リング状とした。L字状の段部の幅は5mmで板状セラミック体との接触幅は4mmとした。また、接触部材の材質はポリベンゾイミダゾール樹脂を用いた。   The cross section of the contact member 17 is L-shaped and ring-shaped. The width of the L-shaped step was 5 mm and the contact width with the plate-like ceramic body was 4 mm. The contact member was made of polybenzimidazole resin.

その後、載置面の中心に1個の内側凸部と中心から85mmの距離に3個の内側凸部を取り付け、中心から130mmの距離に5個の内側凸部を取り付けたものを試料No.1〜4とした。   Thereafter, one inner convex part at the center of the mounting surface and three inner convex parts at a distance of 85 mm from the center, and five inner convex parts at a distance of 130 mm from the center were attached to Sample No. 1-4.

試料No.1は、板状セラミック体2の周辺部の固定穴の内径が3.5mmで、ボルトの直径を3mmとして円錐状の周辺凸部を5箇所等配に取り付けた。   In sample No. 1, the inner diameter of the fixing hole in the peripheral part of the plate-like ceramic body 2 was 3.5 mm, the diameter of the bolt was 3 mm, and five conical peripheral convex parts were attached at equal intervals.

試料No.2は、板状セラミック体2の周辺部の固定穴の内径が4.5mmで、ボルトの直径を3mmとして円筒状の周辺凸部を緩やかに5箇所等配に取り付けた。   Sample No. In No. 2, the inner diameter of the fixing hole in the peripheral portion of the plate-like ceramic body 2 was 4.5 mm, the diameter of the bolt was 3 mm, and the cylindrical peripheral convex portions were gently attached at five locations.

試料No.3は、板状セラミック体の周辺部の固定穴の内径が3mmで、ボルトの直径を3mmとして円筒状の周辺凸部を強固に5箇所等配に取り付けた従来のウェハ支持部材である。   Sample No. Reference numeral 3 denotes a conventional wafer support member in which the inner diameter of the fixing hole in the peripheral portion of the plate-shaped ceramic body is 3 mm, the diameter of the bolt is 3 mm, and the cylindrical peripheral convex portions are firmly attached at five equal locations.

また、試料No.4は板状セラミック体の周辺部は環状に載置面より1mm凸に形成された従来のウェハ支持部材である。   Sample No. 4 is a conventional wafer support member in which the peripheral portion of the plate-like ceramic body is formed in a ring shape so as to protrude 1 mm from the mounting surface.

試料No.5は板状セラミック体の周辺部に円筒状の周辺凸部を緩やかに5箇所等配に取り付け、内側凸部のない従来のウェハ支持部材である。   Sample No. 5 is a conventional wafer support member having a cylindrical peripheral convex portion gently attached to the peripheral portion of the plate-like ceramic body at five equal intervals and having no inner convex portion.

作製したウェハ支持部材の評価は、測温抵抗体が29箇所に埋設された直径300mmの測温用ウェハを用いて行った。夫々のウェハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間保持した。そして、ウェハリフトピンを上昇させてウェハWを取り外し、ウェハWを室温に冷却した後再びウェハ支持部材に載せウェハWの平均温度が200℃±0.5℃となるまでの時間を応答時間として測定した。その後30分間ウェハW平均温度を200℃に保持した時点でのウェハW面内の温度差を測定した。   Evaluation of the produced wafer support member was performed using a 300 mm diameter wafer for temperature measurement in which a resistance temperature detector was embedded in 29 locations. A power supply is attached to each wafer support member, the wafer W is heated from 25 ° C. to 200 ° C. in 5 minutes, the temperature of the wafer W is set to 200 ° C., and then the average temperature of the wafer W is 200 ° C. ± 0.5 ° C. The time until it became constant in the range of was maintained. Then, the wafer lift pins are raised, the wafer W is removed, the wafer W is cooled to room temperature, placed on the wafer support member again, and the time until the average temperature of the wafer W reaches 200 ° C. ± 0.5 ° C. is measured as the response time. did. Thereafter, the temperature difference in the wafer W plane at the time when the wafer W average temperature was maintained at 200 ° C. for 30 minutes was measured.

