JP4794140B2 - Heater, wafer heating apparatus and manufacturing method thereof - Google Patents

Heater, wafer heating apparatus and manufacturing method thereof Download PDF

Info

Publication number
JP4794140B2
JP4794140B2 JP2004156188A JP2004156188A JP4794140B2 JP 4794140 B2 JP4794140 B2 JP 4794140B2 JP 2004156188 A JP2004156188 A JP 2004156188A JP 2004156188 A JP2004156188 A JP 2004156188A JP 4794140 B2 JP4794140 B2 JP 4794140B2
Authority
JP
Japan
Prior art keywords
heating element
resistance heating
wafer
plate
zone
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004156188A
Other languages
Japanese (ja)
Other versions
JP2005340439A (en
Inventor
恒彦 中村
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004156188A priority Critical patent/JP4794140B2/en
Priority to US11/138,943 priority patent/US7361865B2/en
Priority to KR1020050044514A priority patent/KR101098798B1/en
Priority to CN 200510074602 priority patent/CN1708190B/en
Publication of JP2005340439A publication Critical patent/JP2005340439A/en
Priority to US11/852,162 priority patent/US20080017632A1/en
Application granted granted Critical
Publication of JP4794140B2 publication Critical patent/JP4794140B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、主にウェハを加熱する際に用いるウェハ加熱装置に関、例えば半導体ウェハや液晶装置あるいは回路基板等のウェハ上に薄膜を形成したり、記ウェハ上に塗布されたレジスト液を乾燥焼き付けしてレジスト膜を形成したりする際に好適なヒータに関する。
The present invention is mainly related to the wafer heating apparatus used to heat the wafer, for example, to form a thin film on a semiconductor wafer or a liquid crystal device or on a wafer such as a circuit board, the resist solution applied onto the upper Symbol wafer dry baked to about the suitable heater in or form a resist film.

半導体の製造工程における、半導体薄膜の成膜処理、エッチング処理、レジスト膜の焼き付け処理等においては、半導体ウェハ(以下、ウェハと略す)を加熱するためのセラミック製のヒータが用いられている。   A ceramic heater for heating a semiconductor wafer (hereinafter abbreviated as a wafer) is used in a semiconductor thin film forming process, an etching process, a resist film baking process, and the like in a semiconductor manufacturing process.

従来の半導体製造装置は、複数のウェハを一括して加熱するバッチ式と、1枚ずつ加熱する枚様式とがあり、枚葉式には、温度制御性に優れているので、半導体素子の配線の微細化とウェハ熱処理温度の精度向上が要求されるに伴い、セラミック製のヒータが広く使用されている。   The conventional semiconductor manufacturing apparatus has a batch type that heats a plurality of wafers at once and a sheet type that heats one wafer at a time. The single wafer type has excellent temperature controllability, so wiring of semiconductor elements is possible. Ceramic heaters are widely used in accordance with demands for miniaturization of wafers and improvement in accuracy of wafer heat treatment temperature.

このようなセラミック製のヒータとして、例えば特許文献1や特許文献2には、図9に示すようなセラミック製のヒータが提案されている。   As such a ceramic heater, for example, Patent Document 1 and Patent Document 2 propose a ceramic heater as shown in FIG.

このセラミックスヒータ71は、板状セラミックス体72、金属ケース79、を主要な構成要素としたもので、アルミニウム等の金属からなる有底状の金属ケース79の開口部に、窒化物セラミックスや炭化物セラミックスからなる板状セラミックス体72を樹脂製の断熱性の接続部材74を介してボルト80で固定され、その上面をウェハWを載せる載置面73とするとともに、板状セラミックス体72の下面に、例えば図10に示すような同心円状の抵抗発熱体75を備えるようになっていた。   The ceramic heater 71 includes a plate-shaped ceramic body 72 and a metal case 79 as main components, and nitride ceramics or carbide ceramics are formed in an opening of a bottomed metal case 79 made of a metal such as aluminum. The plate-shaped ceramic body 72 is fixed with a bolt 80 via a heat insulating connecting member 74 made of resin, and the upper surface thereof is used as a mounting surface 73 on which the wafer W is placed, and the lower surface of the plate-shaped ceramic body 72 is For example, a concentric resistance heating element 75 as shown in FIG. 10 is provided.

さらに、抵抗発熱体75の端子部には、給電端子77がロウ付けされており、この給電端子77が金属ケース79の底部79aに形成されたリード線引出用の孔76に挿通されたリード線78と電気的に接続されるようになっていた。   Furthermore, a power supply terminal 77 is brazed to the terminal portion of the resistance heating element 75, and the power supply terminal 77 is inserted into a lead wire drawing hole 76 formed in the bottom 79 a of the metal case 79. 78 to be electrically connected.

ところで、このようなセラミックスヒータ71において、ウェハWの表面全体に均質な膜を形成したり、レジスト膜の加熱反応状態を均質にしたりするためには、ウェハの温度分布を均一にすることが重要である。その為、これまでウェハの面内の温度差を小さくするため、抵抗発熱体75の抵抗分布を調整したり、抵抗発熱体75の温度を分割制御したりすることが行われている。しかし、印刷法で作製した抵抗発熱体は膜厚がばらつき設計通りの抵抗値が得られないとの問題があり、そこで、前記抵抗分布を調整する方法として特許文献3、特許文献4や特許文献5に記載のようなレーザビームで溝を形成して抵抗調整する方法が開示されている。
Incidentally, in such a ceramic heater 71, in order to or to homogeneity or to form a homogeneous film on the entire surface of the wafer W, the heating reaction conditions of the resist film, that a uniform temperature distribution of the wafer is important. Therefore, to reduce the temperature difference between the surface of the wafer to this, to adjust the resistance distribution of the resistance heating element 75, the temperature of the resistance heating element 75 or to division control is performed. However, the resistance heating element produced by the printing method has a problem that the film thickness varies and the resistance value as designed cannot be obtained. Therefore, as a method of adjusting the resistance distribution, Patent Document 3, Patent Document 4 and Patent A method of adjusting the resistance by forming a groove with a laser beam as described in Document 5 is disclosed.

また、特許文献6のように抵抗発熱体を波状にし、波状部をレーザにてトリミングする方法や、図8に示すように抵抗発熱体の帯の端にレーザで複数の溝mを形成し、抵抗調整をしたセラミックスヒータによりウェハWの面内温度差を小さくする方法が特許文献7に開示されている。   In addition, a method of making the resistance heating element corrugated and trimming the corrugated portion with a laser as in Patent Document 6, or forming a plurality of grooves m with a laser at the end of the band of the resistance heating element as shown in FIG. Patent Document 7 discloses a method of reducing the in-plane temperature difference of the wafer W by using a ceramic heater with resistance adjustment.

しかし、ウェハ面内の温度差は小さくなるが、ウェハWの表面全体に均質な膜を形成するには未だ不十分であり、温度分布を更に均一に加熱できるようなヒータが求められていた。
特開2001−203156号公報 特開2001−313249号公報 特開2001−244059号公報 特開2002−141159号公報 特開2002−151235号公報 特開2002−43031号公報 特開2002−203666号公報
However, although the temperature difference in the wafer surface becomes small, it is still insufficient to form a homogeneous film on the entire surface of the wafer W, and a heater capable of heating the temperature distribution more uniformly has been demanded.
JP 2001-203156 A JP 2001-313249 A JP 2001-244059 A JP 2002-141159 A JP 2002-151235 A JP 2002-43031 A JP 2002-203666 A

しかしながら特許文献6や特許文献7のような方法では、ある程度温度分布を良くすることは可能であるがウェハ表面の温度差を0.3℃以下にまで小さくすることは困難であった。   However, in the methods such as Patent Document 6 and Patent Document 7, it is possible to improve the temperature distribution to some extent, but it is difficult to reduce the temperature difference on the wafer surface to 0.3 ° C. or less.

また、前記方法で形成したセラミックスヒータは加熱・冷却を繰り返すうちに抵抗値が変化し、そのことによりウェハ表面の均熱バランスが崩れ、温度差が大きくなるとの問題があった。   Further, the ceramic heater formed by the above method has a problem in that the resistance value changes while heating and cooling are repeated, and thereby the heat balance on the wafer surface is lost and the temperature difference becomes large.

本発明のヒータは、板状体の表面に帯状の抵抗発熱体を備え、記抵抗発熱体は、帯の長手方向に並行な、抵抗値調整のための溝を有するとともに、所定箇所に、レーザビームにより上記溝を加工する際に必要となる位置決め表示部を備えたことを特徴とする。
The heater of the present invention comprises a strip-shaped resistance heating elements on the surface of the plate, the upper Symbol resistive heating element, a parallel line to the longitudinal direction of the strip, which has a groove for resistance adjustment, a predetermined position A positioning display portion necessary for processing the groove with a laser beam is provided.

また、上記位置決め表示部が上記溝の端部の近傍に存在することを特徴とする。   Further, the positioning display part is present in the vicinity of the end of the groove.

また、板状体の表面に帯状の導体からなる抵抗発熱体を備え、記抵抗発熱体は、帯の長手方向に並行な、抵抗値調整のための溝を有するとともに、所定箇所に、レーザビームにより上記溝を加工する際に必要となる位置決め表示部を備え、電流密度が平均電流密度の1/10以下の領域で、帯に沿った電流の流れる方向と直角な方向に突出した部分である抵抗発熱に供しない導体が接続されていることを特徴とする。
Also includes a resistance heating element made of a strip-shaped conductors on the surface of the plate, the upper Symbol resistive heating element, a parallel line to the longitudinal direction of the strip, which has a groove for resistance adjustment, a predetermined position, A portion having a positioning display portion necessary for processing the groove by a laser beam and protruding in a direction perpendicular to the direction of current flow along the band in a region where the current density is 1/10 or less of the average current density It is characterized in that a conductor not subjected to resistance heating is connected.

また、板状体の一方の主面をウェハを載せる載置面とし、その内部または他方の主面に帯状の抵抗発熱体を配設し、該帯状の抵抗発熱体は円弧状の帯と折り返し帯とを連続させて同心円状に配設され、上記円弧状の帯に抵抗値調整のための溝とレーザビームにより上記溝を加工する際に必要となる位置決め表示部が形成されていることを特徴とする。
In addition, one main surface of the plate-shaped body is used as a mounting surface on which the wafer is placed, and a strip-shaped resistance heating element is disposed inside or on the other main surface, and the strip-shaped resistance heating element is folded back into an arc-shaped strip. It is disposed a belt to by consecutive identical cardiac circular positioning display unit which is required for processing the groove is formed by a groove and a laser beam for resistance adjustment to the arc-shaped strip It is characterized by that.

また、上記位置決め表示部が、上記帯から突出した凸部であることを特徴とする。   Further, the positioning display part is a convex part protruding from the band.

また、上記凸部が矩形であることを特徴とする。   Further, the convex portion is rectangular.

また、上記板状体がセラミックスからなることを特徴とする。   The plate-like body is made of ceramics.

また、記抵抗発熱体は、帯の長手方向に略並行な複数の溝からなる群を有することを特徴とする。
The upper SL resistive heating element, characterized by having a group comprising a plurality of grooves, substantially parallel to the longitudinal direction of the strip.

また、記複数の溝は、抵抗発熱体を成す円弧状の帯の側辺部に形成されていることを特徴とする。
The upper SL plurality of grooves is characterized by being formed on the side portion of the arc-shaped strip forming the resistance heating element.

また、記複数の溝からなる群は、記抵抗発熱体の帯の長手方向にそって複数に分割され、各群と群との間隔が記帯の幅よりも小さいことを特徴とする。
Moreover, the group consisting of top Symbol plurality of grooves along the longitudinal direction of the belt of the upper Symbol resistance heating element is divided into a plurality, and wherein the distance between each group and the group is smaller than the width of the upper Symbol band To do.

また、上記位置決め表示部を基準として、上記複数の溝を形成することを特徴とする。   The plurality of grooves may be formed using the positioning display portion as a reference.

また、上記のヒータを用い、円形の板状セラミックス体の一方の主面に複数の抵抗発熱体ゾーンを備え、他方の主面にウェハを載せる載置面を備えたウェハ加熱装置であって、記抵抗発熱体ゾーンの抵抗発熱体に独立して電力を供給する給電部と、該給電部を囲む金属ケースとを有し、上記抵抗発熱体ゾーンは、中心部に備えた円形の抵抗発熱体ゾーンと、その外側に少なくとも1つの同心円の円環状の抵抗発熱体ゾーンからなり、各ゾーンに対して記位置決め表示部を上記板状セラミックス体の中心から等角の中心角の位置に備えたことを特徴とする。
Further, using the above heater, a wafer heating apparatus including a plurality of resistance heating element zones on one main surface of a circular plate-shaped ceramic body, and a mounting surface on which a wafer is placed on the other main surface, independently of the resistance heating element of the upper Symbol resistance heating element zone has a power supply unit for supplying power, and a metal case surrounding the power feeding portion, the resistance heating element zone, a circular resistance heating with the center and body zone, a resistor heating element zone of at least one concentric annular outside thereof includes an upper Symbol positioning display unit at the position of the central angle isometric from the center of the plate-shaped ceramic body for each zone It is characterized by that.

また、上記各ゾーンの位置決め表示部が、記各ゾーンの周辺部に形成されたことを特徴とする。
The positioning display unit of each zone, characterized in that formed in the peripheral portion of the upper Symbol each zone.

また、上記位置決め表示部を基準として、上記複数の溝を形成することを特徴とする。   The plurality of grooves may be formed using the positioning display portion as a reference.

ウェハ面内の温度差が0.3℃以下と小さい優れたヒータを提供できる。   An excellent heater having a temperature difference within the wafer plane as small as 0.3 ° C. or less can be provided.

しかも、上記ヒータの製造歩留まりが良く、大量生産が容易で安価なヒータを提供できる。 In addition, it is possible to provide a heater with a good manufacturing yield of the heater, easy to mass-produce and inexpensive.

以下、本発明の実施の形態について説明する。   Embodiments of the present invention will be described below.

図1は本発明に係るヒータ1の例を示す断面図で、板状体2の一方の主面をウェハWを載せる載置面3とするとともに、他方の主面に抵抗発熱体5を形成し、この抵抗発熱体5に電気的に接続する給電部6を具備し、給電部6に給電端子11が接続している。これらの給電部6を囲む金属ケース19が接続部材17を介して板状体2の他方の主面の周辺部に固定されている。
FIG. 1 is a cross-sectional view showing an example of a heater 1 according to the present invention. One main surface of a plate-like body 2 is a mounting surface 3 on which a wafer W is placed, and a resistance heating element 5 is provided on the other main surface. formed, comprising a feeding unit 6 electrically connected to the resistance heating element 5, the power feeding terminal 11 is connected to a power source 6. A metal case 19 surrounding these power feeding portions 6 is fixed to a peripheral portion of the other main surface of the plate-like body 2 via a connecting member 17.

また、ウェハリフトピン25は板状体2を貫通する孔を通してウェハWを上下に移動させウェハWを載置面3に載せたり降ろしたりすることができる。そして、給電部6に給電端子11が接続し外部から電力が供給され、測温素子27で板状体2の温度を測定しながらウェハWを加熱することができる。   Further, the wafer lift pins 25 can move the wafer W up and down through the holes penetrating the plate-like body 2 to place or drop the wafer W on the mounting surface 3. Then, the power supply terminal 11 is connected to the power supply unit 6 and electric power is supplied from the outside, and the wafer W can be heated while the temperature measuring element 27 measures the temperature of the plate-like body 2.

尚、ウェハWは、ウェハ支持ピン8により載置面3から浮かした状態で保持され、ウェハWの片当たり等による温度バラツキを防止するようにしている。また、抵抗発熱体5を複数のゾーンに分割する場合、それぞれのゾーンの温度を独立に制御することにより、各給電部6の給電端子11に電力を供給し、各測温素子27の温度が各設定値となるように給電端子11に加える電力を調整し、載置面3に載せたウェハWの表面温度が均一となるようにしている。   The wafer W is held in a state of being lifted from the mounting surface 3 by the wafer support pins 8 so as to prevent temperature variations due to contact of the wafer W or the like. In addition, when the resistance heating element 5 is divided into a plurality of zones, the temperature of each zone is controlled independently to supply power to the power supply terminals 11 of each power supply unit 6, and the temperature of each temperature measuring element 27 is changed. The electric power applied to the power supply terminal 11 is adjusted so as to be each set value so that the surface temperature of the wafer W placed on the placement surface 3 is uniform.

抵抗発熱体5には、金や銀、パラジウム、白金等の材質からなる給電部6が形成され、この給電部6に給電端子11を接触させることにより、導通が確保されている。給電端子11と給電部6とは、導通が確保できる方法で有れば、はんだ付け、ロ付け等の手法を用いてもよい。
The resistance heating element 5, gold or silver, palladium, feeding unit 6 made of a material such as platinum is formed by contacting the feed terminal 11 to the power supply unit 6, conduction is ensured. A feeding terminal 11 and the power supply unit 6, if there in a way that conduction can be ensured, soldering, or using a technique b c with like.

また、抵抗発熱体5を複数のブロックに分割する場合、それぞれのブロックの温度を独立に制御することにより、載置面3上のウェハWを均一に加熱することが好ましい。   Further, when the resistance heating element 5 is divided into a plurality of blocks, it is preferable to uniformly heat the wafer W on the mounting surface 3 by independently controlling the temperature of each block.

本発明のヒータ1は、図2(a)や(b)に示すように板状体2の表面に帯状の抵抗発熱体5を備え、前記抵抗発熱体5の帯の長手方向に略並行な溝mを有し、前記帯の位置決め表示部7を備えたことを特徴とする。このように抵抗発熱体5の少なくともその一部に溝mを形成することにより、抵抗調整部を設け、抵抗発熱体5の発熱量を調整することにより均熱板100の温度を均一にしてウェハWの面内温度差が小さくなるようにしている。そして、溝mは抵抗発熱体5の帯の部分的な厚みのバラツキや幅のバラツキから生じる抵抗の違いから生じる発熱量の微妙な違いを調整するために抵抗発熱体5の帯に形成されている。この溝mは抵抗発熱体5の帯の微妙な寸法のバラツキを調整するもので、溝の深さや幅が一定であることは勿論、抵抗発熱体5の帯の所定の場所に精度よく溝mを形成することが必要である。位置決め表示部7を基準として溝mを形成すると、溝mを帯の所定の場所に精度よく形成することができる。そして、抵抗発熱体5の各部の発熱量が調整され、例えばウェハWの表面の全領域で温度差0.3℃以下と小さなヒータ1を作製することができることが判明した。   As shown in FIGS. 2A and 2B, the heater 1 of the present invention includes a strip-shaped resistance heating element 5 on the surface of the plate-like body 2, and is substantially parallel to the longitudinal direction of the strip of the resistance heating body 5. It has a groove m and is provided with the band positioning display section 7. Thus, by forming the groove m in at least a part of the resistance heating element 5, a resistance adjusting portion is provided, and by adjusting the amount of heat generated by the resistance heating element 5, the temperature of the soaking plate 100 is made uniform. The in-plane temperature difference of W is made small. The groove m is formed in the band of the resistance heating element 5 in order to adjust a subtle difference in the amount of heat generated due to the difference in resistance caused by the variation in the partial thickness and the width of the band of the resistance heating element 5. Yes. The groove m is used to adjust the subtle variation in the size of the band of the resistance heating element 5, and the depth and width of the groove are constant. It is necessary to form. If the groove m is formed on the basis of the positioning display portion 7, the groove m can be formed with high accuracy at a predetermined location of the band. And it turned out that the calorific value of each part of the resistance heating element 5 is adjusted, and for example, a small heater 1 with a temperature difference of 0.3 ° C. or less can be produced in the entire region of the surface of the wafer W.

