JP2005339905A - Fuel cell cell and fuel cell - Google Patents

Fuel cell cell and fuel cell Download PDF

Info

Publication number
JP2005339905A
JP2005339905A JP2004155198A JP2004155198A JP2005339905A JP 2005339905 A JP2005339905 A JP 2005339905A JP 2004155198 A JP2004155198 A JP 2004155198A JP 2004155198 A JP2004155198 A JP 2004155198A JP 2005339905 A JP2005339905 A JP 2005339905A
Authority
JP
Japan
Prior art keywords
fuel cell
particles
fuel
fuel electrode
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004155198A
Other languages
Japanese (ja)
Inventor
Hiromi Yamada
裕美 山田
Yoshitake Terashi
吉健 寺師
Yasuhiko Nishioka
尉彦 西岡
Hiroaki Seno
裕明 瀬野
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyocera Corp
Original Assignee
Kyocera Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyocera Corp filed Critical Kyocera Corp
Priority to JP2004155198A priority Critical patent/JP2005339905A/en
Publication of JP2005339905A publication Critical patent/JP2005339905A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Abstract

<P>PROBLEM TO BE SOLVED: To provide a fuel cell cell equipped with a fuel electrode having high electric conductivity, suppressing aggregation or particle growth of metal, stabilizing output density, and capable of operating at low temperature and to provide a fuel cell. <P>SOLUTION: The fuel cell cell interposes a solid electrolyte between the fuel electrode and an air electrode, the fuel electrode contains iron group metal particles, zirconia particles containing a group 3a element in the periodic table and micropores, particles constituting the fuel electrode are physicochemically bonded particles, the average particle size of the zirconia is 200 nm or less, the micropores are present in the vicinity of an interface between at least the iron group metal and the zirconia particles, and the average diameter of the micropores is 1000 nm or less. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、燃料電池セル及び燃料電池に関するもので、特に燃料極の改良に関するものである。   The present invention relates to a fuel cell and a fuel cell, and more particularly to an improvement of a fuel electrode.

従来より、固体電解質型燃料電池は発電効率が高く、第3世代の発電システムとして期待されている。特に、低温で作動するシステムが望まれている。   Conventionally, solid oxide fuel cells have high power generation efficiency and are expected as a third generation power generation system. In particular, systems that operate at low temperatures are desired.

一般に、固体電解質型燃料電池セルには、円筒型と平板型が知られている。平板型燃料電池セルは、発電の単位体積当たり出力密度は高いという特徴を有するが、実用化に関してはガスシール不完全性やセル内の温度分布の不均一性などの問題がある。それに対して、円筒型燃料電池セルでは、出力密度は低いものの、セルの機械的強度が高く、またセル内の温度の均一性が保てるという特徴がある。両形状の固体電解質型燃料電池セルとも、それぞれの特徴を生かして積極的に研究開発が進められている。   In general, cylindrical and flat plate types are known as solid oxide fuel cells. The flat fuel cell has a feature that the power density per unit volume of power generation is high, but there are problems such as imperfect gas seal and non-uniform temperature distribution in the cell for practical use. On the other hand, the cylindrical fuel cell has the characteristics that although the power density is low, the cell has high mechanical strength and the temperature in the cell can be kept uniform. Both types of solid oxide fuel cells have been actively researched and developed taking advantage of their characteristics.

円筒型燃料電池セルの構造は、図2に示したように、支持管として多孔性の空気極11を形成し、その表面に固体電解質12、燃料極13がこの順に設けられ、表面にインタコネクタ14が形成されている。このような燃料電池セルを1000℃程度の温度で保持するとともに、支持管内部に空気(酸素)15を、外部に燃料ガス16、例えば、水素、メタン、プロパン、都市ガス等を供給することにより行われる。   As shown in FIG. 2, the structure of the cylindrical fuel cell is such that a porous air electrode 11 is formed as a support tube, a solid electrolyte 12 and a fuel electrode 13 are provided in this order on this surface, and an interconnector is provided on the surface. 14 is formed. By holding such a fuel cell at a temperature of about 1000 ° C., supplying air (oxygen) 15 inside the support tube and supplying fuel gas 16 such as hydrogen, methane, propane, city gas, etc. to the outside Done.

一方、平板型燃料電池セルの構造は、図3に示したように、固体電解質21の一方に多孔性の空気極22が、他方に多孔性の燃料極23が設けられている。そして、セル同士を接続するため、セパレ−タ24が燃料電池セルを挟持するように配置される。   On the other hand, as shown in FIG. 3, the structure of the flat plate fuel cell is provided with a porous air electrode 22 on one side of the solid electrolyte 21 and a porous fuel electrode 23 on the other side. And in order to connect cells, the separator 24 is arrange | positioned so that a fuel cell may be clamped.