それぞれの結果は表1に示す通りである。

Figure 2005340441
Each result is as shown in Table 1.
Figure 2005340441

載置面の周辺に孤立した周辺凸部4を設け、内側凸部4を備え、前記周辺凸部の固定穴の内径がボルトの直径より大きくボルトと固定穴の間にクリヤランスのある本発明のウェハ支持部材である試料No.1、2はウェハW面内の温度差は0.31℃、0.35℃と小さく、しかも応答時間は32秒、35秒と小さく優れた特性を示す事が分った。   An isolated peripheral convex portion 4 is provided around the mounting surface, the inner convex portion 4 is provided, and the inner diameter of the fixing hole of the peripheral convex portion is larger than the diameter of the bolt, and there is a clearance between the bolt and the fixing hole. Sample No. which is a wafer support member. 1 and 2 show that the temperature difference in the wafer W surface is as small as 0.31 ° C. and 0.35 ° C., and the response time is as small as 32 seconds and 35 seconds.

また、周辺凸部の載置面に平行な外形を示す断面が円形であると試料No.1、2に示すように優れた特性を示すことが分った。   Further, when the cross section showing the outer shape parallel to the mounting surface of the peripheral convex portion is circular, the sample No. It was found that excellent characteristics were exhibited as shown in Figs.

それに対して、載置面の周辺部に円筒状の凸部を強固に取り付けた試料No.3は周辺凸部に熱の流れが多く、ウェハW面内の温度差は0.42℃とやや小さいが、応答時間が52秒と大きく、均一なレジスト膜を作製することが出来なかった。   On the other hand, Sample No. 3 in which the cylindrical convex portion is firmly attached to the peripheral portion of the mounting surface has a large heat flow in the peripheral convex portion, and the temperature difference in the wafer W surface is slightly 0.42 ° C. Although it was small, the response time was as long as 52 seconds, and a uniform resist film could not be produced.

また、載置面の周辺部に円環状の凸部を備えた試料No.4はウェハW面内の温度差は0.41℃とやや小さいが、応答時間が63秒と大きく、均一なレジスト膜を作製することが出来なかった。   Sample No. 4 provided with an annular convex portion on the periphery of the mounting surface has a slightly small temperature difference within the wafer W surface of 0.41 ° C., but a large response time of 63 seconds and a uniform resist. The film could not be made.

また、内側凸部のない試料No.5は、ウェハW面内の温度差が0.63℃と大きく、しかも応答時間も47秒とやや大きかった。   Sample No. 5 having no inner convex portion had a large temperature difference in the wafer W plane of 0.63 ° C. and a response time of 47 seconds.

更に、周辺凸部が円錐状である試料No.1は周辺凸部が円筒状である試料No.2よりウェハ面内の温度差や応答時間が小さくより優れた特性を示すことが分った。   Furthermore, the sample No. 1 whose peripheral convex portion is conical. No. 1 is a sample No. 1 whose peripheral convex portion is cylindrical. 2 shows that the temperature difference in the wafer surface and the response time are smaller and the characteristics are more excellent.

実施例1と同様に板状セラミック体を作製した。   A plate-like ceramic body was produced in the same manner as in Example 1.

そして、窒化アルミニウム焼結体に研削加工を施し、板厚3mm、直径330mmの円盤状をした板状セラミック体2を複数枚製作し、更に中心から60mmの同心円上に均等に3箇所貫通孔を形成した。貫通口径は、4mmとした。   Then, the aluminum nitride sintered body is ground to produce a plurality of disk-shaped ceramic bodies 2 having a disk thickness of 3 mm and a diameter of 330 mm, and three through-holes are equally formed on a concentric circle 60 mm from the center. Formed. The through-hole diameter was 4 mm.