また、位置決め表示部7は溝mを形成する位置を決めることから、溝mの端部の近傍に存在することが好ましい。このような位置に位置決め表示部7を形成すると溝mの加工開始位置の精度が高まり好ましい。更に好ましくは、帯の幅の数十倍の長さの溝mを形成する場合には位置決め表示部7が溝mの終端である他方の端部の近傍にもあることが好ましい。位置決め表示部7が溝mの他方の端部の近傍にあると溝mを加工するに当たり、終端の位置を正確に割り出すことができることから溝mの位置ずれが小さく帯びの各部の抵抗を正確に調整することができる。   Moreover, since the positioning display part 7 determines the position which forms the groove | channel m, it is preferable to exist in the vicinity of the edge part of the groove | channel m. If the positioning display portion 7 is formed at such a position, the accuracy of the machining start position of the groove m is preferably increased. More preferably, when the groove m having a length of several tens of times the width of the belt is formed, the positioning display portion 7 is preferably located near the other end which is the end of the groove m. If the positioning indicator 7 is in the vicinity of the other end of the groove m, the position of the end can be accurately determined when machining the groove m, so the positional deviation of the groove m is small and the resistance of each part of the band is accurately determined. Can be adjusted.

また、位置決め表示部7は抵抗発熱体5の帯に抵抗発熱に供しない導体として形成され、この導体が前記帯に接続されていることを特徴とする。上記の抵抗発熱に供しない導体とは抵抗発熱体5において、電流密度が平均電流密度の1/10以下の領域で、帯に沿った電流の流れる方向と直角な方向に突出した部分などが該当する。   Further, the positioning display portion 7 is formed as a conductor not subjected to resistance heat generation in the band of the resistance heating element 5, and this conductor is connected to the band. The conductor not subjected to the resistance heat generation corresponds to a portion of the resistance heating element 5 that protrudes in a direction perpendicular to the direction of current flow along the belt in a region where the current density is 1/10 or less of the average current density. To do.

通常、溝mはレーザビームを使い形成されるが、溝mを上記帯の所定位置に精度良く形成するには、レーザビームの照射位置を決定するための位置決め表示部7が帯に接して在ると位置決め表示部7が溝mに最も近接した位置となり測定誤差が小さくなり効率的にしかも位置精度良く溝mを形成することができる。位置決め表示部7はできるだけ溝mに近いことが好ましく、帯びに直接接していることが更に好ましく、且つ発熱特性に影響しない部位に在ることが好ましい。このような位置決め表示部7があると溝mと抵抗発熱体5の帯の位置関係を正確に割り出す事ができて好ましい。
Usually, the grooves m are formed using a laser beam, to accurately form grooves m at a predetermined position of the band is positioned a display unit 7 for determining an irradiation position of the laser beam is in contact with the strip If it exists, the positioning display part 7 will be in the position closest to the groove m, so that the measurement error is reduced, and the groove m can be formed efficiently and with high positional accuracy. The positioning display portion 7 is preferably as close to the groove m as possible, more preferably directly in contact with the band, and preferably at a site that does not affect the heat generation characteristics. Such a positioning display portion 7 is preferable because the positional relationship between the groove m and the band of the resistance heating element 5 can be accurately determined.

此れまでの従来技術のように、位置決め表示部7がないと板状体の外形を基準にしたり、抵抗発熱体の外形を画像処理して位置決めするが、抵抗発熱体5の左右前後の微細なずれや、抵抗発熱体5の変形が生じた場合に、複数の溝m1、m2、m3・・・を形成すると溝が帯の外側にずれたり所定の場所に溝mを形成できない虞があり、抵抗調整が不十分となる虞があった。そのため、抵抗調整してもウェハW面内の温度差が小さくならないとの虞があった。   As in the prior art so far, if the positioning display unit 7 is not provided, the outer shape of the plate-like body is used as a reference, or the outer shape of the resistance heating element is image-processed. If there is a misalignment or deformation of the resistance heating element 5, if a plurality of grooves m1, m2, m3,... Are formed, the grooves may be displaced to the outside of the band or the groove m may not be formed at a predetermined location. The resistance adjustment may be insufficient. Therefore, there is a possibility that the temperature difference in the wafer W plane does not become small even if the resistance is adjusted.

例えば、板状体2として板状セラミックス体を用い、板状セラミックス体の一方の主面をウェハWを載せる載置面3とし、その内部または他方の主面に帯状の抵抗発熱体5を配設し、該帯状の抵抗発熱体5の帯は円弧状の帯5i、5j、5k、5m、5n、5o、5pと折り返し帯5q、5r、5s、5t、5u、5vとを連続させて抵抗発熱体5が形成されている。そして、このような抵抗発熱体5の各部の帯の抵抗を調整するために溝mを形成するが、溝mを形成するに当たり位置決め表示部7を形成してあると好ましい。位置決め表示部7が、溝mを形成する帯にあると、位置決め表示部7を基準として帯に溝mを精度良く効率的に形成できることから好ましい。   For example, a plate-like ceramic body is used as the plate-like body 2, and one main surface of the plate-like ceramic body is used as a mounting surface 3 on which the wafer W is placed, and a strip-like resistance heating element 5 is arranged inside or on the other main surface. The strip-shaped resistance heating element 5 is formed by continuously connecting arc-shaped strips 5i, 5j, 5k, 5m, 5n, 5o, 5p and folded bands 5q, 5r, 5s, 5t, 5u, 5v. A heating element 5 is formed. The groove m is formed in order to adjust the resistance of the band of each part of the resistance heating element 5, and it is preferable that the positioning display portion 7 is formed when the groove m is formed. It is preferable that the positioning display unit 7 be in a band that forms the groove m because the groove m can be accurately and efficiently formed in the band on the basis of the positioning display unit 7.

また、上記位置決め表示部7は抵抗発熱体5の帯から突出した凸部7からなると好ましい。抵抗発熱体5は導電性ペーストをスクリーン印刷等で形成し、その後、溝をレーザビームを使い形成するが、凸部7は抵抗発熱体5に隣接して形成されることから位置精度を高める上で好ましい。凸部7の形状としては、矩形であることが好ましい。矩形であると縦横2軸を直線の外形辺に合わせ基準とすることができることから、容易に基準を設定できて好ましい。そして上記帯から突出する大きさは0.3から2mmで幅は0.05〜0.5mmが好ましい。より好ましくは0.5から1.5mmであり幅は0.1〜0.3mmである。また、上記の凸部7の面積は0.015〜1.0mmであることが好ましい。0.015mmを下回ると、位置決め表示部7として認識することが困難となる虞がある。また、1.0mmえると大きくなりすぎて位置精度が劣る虞があるからである。
Further, it is preferable that the positioning display part 7 is composed of a convex part 7 protruding from the band of the resistance heating element 5. The resistance heating element 5 is formed by forming a conductive paste by screen printing or the like, and then the groove is formed by using a laser beam. However, since the convex portion 7 is formed adjacent to the resistance heating element 5, the positional accuracy is improved. Is preferable. The shape of the convex portion 7 is preferably rectangular. A rectangular shape is preferable because the reference can be easily set because the two vertical and horizontal axes can be used as a reference by aligning it with a straight outline. The size protruding from the band is preferably 0.3 to 2 mm and the width is preferably 0.05 to 0.5 mm. More preferably, the width is 0.5 to 1.5 mm and the width is 0.1 to 0.3 mm. Further, it is preferable that the area of the convex portion 7 is 0.015~1.0mm 2. If it is less than 0.015 mm 2 , it may be difficult to recognize the positioning display unit 7. Further, there is a possibility that poor positional accuracy of 1.0 mm 2 becomes too large when obtaining super.

円環上に形成された円弧状の抵抗発熱体5の帯に位置決め表示部7が接続して設けられていると、位置決め表示部7を画像処理等で特定する際に、上記円弧に沿ってラインスキャンして位置決め表示部7を容易に検出することが可能であり、位置決め表示部7の幅を一定に設けることで位置決め表示部7を即座に認識でき、位置決め表示部7の幅を決める辺と位置決め表示部7の頂辺の位置から抵抗発熱体5を成す帯の正確な位置を特定することができる。そして、この位置決め表示部7から帯に対し正確な位置に溝mを形成することが可能となる。   When the positioning display unit 7 is connected to the belt of the arc-shaped resistance heating element 5 formed on the ring, when the positioning display unit 7 is specified by image processing or the like, along the arc. It is possible to easily detect the positioning display unit 7 by performing line scanning. By providing the positioning display unit 7 with a constant width, the positioning display unit 7 can be recognized immediately and the width of the positioning display unit 7 is determined. And the exact position of the belt | band | zone which comprises the resistance heating element 5 can be pinpointed from the position of the top side of the positioning display part 7. FIG. And it becomes possible to form the groove | channel m in the exact position with respect to a belt | band | zone from this positioning display part 7. FIG.

また、板状体2は、ヒータを急速に加熱したり冷却したりしても変形しないことが好ましい。そして急速な加熱や冷却を行うには板状体2そのものの熱容量が小さいことが好ましい。このような特性に適う板状体2としてセラミックスからなる板状体2はヤング率が250MPa以上と大きいことから、板状体2の厚みを1〜5mmと小さくできるととも
に、板状体2の直径が330mmと大きくてもその熱容量を1000J/(kg・K)以下と小さくすることができて好ましい。特に、板状体2として、窒化アルミニウムや炭化珪素からなるセラミックスはヤング率が300GPa以上と大きく板状体2の表面を加熱しても変形する大きさが小さく、しかも熱伝達率が50W/(m・K)以上と大きく、板状体2の全面を均一に加熱することができることからより好ましい。更に、これらのセラミックスに酸化イットリウムなどの希土類酸化物や窒化ホウ素等の焼結助剤を0.5〜5重量%添加して熱伝導率を100W/(m・K)以上としたものが好ましい。
Further, the plate-like body 2 are preferably not deformed even or cool or rapidly heat the heater. And in order to perform rapid heating and cooling, it is preferable that the heat capacity of the plate-like body 2 itself is small. Since the plate-like body 2 made of ceramics as the plate-like body 2 suitable for such characteristics has a large Young's modulus of 250 MPa or more, the thickness of the plate-like body 2 can be reduced to 1 to 5 mm, and the diameter of the plate-like body 2 can be reduced. Is as large as 330 mm, the heat capacity can be reduced to 1000 J / (kg · K) or less, which is preferable. In particular, as the plate-like body 2, ceramics made of aluminum nitride or silicon carbide has a large Young's modulus of 300 GPa or more and is small in deformation even when the surface of the plate-like body 2 is heated, and has a heat transfer coefficient of 50 W / ( m · K) or more, which is more preferable because the entire surface of the plate-like body 2 can be heated uniformly. Further, it is preferable to add 0.5 to 5% by weight of a sintering aid such as yttrium oxide or a rare earth oxide such as boron nitride to these ceramics so that the thermal conductivity is 100 W / (m · K) or more. .

そして、このような板状体2に形成された抵抗発熱体5の少なくともその一部に溝mを形成することにより、抵抗調整部を設け、抵抗発熱体5の発熱量を調整することにより均熱板100の温度を均一にしてウェハWの面内温度差が小さくなるようにしている。   Then, by forming the groove m in at least a part of the resistance heating element 5 formed on the plate-like body 2, a resistance adjusting unit is provided, and the heating value of the resistance heating element 5 is adjusted to equalize the heating value. The temperature of the hot plate 100 is made uniform so that the in-plane temperature difference of the wafer W is reduced.

図3(a)は、板状体2の外周部に位置する前記抵抗発熱体5が同心円状の扇状抵抗発熱体ゾーンと中心部の同心円状の複数の抵抗発熱体ゾーンとからなることを示す。何れも載置面3を均一に加熱できる抵抗発熱体ゾーン形状であれば良い。また、図3(b)は、均熱性を改善するため、周辺部に4個と中心部に4個の抵抗発熱体ゾーンからなる合計8個の抵抗発熱体ゾーンに抵抗発熱体5を分割した図を示す。   FIG. 3A shows that the resistance heating element 5 located on the outer periphery of the plate-like body 2 is composed of a concentric fan-shaped resistance heating element zone and a plurality of concentric resistance heating element zones in the center. . Any of them may be in the form of a resistance heating element zone that can uniformly heat the mounting surface 3. Further, in FIG. 3B, in order to improve the thermal uniformity, the resistance heating element 5 is divided into a total of eight resistance heating element zones including four resistance heating element zones in the peripheral part and four resistance heating element zones in the central part. The figure is shown.

図4は図3に示す8個の抵抗発熱体ゾーンからなる抵抗発熱体5の一例を示す。   FIG. 4 shows an example of the resistance heating element 5 including the eight resistance heating element zones shown in FIG.

何れの抵抗発熱体5の幅は1〜20mmで厚みが5〜80μmであり、スクリーン印刷法で形成することができる。そして、帯状の抵抗発熱体の帯の中心線を基準にウェハW面内の温度差が小さくなるように抵抗発熱体ゾーン形状が設計されている。   Any resistance heating element 5 has a width of 1 to 20 mm and a thickness of 5 to 80 μm, and can be formed by a screen printing method. The shape of the resistance heating element zone is designed so that the temperature difference in the wafer W plane is reduced with reference to the center line of the band-like resistance heating element.

本発明のヒータ1は、抵抗発熱体5の帯の長手方向に略並行で、長さが同等な複数の溝m1、m2・・・からなる群Gをなし、前記群Gは帯の幅の左右に偏っているか或いは中央部にあることを特徴としている。ここで、群Gが抵抗発熱体5の帯の中央部にあるとは、群Gの幅方向の中心が前記帯の中央にあることを示すもので、より具体的には群Gの幅方向の中心が帯を幅方向に4等分した領域の中央の2つの領域つまり中央部50%より小さい範囲にあることを意味する。   The heater 1 of the present invention comprises a group G composed of a plurality of grooves m1, m2,... Substantially parallel to the longitudinal direction of the strip of the resistance heating element 5 and having the same length. It is characterized by being biased to the left or right or in the center. Here, the fact that the group G is in the center of the band of the resistance heating element 5 indicates that the center of the group G in the width direction is in the center of the band, more specifically, the width direction of the group G. This means that the center of the region is in a range smaller than two central regions of the region obtained by equally dividing the band into four in the width direction, that is, the central portion is less than 50%.

このように抵抗発熱体5の少なくともその一部に溝mからなる群Gを形成することにより、抵抗調整部を設け、抵抗発熱体5の発熱量を調整することができて均熱板100の温度を均一にしてウェハWの面内温度差が小さくなるようにしている。   In this way, by forming the group G composed of the grooves m in at least a part of the resistance heating element 5, a resistance adjustment unit can be provided, and the amount of heat generated by the resistance heating element 5 can be adjusted. The temperature is made uniform to reduce the in-plane temperature difference of the wafer W.

図5は本発明の群G1、G2、G3の一例を示す。図6は図5のX−X線断面図を示す。   FIG. 5 shows an example of the groups G1, G2, G3 of the present invention. 6 shows a cross-sectional view taken along line XX of FIG.

図7のような抵抗発熱体5の長手方向に垂直な断面図では群Gで分けた抵抗発熱体5の両側の抵抗発熱体5a、5bの断面積がほぼ等しくなる。すなわち抵抗発熱体5a、5bの抵抗値が略等しくなる。そのため抵抗発熱体5a、5bの幅方向で左右略均等の発熱量となり、群Gを形成して抵抗発熱体5の部分的な抵抗値のバラツキを調整しても抵抗発熱体5の帯の幅方向の中心線が設計位置から大きく変わることがなく、設計した抵抗発熱体5抵抗発熱体ゾーンに溝を形成して抵抗調整することで均熱板100を均一に加熱することができることからウェハW面内の温度差を小さくすることができる。   In the sectional view perpendicular to the longitudinal direction of the resistance heating element 5 as shown in FIG. 7, the sectional areas of the resistance heating elements 5a and 5b on both sides of the resistance heating element 5 divided by the group G are substantially equal. That is, the resistance values of the resistance heating elements 5a and 5b are substantially equal. For this reason, the heating amount of the resistance heating element 5a, 5b is approximately equal to the left and right, and the width of the band of the resistance heating element 5 is adjusted even if the variation of the partial resistance value of the resistance heating element 5 is adjusted by forming the group G. Since the center line of the direction does not change greatly from the design position, the soaking plate 100 can be heated uniformly by forming a groove in the designed resistance heating element 5 resistance heating zone and adjusting the resistance. The in-plane temperature difference can be reduced.

一方、図6や図8のように群Gの幅方向の中心が抵抗発熱体5の幅方向の中央からずれた場合、抵抗発熱体5の帯の断面積の大きな面に大きな電流が流れ、その部分が発熱し易くなる。そのため抵抗発熱体5の帯の幅方向で左右の発熱バランスが崩れ幅方向で温度差が生じるが、抵抗発熱体5の帯は板状体2に同心円状に形成されている円弧状の帯に対し、板状体2の中心から外側或いは内側の何れかに溝の群Gを形成することで板状体2を中心対称に加熱することができ、ウェハWの面内温度差を小さくすることができる。   On the other hand, when the center in the width direction of the group G is shifted from the center in the width direction of the resistance heating element 5 as shown in FIGS. 6 and 8, a large current flows through the surface of the resistance heating element 5 having a large cross-sectional area, That part is likely to generate heat. For this reason, the left and right heat generation balance is lost in the width direction of the resistance heating element 5 and a temperature difference occurs in the width direction, but the resistance heating element 5 band is an arc-shaped band formed concentrically on the plate-like body 2. On the other hand, by forming the groove group G on the outer side or the inner side from the center of the plate-like body 2, the plate-like body 2 can be heated symmetrically and the in-plane temperature difference of the wafer W can be reduced. Can do.

また、抵抗発熱体5の帯の長手方向に略並行で、長さが同等な複数の溝m1、m2・・からなる群Gをなし、前記帯に前記群Gを複数備え、前記群G1と群G2との間隔Ggが前記帯の幅Whよりも小さいことが好ましい。   Further, a group G composed of a plurality of grooves m1, m2,... Approximately parallel to the longitudinal direction of the band of the resistance heating element 5 is formed, and a plurality of the groups G are provided in the band. It is preferable that the gap Gg with the group G2 is smaller than the width Wh of the band.