このような円筒型及び平板型の固体電解質型燃料電池セルの燃料極は、一般的にNi粉末とZrO(Y含有)粉末又はNiO粉末とZrO(Y含有)粉末の混合粉末をスクリ−ン印刷法により固体電解質表面に塗布して形成されていた(例えば、特許文献1参照)。 The fuel electrode of such cylindrical and flat plate type solid oxide fuel cells generally has Ni powder and ZrO 2 (containing Y 2 O 3 ) powder or NiO powder and ZrO 2 (containing Y 2 O 3 ) powder. Was applied to the surface of the solid electrolyte by the screen printing method (see, for example, Patent Document 1).

また、固体電解質型燃料電池セルを、NiO粉末とZrO(Y含有)粉末の混合粉末を含有する溶液に浸漬した後、1000〜1400℃の還元雰囲気で熱処理して燃料極を形成していた(例えば、特許文献2参照)。 Further, after immersing the solid oxide fuel cell in a solution containing a mixed powder of NiO powder and ZrO 2 (containing Y 2 O 3 ), heat treatment is performed in a reducing atmosphere at 1000 to 1400 ° C. to form a fuel electrode. (For example, refer to Patent Document 2).

ところが、このようなNiを用いた燃料極は、長時間の発電においてNiが凝集し、又は粒成長して、効率の低下及び燃料極と固体電解質の接着強度の低下に伴う発電耐久性の劣化により、発電性能が低下するという大きな問題が発生していた。   However, in such a fuel electrode using Ni, Ni agglomerates or grows during long-time power generation, resulting in deterioration in power generation durability due to a decrease in efficiency and a decrease in adhesion strength between the fuel electrode and the solid electrolyte. As a result, a large problem that power generation performance is reduced has occurred.

そこで、近年、この問題を解決するため、Ni金属とYとZrを含む有機化合物を含有する溶液を固体電解質表面に塗布して熱分解させNi金属表面に微細なYとZrからなる酸化物を析出させてNi金属の凝集と粒成長を抑制する方法が提案されている(例えば、特許文献3参照)。
特開平6−310156号広報 特開平8−273675号広報 特開平7−22032号広報
Therefore, in recent years, in order to solve this problem, a solution containing Ni metal and an organic compound containing Y and Zr is applied to the surface of the solid electrolyte and thermally decomposed to form a fine oxide of Y and Zr on the Ni metal surface. A method for suppressing the aggregation and grain growth of Ni metal by precipitation is proposed (see, for example, Patent Document 3).
JP-A-6-310156 JP-A-8-273675 JP-A-7-22032

しかしながら、特許文献3に記載の燃料極は、燃料極の性能低下を小さく抑えることができるものの、Ni金属の周囲が電気抵抗の大きなZrとY含有の酸化物で覆われるため、金属同士の接続が悪くなり、燃料極の電気伝導性が低下し、その結果発電における出力密度が時間と共に変化するという問題があった。   However, although the fuel electrode described in Patent Document 3 can suppress a decrease in the performance of the fuel electrode, the periphery of the Ni metal is covered with an oxide containing Zr and Y having a large electric resistance. As a result, the electrical conductivity of the fuel electrode is lowered, and as a result, the power density in power generation varies with time.

そこで、本発明は、燃料極が高い電気伝導性を有し、金属の凝集や粒成長を抑制し、出力密度が安定し、低温作動可能な燃料電池セル及び燃料電池を提供することを目的とする。   Accordingly, an object of the present invention is to provide a fuel cell and a fuel cell in which the fuel electrode has high electrical conductivity, suppresses metal agglomeration and grain growth, has a stable output density, and can operate at a low temperature. To do.

本発明は、鉄族金属粒子の平均粒径を小さくし、且つポア径の小さいマイクロポアを導入することによって、電気伝導性を向上するとともに、メカノケミカル結合を介した粒子間結合を導入することによって金属粒子の凝集と粒成長を抑制し、出力密度を向上し、低温作動を可能とすることができる。   The present invention reduces the average particle size of the iron group metal particles and introduces micropores with small pore diameters, thereby improving electrical conductivity and introducing interparticle bonds via mechanochemical bonds. Thus, aggregation of metal particles and grain growth can be suppressed, power density can be improved, and low temperature operation can be achieved.

即ち、本発明の燃料電池セルは、支持体の表面に、燃料極、固体電解質、空気極を順次設けてなる燃料電池セルであって、前記燃料極が、鉄族金属粒子と、周期律表第3a族元素を含むジルコニア粒子と、マイクロポアとを含み、機械的なシェアを加え、物理化学的に結合させた粒子同士であり、前記ジルコニア粒子の平均粒径が200nm以下、前記マイクロポアが1000nm以下であることを特徴とする。   That is, the fuel cell of the present invention is a fuel cell in which a fuel electrode, a solid electrolyte, and an air electrode are sequentially provided on the surface of a support, and the fuel electrode includes iron group metal particles and a periodic table. A zirconia particle containing a Group 3a element and a micropore are added to each other and are mechanically bonded and physicochemically bonded. The zirconia particles have an average particle size of 200 nm or less. It is 1000 nm or less.