次いで板状セラミック体2の上に抵抗発熱体5を被着するため、導電材としてAu粉末とPd粉末と、前記同様の組成からなるバインダーを添加したガラスペーストを混練して作製した導電体ペーストをスクリーン印刷法にて所定のパターン形状に印刷したあと、150℃に加熱して有機溶剤を乾燥させ、さらに550℃で30分間脱脂処理を施したあと、700〜900℃の温度で焼き付けを行うことにより、厚みが50μmの抵抗発熱体5を形成した。抵抗発熱体5のパターン配置は、中心部から放射状に円と円環状に分割し、中心部に円形の1つにパターンを形成し、その外側の円環状の部分に2つにパターンを形成し、更に最外周に4つのパターンの計7個のパターン構成とした。   Next, in order to deposit the resistance heating element 5 on the plate-like ceramic body 2, a conductor paste prepared by kneading a glass paste to which Au powder, Pd powder and a binder having the same composition as described above are added as a conductive material. Is printed in a predetermined pattern shape by a screen printing method, heated to 150 ° C. to dry the organic solvent, further degreased at 550 ° C. for 30 minutes, and then baked at a temperature of 700 to 900 ° C. Thus, the resistance heating element 5 having a thickness of 50 μm was formed. The pattern of the resistance heating element 5 is divided into a circle and an annular shape radially from the central portion, a pattern is formed in one circular shape in the central portion, and a pattern is formed in two in the outer annular portion. Furthermore, a total of 7 patterns of 4 patterns on the outermost periphery were formed.

そして、最外周の4つのパターンの外接円Cの直径を310mmとして、板状セラミック体の直径を変えて作製した。しかるのち抵抗発熱体に給電部をロウ付けし固着させることにより、ヒータ部を製作した。   Then, the diameter of the circumscribed circle C of the four outermost patterns was 310 mm, and the diameter of the plate-shaped ceramic body was changed. After that, the heater part was manufactured by brazing and fixing the feeding part to the resistance heating element.

また、有底の金属製のケースの底面の厚みは2.0mmのアルミニウムと、側壁部を構成する厚み1.0mmのアルミニウムとからなり、底面に、ガス噴射口、熱電対、導通端子を所定の位置に取り付けた。また、底面から板状セラミック体までの距離は20mmとした。   The bottom of the bottomed metal case is made of aluminum having a thickness of 2.0 mm and aluminum having a thickness of 1.0 mm constituting the side wall, and a gas injection port, a thermocouple, and a conduction terminal are provided on the bottom. It was attached to the position. The distance from the bottom surface to the plate-like ceramic body was 20 mm.

その後、前記有底の金属製のケースの開口部に、板状セラミック体を重ね、その外周部にボルトを貫通させ、板状セラミック体と有底の金属製のケースが直接当たらないように、L字状の接触部材を介在させ、接触部材側より弾性体を介在させてナットを螺着し固定することによりウェハ支持部材とした。   Then, a plate-like ceramic body is stacked on the opening of the bottomed metal case, and a bolt is passed through the outer periphery thereof, so that the plate-like ceramic body and the bottomed metal case do not directly hit, A wafer support member was obtained by interposing an L-shaped contact member and screwing and fixing a nut with an elastic body interposed from the contact member side.

また、周辺部に直径10mmの周辺凸部4を上記ボルトを兼用して固定した。周辺凸部4の内接円の大きさは直径300.0〜315mmとした。   Moreover, the peripheral convex part 4 with a diameter of 10 mm was fixed to the peripheral part also using the said volt | bolt. The size of the inscribed circle of the peripheral convex part 4 was 300.0 to 315 mm in diameter.

また、純度96%アルミナ、ムライト、イットリアを0.1〜5重量%添加した窒化アルミニウムで周辺凸部を作製した。また、各周辺凸部の外周を万能研削盤で加工し必要に応じ外周をダイヤモンド遊離砥粒で研磨しRaが0.005〜10に調整した周辺凸部4を作製した。   Moreover, the peripheral convex part was produced with aluminum nitride to which 0.1 to 5% by weight of 96% purity alumina, mullite, and yttria were added. Moreover, the outer periphery of each peripheral convex part was processed with the universal grinder, and the outer periphery was grind | polished with the diamond loose abrasive grain as needed, and the peripheral convex part 4 which Ra adjusted to 0.005-10 was produced.

そして、周辺凸部4の熱伝導率の異なる各種のウェハ支持部材を試料No.21〜29とした。   And the various wafer support members in which the thermal conductivity of the peripheral convex part 4 differs were made into sample Nos. 21-29.