抵抗発熱体5はスクリーン印刷で形成されることから、抵抗発熱体5が形成される際に帯の厚みが設計厚みに対し場所により変化する。そのため板状体2の設定抵抗と実際の抵抗発熱体5の帯の各部の抵抗値にずれが発生する。そこで、帯の各部の抵抗値のずれを修正するには溝mを形成することが有効であるが、帯を細かく分割し、分割した帯の抵抗値を設計抵抗値に近づけるよう溝mを必要数形成する。しかし、分割数が多くなると溝mの形成や抵抗測定に時間を要し、効率が著しく悪化する。このため、分割数は板状体2の形状や発熱体ゾーンの形状に沿って数十個に分割される。そして、その分割された帯に対応して連続した溝mからなる群Gが形成されることが好ましい。そして、区間と区間の間は群G1と群G2との間隔Ggを設けることが好ましい。間隔Gpを設けることで間隔Ggに抵抗測定用の端子を接続したり区間の抵抗が容易に正確に測定可能となり抵抗の調整が容易となったりするからである。そして、ヒータ1の加熱面全面の発熱量を調整できることからウェハWの面内温度差を小さくすることが容易となり好ましい。
Since the resistance heating element 5 is formed by screen printing, when the resistance heating element 5 is formed, the thickness of the band varies depending on the location with respect to the design thickness. Therefore, a deviation occurs between the set resistance of the plate-like body 2 and the resistance value of each part of the band of the actual resistance heating element 5. Therefore, it is effective to form the groove m to correct the deviation of the resistance value of each part of the band. However, the groove m is necessary to finely divide the band and bring the resistance value of the divided band close to the design resistance value. Number formation. However, when the number of divisions increases, it takes time to form the grooves m and measure the resistance, and the efficiency is significantly deteriorated. For this reason, the number of divisions is divided into several tens along the shape of the plate-like body 2 and the shape of the heating element zone. And it is preferable that the group G which consists of the continuous groove | channel m corresponding to the divided | segmented band is formed. And it is preferable to provide a gap Gg between the group G1 and the group G2 between the sections. Connecting a terminal for resistance measurement to the interval Gg by providing the gap Gp, because you or Tsu Do facilitates adjustment resistance is easily and accurately measurable and becomes resistive sections. Since the amount of heat generated on the entire heating surface of the heater 1 can be adjusted, it is easy and preferable to reduce the in-plane temperature difference of the wafer W.

そして、群G1と群G2との間隔Ggが抵抗発熱体5の帯の幅Whよりも小さいことが好ましい。このようにすることで、間隔Ggの帯で生じる発熱量の低下によるウェハW温度の面内温度の低下を防止することができて好ましい。   The distance Gg between the group G1 and the group G2 is preferably smaller than the band width Wh of the resistance heating element 5. By doing in this way, the fall of the in-plane temperature of the wafer W temperature by the fall of the emitted-heat amount which arises in the belt | band | zone of the space | interval Gg can be prevented, and it is preferable.

一方前記間隔Ggが前記帯の幅Whよりも大きい場合その箇所Ggの発熱量が小さくなり加熱した際にその箇所がクールスポットとなり、ウェハWの温度がその箇所のみ低くなり全体の均熱性が悪くなる。そのため群Gと群Gの間隔Ggは帯の幅Whよりも小さいことが好ましい。そして、これらの溝mからなる群Gを抵抗発熱体5の帯に沿って優れた位置精度で形成するには、これら群Gと群Gとの間に位置決め表示部7が形成されていることが好ましい。位置決め表示部7を基準とすることで、溝mや群Gの帯に対する幅方向の位置精度が高まり、ウェハWの面内温度差を小さくすることができる。   On the other hand, when the gap Gg is larger than the width Wh of the band, the amount of heat generated at the point Gg becomes small, and when heated, the point becomes a cool spot, and the temperature of the wafer W is lowered only at that point, resulting in poor overall heat uniformity. Become. Therefore, the gap Gg between the groups G and G is preferably smaller than the band width Wh. And in order to form the group G which consists of these groove | channels m with the outstanding position accuracy along the strip | belt of the resistance heating element 5, the positioning display part 7 is formed between these groups G and G. Is preferred. By using the positioning display unit 7 as a reference, the positional accuracy in the width direction with respect to the grooves m and the bands of the group G is increased, and the in-plane temperature difference of the wafer W can be reduced.

また、帯の幅が1〜3mmあれば上記溝mの群Gと群Gの間隔は1mm以下が好ましい。1mm以下であれば前記電流の偏りを防止できるとともにクールスポットを発生させる虞が少ないからである。   If the width of the band is 1 to 3 mm, the distance between the group G of the grooves m and the group G is preferably 1 mm or less. This is because if it is 1 mm or less, the bias of the current can be prevented and the possibility of generating a cool spot is small.

また、上記溝mはレーザビームにより加工することが好ましい。レーザビームは、ビームの口径を正確に制御することが可能であり、口径として5〜100μmの間で使用することができる。好ましくは30〜60μmである。レーザビームとして例えばYAGレーザを使用できる。波長が1.06μm、パルス周波数1KHz、レーザ出力0.1〜2W、加工速度1〜20mm/secで照射して溝mを加工することが好ましい。   The groove m is preferably processed by a laser beam. The diameter of the laser beam can be accurately controlled, and the diameter of the laser beam can be used between 5 and 100 μm. Preferably it is 30-60 micrometers. For example, a YAG laser can be used as the laser beam. It is preferable to process the groove m by irradiation at a wavelength of 1.06 μm, a pulse frequency of 1 KHz, a laser output of 0.1 to 2 W, and a processing speed of 1 to 20 mm / sec.

また、図4のように、抵抗発熱体5が複数の抵抗発熱体ゾーンからなる場合においては、独立して加熱できる抵抗発熱体5a、5b、5c、5d、5e、5f、5g、5hの夫々において、その外側に位置決め表示部7を形成することが好ましい。特に、各抵抗発熱体5の周辺で板状体2の中心から等角の位置に位置決め表示部7を形成すると個々の抵抗発熱体5を位置決め表示部7の位置で分割して、夫々の抵抗値を調整することで抵抗発熱体ゾーン内の抵抗分布を微調整できることから、ウェハWの面内温度差を0.3℃以内に極めて小さな範囲内に調整したウェハ加熱装置ができることから好ましい。   As shown in FIG. 4, when the resistance heating element 5 is composed of a plurality of resistance heating element zones, each of the resistance heating elements 5a, 5b, 5c, 5d, 5e, 5f, 5g, and 5h that can be heated independently. In this case, it is preferable to form the positioning display 7 on the outside thereof. In particular, when the positioning display section 7 is formed at the equiangular position from the center of the plate-like body 2 around each resistance heating element 5, the individual resistance heating elements 5 are divided at the position of the positioning display section 7, and each resistance is displayed. Since the resistance distribution in the resistance heating element zone can be finely adjusted by adjusting the value, a wafer heating apparatus in which the in-plane temperature difference of the wafer W is adjusted to an extremely small range within 0.3 ° C. is preferable.

また、群Gの幅Wgは抵抗発熱体5の帯の幅Whの90%以内にあることが好ましい。なぜなら通常微細で複雑な抵抗発熱体5はスクリーン印刷法で形成されることから、スクリーン印刷法で形成された抵抗発熱体5の断面積は図7のように抵抗発熱体5の帯の幅の左右5%の領域の厚みが小さくなっているからである。また、レーザビーム等で溝mを形成するが、溝mの大きさはレーザビームの出力と照射時間で決まり、通常溝mを加工中は出力や照射時間は変更されないことから、溝mの深さは略同等となる。そこで、周辺部の厚みの小さな領域を除く抵抗発熱体5の帯の幅の90%以内の箇所に溝mを形成した場合、溝mが抵抗発熱体5を貫通する虞がなく、溝mの底部にクラックを発生する虞が小さく好ましい。しかしながら抵抗発熱体5の帯の幅の90%を越えて溝mを形成した場合、抵抗発熱体5の両端の膜厚が薄い箇所に溝mが形成されることから、溝mが抵抗発熱体5を貫通したりレーザビームが板状体2に照射されたりして、微小クラックが生じる虞があるからである。
The width Wg of the group G is preferably within 90% of the width Wh of the band of the resistance heating element 5. This is because the resistance heating element 5 which is usually fine and complicated is formed by the screen printing method, so that the sectional area of the resistance heating element 5 formed by the screen printing method is the width of the band of the resistance heating element 5 as shown in FIG. This is because the thickness of the left and right regions of 5% is reduced. The groove m is formed by a laser beam or the like. The size of the groove m is determined by the output of the laser beam and the irradiation time, and the output and irradiation time are not changed during processing of the normal groove m. This is almost the same. Therefore, when the groove m is formed in a location within 90% of the width of the band of the resistance heating element 5 excluding the region having a small thickness at the peripheral portion, there is no possibility that the groove m penetrates the resistance heating element 5, and the groove m The possibility of generating cracks at the bottom is small and preferable. However, when the groove m is formed so as to exceed 90% of the width of the band of the resistance heating element 5, the groove m is formed in a portion where the film thickness at both ends of the resistance heating element 5 is thin. 5 the laser beam or through is or are irradiated to the plate-like body 2, there is a possibility that micro cracks.

更に、前記微小クラックが発生するとセラミックスヒータ1に加熱・冷却を繰り返すとウェハW表面の温度差が大きくなり均熱性が悪くなる虞がある。最悪、板状体2が破壊する虞がある。   Furthermore, if the micro cracks are generated, if the ceramic heater 1 is repeatedly heated and cooled, the temperature difference on the surface of the wafer W becomes large and the thermal uniformity may be deteriorated. At worst, the plate-like body 2 may be destroyed.

また、上記溝mの群Gをなす各溝m1、m2・・の深さは、その溝mの幅Wmの20%〜75%の範囲であることが好ましい(溝深さ/溝幅=20〜75%)。なぜなら20%未満であると、一本の溝mの形成による抵抗値の変化が小さく抵抗値の調整範囲も小さくなることからウェハWの面内温度差を充分に小さくすることが困難になるからである。   Further, the depth of each of the grooves m1, m2,... Forming the group G of the grooves m is preferably in the range of 20% to 75% of the width Wm of the grooves m (groove depth / groove width = 20). ~ 75%). This is because if it is less than 20%, the change in resistance value due to the formation of one groove m is small and the adjustment range of the resistance value is also small, so it becomes difficult to sufficiently reduce the in-plane temperature difference of the wafer W. It is.

また、溝mの深さが幅Wmの75%を超えると、レーザのファーストパルスのエネルギーが大きく抵抗発熱体5の底部にマイクロクラックが発生し、加熱・冷却を繰り返すとマイクロクラックが成長し、抵抗発熱体5の抵抗値の変化が生じ、抵抗値が変化するとウェハWの面内温度差が大きくなり均熱性を保てなくなる虞があるからである。   Further, when the depth of the groove m exceeds 75% of the width Wm, the energy of the first pulse of the laser is large and microcracks are generated at the bottom of the resistance heating element 5, and microcracks grow when heating and cooling are repeated. This is because a change in the resistance value of the resistance heating element 5 occurs, and if the resistance value changes, the in-plane temperature difference of the wafer W becomes large and it may not be possible to maintain the thermal uniformity.

また、レーザトリミングは通常大気中で実施するので、抵抗発熱体5中に含まれる導通成分として、耐熱性および耐酸化性に良好な貴金属であるPtやAuもしくはこれらの合金を主成分とするものを使用することが好ましい。抵抗発熱体5としては絶縁層との密着性および抵抗発熱体自体の焼結性を向上させるために、30〜70重量%のガラス成分を混合することが好ましい。   In addition, since laser trimming is normally performed in the atmosphere, the main component is Pt, Au, or an alloy thereof, which is a noble metal having good heat resistance and oxidation resistance, as a conduction component contained in the resistance heating element 5. Is preferably used. As the resistance heating element 5, it is preferable to mix 30 to 70% by weight of a glass component in order to improve adhesion to the insulating layer and sinterability of the resistance heating element itself.

本発明のヒータ1のその他の構成について更に詳細に説明する。板状体2の内部または主面に形成された帯状の抵抗発熱体5の形が、図2に示すようにほぼ同一線幅を有する円弧状の帯5i〜5pと折り返し小円弧状の帯5q〜5vとを連続させて略同心円状に構成してある。即ち、抵抗発熱体5はほぼ等間隔で略同心円を構成するように配置した半径の異なる円弧状の帯5i〜5pと、半径方向に隣合う円弧状の帯5i〜5p同士を接続して直列回路を形成する折り返し小円弧状の帯5q〜5vとからなり、円弧状の帯5i,5jの端部を給電部6としてある。その為、円弧状の帯5iと円弧状の帯5j、円弧状の帯5kと円弧状の帯5m、円弧状の帯5nと円弧状の帯5o、及び円弧状の帯5pがそれぞれ円を構成するように配置され、各円が同心円状に配置されていることから、抵抗発熱体5を発熱させれば、載置面3の温度分布を中心から周縁部に向かって同心円状に分布させることができる。   The other structure of the heater 1 of this invention is demonstrated in detail. As shown in FIG. 2, arc-shaped bands 5i to 5p having substantially the same line width and folded small-arc-shaped bands 5q are formed in the plate-like body 2 on the inside or on the main surface thereof. ˜5v are continuously arranged in a substantially concentric shape. That is, the resistance heating element 5 is connected in series by connecting arc-shaped bands 5i to 5p having different radii arranged so as to form substantially concentric circles at almost equal intervals and arc-shaped bands 5i to 5p adjacent in the radial direction. It consists of folded small arc-shaped bands 5q to 5v forming a circuit, and the ends of the arc-shaped bands 5i and 5j are used as the power feeding section 6. Therefore, the arc-shaped band 5i and the arc-shaped band 5j, the arc-shaped band 5k and the arc-shaped band 5m, the arc-shaped band 5n and the arc-shaped band 5o, and the arc-shaped band 5p each constitute a circle. Since each circle is arranged concentrically, if the resistance heating element 5 is heated, the temperature distribution of the mounting surface 3 is distributed concentrically from the center toward the peripheral edge. Can do.

また、半径方向に隣合う円弧状の帯5i,5jと円弧状の帯5k,5m、円弧状の帯5k,5mと円弧状の帯5n,5o、円弧状の帯5n,5oと円弧状の帯5pとの距離L4、L5、L6をそれぞれほぼ等間隔に配置してあることから、各円弧状の帯5i〜5pにおける単位体積当たりの発熱量を等しくすることができるため、載置面3における半径方向の発熱ムラを抑えることができる。   Also, arc-shaped bands 5i, 5j adjacent to each other in the radial direction and arc-shaped bands 5k, 5m, arc-shaped bands 5k, 5m, arc-shaped bands 5n, 5o, arc-shaped bands 5n, 5o, and arc-shaped bands Since the distances L4, L5, and L6 with the belt 5p are arranged at substantially equal intervals, the amount of heat generated per unit volume in each of the arc-shaped belts 5i to 5p can be equalized, so that the mounting surface 3 In the radial direction, heat generation unevenness in the radial direction can be suppressed.

さらに、同一円周上に位置する一対の折り返し小円弧状の帯5qと折り返し小円弧状の帯5r、折り返し円弧状の帯5sと折り返し小円弧状の帯5t、折り返し小円弧状の帯5uと折り返し小円弧状の帯5vとの各距離L1、L2、L3は、半径方向に隣合う円弧状抵抗発熱体ゾーン5i〜5p間の各距離L4、L5、L6に対応して小さくすることが重要である。   Further, a pair of folded small arc-shaped bands 5q and a folded small arc-shaped band 5r located on the same circumference, a folded arc-shaped band 5s, a folded small arc-shaped band 5t, and a folded small arc-shaped band 5u It is important that the distances L1, L2, and L3 with respect to the folded small arc-shaped band 5v are made smaller corresponding to the distances L4, L5, and L6 between the arc-shaped resistance heating element zones 5i to 5p adjacent in the radial direction. It is.

即ち、載置面3の均熱性を高めるためには、円弧状の帯5i〜5pだけでなく、折り返し小円弧状の帯5q〜5vにおける単位体積当たりの発熱量も等しくする必要があり、通常同一円周上に位置する一対の折り返し小円弧状の帯5q〜5v間の距離L1、L2、L3 は、半径方向に隣合う円弧状の帯5i〜5p間の距離L4、L5、L6と同じ距離となるように設計されるが、このような抵抗発熱体ゾーン形状では円弧状の帯5i〜5pと折り返し小円弧状の帯5q〜5vとの折り返し部P5の周辺の発熱密度が小さくなるために、折り返し部P5の外側の温度が低下し、ウェハWの面内温度差が大きくなり均熱性が損なわれることになる。これに対し、本発明は同一円周上に位置する一対の折り返し小円弧状の帯5q〜5v間の各距離L1、L2、L3 を、半径方向に隣合う円弧状の帯5i〜5p間の各対応する距離L4、L5、L6より小さくしてあることから、折り返し部P5の発熱量が相対する折り返し小円弧状の帯5q〜5vからの発熱で補われ、折り返し部P5での温度低下を抑えることができるため、載置面3に載せたウェハWの面内温度差を小さくすることができ、均熱性を高めることができる。   That is, in order to improve the thermal uniformity of the mounting surface 3, it is necessary to equalize the heat generation amount per unit volume not only in the arc-shaped bands 5i to 5p but also in the folded small arc-shaped bands 5q to 5v. The distances L1, L2, L3 between a pair of folded small arc-shaped bands 5q-5v located on the same circumference are the same as the distances L4, L5, L6 between the arc-shaped bands 5i-5p adjacent in the radial direction. Although designed to be a distance, in such a resistance heating element zone shape, the heat generation density around the folded portion P5 between the arc-shaped bands 5i to 5p and the folded small arc-shaped bands 5q to 5v is small. In addition, the temperature outside the folded portion P5 is lowered, the in-plane temperature difference of the wafer W is increased, and the thermal uniformity is impaired. On the other hand, in the present invention, the distances L1, L2, and L3 between the pair of folded small arc-shaped bands 5q to 5v located on the same circumference are set between the arc-shaped bands 5i to 5p adjacent in the radial direction. Since each of the corresponding distances L4, L5, and L6 is smaller than the corresponding distances L4, L5, and L6, the heat generation amount of the folded portion P5 is compensated by the heat generated from the opposed folded arcs 5q to 5v, and the temperature drop at the folded portion P5 is reduced. Since it can suppress, the in-plane temperature difference of the wafer W mounted on the mounting surface 3 can be made small, and soaking | uniform-heating property can be improved.

特に、円周上に位置する一対の折り返し小円弧状の帯5q〜5v間の距離L1、L2、L3を、半径方向に隣合う円弧状の帯5i〜5p間の各対応する距離L4、L5、L6の30%〜80%とすれば、載置面3における均熱性を最も高めることができる。更に好ましくはL1、L2、L3の夫々は対応するL4、L5、L6の40〜60%であると良い。   In particular, the distances L1, L2, and L3 between the pair of folded small arc-shaped bands 5q to 5v located on the circumference are set to the corresponding distances L4 and L5 between the arc-shaped bands 5i to 5p adjacent in the radial direction. If the L6 is 30% to 80%, the heat uniformity on the mounting surface 3 can be most enhanced. More preferably, L1, L2, and L3 are 40 to 60% of the corresponding L4, L5, and L6, respectively.