作製したウェハ支持部材の評価は、測温抵抗体が29箇所に埋設された直径300mmの測温用ウェハを用いて行った。夫々のウェハ支持部材に電源を取り付け25℃から200℃まで5分間でウェハWを昇温し、ウェハWの温度を200℃に設定してからウェハWの平均温度が200℃±0.5℃の範囲で一定となるまでの時間を応答時間として測定した。その10分後のウェハ温度の最大値と最小値の差をウェハWの温度差として測定した。その後、ウェハリフトピンを載置面の上面に突出させウェハWを載置面から取り外し、不図示のハンドリングアームでウェハを取り外した。その後再びハンドリングアームからウェハWをウェハリフトピンの上に載せ、ウェハリフトピンを降下させて、周辺凸部にガイドさせながら内側凸部に上端にウェハWを載せた。そして、3分後に再びウェハリフトピンを上昇させて、ウェハWを取り外した。このウェハW載置取り外しを1000回繰り返し、その後ウェハWの裏面の周辺部20mm幅と側面に付着したパーティクルをTENKOR社製のパーティクルカウンタで評価した。   Evaluation of the produced wafer support member was performed using a 300 mm diameter wafer for temperature measurement in which a resistance temperature detector was embedded in 29 locations. A power supply is attached to each wafer support member, the wafer W is heated from 25 ° C. to 200 ° C. in 5 minutes, the temperature of the wafer W is set to 200 ° C., and then the average temperature of the wafer W is 200 ° C. ± 0.5 ° C. The time until it became constant in the range of was measured as the response time. The difference between the maximum value and the minimum value of the wafer temperature after 10 minutes was measured as the temperature difference of the wafer W. Thereafter, the wafer lift pins protruded from the upper surface of the mounting surface to remove the wafer W from the mounting surface, and the wafer was removed by a handling arm (not shown). Thereafter, the wafer W was again placed on the wafer lift pins from the handling arm, the wafer lift pins were lowered, and the wafer W was placed on the inner convex portion while being guided by the peripheral convex portions. Then, after 3 minutes, the wafer lift pins were raised again and the wafer W was removed. This wafer W mounting / removal was repeated 1000 times, and then the particles attached to the peripheral portion 20 mm width and the side surface of the back surface of the wafer W were evaluated with a particle counter manufactured by TENKOR.

それぞれの結果は表2に示す通りである。

Figure 2005340441
Each result is as shown in Table 2.
Figure 2005340441

表2から、上記周辺凸部を固定する固定ボルトが上記板状セラミック体を貫通しケースと接続固定している試料No.21〜29はいずれもウェハ面内の温度差が0.4℃以下と小さく、応答時間も35秒以下と小さく優れた特性を示すことが分った。   From Table 2, sample No. 2 in which the fixing bolt for fixing the peripheral convex portion penetrates the plate-like ceramic body and is connected and fixed to the case. It was found that all of Nos. 21 to 29 showed excellent characteristics with a small temperature difference within the wafer surface of 0.4 ° C. or less and a response time of 35 seconds or less.

また、試料No.22〜29のように周辺凸部の外周面の表面粗さRaが3.0より小さいとパーティクルの発生個数が2000個以下と少なくより好ましいことが分った。   Sample No. It was found that when the surface roughness Ra of the outer peripheral surface of the peripheral convex portion is smaller than 3.0 as in 22 to 29, the number of particles generated is as small as 2000 or less and more preferable.

更に、表2の試料No.29は、周辺凸部の熱容量が1.7(J/K)と大きいことから、ウェハW面内の温度差が0.40℃とやや大きく応答時間も35秒とやや大きかった。   Furthermore, sample No. In No. 29, the heat capacity of the peripheral convex portion was as large as 1.7 (J / K), so the temperature difference in the wafer W surface was slightly large at 0.40 ° C. and the response time was also slightly large at 35 seconds.

これに対し、試料No.22〜28は周辺凸部の熱容量が周辺凸部に対応する板状セラミック体の熱容量の3倍より小さく、ウェハW面内の温度差は0.34℃以下と小さく、応答時間も34秒以下と小さく好ましいことが分った。   In contrast, sample no. In Nos. 22 to 28, the heat capacity of the peripheral protrusions is smaller than three times the heat capacity of the plate-like ceramic body corresponding to the peripheral protrusions, the temperature difference in the wafer W plane is as small as 0.34 ° C. It was found that it was small and preferable.

更に、試料No.23〜26のように周辺凸部の熱容量が周辺凸部に対応する板状セラミック体の熱容量の1.5倍より小さいとウェハW面内の温度差は0.23℃以下と小さく、応答時間も25秒以下と小さく更に好ましいことが分った。   Furthermore, sample no. When the heat capacity of the peripheral protrusions is smaller than 1.5 times the heat capacity of the plate-like ceramic body corresponding to the peripheral protrusions as in 23 to 26, the temperature difference in the wafer W plane is as small as 0.23 ° C. or less, and the response time. Has also been found to be even smaller, preferably less than 25 seconds.

また、上記内側凸部の載置面からの突出高さは0.05〜0.5mmであり、上記内側凸部は、上記周辺凸部に内接する内接円の直径の0.5倍の範囲内に少なくとも1個、前記内接円の直径の0.5〜1倍の範囲内に少なくとも3個以上それぞれ同心円状に配置されていることからウェハ面内の温度差が何れも0.4℃以下と小さく好ましいことが分った。   The protruding height of the inner convex portion from the mounting surface is 0.05 to 0.5 mm, and the inner convex portion is 0.5 times the diameter of the inscribed circle inscribed in the peripheral convex portion. At least one in the range and at least three in the range 0.5 to 1 times the diameter of the inscribed circle are arranged concentrically, so that the temperature difference in the wafer surface is 0.4. It has been found that the temperature is preferably as low as 0 ° C. or less.

(a)は本発明のウェハ支持部材の一例を示す断面図、(b)は同じく平面図である。(A) is sectional drawing which shows an example of the wafer support member of this invention, (b) is a top view similarly. (a)〜(d)は本発明のウェハ支持部材における周辺凸部の拡大断面図である。(A)-(d) is an expanded sectional view of the peripheral convex part in the wafer support member of this invention. 図1(b)のY−Y線断面図である。It is the YY sectional view taken on the line of FIG.1 (b). (a)(b)は本発明のウェハ支持部材における抵抗発熱体ゾーンの形状を示す概略平面図である。(A) (b) is a schematic plan view which shows the shape of the resistance heating element zone in the wafer support member of this invention. 本発明のウェハ支持部材における抵抗発熱体の形状を示す概略平面図である。It is a schematic plan view which shows the shape of the resistance heating element in the wafer support member of this invention. 本発明のウェハ支持部材における抵抗発熱体の形状を示す概略平面図である。It is a schematic plan view which shows the shape of the resistance heating element in the wafer support member of this invention. 本発明の他のウェハ支持部材の一例を示す断面図である。It is sectional drawing which shows an example of the other wafer support member of this invention. 従来のウェハ支持部材の一例を示す断面図である。It is sectional drawing which shows an example of the conventional wafer support member. 従来のウェハ支持部材の抵抗発熱体の形状を示す概略平面図である。It is a schematic plan view which shows the shape of the resistance heating element of the conventional wafer support member.

符号の説明Explanation of symbols

1、71:ウェハ支持部材
2、72:板状セラミック体
3、73:載置面
4:周辺凸部
5、75:抵抗発熱体
6:給電部
7:均熱板
8:内側凸部
9:凹部
10:ボルト
11、77:給電端子
12:固定穴
16:ボルト
17:接触部材
18:弾性体
19、79:金属製のケース
20:ナット
21:底面
23:孔
24:ガス噴射口
25:ウェハリフトピン
26:貫通孔
27:熱電対
28:ガイド部材
W:半導体ウェハ
DESCRIPTION OF SYMBOLS 1, 71: Wafer support member 2, 72: Plate-shaped ceramic body 3, 73: Mounting surface 4: Peripheral convex part 5, 75: Resistance heating element 6: Power feeding part 7: Heat equalizing plate 8: Inner convex part 9: Recess 10: Bolt 11, 77: Power supply terminal 12: Fixing hole 16: Bolt 17: Contact member 18: Elastic body 19, 79: Metal case 20: Nut 21: Bottom 23: Hole 24: Gas injection port 25: Wafer Lift pin 26: Through hole 27: Thermocouple 28: Guide member W: Semiconductor wafer

Claims (13)