また、本発明の抵抗発熱体5は円弧状の帯5i〜5pと折り返し小円弧状の帯5q〜5vからなることで、従来の矩形の折り返し抵抗発熱体と比べエッジ部に過度の応力が働く虞が少なく、ヒータ1を急激に温度上昇や低下しても板状体2や抵抗発熱体5が破損する虞が小さくなり信頼性の高いヒータ1を提供できる。   Further, the resistance heating element 5 of the present invention comprises the arc-shaped bands 5i to 5p and the folded small arc-shaped bands 5q to 5v, so that excessive stress acts on the edge portion as compared with the conventional rectangular folded resistance heating element. There is little possibility, and even if the temperature of the heater 1 is suddenly increased or decreased, the possibility that the plate-like body 2 or the resistance heating element 5 is damaged is reduced, and the heater 1 with high reliability can be provided.

また、上記の抵抗発熱体5は板状セラミックス体に埋設された場合には効果が大きいとともに、板状体2の他方の主面に帯状の抵抗発熱体5を配設した場合にも同様の効果がある。特に、他方の主面に帯状の抵抗発熱体5が形成された場合にはその抵抗発熱体5の上にオーバコートした絶縁膜を形成された場合に板状体2や抵抗発熱体5が破損することを防止する効果が大きく好ましい。   The resistance heating element 5 has a great effect when embedded in a plate-like ceramic body, and the same applies when a belt-like resistance heating element 5 is disposed on the other main surface of the plate-like body 2. effective. In particular, when the strip-like resistance heating element 5 is formed on the other main surface, the plate-like body 2 and the resistance heating element 5 are damaged when an overcoated insulating film is formed on the resistance heating element 5. The effect of preventing this is large and preferable.

また、上記抵抗発熱体は、同心円状に独立して加熱できる複数の発熱体からなり、同心円状の最外周の抵抗発熱体の帯とその内側の帯との間隔が、前記最外周の独立した抵抗発熱体を除く抵抗発熱体の同心円状の帯の間隔より小さいことを特徴とする。このように抵抗発熱体5を形成することで、板状体2の外周部からより多く放散される熱の補充が容易となり、ウェハW面の周辺の温度低下を防止できることからより好ましい。   In addition, the resistance heating element is composed of a plurality of heating elements that can be heated concentrically independently, and the interval between the outermost resistance heating element strip in the concentric circle and the inner band is independent of the outermost periphery. It is characterized by being smaller than the interval between the concentric bands of the resistance heating element excluding the resistance heating element. By forming the resistance heating element 5 in this way, it is more preferable because replenishment of more heat dissipated from the outer peripheral portion of the plate-like body 2 can be facilitated, and a temperature drop around the wafer W surface can be prevented.

また、本発明のヒータ1は、ウェハWの載置面3に対応して同心円の3つの円環状の抵抗発熱体ゾーン4に分割することがより好ましい。円板状のウェハWの表面を均一に加熱するにはウェハW周辺の雰囲気やウェハWに対抗する壁面やガスの流れの影響を受けるが、円板状のウェハWの表面温度をばらつかせないために、ウェハWの周囲や上面の対抗面や雰囲気ガスの流れはウェハWに対し中心対称となるように設計されているからである。ウェハWを均一に加熱するにはウェハWに対し中心対称な上記環境に合わせたヒータ1が必要で、載置面3を中心対称に分割し抵抗発熱体ゾーン4を形成することが好ましい。   The heater 1 of the present invention is more preferably divided into three concentric annular resistance heating element zones 4 corresponding to the mounting surface 3 of the wafer W. Evenly heating the surface of the disk-shaped wafer W is affected by the atmosphere around the wafer W, the wall surface facing the wafer W, and the flow of gas, but the surface temperature of the disk-shaped wafer W varies. This is because the flow around the wafer W, the opposing surface of the upper surface, and the flow of the atmospheric gas are designed to be symmetrical with respect to the wafer W. In order to uniformly heat the wafer W, the heater 1 that matches the above-mentioned environment that is symmetric with respect to the wafer W is required, and it is preferable to divide the mounting surface 3 so as to form the resistance heating element zone 4.

特に、300mm以上のウェハWの表面温度を均一に加熱するには同心円の円環状の抵抗発熱体ゾーンは3つであることが好ましい。   In particular, in order to uniformly heat the surface temperature of the wafer W of 300 mm or more, it is preferable that there are three concentric annular resistance heating element zones.

図3(a)は本発明の抵抗発熱体ゾーン4を示す。抵抗発熱体ゾーン4は、板状体2の一方の主面に複数の抵抗発熱体ゾーン4を備え、中心部に円形の抵抗発熱体ゾーン4aと、その外側の同心円の3つの円環内に抵抗発熱体ゾーン4b、4cdと、抵抗発熱体ゾーン4ehとを備える。ウェハWの均熱性を改善するため、抵抗発熱体5を4個の抵抗発熱体ゾーンに対応して分割している。   FIG. 3 (a) shows the resistance heating element zone 4 of the present invention. The resistance heating element zone 4 includes a plurality of resistance heating element zones 4 on one main surface of the plate-like body 2, and a circular resistance heating element zone 4 a at the center and three concentric rings on the outer side thereof. Resistance heating element zones 4b and 4cd and resistance heating element zone 4eh are provided. In order to improve the thermal uniformity of the wafer W, the resistance heating element 5 is divided corresponding to four resistance heating element zones.

また、本発明の前記ヒータ1の中心部の抵抗発熱体ゾーン4aの外径D1は外周部の抵抗発熱体ゾーン4ehの外径Dの20〜40%であり、その外側の抵抗発熱体ゾーン4bcの外径D2は外周部の抵抗発熱体ゾーンの外径Dの40〜55%であり、最外周の抵抗発熱体ゾーンの内径D3は最外周の抵抗発熱体ゾーンの外径Dの55〜85%とするとウェハWの面内温度差を小さくすることができ好ましい。   Further, the outer diameter D1 of the resistance heating element zone 4a at the center of the heater 1 of the present invention is 20 to 40% of the outer diameter D of the resistance heating element zone 4eh at the outer periphery, and the outer resistance heating element zone 4bc. The outer diameter D2 is 40 to 55% of the outer diameter D of the outer peripheral resistance heating element zone, and the inner diameter D3 of the outermost resistance heating element zone is 55 to 85 of the outer diameter D of the outermost resistance heating element zone. % Is preferable because the in-plane temperature difference of the wafer W can be reduced.

尚、外周部の抵抗発熱体ゾーン4ehの外径Dとは、板状体2の他方の主面に平行な投影面でみて、前記抵抗発熱体ゾーン4ehを構成する抵抗発熱体5ehを囲む外接円の直径である。また、同様に、抵抗発熱体ゾーン4bの外径D2とは、前記抵抗発熱体ゾーン4bを構成する抵抗発熱体5bに外接する円の直径である。また、D3は、抵抗発熱体5cdに内接する円の直径である。尚、外接円は給電部に接続する抵抗発熱体の突出部は除き同心円状の円弧に沿って求めることができる。   The outer diameter D of the resistance heating element zone 4eh in the outer peripheral portion is the circumscribed area surrounding the resistance heating element 5eh that constitutes the resistance heating element zone 4eh when viewed from a projection plane parallel to the other main surface of the plate-like body 2. The diameter of the circle. Similarly, the outer diameter D2 of the resistance heating element zone 4b is a diameter of a circle circumscribing the resistance heating element 5b constituting the resistance heating element zone 4b. D3 is the diameter of a circle inscribed in the resistance heating element 5cd. The circumscribed circle can be obtained along a concentric circular arc except for the protruding portion of the resistance heating element connected to the power feeding portion.

外径D1がDの20%未満では中心部の抵抗発熱体ゾーン4aの外径が小さ過ぎることから抵抗発熱体ゾーン4aの発熱量を大きくしても、抵抗発熱体ゾーン4aの中心部の温度が上がらず中心部の温度が低下する虞があるからである。また、外径D1が40%をえると中心部の抵抗発熱体ゾーン4aの外径が大き過ぎることから、中心部の温度を上げた際に抵抗発熱体ゾーン4aの周辺部の温度も上がり、抵抗発熱体ゾーン4aの周辺部の温度が高くなり過ぎる虞があるからである。尚、好ましくは、外径D1はDの20〜30%であり、更に好ましくは、外径D1はDの23〜27%とすることでウェハWの面内温度差を更に小さくすることができる。
If the outer diameter D1 is less than 20% of D, the outer diameter of the resistance heating element zone 4a at the center is too small. Therefore, even if the heating value of the resistance heating element zone 4a is increased, the temperature at the center of the resistance heating element zone 4a is increased. This is because there is a risk that the temperature in the center portion will not rise. Further, up to the outer diameter D1 is 40% since the outer diameter of the resistance heating element zone 4a of the ultrasonic El and the center portion is too large, even if the temperature of the peripheral portion of the resistance heating element zone 4a when raising the temperature of the central portion This is because the temperature around the resistance heating element zone 4a may become too high. Preferably, the outer diameter D1 is 20 to 30% of D, and more preferably the outer diameter D1 is 23 to 27% of D, so that the in-plane temperature difference of the wafer W can be further reduced. .

また、外径D2が外径Dの40%未満では、ヒータ1の周辺部が冷却され易いことから、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4cdの発熱量を増大した際に、ウェハWの中心に近い抵抗発熱体ゾーン4cdの内側の温度が高くなり、ウェハWの面内温度差が大きくなる虞があった。また、外径D2が外径Dの55%をえると、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4cdの発熱量を大きくしても、抵抗発熱体ゾーン4cdの温度は上がるが、ウェハW周辺の温度の低下の影響が抵抗発熱体ゾーン4bに達し、抵抗発熱体ゾーン4bの外側の温度が低くなる虞があった。好ましくは、外径D2が外径Dの41%〜53%であり、更に好ましくは43〜49%とするとウェハWの面内温度差は更に小さくできた。
Further, when the outer diameter D2 is less than 40% of the outer diameter D, the peripheral portion of the heater 1 is easily cooled. Therefore, when the amount of heat generated in the resistance heating element zone 4cd is increased in order to prevent the temperature around the wafer W from decreasing. In addition, the temperature inside the resistance heating element zone 4cd close to the center of the wafer W is increased, and the in-plane temperature difference of the wafer W may be increased. Further, the outer diameter D2 is obtain ultra 55% of the outer diameter D, even by increasing the heating value of trying to prevent the deterioration resistance heating element zone 4cd the temperature around the wafer W, the temperature of the resistance heating element zone 4cd is However, there is a possibility that the temperature decrease around the wafer W reaches the resistance heating element zone 4b and the temperature outside the resistance heating element zone 4b is lowered. Preferably, when the outer diameter D2 is 41% to 53% of the outer diameter D, and more preferably 43 to 49%, the in-plane temperature difference of the wafer W can be further reduced.

また、外径D3が外径Dの55%未満では、ヒータ1の周辺部が冷却され易いことから、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4ehの発熱量を増大した際に、ウェハWの中心に近い抵抗発熱体ゾーン4ehの内側の温度が高くなり、ウェハWの面内温度差が大きくなる虞があった。また、外径D3が外径Dの85%をえると、ウェハW周辺の温度の低下を防ごうと抵抗発熱体ゾーン4ehの発熱量を大きくしても、抵抗発熱体ゾーン4ehの温度は上がるが、ウェハW周辺の温度の低下の影響が抵抗発熱体ゾーン4cdに達し、抵抗発熱体ゾーン4cdの外側の温度が低くなる虞があった。好ましくは、外径D3が外径Dの65%〜85%であり、更に好ましくは67〜70%とするとウェハWの面内温度差は更に小さくできた。
Further, when the outer diameter D3 is less than 55% of the outer diameter D, the peripheral portion of the heater 1 is easily cooled. Therefore, when the amount of heat generated in the resistance heating element zone 4eh is increased in order to prevent the temperature around the wafer W from decreasing. In addition, the temperature inside the resistance heating element zone 4eh close to the center of the wafer W is increased, and the in-plane temperature difference of the wafer W may be increased. Further, the outer diameter D3 is obtain ultra 85% of the outer diameter D, even by increasing the heating value of trying to prevent the deterioration resistance heating element zone 4eh the temperature around the wafer W, the temperature of the resistance heating element zone 4eh is However, there is a possibility that the temperature decrease around the wafer W reaches the resistance heating element zone 4cd and the temperature outside the resistance heating element zone 4cd is lowered. Preferably, when the outer diameter D3 is 65% to 85% of the outer diameter D, and more preferably 67 to 70%, the in-plane temperature difference of the wafer W can be further reduced.

更に、上記のように複数の抵抗発熱体5からなるヒータ1は、周囲の環境から生じる左右前後の微妙な非対称性や、対称な発熱体の厚みバラツキを補正できるとともに、ウェハWの面内温度差がより小さくなる事がわかった。   Furthermore, as described above, the heater 1 composed of the plurality of resistance heating elements 5 can correct the slight asymmetry of the left and right sides and the thickness variation of the symmetric heating elements caused by the surrounding environment, and the in-plane temperature of the wafer W. It turns out that the difference is smaller.

図3(b)は、本発明のヒータ1の抵抗発熱体ゾーン4の1例を示す。3つの円環状の抵抗発熱体ゾーン4b、4cd、4ehのうち、最も内側の抵抗発熱体ゾーン4bは、円環からなる抵抗発熱体ゾーン4bであり、その外側の抵抗発熱体ゾーン4cdは、円環を円周方向に2等分した2個の扇状の抵抗発熱体ゾーン4c、4dであり、その外側の抵抗発熱体ゾーン4ehは、円環を円周方向に4等分した4個の扇状の抵抗発熱体ゾーン4e、4f、4g、4hからなっていることがウェハWの表面温度を均一にする上で好ましい。   FIG. 3B shows an example of the resistance heating element zone 4 of the heater 1 of the present invention. Of the three annular resistance heating element zones 4b, 4cd, 4eh, the innermost resistance heating element zone 4b is a resistance heating element zone 4b formed of an annular shape, and the outer resistance heating element zone 4cd is a circular heating element zone 4cd. There are two fan-like resistance heating element zones 4c and 4d obtained by dividing the ring into two equal parts in the circumferential direction, and the outer resistance heating element zone 4eh is four fan-like shapes obtained by dividing the ring into four equal parts in the circumferential direction. In order to make the surface temperature of the wafer W uniform, the resistance heating element zones 4e, 4f, 4g, and 4h are preferable.

上記ヒータ1の各抵抗発熱体ゾーン4a〜4gは独立して発熱でき、各抵抗発熱体ゾーン4a〜4gに対応して抵抗発熱体5a〜5gを備えていることが好ましい。   Each of the resistance heating element zones 4a to 4g of the heater 1 can generate heat independently, and is preferably provided with a resistance heating element 5a to 5g corresponding to each of the resistance heating element zones 4a to 4g.

しかし、ゾーン4aとゾーン4bはヒータ1の外部環境でもある設置場所が頻繁に変更がなければ並列または直列に接続し一つの回路として制御することもできる。このような構成とするのは、ゾーン4aと4bの間に所定の間隔を設定できることから、ウェハWを持ち上げるリフトピンが貫通する貫通孔を設置することができることから好ましい。   However, the zones 4a and 4b can be connected in parallel or in series and controlled as one circuit unless the installation location, which is also the external environment of the heater 1, is frequently changed. Such a configuration is preferable because a predetermined interval can be set between the zones 4a and 4b, and a through hole through which a lift pin for lifting the wafer W can be provided.

尚、円環状の抵抗発熱体ゾーン4cd、4ehはそれぞれ放射方向に2分割、4分割したが、これに限るものではない。   The annular resistance heating element zones 4cd and 4eh are divided into two and four in the radial direction, respectively, but this is not restrictive.

図3(b)の抵抗発熱体ゾーン4c、4dの境界線は直線であるが、必ずしも直線である必要はなく、波線であっても良く、抵抗発熱体ゾーン4c、4dが同心円の発熱体ゾーンの中心に対して中心対称であることが好ましい。   The boundary line of the resistance heating element zones 4c and 4d in FIG. 3B is a straight line, but is not necessarily a straight line and may be a wavy line. The resistance heating element zones 4c and 4d are concentric heating element zones. It is preferable that it is centrosymmetric with respect to the center.

同様に、抵抗発熱体ゾーンの4eと4f、4fと4g、4gと4h、4hと4eとのそれぞれの境界線も必ずしも直線である必要はなく、波線で有っても良く、同心円の発熱体ゾーンの中心に対して中心対称であることが好ましい。   Similarly, the boundary lines of the resistance heating element zones 4e and 4f, 4f and 4g, 4g and 4h, 4h and 4e do not necessarily have to be straight lines, and may be wavy lines. It is preferably centrosymmetric with respect to the center of the zone.

上記の各抵抗発熱体5を印刷法等で作製し、抵抗発熱体5の帯は1〜5mmの巾で厚みが5〜50μmで形成することが好ましい。一度に印刷する印刷面が大きくなると印刷面の左右や前後でスキージとスクリーンとの間の圧力の違いから印刷厚みが一定とならない虞が生じる。特に、抵抗発熱体5の大きさが大きくなると、抵抗発熱体5の左右前後の厚みが異なり設計した発熱量がバラツク虞があった。発熱量がバラツクとウェハWの面内温度差が大きくなり好ましくない。この抵抗発熱体の厚みのバラツキから生じる温度バラツキを防ぐには、一つの抵抗発熱体からなる外径の大きな個々の抵抗発熱体5を分割することが有効である事が判明した。   Each of the resistance heating elements 5 is preferably produced by a printing method or the like, and the band of the resistance heating element 5 is preferably formed with a width of 1 to 5 mm and a thickness of 5 to 50 μm. When the printing surface to be printed at one time becomes large, there is a concern that the printing thickness may not be constant due to the difference in pressure between the squeegee and the screen on the left and right or front and back of the printing surface. In particular, when the size of the resistance heating element 5 is increased, the thickness of the resistance heating element 5 on the left and right sides is different and the designed heat generation may vary. The amount of heat generation varies, and the in-plane temperature difference between the wafer W increases, which is not preferable. In order to prevent the temperature variation caused by the variation in thickness of the resistance heating element, it has been found that it is effective to divide the individual resistance heating elements 5 having a large outer diameter, which is composed of one resistance heating element.

そこで、ウェハW載置面3の中心部を除く同心円環状の抵抗発熱体ゾーン4cdは左右
に2分割し、更に大きな円環状の抵抗発熱体ゾーン4ehは4分割することで抵抗発熱体ゾーン4にある抵抗発熱体5の印刷する大きさを小さくすることができることから、抵抗発熱体5の各部の厚みを均一にすることができ、更にウェハWの前後左右の微妙な温度差を補正しウェハWの表面温度を均一にすることができる。また、更に各抵抗発熱体5の帯の抵抗値を微調整するためには、抵抗発熱体沿って、レーザ等で長い溝mを形成し抵抗値を調整することが好ましい。
Therefore, the concentric annular resistance heating element zone 4cd except for the central portion of the wafer W mounting surface 3 is divided into left and right parts, and the larger annular resistance heating element zone 4eh is divided into four parts to form the resistance heating element zone 4. Since the printing size of a certain resistance heating element 5 can be reduced, the thickness of each part of the resistance heating element 5 can be made uniform, and a subtle temperature difference between the front, back, left and right of the wafer W can be corrected to correct the wafer W. The surface temperature can be made uniform. Further, in order to further fine-tune the resistance of the bands of the resistance heating element 5 along the resistance heating element, it is preferable to adjust the resistance value to form a long groove m with a laser or the like.

尚、図4に示す抵抗発熱体5a、5b、5c、5d、5e、5f、5g、5hの抵抗発熱体ゾーンは夫々折り返し抵抗発熱体ゾーンからなる。   Note that the resistance heating element zones 5a, 5b, 5c, 5d, 5e, 5f, 5g, and 5h shown in FIG.

また、本発明のヒータ1は、板状体2の一方の主面に抵抗発熱体5を備えたヒータ1であって、図4に示すように板状体2の外周部に位置する前記抵抗発熱体5e、5f、5g、5hは板状体2の中心から遠い部位は同心円状をした円弧状の帯51とこれらと連続して繋がっている連結抵抗発熱体ゾーンである小円弧状の帯52からなることが好ましい。前記抵抗発熱体5に電力を供給する給電部6と、該給電部6を囲む金属ケース19とからなり、前記板状体2の他方の主面にウェハ加熱面を備え、他方の主面に平行な投影面でみて、前記抵抗発熱体5の外接円Cの直径Dが前記板状体2の直径DPの90〜97%であることが好ましい。   The heater 1 of the present invention is a heater 1 having a resistance heating element 5 on one main surface of a plate-like body 2, and the resistance located on the outer peripheral portion of the plate-like body 2 as shown in FIG. 4. The heating elements 5e, 5f, 5g, and 5h are arc-shaped bands 51 that are concentric circles at locations far from the center of the plate-like body 2, and small arc-shaped bands that are connected resistance heating element zones that are continuously connected to these. 52 is preferable. The power supply unit 6 for supplying power to the resistance heating element 5 and a metal case 19 surrounding the power supply unit 6 are provided with a wafer heating surface on the other main surface of the plate-like body 2 and on the other main surface. The diameter D of the circumscribed circle C of the resistance heating element 5 is preferably 90 to 97% of the diameter DP of the plate-like body 2 when viewed in parallel projection planes.

抵抗発熱体5の外接円Cの直径Dが板状体2の直径DPの90%より小さいと、ウェハを急速に昇温したり急速に降温させたりする時間が大きくなりウェハWの温度応答特性が劣る。また、ウェハWの周辺部の温度を下げないようウェハWの表面温度を均一に加熱するには、直径DはウェハWの直径の1.02倍程度が好ましいことから、ウェハWの大きさに対して板状体2の直径DPが大きくなり、均一に加熱できるウェハWの大きさが板状体2の直径DPに比較して小さくなり、ウェハWを加熱する投入電力に対しウェハWを加熱する加熱効率が悪くなる。更に、板状体2が大きくなることからウェハ製造装置の設置面積が大きくなり、最小の設置面積で最大の生産を行う必要がある半導体製造装置の設置面積に対する稼働率を低下させ好ましくない。
The diameter D of the circumscribed circle C of the resistance heating element 5 and is less than 90% of the diameter DP of the plate 2, or rapidly raising the wafer, the temperature of the wafer W becomes larger that time to or is rapidly cooled Response characteristics are inferior. In order to uniformly heat the surface temperature of the wafer W so as not to lower the temperature at the periphery of the wafer W, the diameter D is preferably about 1.02 times the diameter of the wafer W. On the other hand, the diameter DP of the plate-like body 2 is increased, and the size of the wafer W that can be uniformly heated is smaller than the diameter DP of the plate-like body 2, and the wafer W is heated with respect to the input power for heating the wafer W. Heating efficiency is reduced. Furthermore, since the plate-like body 2 becomes large, the installation area of the wafer manufacturing apparatus becomes large, which is not preferable because the operation rate with respect to the installation area of the semiconductor manufacturing apparatus that needs to perform the maximum production with the minimum installation area is lowered.

抵抗発熱体5の外接円Cの直径Dが板状体2の直径DPの97%より大きいと接触部材17と抵抗発熱体5の外周との間隔が小さく抵抗発熱体5の外周部から熱が接触部材17に不均一に流れ、特に、外周部の外接円Cに接する円弧状抵抗発熱体ゾーン51が存在しない部分からも熱が流れ、外周部の円弧状抵抗発熱体ゾーン51が板状体2の中心部へ曲がっていることから抵抗発熱体5を囲む外接円Cに沿って円弧状抵抗発熱体ゾーン51が欠落する部分Pの温度が低下しウェハWの面内温度差を大きくする虞がある。より好ましくは、抵抗発熱体5の外接円Cの直径Dが板状体2の直径DPの92〜95%である。   When the diameter D of the circumscribed circle C of the resistance heating element 5 is larger than 97% of the diameter DP of the plate-like body 2, the distance between the contact member 17 and the outer periphery of the resistance heating element 5 is small, and heat is transmitted from the outer periphery of the resistance heating element 5. Heat flows non-uniformly to the contact member 17, and in particular, heat also flows from a portion where the arc-shaped resistance heating element zone 51 in contact with the circumscribed circle C on the outer peripheral portion does not exist, and the arc-shaped resistance heating element zone 51 on the outer peripheral portion becomes a plate-like body. 2, the temperature of the portion P where the arc-shaped resistance heating element zone 51 is missing is lowered along the circumscribed circle C surrounding the resistance heating element 5, and the in-plane temperature difference of the wafer W may be increased. There is. More preferably, the diameter D of the circumscribed circle C of the resistance heating element 5 is 92 to 95% of the diameter DP of the plate-like body 2.

また、図1に示す様に板状体2と金属ケース19の外径が略同等で板状体2を下から金属ケース19が支える場合、ウェハWの面内の温度差を小さくするには、抵抗発熱体5の外接円Cの直径Dが板状体2の直径DPの91〜95%であり、更に好ましくは92〜94%である。   Further, as shown in FIG. 1, in the case where the outer diameters of the plate-like body 2 and the metal case 19 are substantially equal and the metal case 19 supports the plate-like body 2 from below, in order to reduce the in-plane temperature difference of the wafer W. The diameter D of the circumscribed circle C of the resistance heating element 5 is 91 to 95%, more preferably 92 to 94% of the diameter DP of the plate-like body 2.

更に、本発明のヒータ1において、例えば図4の抵抗発熱体5の外接円Cと接する円弧状抵抗発熱体ゾーン51と、該円弧状の帯51と連続して繋がった連結抵抗発熱体ゾーンである小円弧状の帯52とを備え、前記外接円Cの一部に前記円弧状の抵抗発熱体ゾーンのない空白域Pの間隔L1が、前記板状セラミックス体の直径DPと前記外接円Cの直径Dとの差(以下、LLと略する)より小さいことが好ましい。間隔L1がLLより大きいと空白域Pの熱が板状セラミックス体の周辺部へ流れ空白域Pの温度が下がる虞がある。しかし、間隔L1がLLより小さいと空白域Pの温度が下がり難く板状体2の載置面3に載せたウェハWの周辺部の一部の温度が低下せずウェハW面内の温度差が小さくなり好ましい。   Furthermore, in the heater 1 of the present invention, for example, an arc-shaped resistance heating element zone 51 in contact with the circumscribed circle C of the resistance heating element 5 in FIG. 4 and a connected resistance heating element zone continuously connected to the arc-shaped band 51. A space L1 of a blank area P that includes a small arc-shaped band 52 and does not have the arc-shaped resistance heating element zone in a part of the circumscribed circle C is a diameter DP of the plate-shaped ceramic body and the circumscribed circle C. It is preferably smaller than the difference from the diameter D (hereinafter abbreviated as LL). If the distance L1 is larger than LL, the heat of the blank area P flows to the peripheral part of the plate-shaped ceramic body, and the temperature of the blank area P may be lowered. However, if the distance L1 is smaller than LL, the temperature of the blank area P is difficult to decrease, and the temperature of a part of the periphery of the wafer W placed on the mounting surface 3 of the plate-like body 2 does not decrease, and the temperature difference within the wafer W surface. Is preferable.

上記空白域Pの温度を下げないためには、空白域の温度を上げる必要があり、空白域を加熱する連結抵抗発熱体ゾーン52の抵抗を同等か或いは僅かに大きくして発熱量を増大すると、空白域Pの温度が下がる虞が小さくなり、ウェハWの面内温度が均一となり好ましい。印刷法等で作成した抵抗発熱体5が面状の場合、円弧状抵抗発熱体ゾーン51の線巾Wpより連結抵抗発熱体ゾーンである小円弧状の帯52の線巾Wsを1〜5%小さくすることで連結抵抗発熱体ゾーン52の抵抗を大きくすることができ、連結抵抗発熱体ゾーンである小円弧状の帯52の温度を円弧状抵抗発熱体ゾーン51の温度より高めることでウェハWの面内温度を均一とすることができる。   In order not to lower the temperature of the blank area P, it is necessary to raise the temperature of the blank area. If the resistance of the connected resistance heating element zone 52 for heating the blank area is equal or slightly increased, the amount of heat generated is increased. The possibility that the temperature of the blank area P decreases is reduced, and the in-plane temperature of the wafer W becomes uniform, which is preferable. When the resistance heating element 5 created by a printing method or the like is planar, the line width Ws of the small arc-shaped band 52 that is a connected resistance heating element zone is 1 to 5% from the line width Wp of the arc-shaped resistance heating element zone 51. The resistance of the connection resistance heating element zone 52 can be increased by reducing the temperature, and the temperature of the small arc-shaped band 52, which is the connection resistance heating element zone, is increased from the temperature of the arc-shaped resistance heating element zone 51, thereby increasing the wafer W. The in-plane temperature can be made uniform.

また、板厚が1〜7mmの板状体2の一方の主面側を、ウェハを載せる載置面3とするとともに、上記板状体2の下面に抵抗発熱体5を備えたヒータ1において、上記抵抗発熱体5の厚みが5〜50μmであるとともに、上記板状体2の主面に平行な投影面で見て、上記抵抗発熱体5を囲む外接円Cの面積に対し、上記外接円Cに占める抵抗発熱体5の面積の比率が5〜30%であることが好ましい。   In addition, in the heater 1 in which the one main surface side of the plate-like body 2 having a plate thickness of 1 to 7 mm is used as the mounting surface 3 on which the wafer is placed, and the lower surface of the plate-like body 2 includes the resistance heating element 5. The resistance heating element 5 has a thickness of 5 to 50 μm, and the circumscribed circle C is surrounded by the area of the circumscribed circle C surrounding the resistance heating element 5 when viewed in a projection plane parallel to the main surface of the plate-like body 2. The area ratio of the resistance heating element 5 to the circle C is preferably 5 to 30%.

即ち、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率を5%未満とすると、抵抗発熱体5の相対向する対向領域において、対向領域の対向間隔でもあるL1、L2、・・・が大きくなり過ぎることから、抵抗発熱体5のない間隔L1に対応した載置面3の表面温度が他の部分と比較して小さくなり、載置面3の温度を均一にすることが難しいからであり、逆に抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率が30%を超えると、板状体2と抵抗発熱体5との間の熱膨張差を2.0×10−6/℃以下に近似させたとしても、両者の間に作用する熱応力が大きすぎることから、板状体2は変形し難いセラミック焼結体からなるものの、その板厚tが1mm〜7mmと薄いこと、から抵抗発熱体5を発熱させると、載置面3側が凹となるように板状体2に反りが発生する虞がある。その結果、ウェハWの中心部の温度が周縁よりも小さくなり、温度バラツキが大きくなる虞がある。 That is, if the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is less than 5%, Since L1, L2,..., Which are also the opposing intervals of the regions, become too large, the surface temperature of the mounting surface 3 corresponding to the interval L1 without the resistance heating element 5 becomes smaller than the other portions, and This is because it is difficult to make the temperature of the mounting surface 3 uniform, and conversely, the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is 30%. If exceeded, even if the thermal expansion difference between the plate-like body 2 and the resistance heating element 5 is approximated to 2.0 × 10 −6 / ° C. or less, the thermal stress acting between the two is too large. The plate-like body 2 is made of a ceramic sintered body that is difficult to deform, but the plate thickness t is 1 mm. If the resistance heating element 5 is heated because it is as thin as ˜7 mm, the plate-like body 2 may be warped so that the mounting surface 3 side becomes concave. As a result, the temperature of the central portion of the wafer W becomes lower than the peripheral edge, and there is a possibility that the temperature variation becomes large.

なお、好ましくは、抵抗発熱体5を囲む外接円Cの面積に対し、外接円C内に占める抵抗発熱体5の面積の比率を7%〜20%、さらには8%〜15%とすることが好ましい。   Preferably, the ratio of the area of the resistance heating element 5 in the circumscribed circle C to the area of the circumscribed circle C surrounding the resistance heating element 5 is 7% to 20%, more preferably 8% to 15%. Is preferred.

より具体的には、抵抗発熱体5は外周部に相対抗する対抗領域を有し、上記対抗領域の間隔L1が0.5mm以上で、上記板状体2の板厚の3倍以下であることが好ましい。上記対抗領域の間隔L1が0.5mm以下では抵抗発熱体5を印刷し形成する際に抵抗発熱体5の対抗領域でひげ状の突起が発生しその部分が短絡する虞がある。また、上記対抗領域の間隔L1が板状体2の厚みの3倍をえると、対抗領域L1に対応するウェハWの表面にクールゾーンが発生しウェハWの面内温度差を大きくする虞があるからである。
More specifically, the resistance heating element 5 has a counter area that opposes the outer peripheral portion, and the distance L1 between the counter areas is 0.5 mm or more and is not more than three times the plate thickness of the plate-like body 2. It is preferable. When the distance L1 between the opposing regions is 0.5 mm or less, when the resistance heating element 5 is printed and formed, whisker-like protrusions may occur in the opposing region of the resistance heating element 5 and the portion may be short-circuited. Also, a risk interval L1 of the opposing areas when obtaining super three times the thickness of the plate-like body 2, to increase the in-plane temperature difference of the surface cool zone is generated on the wafer W of the wafer W corresponding to counteract region L1 Because there is.

さらに、このような効果を効率良く発現させるには、抵抗発熱体5の膜厚を5〜50μmとすることが好ましい。   Furthermore, in order to efficiently exhibit such an effect, the thickness of the resistance heating element 5 is preferably set to 5 to 50 μm.

抵抗発熱体5の膜厚が5μmを下回ると、抵抗発熱体5をスクリーン印刷法で膜厚を均一に印刷することが困難となるからであり、また、抵抗発熱体5の厚みが50μmをえると、外接円cに対し、抵抗発熱体5の占める面積の比率を30%以下としても抵抗発熱体5の厚みが大きく、抵抗発熱体5の剛性が大きくなり、板状セラミック体5の温度変化により抵抗発熱体5の伸び縮みによる影響で板状体2が変形する虞がある。また、スクリーン印刷で均一の厚みに印刷することが難しくウェハWの表面の温度差が大きくなったりする虞があるからである。なお、好ましくは、抵抗発熱体5の厚み10〜30μmとすることが良い。
This is because if the thickness of the resistance heating element 5 is less than 5 μm, it becomes difficult to uniformly print the resistance heating element 5 by screen printing, and the thickness of the resistance heating element 5 exceeds 50 μm. In other words, even if the ratio of the area occupied by the resistance heating element 5 to the circumscribed circle c is 30% or less, the thickness of the resistance heating element 5 is increased, the rigidity of the resistance heating element 5 is increased, and the temperature of the plate-like ceramic body 5 is increased. Due to the change, the plate-like body 2 may be deformed due to the influence of expansion and contraction of the resistance heating element 5. In addition, it is difficult to print to a uniform thickness by screen printing, and the temperature difference on the surface of the wafer W may increase. Incidentally, rather preferably has a thickness of the resistance heating element 5 is good to 10 to 30 [mu] m.

図1は本発明に係るウェハ加熱装置の一例を示す断面図で、板厚tが1〜7mm、100〜200℃のヤング率が200〜450MPaであるセラミックスからなる板状体2の一方の主面を、ウェハWを載せる載置面3とするとともに、他方の主面に抵抗発熱体5を形成し、この抵抗発熱体5に電気的に接続する給電部6を備えたものである。   FIG. 1 is a cross-sectional view showing an example of a wafer heating apparatus according to the present invention. One main part of a plate-like body 2 made of ceramics having a plate thickness t of 1 to 7 mm and a Young's modulus of 100 to 200 ° C. of 200 to 450 MPa. The surface is a mounting surface 3 on which the wafer W is placed, a resistance heating element 5 is formed on the other main surface, and a power feeding unit 6 electrically connected to the resistance heating element 5 is provided.

100〜200℃のヤング率が200〜450MPaである板状体2の材質としては、アルミナ、窒化珪素、サイアロン、窒化アルミニウムを用いることができ、この中でも特に窒化アルミニウムは50W/(m・K)以上、さらには100W/(m・K)以上の高い熱伝導率を有するとともに、フッ素系や塩素系等の腐食性ガスに対する耐蝕性や耐プレズマ性にも優れることから、板状体2の材質として好適である。   As a material of the plate-like body 2 having a Young's modulus at 100 to 200 ° C. of 200 to 450 MPa, alumina, silicon nitride, sialon, and aluminum nitride can be used. Among these, aluminum nitride is 50 W / (m · K). In addition to having a high thermal conductivity of 100 W / (m · K) or more, and being excellent in corrosion resistance and plasma resistance to corrosive gases such as fluorine and chlorine, the material of the plate-like body 2 It is suitable as.

板状体2の厚みは、2〜5mmとすると更に好ましい。板状体2の厚みが2mmより薄いと、板状体2の強度がなくなり抵抗発熱体5の発熱による加熱時、ガス噴射口24らの冷却エアーを吹き付けた際に、冷却時の熱応力に耐えきれず、板状体2にクラックが発生する虞があるからである。また、板状体2の厚みが5mmをえると、板状体2の熱容量が大きくなるので加熱および冷却時の温度が安定するまでの時間が長くなる虞がある。
The thickness of the plate-like body 2 is more preferably 2 to 5 mm. If the thickness of the plate-like body 2 is less than 2 mm, the strength of the plate-like body 2 is lost, and when the resistance heating element 5 is heated by the heat generated, when the cooling air from the gas injection port 24 is blown, It is because it cannot endure and there exists a possibility that the crack may generate | occur | produce in the plate-shaped body 2. FIG. If the thickness of the plate-like body 2 is obtain ultra the 5 mm, the temperature during heating and cooling since the thermal capacity of the plate-like body 2 is large there is a fear that time becomes longer to stabilize.