板状セラミック体の一方の主面または内部に複数の抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたウェハ支持部材であって、上記載置面の周辺部に3個以上の周辺凸部と、該周辺凸部の内側に該周辺凸部より高さの低い内側凸部を備え、前記周辺凸部が、板状セラミック体の半径方向または垂直方向の少なくとも一方向に移動可能となるように保持されていることを特徴とするウェハ支持部材。 A wafer support member comprising a plurality of resistance heating elements on one main surface or inside of a plate-shaped ceramic body, and a mounting surface on which the wafer is placed on the other main surface, wherein 3 on the periphery of the mounting surface At least one direction in the radial direction or the vertical direction of the plate-like ceramic body, and having at least one peripheral convex portion and an inner convex portion having a height lower than the peripheral convex portion inside the peripheral convex portion. A wafer support member, wherein the wafer support member is held so as to be movable. 前記周辺凸部の固定穴と前記周辺凸部を固定するボルトとの間に隙間があることを特徴とする請求項1記載のウェハ支持部材。 2. The wafer support member according to claim 1, wherein there is a gap between a fixing hole of the peripheral convex portion and a bolt for fixing the peripheral convex portion. 上記周辺の凸部の載置面に平行な外形を示す断面が円形であることを特徴とする請求項1または2に記載のウェハ支持部材。 3. The wafer support member according to claim 1, wherein a cross section showing an outer shape parallel to the mounting surface of the peripheral convex portion is circular. 上記周辺の凸部は柱状で頂部の径が小さく、底面の径が大きいことを特徴とする請求項1〜3のいずれかに記載のウェハ支持部材。 The wafer supporting member according to claim 1, wherein the peripheral convex portion has a columnar shape with a small top diameter and a large bottom surface diameter. 板状セラミック体の一方の主面に抵抗発熱体を備え、他方の主面にウェハを載せる載置面を備えたヒータ部と、前記抵抗発熱体に電力を供給する給電端子と、該給電端子を包むように板状セラミック体と接続したケースと、該ケースに前記ヒータ部を冷却するノズルと開口部とを備え、上記周辺凸部を固定する固定ボルトが上記板状セラミック体を貫通しケースと接続固定することを特徴とするウェハ支持部材。 A heater part having a resistance heating element on one main surface of the plate-like ceramic body and a mounting surface on which the wafer is placed on the other main surface, a power supply terminal for supplying power to the resistance heating element, and the power supply terminal A case connected to the plate-like ceramic body so as to wrap, a nozzle and an opening for cooling the heater portion in the case, and a fixing bolt for fixing the peripheral convex portion penetrating the plate-like ceramic body, A wafer supporting member characterized by being connected and fixed. 上記周辺凸部の外周面の平均表面粗さRaが3.0より小さいことを特徴とする請求項1〜5の何れかに記載のウェハ支持部材。 6. The wafer support member according to claim 1, wherein an average surface roughness Ra of an outer peripheral surface of the peripheral convex portion is smaller than 3.0. 上記3個以上の周辺凸部の内面で形成される内接円の直径が200.2〜206.0mmまたは300.3〜309.0mmの範囲にあることを特徴とする請求項1〜6の何れかに記載のウェハ支持部材。 The diameter of the inscribed circle formed by the inner surfaces of the three or more peripheral convex portions is in the range of 200.2 to 206.0 mm or 300.3 to 309.0 mm. The wafer support member in any one. 上記周辺凸部は円形のセラミック部材からなり、該セラミック部材の熱容量が、上記周辺凸部と接触する上記板状セラミック体の熱容量の3倍より小さいことを特徴とする請求項1〜7の何れかに記載のウェハ支持部材。 The said peripheral convex part consists of a circular ceramic member, The heat capacity of this ceramic member is smaller than 3 times the heat capacity of the said plate-shaped ceramic body which contacts the said peripheral convex part, The any one of Claims 1-7 characterized by the above-mentioned. A wafer support member according to claim 1. 上記板状セラミック体が上記ケースに固定された押さえ金具で押圧されたことを特徴とする請求項5に記載のウェハ支持部材。 6. The wafer support member according to claim 5, wherein the plate-like ceramic body is pressed by a pressing metal fitting fixed to the case. 上記押圧する部分が点接触であることを特徴とする請求項9に記載のウェハ支持部材。 The wafer support member according to claim 9, wherein the pressed portion is a point contact. 上記抵抗発熱体を囲む外接円の内側に上記周辺凸部が配置されていることを特徴とする請求項1〜10の何れかに記載のウェハ支持部材。 The wafer supporting member according to claim 1, wherein the peripheral convex portion is disposed inside a circumscribed circle surrounding the resistance heating element. 上記内側凸部の載置面からの突出高さは0.05〜0.5mmであり、上記内側凸部は、上記周辺凸部に内接する内接円の直径の0.5倍以下の範囲内に少なくとも1個、前記内接円の直径の0.5〜1倍の範囲内に少なくとも3個以上それぞれ同心円状に配置されていることを特徴とする請求項1〜11の何れかに記載のウェハ支持部材。 The protrusion height of the inner convex portion from the mounting surface is 0.05 to 0.5 mm, and the inner convex portion is a range of 0.5 times or less the diameter of the inscribed circle inscribed in the peripheral convex portion. 12. At least one inside, and at least three or more concentrically arranged within a range of 0.5 to 1 times the diameter of the inscribed circle, respectively. Wafer support member. 上記抵抗発熱体の外接円の直径Dが上記板状セラミック体の直径DPの90〜99%であることを特徴とする請求項1〜12の何れかに記載のウェハ支持部材。 The wafer support member according to any one of claims 1 to 12, wherein a diameter D of a circumscribed circle of the resistance heating element is 90 to 99% of a diameter DP of the plate-like ceramic body.
JP2004156190A 2004-05-26 2004-05-26 Wafer support member Expired - Lifetime JP4721658B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004156190A JP4721658B2 (en) 2004-05-26 2004-05-26 Wafer support member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156190A JP4721658B2 (en) 2004-05-26 2004-05-26 Wafer support member