板状体2は、有底の金属ケース19開口部の外周にボルト16を貫通させ、板状体2と有底の金属ケース19が直接当たらないように、リング状の接触部材17を介在させ、有底の金属ケース19側より弾性体18を介在させてナット20を螺着することにより弾性的に固定している。これにより、板状体2の温度が変動した場合に有底の金属ケース19が変形しても、上記弾性体18によってこれを吸収し、これにより板状体2の反りを抑制し、ウェハ表面に、板状体2の反りに起因する温度ばらつきが発生することを防止できるようになる。   The plate-like body 2 has a bolt 16 passing through the outer periphery of the opening of the bottomed metal case 19, and a ring-shaped contact member 17 is interposed so that the plate-like body 2 and the bottomed metal case 19 do not directly contact each other. The nut 20 is screwed in via the elastic body 18 from the bottomed metal case 19 side and is elastically fixed. Thereby, even if the bottomed metal case 19 is deformed when the temperature of the plate-like body 2 fluctuates, it is absorbed by the elastic body 18, thereby suppressing the warpage of the plate-like body 2 and the wafer surface. In addition, it is possible to prevent temperature variations due to warpage of the plate-like body 2.

リング状の接触部材17の断面は多角形や円形の何れでも良いが、板状体2と接触部材17が平面で接触する場合において、板状体2と接触部材17の接する接触部の巾は0.1mm〜13mmであれば、板状体2の熱が接触部材17を介して有底の金属ケース19に流れ量を小さくすることができる。そして、ウェハWの面内の温度差が小さくウェハWを均一に加熱することができる。更に好ましくは0.1〜8mmである。接触部材17の接触部の巾が0.1mm以下では、板状体2と接触固定した際に接触部が変形し、接触部材が破損する虞がある。また、接触部材17の接触部の巾が13mmをえる場合には、板状体2の熱が接触部材に流れ、板状体2の周辺部の温度が低下しウェハWを均一に加熱することが難しくなる。好ましくは接触部材17と板状体2の接触部の巾は0.1mm〜8mmであり、更に好ましくは0.1〜2mmである。
The cross section of the ring-shaped contact member 17 may be either polygonal or circular. However, when the plate-like body 2 and the contact member 17 are in contact with each other in a plane, the width of the contact portion where the plate-like body 2 and the contact member 17 are in contact is as follows. If it is 0.1 mm-13 mm, the amount of heat of the plate-like body 2 can be reduced to the bottomed metal case 19 via the contact member 17. And the temperature difference in the surface of the wafer W is small, and the wafer W can be heated uniformly. More preferably, it is 0.1-8 mm. If the width of the contact portion of the contact member 17 is 0.1 mm or less, the contact portion may be deformed when the plate 2 is contacted and fixed, and the contact member may be damaged. Also, the width of the contact portion of the contact member 17 to the case is exceeded is 13 mm, the flow into heat contact member of the plate-like body 2, the temperature of the peripheral portion of the plate-like body 2 is uniformly heating the wafer W decreases It becomes difficult. Preferably, the width of the contact portion between the contact member 17 and the plate-like body 2 is 0.1 mm to 8 mm, more preferably 0.1 to 2 mm.

また、接触部材17の熱伝導率は板状体2の熱伝導率より小さいことが好ましい。接触部材17の熱伝導率が板状体2の熱伝導率より小さければ板状体2に載せたウェハW面内の温度分布を均一に加熱することができると共に、板状体2の温度を上げたり下げたりする際に、接触部材17との熱の伝達量が小さく有底の金属ケース19との熱的干渉が少なく、迅速に温度を変更することが容易となる。   Further, the thermal conductivity of the contact member 17 is preferably smaller than the thermal conductivity of the plate-like body 2. If the thermal conductivity of the contact member 17 is smaller than the thermal conductivity of the plate-like body 2, the temperature distribution in the surface of the wafer W placed on the plate-like body 2 can be heated uniformly, and the temperature of the plate-like body 2 can be changed. When raising or lowering, the amount of heat transfer with the contact member 17 is small, and there is little thermal interference with the bottomed metal case 19, making it easy to change the temperature quickly.

接触部材17の熱伝導率が板状体2の熱伝導率の10%より小さいヒータ1では、板状体2の熱が有底の金属ケース19に流れ難く、板状体2から有底の金属ケース19に熱が、雰囲気ガス(ここでは空気)による伝熱や輻射伝熱により流れる熱が多くなり逆に効果が小さい。   In the heater 1 in which the thermal conductivity of the contact member 17 is smaller than 10% of the thermal conductivity of the plate-like body 2, it is difficult for the heat of the plate-like body 2 to flow into the bottomed metal case 19. The heat of the metal case 19 increases due to heat transfer by atmospheric gas (here, air) or radiation heat transfer, and the effect is small.

接触部材17の熱伝導率が板状体2の熱伝導率より大きい場合には、板状体2の周辺部の熱が接触部材17を介して有底の金属ケース19に流れ、有底の金属ケース19を加熱すると共に、板状体2の周辺部の温度が低下しウェハW面内の温度差が大きくなり好ましくない。また、有底の金属ケース19が加熱されることからガス噴射口24からエアを噴射し板状体2を冷却しようとしても有底の金属ケース19の温度が高いことから冷却する時間が大きくなったり、一定温度に加熱する際に一定温度になるまでの時間が大きくなったりする虞があった。
When the thermal conductivity of the contact member 17 is larger than the thermal conductivity of the plate-like body 2, the heat of the peripheral part of the plate-like body 2 flows to the bottomed metal case 19 through the contact member 17, While heating the metal case 19, the temperature of the peripheral part of the plate-shaped body 2 falls and the temperature difference in the wafer W surface becomes large, which is not preferable. Also, large time to cool since also higher temperatures bottomed metal case 19 is trying to cool the plate-like body 2 to inject air over from the gas injection port 24 from the metal case 19 having a bottom is heated is or, there is a risk you or Tsu the name large time to a constant temperature during the heating at a constant temperature.

一方、前記接触部材17を構成する材料としては、小さな接触部を保持するために、接触部材のヤング率は1GPa以上が好ましく、更に好ましくは10GPa以上である。このようなヤング率とすることで、接触部の巾が0.1mm〜8mmと小さく、板状体2を有底の金属ケース19に接触部材17を介してボルト16で固定しても、接触部材17が変形することが無く、板状体2が位置ズレしたり平行度が変化したりすることなく、精度良く保持することができる。   On the other hand, as a material constituting the contact member 17, the Young's modulus of the contact member is preferably 1 GPa or more, and more preferably 10 GPa or more in order to hold a small contact portion. With such a Young's modulus, even if the contact portion width is as small as 0.1 mm to 8 mm and the plate-like body 2 is fixed to the bottomed metal case 19 with the bolt 16 via the contact member 17, the contact The member 17 is not deformed, and the plate-like body 2 can be held with high accuracy without being displaced or changing the parallelism.

尚、特許文献2に記載のような、フッ素系樹脂やガラス繊維を添加した樹脂からなる接触部材では得られない精度を達成することができる。   In addition, the precision which cannot be obtained with the contact member which consists of resin which added fluororesin and glass fiber like patent document 2 can be achieved.

前記接触部材17の材質としては鉄とカーボンからなる炭素鋼やニッケル、マンガン、クロムを加えた特殊鋼等の金属がヤング率が大きく好ましい。また、熱伝導率の小さな材料としては、ステンレス鋼やFe―Ni−Co系合金の所謂コバールが好ましく、板状体2の熱伝導率より小さくなるように接触部材17の材料を選択することが好ましい。   As the material of the contact member 17, metals such as carbon steel made of iron and carbon and special steel added with nickel, manganese, and chromium are preferable because of their large Young's modulus. Further, as the material having low thermal conductivity, so-called Kovar such as stainless steel or Fe—Ni—Co alloy is preferable, and the material of the contact member 17 may be selected so as to be smaller than the thermal conductivity of the plate-like body 2. preferable.

更に、接触部材17と板状体2との接触部を小さく、且つ接触部が小さくても接触部が欠損しパーティクルを発生する虞が小さく安定な接触部を保持できるために、板状体2に垂直な面で切断した接触部材17の断面は多角形より円形が好ましく、断面の直径1mm以下の円形のワイヤを接触部材17として使用すると板状体2と有底の金属ケース19の位置が変化することなくウェハWの表面温度を均一にしかも迅速に昇降温することが可能である。   Furthermore, since the contact portion between the contact member 17 and the plate-like body 2 is small, and the contact portion is small, there is no possibility of the contact portion being lost and particles are generated, so that the stable contact portion can be held. The cross-section of the contact member 17 cut along a plane perpendicular to the polygonal shape is preferably circular rather than polygonal. When a circular wire having a cross-sectional diameter of 1 mm or less is used as the contact member 17, the position of the plate-like body 2 and the bottomed metal case 19 is It is possible to raise and lower the temperature of the wafer W uniformly and quickly without changing.

次に、有底の金属ケース19は側壁部22と底面21を有し、板状体2はその有底の金属ケース19の開口部を覆うように設置してある。また、有底の金属ケース19には冷却ガスを排出するための孔23が施されており、板状体2の抵抗発熱体5に給電するための給電部6に導通するための給電端子11,板状体2を冷却するためのガス噴射口24、板状体2の温度を測定するための熱電対27を設置してある。   Next, the bottomed metal case 19 has a side wall portion 22 and a bottom surface 21, and the plate-like body 2 is installed so as to cover the opening of the bottomed metal case 19. The bottomed metal case 19 is provided with a hole 23 for discharging the cooling gas, and the power supply terminal 11 for conducting to the power supply unit 6 for supplying power to the resistance heating element 5 of the plate-like body 2. , A gas injection port 24 for cooling the plate-like body 2 and a thermocouple 27 for measuring the temperature of the plate-like body 2 are provided.

なお、有底の金属ケース19の深さは10〜50mmで、底面21は、板状体2から10〜50mmの距離に設置することが望ましい。更に好ましくは20〜30mmである。これは、板状体2と有底の金属ケース19相互の輻射熱により載置面3の均熱化が容易となると同時に、外部との断熱効果があるので、載置面3の温度が一定で均一な温度となるまでの時間が短くなるためである。   In addition, the depth of the bottomed metal case 19 is 10 to 50 mm, and the bottom surface 21 is desirably installed at a distance of 10 to 50 mm from the plate-like body 2. More preferably, it is 20-30 mm. This is because heat equalization of the mounting surface 3 is facilitated by radiant heat between the plate-like body 2 and the bottomed metal case 19, and at the same time, there is a heat insulating effect from the outside, so the temperature of the mounting surface 3 is constant. This is because the time until the temperature is uniform is shortened.

そして、有底の金属ケース19内に昇降自在に設置されたリフトピン25により、ウェハWを載置面3上に載せたり載置面3より持ち上げたりといった作業がなされる。そして、ウェハWは、ウェハ支持ピン8により載置面3から浮かした状態で保持され、片当たり等による温度バラツキを防止するようにしている。   Then, work such as placing the wafer W on the placement surface 3 or lifting it from the placement surface 3 is performed by lift pins 25 installed in the bottomed metal case 19 so as to be movable up and down. The wafer W is held in a state of being lifted from the mounting surface 3 by the wafer support pins 8 so as to prevent temperature variation due to contact with each other.

また、このヒータ1によりウェハWを加熱するには、搬送アーム(不図示)にて載置面3の上方まで運ばれたウェハWをリフトピン25にて支持したあと、リフトピン25を降下させてウェハWを載置面3上に載せる。   In order to heat the wafer W by the heater 1, the wafer W carried to the upper side of the mounting surface 3 by the transfer arm (not shown) is supported by the lift pins 25, and then the lift pins 25 are lowered to move the wafer. W is placed on the placement surface 3.

次に、ヒータ1をレジスト膜形成用として使用する場合は、板状体2の主成分を炭化珪素にすると、大気中の水分等と反応してガスを発生させることもないため、ウェハW上へのレジスト膜の貼付に用いたとしても、レジスト膜の組織に悪影響を与えることがなく、微細な配線を高密度に形成することが可能である。この際、焼結助剤に水と反応してアンモニアやアミンを形成する可能性のある窒化物を含まないようにすることが必要である。   Next, when the heater 1 is used for forming a resist film, if the main component of the plate-like body 2 is silicon carbide, it does not react with moisture in the atmosphere and does not generate gas. Even if it is used for applying a resist film to the substrate, fine wirings can be formed at a high density without adversely affecting the structure of the resist film. At this time, it is necessary that the sintering aid does not contain nitrides that may react with water to form ammonia or amines.

なお、板状体2を形成する炭化珪素質焼結体は、主成分の炭化珪素に対し、焼結助剤として硼素(B)と炭素(C)を添加したり、もしくはアルミナ(Al)イットリア(Y)のような金属酸化物を添加したりして十分混合し、平板状に加工したのち、1900〜2100℃で焼成することにより得られる。炭化珪素はα型を主体とするものあるいはβ型を主体とするもののいずれであっても構わない。
Note that the silicon carbide sintered body forming the plate-like body 2 is obtained by adding boron (B) and carbon (C) as sintering aids to the main component silicon carbide, or by adding alumina (Al 2 O 3) After the yttria (Y 2 O 3) a metal oxide or added and mixed well, such as, was processed into a flat plate, obtained by baking at from 1,900 to 2100 ° C.. Silicon carbide may be either mainly α-type or β-type.

一方、炭化珪素質焼結体を板状体2として使用する場合、半導電性を有する板状体2と抵抗発熱体5との間の絶縁を保つ絶縁層としては、ガラス又は樹脂を用いることが可能であり、ガラスを用いる場合、その厚みが100μm未満では耐電圧が1.5kVを下回り絶縁性が保てず、逆に厚みが400μmをえると、板状体2を形成する炭化珪素質焼結体や窒化アルミニウム質焼結体との熱膨張差が大きくなり過ぎるために、クラックが発生して絶縁層として機能しなくなる。その為、絶縁層としてガラスを用いる場合、絶縁層4の厚みは100〜400μmの範囲で形成することが好ましく、望ましくは200μm〜350μmの範囲とすることが良い。 On the other hand, when a silicon carbide sintered body is used as the plate-like body 2, glass or resin is used as an insulating layer for maintaining insulation between the semi-conductive plate-like body 2 and the resistance heating element 5. are possible, when using glass, the thickness thereof can not be maintained insulating withstand voltage is below 1.5kV in less than 100 [mu] m, the thickness conversely obtain ultra the 400 [mu] m, silicon carbide forming the plate-like body 2 Since the thermal expansion difference between the sintered material and the sintered aluminum nitride material becomes too large, cracks are generated and the insulating layer does not function. Therefore, when glass is used as the insulating layer, the thickness of the insulating layer 4 is preferably formed in the range of 100 to 400 μm, and desirably in the range of 200 μm to 350 μm.

さらに、板状体2の載置面3と反対側の主面は、ガラスや樹脂からなる絶縁層4との密着性を高める観点から、平面度20μm以下、面粗さを中心線平均粗さ(Ra)で0.1μm〜0.5μmに研磨しておくことが好ましい。   Furthermore, the main surface opposite to the mounting surface 3 of the plate-like body 2 has a flatness of 20 μm or less and a surface roughness with a centerline average roughness from the viewpoint of improving the adhesion with the insulating layer 4 made of glass or resin. It is preferable that (Ra) be polished to 0.1 μm to 0.5 μm.

また、板状体2を、窒化アルミニウムを主成分とする焼結体で形成する場合は、主成分の窒化アルミニウムに対し、焼結助剤としてYやYb等の希土類元素酸化物と必要に応じてCaO等のアルカリ土類金属酸化物を添加して十分混合し、平板状に加工した後、窒素ガス中1900〜2100℃で焼成することにより得られる。板状体2に対する抵抗発熱体5の密着性を向上させるために、ガラスからなる絶縁層を形成することもある。ただし、抵抗発熱体5の中に十分なガラスを添加し、これにより十分な密着強度が得られる場合は、省略することが可能である。 Further, when the plate-like body 2 is formed of a sintered body containing aluminum nitride as a main component, a rare earth element such as Y 2 O 3 or Yb 2 O 3 as a sintering aid with respect to the main component aluminum nitride. It is obtained by adding an oxide and an alkaline earth metal oxide such as CaO as necessary and mixing them well, processing them into a flat plate, and then firing at 1900 to 2100 ° C. in nitrogen gas. In order to improve the adhesion of the resistance heating element 5 to the plate-like body 2, an insulating layer made of glass may be formed. However, when sufficient glass is added in the resistance heating element 5 and sufficient adhesion strength can be obtained by this, it can be omitted.

この絶縁層を形成するガラスの特性としては、結晶質又は非晶質のいずれでも良く、耐熱温度が200℃以上でかつ0℃〜200℃の温度域における熱膨張係数が板状体2を構成するセラミックスの熱膨張係数に対し−5〜+5×10−7/℃の範囲にあるものを適宜選択して用いることが好ましい。即ち、熱膨張係数が前記範囲を外れたガラスを用いると、板状体2を形成するセラミックスとの熱膨張差が大きくなりすぎるため、ガラスの焼付け後の冷却時においてクラックや剥離等の欠陥が生じ易いからである。 The glass that forms this insulating layer may be crystalline or amorphous, and has a heat-resistant temperature of 200 ° C. or higher and a thermal expansion coefficient in the temperature range of 0 ° C. to 200 ° C. constituting the plate-like body 2. It is preferable to select and use one having a thermal expansion coefficient in the range of −5 to + 5 × 10 −7 / ° C. as appropriate. That is, if a glass whose thermal expansion coefficient is out of the above range is used, the difference in thermal expansion from the ceramic forming the plate-like body 2 becomes too large, so that there are defects such as cracks and peeling during cooling after baking the glass. It is because it is easy to occur.

なお、ガラスからなる絶縁層を板状体2上に被着する手段としては、前記ガラスペーストを板状体2の中心部に適量落とし、スピンコーティング法にて伸ばして均一に塗布するか、あるいはスクリーン印刷法、ディッピング法、スプレーコーティング法等にて均一に塗布したあと、ガラスペーストを600℃以上の温度で焼き付けすれば良い。また、絶縁層としてガラスを用いる場合、予め炭化珪素質焼結体又は窒化アルミニウム質焼結体からなる板状体2を850〜1300℃程度の温度に加熱し、絶縁層を被着する表面を酸化処理しておくことで、ガラスからなる絶縁層との密着性を高めることができる。   As a means for depositing an insulating layer made of glass on the plate-like body 2, an appropriate amount of the glass paste is dropped on the center of the plate-like body 2 and stretched by a spin coating method to be uniformly applied, or After applying uniformly by a screen printing method, dipping method, spray coating method or the like, the glass paste may be baked at a temperature of 600 ° C. or higher. Moreover, when using glass as an insulating layer, the plate-like body 2 made of a silicon carbide sintered body or an aluminum nitride sintered body is heated to a temperature of about 850 to 1300 ° C. in advance, and the surface on which the insulating layer is deposited is formed. By performing the oxidation treatment, the adhesion with the insulating layer made of glass can be enhanced.

本発明の抵抗発熱体5の抵抗発熱体ゾーン形状としては、図3や図4に示すような複数のブロックに分割され、個々のブロックが円弧状の抵抗発熱体ゾーンと直線状の抵抗発熱体ゾーンとからなる渦巻き状やジグザクな折り返し形状をしたもので、本願発明のヒータ1はウェハWを均一に加熱することが重要であることから、これらの抵抗発熱体ゾーン形状は帯状の抵抗発熱体5の各部の密度が均一なことが好ましい。ただし、図6に示すような、板状体22の中心から放射方向に見て、抵抗発熱体25の間隔が密な部分と粗な部分が交互に現れる抵抗発熱体抵抗発熱体ゾーンでは、粗な部分に対応するウェハWの表面温度は小さく、密な部分に対応するウェハWの温度は大きくなり、ウェハWの表面の全面を均一に加熱することはできないことから好ましくない。   The resistance heating element zone shape of the resistance heating element 5 of the present invention is divided into a plurality of blocks as shown in FIG. 3 and FIG. 4, and each block has an arc-shaped resistance heating element zone and a linear resistance heating element. Since the heater 1 of the present invention is important to uniformly heat the wafer W, the resistance heating element zone shape is a belt-like resistance heating element. It is preferable that the density of each part of 5 is uniform. However, as shown in FIG. 6, in the resistance heating element resistance heating element zone in which the portions where the resistance heating elements 25 are closely spaced and the coarse portions appear alternately when viewed in the radial direction from the center of the plate-like body 22, The surface temperature of the wafer W corresponding to this portion is small, the temperature of the wafer W corresponding to the dense portion is large, and the entire surface of the wafer W cannot be heated uniformly, which is not preferable.

また、抵抗発熱体5を複数のブロックに分割する場合、それぞれのブロックの温度を独立に制御することにより、載置面3上のウェハWを均一に加熱することが好ましい。   Further, when the resistance heating element 5 is divided into a plurality of blocks, it is preferable to uniformly heat the wafer W on the mounting surface 3 by independently controlling the temperature of each block.

抵抗発熱体5は、導電性の金属粒子にガラスフリットや金属酸化物を含む電極ペーストを印刷法で板状体2に印刷、焼き付けしたもので、金属粒子としては、Au、Ag、Cu、Pd、Pt、Rhの少なくとも一種の金属を用いることが好ましく、またガラスフリットとしては、B、Si、Znを含む酸化物からなり、板状体2の熱膨張係数より小さな4.5×10−6/℃以下の低膨張ガラスを用いることが好ましく、さらに金属酸化物としては、酸化珪素、酸化ホウ素、アルミナ、チタニアから選ばれた少なくとも一種を用いることが好ましい。 The resistance heating element 5 is obtained by printing and baking an electrode paste containing glass frit or metal oxide on conductive metal particles on the plate-like body 2 by a printing method. As the metal particles, Au, Ag, Cu, Pd It is preferable to use at least one metal of Pt, Rt, and the glass frit is made of an oxide containing B, Si, Zn and is 4.5 × 10 −6 smaller than the thermal expansion coefficient of the plate-like body 2. It is preferable to use low-expansion glass at / ° C. or lower, and it is preferable to use at least one selected from silicon oxide, boron oxide, alumina, and titania as the metal oxide.

ここで、抵抗発熱体5を形成する金属粒子として、Au、Ag、Cu、Pd、Pt、Rhの少なくとも一種の金属を用いるのは、電気抵抗が小さいからである。   Here, the reason why at least one kind of metal of Au, Ag, Cu, Pd, Pt, Rh is used as the metal particles forming the resistance heating element 5 is that the electric resistance is small.

抵抗発熱体5を形成するガラスフリットとして、B、Si、Znを含む酸化物からなり、抵抗発熱体5を構成する金属粒子の熱膨張係数が板状体2の熱膨張係数より大きいことから、抵抗発熱体5の熱膨張係数を板状体2の熱膨張係数に近づけるには、板状体2の熱膨張係数より小さな4.5×10−6/℃以下の低膨張ガラスを用いることが好ましいからである。 The glass frit forming the resistance heating element 5 is made of an oxide containing B, Si, Zn, and the thermal expansion coefficient of the metal particles constituting the resistance heating element 5 is larger than the thermal expansion coefficient of the plate-like body 2. In order to bring the coefficient of thermal expansion of the resistance heating element 5 close to the coefficient of thermal expansion of the plate-like body 2, it is necessary to use a low expansion glass of 4.5 × 10 −6 / ° C. or less that is smaller than the thermal expansion coefficient of the plate-like body 2. It is because it is preferable.

また、抵抗発熱体5を形成する金属酸化物としては、酸化珪素、酸化ホウ素、アルミナ、チタニアから選ばれた少なくとも一種を用いるのは、抵抗発熱体5の中の金属粒子と密着性が優れ、しかも熱膨張係数が板状体2の熱膨張係数と近く、板状体2との密着性も優れるからである。   In addition, as the metal oxide forming the resistance heating element 5, using at least one selected from silicon oxide, boron oxide, alumina, and titania has excellent adhesion to the metal particles in the resistance heating element 5, Moreover, the thermal expansion coefficient is close to the thermal expansion coefficient of the plate-like body 2, and the adhesion with the plate-like body 2 is also excellent.

ただし、抵抗発熱体5に対し、金属酸化物の含有量が80%を超えると、板状体2との密着力は増すものの、抵抗発熱体5の抵抗値が大きくなり好ましくない。その為、金属酸化物の含有量は60%以下とすることが良い。   However, if the content of the metal oxide exceeds 80% with respect to the resistance heating element 5, the adhesion with the plate-like body 2 is increased, but the resistance value of the resistance heating element 5 is not preferable. Therefore, the content of the metal oxide is preferably 60% or less.

そして、導電性の金属粒子とガラスフリットや金属酸化物からなる抵抗発熱体5は、板状体2との熱膨張差が3.0×10−6/℃以下であるものを用いることが好ましい。 The resistance heating element 5 made of conductive metal particles and glass frit or metal oxide preferably has a thermal expansion difference of 3.0 × 10 −6 / ° C. or less with respect to the plate-like body 2. .

即ち、抵抗発熱体5と板状体2との熱膨張差を0.1×10−6/℃とすることは製造上難しく、逆に抵抗発熱体5と板状体2との熱膨張差が3.0×10−6/℃を超えると、抵抗発熱体5を発熱させた時、板状体2との間に作用する熱応力によって、載置面3側が凹状に反る恐れがあるからである。 That is, it is difficult to make the difference in thermal expansion between the resistance heating element 5 and the plate-like body 2 0.1 × 10 −6 / ° C. On the contrary, the difference in thermal expansion between the resistance heating element 5 and the plate-like body 2 is difficult. If the temperature exceeds 3.0 × 10 −6 / ° C., when the resistance heating element 5 is heated, the mounting surface 3 side may be warped in a concave shape due to thermal stress acting between the resistance heating element 5 and the plate-like body 2. Because.

さらに、絶縁層上に被着する抵抗発熱体5材料としては、金(Au)、銀(Ag)、銅(Cu)、パラジウム(Pd)等の金属単体を、蒸着法やメッキ法にて直接被着するか、あるいは前記金属単体や酸化レニウム(Re)、ランタンマンガネート(LaMnO)等の導電性の金属酸化物や上記金属材料を樹脂ペーストやガラスペーストに分散させたペーストを用意し、所定の抵抗発熱体ゾーン形状にスクリーン印刷法等にて印刷したあと焼付けして、前記導電材を樹脂やガラスから成るマトリックスで結合すれば良い。マトリックスとしてガラスを用いる場合、結晶化ガラス、非晶質ガラスのいずれでも良いが、熱サイクルによる抵抗値の変化を抑えるために結晶化ガラスを用いることが好ましい。 Further, as the resistance heating element 5 material deposited on the insulating layer, a simple metal such as gold (Au), silver (Ag), copper (Cu), palladium (Pd) or the like is directly applied by a vapor deposition method or a plating method. Either a metal paste or a conductive metal oxide such as rhenium oxide (Re 2 O 3 ) or lanthanum manganate (LaMnO 3 ) or a paste in which the above metal material is dispersed in a resin paste or glass paste. The conductive material may be prepared and printed in a predetermined resistance heating element zone shape by a screen printing method or the like and then baked, and the conductive material may be bonded with a matrix made of resin or glass. When glass is used as the matrix, either crystallized glass or amorphous glass may be used, but crystallized glass is preferably used in order to suppress a change in resistance value due to thermal cycling.

ただし、抵抗発熱体5材料に銀(Ag)又は銅(Cu)を用いる場合、マイグレーションが発生する恐れがあるため、このような場合には、抵抗発熱体5を覆うように絶縁層と同一の材質からなるコート層を40〜400μm程度の厚みで被覆しておけば良い。   However, when silver (Ag) or copper (Cu) is used for the resistance heating element 5 material, migration may occur. In such a case, the same as the insulating layer is provided so as to cover the resistance heating element 5. What is necessary is just to coat | coat the coating layer which consists of material with the thickness of about 40-400 micrometers.

更に、抵抗発熱体5への給電方法については、有底の金属ケース19に設置した給電端子11を板状体2の表面に形成した給電部6にバネ(不図示)で押圧することにより接続を確保し給電する。これは、2〜5mmの厚みの板状体2に金属からなる端子部を埋設して形成すると、該端子部の熱容量により均熱性が悪くなるからである。そのため、本発明のように、給電端子11をバネで押圧して電気的接続を確保することにより、板状体2とその有底の金属ケース19の間の温度差による熱応力を緩和し、高い信頼性で電気的導通を維持できる。さらに、接点が点接触となるのを防止するため、弾性のある導体を中間層として挿入しても構わない。この中間層は単に箔状のシートを挿入するだけでも効果がある。そして、給電端子11の給電部6側の径は、1.5〜5mmとすることが好ましい。   Further, regarding the method of feeding power to the resistance heating element 5, the feeding terminal 11 installed on the bottomed metal case 19 is connected to the feeding part 6 formed on the surface of the plate-like body 2 by pressing it with a spring (not shown). Secure and supply power. This is because if the terminal portion made of metal is embedded in the plate-like body 2 having a thickness of 2 to 5 mm, the thermal uniformity is deteriorated due to the heat capacity of the terminal portion. Therefore, as in the present invention, by pressing the power supply terminal 11 with a spring to ensure electrical connection, the thermal stress due to the temperature difference between the plate-like body 2 and the bottomed metal case 19 is relaxed, Electrical continuity can be maintained with high reliability. Further, an elastic conductor may be inserted as an intermediate layer in order to prevent the contact from becoming a point contact. This intermediate layer is effective by simply inserting a foil-like sheet. And it is preferable that the diameter by the side of the electric power feeding part 6 of the electric power feeding terminal 11 shall be 1.5-5 mm.

また、板状体2の温度は、板状体2にその先端が埋め込まれた熱電対27により測定する。熱電対27としては、その応答性と保持の作業性の観点から、外径0.8mm以下のシース型の熱電対27を使用することが好ましい。この熱電対27の先端部は、板状体2に孔が形成され、この中に設置された固定部材により孔の内壁面に押圧固定することが測温の信頼性を向上させるために好ましい。同様に素線の熱電対やPt等の測温抵抗体を埋設して測温を行うことも可能である。   Further, the temperature of the plate-like body 2 is measured by a thermocouple 27 whose tip is embedded in the plate-like body 2. As the thermocouple 27, it is preferable to use a sheath-type thermocouple 27 having an outer diameter of 0.8 mm or less from the viewpoint of responsiveness and workability of holding. In order to improve the reliability of temperature measurement, it is preferable that the tip of the thermocouple 27 has a hole formed in the plate-like body 2 and is fixed to the inner wall surface of the hole by a fixing member installed therein. Similarly, it is also possible to perform temperature measurement by embedding a temperature measuring resistor such as a thermocouple of a wire or Pt.

なお、板状体2の一方の主面には、図1に示すように、複数の支持ピン8を設け、板状体2の一方の主面より一定の距離をおいてウェハWを保持するようにしても構わない。   As shown in FIG. 1, a plurality of support pins 8 are provided on one main surface of the plate-like body 2 to hold the wafer W at a certain distance from the one main surface of the plate-like body 2. It doesn't matter if you do.

また、図1では板状体2の他方の主面3に抵抗発熱体5のみを備えたヒータ1について示したが、本発明は、主面3と抵抗発熱体5との間に静電吸着用やプラズマ発生用としての電極を埋設したものであっても良いことは言うまでもない。   Although FIG. 1 shows the heater 1 having only the resistance heating element 5 on the other main surface 3 of the plate-like body 2, the present invention provides an electrostatic adsorption between the main surface 3 and the resistance heating element 5. Needless to say, the electrodes may be embedded for use in plasma generation.

熱伝導率が80W/(m・K)の炭化珪素質焼結体に研削加工を施し、板厚4mm、外径230mmの円板状をした均熱板を複数制作し、各均熱板の一方の主面に絶縁層を被着するため、ガラス粉末に対してバインダーとしてのエチルセルロースと有機溶剤としてのテルピネオールを混練して作製したガラスペーストをスクリーン印刷法にて敷設し、150℃に加熱して有機溶剤を乾燥させた後、550℃で30分間脱脂処理を施し、さらに700〜900℃の温度で焼付けを行うことにより、ガラスからなる厚み200μmの絶縁層を形成した。次いで絶縁層上に抵抗発熱体を被着させるため、導電材として20重量%のAu粉末と10重量%のPt粉末と70重量%のガラスを所定量の抵抗発熱体ゾーン形状に印刷した後、150℃に加熱して有機溶剤を乾燥させ、さらに450℃で30分間脱脂処理を施した後、500〜700℃の温度で焼付けを行うことにより、厚みが50μmの抵抗発熱体を形成した。抵抗発熱体は、中心部と外周部を周方向に4分割した8抵抗発熱体ゾーン構成とした。   A silicon carbide sintered body having a thermal conductivity of 80 W / (m · K) is ground to produce a plurality of soaking plates having a plate thickness of 4 mm and an outer diameter of 230 mm. In order to deposit an insulating layer on one main surface, a glass paste prepared by kneading ethyl cellulose as a binder and terpineol as an organic solvent into glass powder was laid by screen printing and heated to 150 ° C. After drying the organic solvent, degreasing treatment was performed at 550 ° C. for 30 minutes, and baking was performed at a temperature of 700 to 900 ° C. to form an insulating layer made of glass having a thickness of 200 μm. Next, in order to deposit a resistance heating element on the insulating layer, 20 wt% Au powder, 10 wt% Pt powder, and 70 wt% glass as a conductive material are printed in a predetermined amount of resistance heating element zone shape, The organic solvent was dried by heating to 150 ° C., degreased at 450 ° C. for 30 minutes, and then baked at a temperature of 500 to 700 ° C. to form a resistance heating element having a thickness of 50 μm. The resistance heating element had an 8-resistance heating element zone configuration in which the central portion and the outer peripheral portion were divided into four in the circumferential direction.

そして、図4(a)のように位置決め表示部7を施した均熱板(試料No.1)と、図4(b)のように位置決め表示部7を帯状の抵抗発熱体から離して隣接した位置に設けた均熱板(試料No.2)、同じ抵抗発熱体で位置決め表示部7のない均熱板(試料No.3)を作製した。   Then, the heat equalizing plate (sample No. 1) provided with the positioning display portion 7 as shown in FIG. 4A and the positioning display portion 7 adjacent to the strip-shaped resistance heating element as shown in FIG. 4B. A soaking plate (sample No. 2) provided at the position was prepared, and a soaking plate (sample No. 3) having the same resistance heating element and having no positioning display portion 7 was produced.

こうして作製した抵抗発熱体の各抵抗発熱体ゾーンをそれぞれ54箇所に帯を分割し、各箇所で設計した抵抗値と実測抵抗値との違いをレーザビームを照射して溝を形成して抵抗調整した。   Each resistance heating element zone of the resistance heating element thus manufactured is divided into 54 zones, and the difference between the resistance value designed at each location and the actually measured resistance value is irradiated with a laser beam to form a groove to adjust the resistance. did.

そして、試料No.1、2は位置決め表示部を基準に溝を形成し、試料No.3は板状セラミックス体の外形を基準に溝を形成した。前記溝の形成方法としては日本電気製のYAGレーザを使用した。レーザビームは、波長が1.06μm、パルス周波数1KHz、レーザ出力0.4W、加工速度5mm/secとして照射した。   And sample no. Nos. 1 and 2 have grooves formed on the basis of the positioning display part. No. 3 formed grooves on the basis of the outer shape of the plate-like ceramic body. As a method for forming the groove, a YAG laser manufactured by NEC was used. The laser beam was irradiated with a wavelength of 1.06 μm, a pulse frequency of 1 KHz, a laser output of 0.4 W, and a processing speed of 5 mm / sec.

尚、上記条件で作製された溝の幅は約50〜60μmで深さは約20〜25μmであった。そして、各群に形成された溝と溝との間隔であるピッチは約65μmで最大の溝の数は13個であった。   In addition, the width | variety of the groove | channel produced on the said conditions was about 50-60 micrometers, and the depth was about 20-25 micrometers. And the pitch which is the space | interval of the groove | channel formed in each group was about 65 micrometers, and the number of the largest groove | channels was 13.

そして、上記均熱板を金属ケースに取り付け、測温素子や給電端子等を取り付けセラミックスヒータ試料No.1〜3を完成した。   Then, the soaking plate is attached to a metal case, a temperature measuring element, a power feeding terminal and the like are attached, and a ceramic heater sample No. Completed 1-3.

その後、測温素子付きのシリコンウェハを載置面に載せてセラミックスヒータを加熱し、ウェハ全体の温度の平均が200℃になるようにして、前記の測温素子付きのシリコンウェハを用いてウェハ表面の温度ばらつきを測定した。   Thereafter, a silicon wafer with a temperature measuring element is placed on the mounting surface and the ceramic heater is heated so that the average temperature of the entire wafer becomes 200 ° C., and the wafer using the silicon wafer with the temperature measuring element is used. The temperature variation of the surface was measured.

それぞれの結果は表1に示すとおりである。

Figure 0004794140
Each result is as shown in Table 1.
Figure 0004794140

表1に示すように、抵抗発熱体の帯に位置決め表示部7が形成された本発明の試料No.1、2はウェハW表面の面内温度差が0.3℃以内であり温度分布が小さく良好な結果を示した。   As shown in Table 1, the sample No. of the present invention in which the positioning display portion 7 is formed on the band of the resistance heating element. In Nos. 1 and 2, the in-plane temperature difference on the surface of the wafer W was within 0.3 ° C., and the temperature distribution was small and good results were shown.

それに対し、位置決め表示部のない試料No.3はウェハW表面の面内温度差が0.45℃とウェハ面内の温度差が大きかった。   On the other hand, sample No. with no positioning display part. In No. 3, the in-plane temperature difference on the wafer W surface was 0.45 ° C., and the in-plane temperature difference was large.

実施例1と同様な方法で試料を作製した。尚、図4に示す凸部からなる位置決め表示部を形成し、溝を帯びの外側に形成したものと、内側に形成したもの、中央に形成したものを作製した。また、比較用として溝を内側と外側に混在したヒータを作製した。   A sample was prepared in the same manner as in Example 1. In addition, the positioning display part which consists of a convex part shown in FIG. 4 was formed, and what was formed in the inner side, what was formed in the center, and what was formed in the center were produced. For comparison, a heater was prepared in which grooves were mixed inside and outside.