Publications (2)

Publication Number Publication Date
JP2005340441A true JP2005340441A (en) 2005-12-08
JP4721658B2 JP4721658B2 (en) 2011-07-13

Family

ID=35493668

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156190A Expired - Lifetime JP4721658B2 (en) 2004-05-26 2004-05-26 Wafer support member

Country Status (1)

Country Link
JP (1) JP4721658B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004353A (en) * 2020-01-31 2022-09-02 京瓷株式会社 Method for manufacturing ceramic structure

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144591A (en) * 1984-12-18 1986-07-02 富士通株式会社 Thermo-module fitting structure
JPH09181154A (en) * 1995-12-25 1997-07-11 Dainippon Screen Mfg Co Ltd Board thermal treatment equipment
JP2002237375A (en) * 2000-12-05 2002-08-23 Ibiden Co Ltd Ceramic plate for semiconductor manufacturing/testing device, and manufacturing method of the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61144591A (en) * 1984-12-18 1986-07-02 富士通株式会社 Thermo-module fitting structure
JPH09181154A (en) * 1995-12-25 1997-07-11 Dainippon Screen Mfg Co Ltd Board thermal treatment equipment
JP2002237375A (en) * 2000-12-05 2002-08-23 Ibiden Co Ltd Ceramic plate for semiconductor manufacturing/testing device, and manufacturing method of the same

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN115004353A (en) * 2020-01-31 2022-09-02 京瓷株式会社 Method for manufacturing ceramic structure

Also Published As

Publication number Publication date
JP4721658B2 (en) 2011-07-13

Similar Documents

Publication Publication Date Title
US6717116B1 (en) Semiconductor production device ceramic plate
JP2006127883A (en) Heater and wafer heating device
JP4794140B2 (en) Heater, wafer heating apparatus and manufacturing method thereof
JP3929879B2 (en) Wafer support member
JP2002184558A (en) Heater
JP4658913B2 (en) Wafer support member
JP3904986B2 (en) Wafer support member
JP4845389B2 (en) Heater and wafer heating device
JP3981300B2 (en) Wafer support member
JP4931360B2 (en) Wafer heating device
JP4146707B2 (en) Wafer heating device
JP4721658B2 (en) Wafer support member
JP4463035B2 (en) Wafer support member and semiconductor manufacturing apparatus using the same
JP2002184557A (en) Heater for semiconductor manufacturing and inspecting device
JP4693429B2 (en) Heater, wafer heating heater and wafer heating apparatus using the same
JP3909266B2 (en) Wafer support member
JP4646502B2 (en) Wafer support member
JP3924513B2 (en) Wafer support member
JP3563728B2 (en) Wafer heating device
JP4789790B2 (en) Wafer support member
JP3894871B2 (en) Wafer support member
JP4325902B2 (en) Wafer heating device
JP4671592B2 (en) Ceramic heater
JP4189243B2 (en) Wafer support member
JP3971756B2 (en) Wafer heating device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101210

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101221

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110308

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110405

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4721658

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150