また、抵抗発熱体の帯を1.5mm幅で形成し、その帯にレーザにより溝の群を形成した。溝の群は、板状セラミックス体の外側に位置する帯の部分に形成した。そして、溝の群と群との間隔を変えた試料を作製した。   Further, a band of the resistance heating element was formed with a width of 1.5 mm, and a group of grooves was formed in the band with a laser. The group of grooves was formed in a band portion located outside the plate-like ceramic body. And the sample which changed the space | interval of the group of a groove | channel was produced.

尚、群と群の間隔とは抵抗発熱体の各抵抗発熱体ゾーンを分割し各部の抵抗を測定し抵抗の小さな部分で溝を形成し抵抗を大きくすることで各抵抗発熱体ゾーンの各部の抵抗ばらつきを小さくすることができる。従って、群と群との間隔とは上記各部の抵抗測定間隔である群と群との間隔であり、各抵抗発熱体ゾーンの中で最も小さい群と群の間隔で示す。   The distance between the groups is determined by dividing each resistance heating element zone of the resistance heating element, measuring the resistance of each part, forming a groove at a small resistance part, and increasing the resistance, thereby increasing the resistance of each part of each resistance heating element zone. Resistance variation can be reduced. Therefore, the distance between the groups is the distance between the groups, which is the resistance measurement interval of each part, and is the smallest group-to-group distance among the resistance heating element zones.

そして、実施例と同様に評価し、その結果を表2に示す。

Figure 0004794140
And it evaluated similarly to an Example and the result is shown in Table 2.
Figure 0004794140

表2から判るように試料No.21〜26は、群と群との最小の間隔が抵抗発熱体の帯の幅1.5mmより小さく、ウェハW全体の温度差が0.27℃以内であり良い結果が得られた。更に、群と群との最小の間隔が1.2mm以下と帯びの幅の80%以下である試料No.21〜24はウェハ面内の温度差が0.22℃以下とさらに小さく好ましいことが分った。   As can be seen from Table 2, sample no. In Nos. 21 to 26, the minimum distance between the groups was smaller than the width of the band of the resistance heating element, and the temperature difference of the entire wafer W was within 0.27 ° C., and good results were obtained. Furthermore, the sample No. whose minimum distance between the groups is 1.2 mm or less and 80% or less of the band width. It has been found that 21 to 24 are preferable because the temperature difference in the wafer surface is 0.22 ° C. or less.

一方、溝の形成位置が帯の内側や外側に混在している試料No.26、27はウェハ面内の温度差が0.27℃、0.3℃とやや大きかった。   On the other hand, Sample No. in which the groove formation position is mixed inside and outside the band. Nos. 26 and 27 had a slightly large temperature difference in the wafer plane of 0.27 ° C. and 0.3 ° C.

しかし、帯の中央や外側或いは内側に溝や溝の群を形成した試料No.21〜25はウェハの面内温度差が0.24℃以下と小さく好ましいことが分った。   However, the sample No. 1 in which a groove or a group of grooves was formed at the center, outside or inside of the band. It was found that 21 to 25 are preferable because the in-plane temperature difference of the wafer is as small as 0.24 ° C. or less.

本発明のヒータの断面図である。It is sectional drawing of the heater of this invention. (a)(b)は本発明のヒータにおける位置決め表示部を示す図である。(A) (b) is a figure which shows the positioning display part in the heater of this invention. 本発明のヒータにおける抵抗発熱体のゾーンを示す図である。It is a figure which shows the zone of the resistance heating element in the heater of this invention. (a)は本発明のヒータにおける抵抗発熱体を示す図である。(b)はその部分拡大図である。(A) is a figure which shows the resistance heating element in the heater of this invention. (B) is a partially enlarged view thereof. 本発明のヒータにおける抵抗発熱体の帯の一部を示す拡大図である。It is an enlarged view which shows a part of belt | band | zone of the resistance heating element in the heater of this invention. 本発明のヒータにおける抵抗発熱体の断面図である。It is sectional drawing of the resistance heating element in the heater of this invention. 本発明のヒータにおける抵抗発熱体の断面図である。It is sectional drawing of the resistance heating element in the heater of this invention. 従来のヒータにおける抵抗発熱体の断面図である。It is sectional drawing of the resistance heating element in the conventional heater. 従来のヒータの断面図である。It is sectional drawing of the conventional heater. 従来のヒータにおける抵抗発熱体を示す図である。It is a figure which shows the resistance heating element in the conventional heater.

符号の説明Explanation of symbols

W:ウェハ
m:溝
g:溝の群
1、71:セラミックスヒータ
2,72:板状セラミック体
3、73:載置面
5、75:抵抗発熱体
6:給電部
8:支持ピン
10:測温素子
11、77:給電端子
12:ガス噴射口
14,45:リフトピン
15:リフトピンガイド
16、80:ボルト
18:弾性体
19、79:金属ケース
20:ナット
76:リード線引出用の孔
78:リード線
100:均熱板
W: Wafer m: Groove g: Groove group
DESCRIPTION OF SYMBOLS 1, 71: Ceramic heater 2, 72: Plate-shaped ceramic body 3, 73: Mounting surface 5, 75: Resistance heating element 6: Feeding part 8: Support pin 10: Temperature measuring element 11, 77: Feeding terminal 12: Gas Injection ports 14 and 45: Lift pin 15: Lift pin guide 16, 80: Bolt 18: Elastic body 19, 79: Metal case 20: Nut 76: Hole for drawing out lead wire 78: Lead wire 100: Heat equalizing plate

Claims (16)

板状体の表面に帯状の抵抗発熱体を備え、上記抵抗発熱体は、帯の長手方向に並行な、抵抗値調整のための溝を有するとともに、所定箇所に、レーザビームにより上記溝を加工する際に必要となる位置決め表示部を備えたことを特徴とするヒータ。   A plate-like resistance heating element is provided on the surface of the plate-like body, and the resistance heating element has a groove for adjusting a resistance value parallel to the longitudinal direction of the band, and the groove is processed by a laser beam at a predetermined position. A heater provided with a positioning display unit required when performing the operation. 上記位置決め表示部が上記溝の端部の近傍に存在することを特徴とする請求項1に記載のヒータ。   The heater according to claim 1, wherein the positioning display portion is present in the vicinity of an end portion of the groove. 板状体の表面に帯状の導体からなる抵抗発熱体を備え、上記抵抗発熱体は、帯の長手方向に並行な、抵抗値調整のための溝を有するとともに、所定箇所に、レーザビームにより上記溝を加工する際に必要となる位置決め表示部を備え、電流密度が平均電流密度の1/10以下の領域で、帯に沿った電流の流れる方向と直角な方向に突出した部分である抵抗発熱に供しない導体が接続されていることを特徴とするヒータ。   A resistance heating element comprising a strip-shaped conductor is provided on the surface of the plate-like body, and the resistance heating element has a groove for adjusting a resistance value parallel to the longitudinal direction of the band, and the laser beam is provided at a predetermined position by a laser beam. Resistance heating that is provided with a positioning display part required when machining the groove, and that protrudes in a direction perpendicular to the direction of current flow along the belt in a region where the current density is 1/10 or less of the average current density A heater that is connected to a conductor that is not used for the heating. 板状体の一方の主面をウェハを載せる載置面とし、その内部または他方の主面に帯状の抵抗発熱体を配設し、該帯状の抵抗発熱体は円弧状の帯と折り返し帯とを連続させて同心円状に配設され、上記円弧状の帯は、所定箇所に、抵抗値調整のための溝とレーザビームにより上記溝を加工する際に必要となる位置決め表示部が形成されていることを特徴とするヒータ。   One main surface of the plate-shaped body is used as a mounting surface on which a wafer is placed, and a strip-shaped resistance heating element is disposed inside or on the other main surface. The strip-shaped resistance heating element includes an arc-shaped band and a folded band. Are arranged in a concentric circle, and the arc-shaped band is formed with a groove for adjusting a resistance value and a positioning display portion necessary for processing the groove by a laser beam at a predetermined position. The heater characterized by having. 上記位置決め表示部が、上記帯から突出した凸部であることを特徴とする請求項1〜4の何れかに記載のヒータ。   The heater according to any one of claims 1 to 4, wherein the positioning display part is a convex part protruding from the band. 上記凸部が矩形であることを特徴とする請求項5に記載のヒータ。   The heater according to claim 5, wherein the convex portion is rectangular. 上記板状体がセラミックスからなることを特徴とする請求項1〜6の何れかに記載のヒータ。   The heater according to any one of claims 1 to 6, wherein the plate-like body is made of ceramics. 上記抵抗発熱体は、帯の長手方向に並行な複数の溝からなる群を有することを特徴とする請求項4〜7の何れかに記載のヒータ。   The heater according to any one of claims 4 to 7, wherein the resistance heating element has a group of a plurality of grooves parallel to the longitudinal direction of the belt. 上記複数の溝は、抵抗発熱体を成す円弧状の帯の側辺部に形成されていることを特徴とする請求項8に記載のヒータ。   The heater according to claim 8, wherein the plurality of grooves are formed in a side portion of an arc-shaped strip that forms a resistance heating element. 上記複数の溝からなる群は、上記抵抗発熱体の帯の長手方向にそって複数に分割され、各群と群との間隔が上記帯の幅よりも小さいことを特徴とする請求項8または9に記載のヒータ。   The group consisting of the plurality of grooves is divided into a plurality along the longitudinal direction of the band of the resistance heating element, and the interval between each group is smaller than the width of the band. 9. The heater according to 9. 上記位置決め表示部を基準として、上記複数の溝を形成することを特徴とする請求項〜10の何れかに記載のヒータの製造方法。 The method for manufacturing a heater according to claim 8 , wherein the plurality of grooves are formed with reference to the positioning display portion. 請求項1〜のいずれかに記載のヒータを用い、円形の板状セラミックス体の一方の主面に複数の抵抗発熱体ゾーンを備え、他方の主面にウェハを載せる載置面を備えたウェハ加熱装置であって、上記抵抗発熱体ゾーンの抵抗発熱体に独立して電力を供給する給電部と、該給電部を囲む金属ケースとを有し、上記抵抗発熱体ゾーンは、中心部に備えた円形の抵抗発熱体ゾーンと、その外側に少なくとも1つの同心円の円環状の抵抗発熱体ゾーンからなり、各ゾーンに対して上記位置決め表示部を上記板状セラミックス体の中心から等角の中心角の位置に備えたことを特徴とするウェハ加熱装置。 A heater according to any one of claims 1 to 7 , comprising a plurality of resistance heating element zones on one main surface of a circular plate-shaped ceramic body, and a mounting surface on which a wafer is placed on the other main surface. A wafer heating apparatus, comprising: a power supply section that supplies power independently to the resistance heating element of the resistance heating element zone; and a metal case surrounding the power supply section, wherein the resistance heating element zone is located at a central portion. And a circular resistance heating element zone provided outside and at least one concentric annular resistance heating element zone on the outer side thereof, and the positioning display portion is centered equiangularly from the center of the plate-like ceramic body with respect to each zone. A wafer heating apparatus provided at a corner position. 請求項8〜10のいずれかに記載のヒータを用い、円形の板状セラミックス体の一方の主面に複数の抵抗発熱体ゾーンを備え、他方の主面にウェハを載せる載置面を備えたウェハ加熱装置であって、上記抵抗発熱体ゾーンの抵抗発熱体に独立して電力を供給する給電部と、該給電部を囲む金属ケースとを有し、上記抵抗発熱体ゾーンは、中心部に備えた円形の抵抗発熱体ゾーンと、その外側に少なくとも1つの同心円の円環状の抵抗発熱体ゾーンからなり、各ゾーンに対して上記位置決め表示部を上記板状セラミックス体の中心から等角の中心角の位置に備えたことを特徴とするウェハ加熱装置。A heater according to any one of claims 8 to 10, wherein a plurality of resistance heating element zones are provided on one main surface of a circular plate-shaped ceramic body, and a mounting surface on which a wafer is placed is provided on the other main surface. A wafer heating apparatus, comprising: a power supply section that supplies power independently to the resistance heating element of the resistance heating element zone; and a metal case surrounding the power supply section, wherein the resistance heating element zone is located at a central portion. And a circular resistance heating element zone provided outside and at least one concentric annular resistance heating element zone on the outer side thereof, and the positioning display portion is centered equiangularly from the center of the plate-like ceramic body with respect to each zone. A wafer heating apparatus provided at a corner position. 上記各ゾーンの位置決め表示部が、上記各ゾーンの周辺部に形成されたことを特徴とする請求項12に記載のウェハ加熱装置。   The wafer heating apparatus according to claim 12, wherein the positioning display portion of each zone is formed in a peripheral portion of each zone. 上記各ゾーンの位置決め表示部が、上記各ゾーンの周辺部に形成されたことを特徴とする請求項13に記載のウェハ加熱装置。14. The wafer heating apparatus according to claim 13, wherein the positioning display portion of each zone is formed in a peripheral portion of each zone. 上記位置決め表示部を基準として、上記複数の溝を形成することを特徴とする請求項13または15に記載のウェハ加熱装置の製造方法。 As a reference the positioning display unit, a manufacturing method of a wafer heating apparatus according to claim 13 or 15, wherein the forming the plurality of grooves.
JP2004156188A 2003-08-27 2004-05-26 Heater, wafer heating apparatus and manufacturing method thereof Active JP4794140B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2004156188A JP4794140B2 (en) 2004-05-26 2004-05-26 Heater, wafer heating apparatus and manufacturing method thereof
US11/138,943 US7361865B2 (en) 2003-08-27 2005-05-25 Heater for heating a wafer and method for fabricating the same
KR1020050044514A KR101098798B1 (en) 2004-05-26 2005-05-26 Heater, wafer heating device and method for fabricating the heater
CN 200510074602 CN1708190B (en) 2004-05-26 2005-05-26 Heater and device for heating a wafer and method for fabricating the same
US11/852,162 US20080017632A1 (en) 2004-05-26 2007-09-07 Heater For Heating a Wafer and Method For Fabricating The Same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004156188A JP4794140B2 (en) 2004-05-26 2004-05-26 Heater, wafer heating apparatus and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2005340439A JP2005340439A (en) 2005-12-08
JP4794140B2 true JP4794140B2 (en) 2011-10-19

Family

ID=35493666

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004156188A Active JP4794140B2 (en) 2003-08-27 2004-05-26 Heater, wafer heating apparatus and manufacturing method thereof

Country Status (2)

Country Link
JP (1) JP4794140B2 (en)
CN (1) CN1708190B (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4690297B2 (en) * 2006-12-01 2011-06-01 モメンティブ・パフォーマンス・マテリアルズ・ジャパン合同会社 heater
US8362409B2 (en) * 2009-10-29 2013-01-29 Applied Precision, Inc. System and method for continuous, asynchronous autofocus of optical instruments
US8901459B2 (en) 2011-06-30 2014-12-02 Semes Co. Ltd. Substrate supporting units and substrate treating apparatuses including the same
CN102633442B (en) * 2012-04-19 2015-12-09 深圳市华星光电技术有限公司 Temperature control pin supporting substrate carries out the pre-dried device and method of alignment film
US9089007B2 (en) 2012-04-27 2015-07-21 Applied Materials, Inc. Method and apparatus for substrate support with multi-zone heating
CN102768971A (en) * 2012-07-04 2012-11-07 上海华力微电子有限公司 Etcher table for eliminating crystalline condensation defect
JP6276919B2 (en) * 2013-02-01 2018-02-07 株式会社日立ハイテクノロジーズ Plasma processing apparatus and sample stage
JP5911179B2 (en) * 2013-08-21 2016-04-27 信越化学工業株式会社 Three-dimensional ceramic heater
KR101734129B1 (en) * 2015-05-14 2017-05-11 주식회사 대화알로이테크 Apparatus for heating wafer
CN106642709A (en) * 2016-10-28 2017-05-10 吕传玉 High-speed heating electronic boiler
KR102608397B1 (en) * 2018-10-16 2023-12-01 주식회사 미코세라믹스 Middle zone independent control ceramic heater
CN111142590B (en) * 2018-11-02 2021-08-13 北京北方华创微电子装备有限公司 Temperature control system and method
JP7176414B2 (en) * 2019-01-11 2022-11-22 東芝ライテック株式会社 Heaters and image forming devices
CN110491774B (en) * 2019-08-19 2021-10-26 中国科学院苏州纳米技术与纳米仿生研究所 Surface treatment method of sapphire substrate and crucible used by surface treatment method
JP7349010B2 (en) * 2020-02-26 2023-09-21 日本碍子株式会社 Ceramic heater and its manufacturing method

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2001011921A1 (en) * 1999-08-09 2001-02-15 Ibiden Co., Ltd. Ceramic heater
JP2001102160A (en) * 1999-09-30 2001-04-13 Ibiden Co Ltd Ceramic heater
JP2002083668A (en) * 2000-07-06 2002-03-22 Ibiden Co Ltd Manufacturing method of ceramic heater for semiconductor manufacturing/inspecting apparatus, and ceramic heater, and manufacturing system of the ceramic heater
JP2002203666A (en) * 2000-12-28 2002-07-19 Ibiden Co Ltd Ceramic heater and manufacturing method of the same

Also Published As

Publication number Publication date
CN1708190A (en) 2005-12-14
CN1708190B (en) 2010-12-08
JP2005340439A (en) 2005-12-08

Similar Documents

Publication Publication Date Title
JP2006127883A (en) Heater and wafer heating device
JP4794140B2 (en) Heater, wafer heating apparatus and manufacturing method thereof
US7361865B2 (en) Heater for heating a wafer and method for fabricating the same
US20040155025A1 (en) Ceramic heater
US20080017632A1 (en) Heater For Heating a Wafer and Method For Fabricating The Same
US20030160042A1 (en) Ceramic board
JP4845389B2 (en) Heater and wafer heating device
JP4658913B2 (en) Wafer support member
JP3904986B2 (en) Wafer support member
JP3929879B2 (en) Wafer support member
JP4931360B2 (en) Wafer heating device
JP3981300B2 (en) Wafer support member
JP4693429B2 (en) Heater, wafer heating heater and wafer heating apparatus using the same
JP4146707B2 (en) Wafer heating device
JP2006210932A (en) Wafer-heating device
JP3793555B2 (en) Disc heater
JP2002184557A (en) Heater for semiconductor manufacturing and inspecting device
JP2020115583A (en) Heating member and electrostatic chuck
JP4463035B2 (en) Wafer support member and semiconductor manufacturing apparatus using the same
JP3894871B2 (en) Wafer support member
JP3909266B2 (en) Wafer support member
JP3563728B2 (en) Wafer heating device
JP4325902B2 (en) Wafer heating device
JP3860732B2 (en) Wafer heating device
JP4789790B2 (en) Wafer support member

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070411

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110215

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110217

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110418

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110517

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110628

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110726

R150 Certificate of patent or registration of utility model

Ref document number: 4794140

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140805

Year of fee payment: 3