これにより、燃料極の電極反応場の増加により、電気伝導性を向上するとともに、固体電解質への接着強度を高め、金属の凝集、粒成長を抑制して発電性能を向上できる。燃料極のジルコニア粒子の平均粒径を200nm以下とすることによりマイクロポアが1000nm以下となり、表面積が増大するため、燃料ガスと燃料極との接触が良好となり電極の反応場が増加するため、作動温度600℃以下と低温作動が可能となる。   Thereby, by increasing the electrode reaction field of the fuel electrode, the electrical conductivity can be improved, the adhesive strength to the solid electrolyte can be increased, and the power generation performance can be improved by suppressing metal aggregation and grain growth. By making the average particle size of the zirconia particles of the fuel electrode 200 nm or less, the micropores are 1000 nm or less and the surface area is increased, so that the contact between the fuel gas and the fuel electrode is improved and the reaction field of the electrode is increased. Low temperature operation is possible at temperatures below 600 ° C.

特に、前記ジルコニア粒子の最大粒径が800nm以下であることが好ましい。これにより、鉄族金属粒子の粒成長を抑制し、細孔径を均一に分散させることが可能となるため、発電効率を向上できる。即ち、燃料極層における金属の凝集、粒成長を抑制して発電性能を向上でき、かつ、最大粒径を制御することにより金属同志および固体電解質の接続を促進し、燃料極の電気伝導性を向上させることにより、燃料極の性能低下を抑制すると同時に高い出力密度を確保することができる。   In particular, the maximum particle size of the zirconia particles is preferably 800 nm or less. Thereby, the grain growth of the iron group metal particles can be suppressed and the pore diameter can be uniformly dispersed, so that the power generation efficiency can be improved. In other words, power generation performance can be improved by suppressing metal agglomeration and grain growth in the fuel electrode layer, and by controlling the maximum particle size, the connection between the metals and the solid electrolyte is promoted, and the electric conductivity of the fuel electrode is improved. By improving, it is possible to suppress a decrease in the performance of the fuel electrode and at the same time ensure a high output density.

作動温度600℃以下で作動することが好ましい。これにより、安全性、耐久性が向上するため車載用途等の移動体への搭載が容易となり、使用できる範囲を広げることができる。なお、現段階で、効率を考慮すると、400℃以上に設定するのが好ましいが、将来的には400℃より低温でも可能と考えられる。   It is preferable to operate at an operating temperature of 600 ° C. or lower. Thereby, since safety and durability are improved, it is easy to mount on a moving body such as an in-vehicle application, and the usable range can be expanded. At this stage, considering the efficiency, it is preferable to set the temperature to 400 ° C. or higher. However, in the future, a temperature lower than 400 ° C. is considered possible.

前記鉄族金属粒子がNi、前記周期律表第3a族元素がSc、Y、Ce及びYbの少なくとも1種であることが好ましい。これにより、出力密度をさらに向上できるとともに、出力密度の経時的劣化もさらに抑制できる。   Preferably, the iron group metal particles are Ni, and the group 3a element of the periodic table is at least one of Sc, Y, Ce, and Yb. As a result, the output density can be further improved, and deterioration of the output density with time can be further suppressed.

燃料極が、前記鉄族金属を50〜80質量%、前記ジルコニア粒子を20〜50質量%の割合で含むことが好ましい。これにより、固体電解質との密着性を上げることができる。   The fuel electrode preferably contains 50 to 80% by mass of the iron group metal and 20 to 50% by mass of the zirconia particles. Thereby, adhesiveness with a solid electrolyte can be raised.

本発明の燃料電池は、上記の燃料電池セルと、該燃料電池を収納する容器と、改質器とを具備することを特徴とするものである。これにより、効率よく発電ができる。 The fuel cell of the present invention comprises the above fuel cell, a container for storing the fuel cell, and a reformer. Thereby, power generation can be performed efficiently.



本発明は、図2や図3にそれぞれ示した円筒型、平板型等の固体電解質型燃料電池に用いられる燃料電池セルに適用されるものであり、図2又は3に示されているように、固体電解質を燃料極及び空気極で挟持してなる燃料電池セルである。つまり、燃料極、固体電解質、空気極が積層されている限り、円筒型、平板型に限定されず、中空平板型であっても、その他の形式であっても良い。


The present invention is applied to a fuel cell used in a solid electrolyte fuel cell such as a cylindrical type or a flat plate type shown in FIG. 2 or FIG. 3, as shown in FIG. A fuel battery cell in which a solid electrolyte is sandwiched between a fuel electrode and an air electrode. In other words, as long as the fuel electrode, the solid electrolyte, and the air electrode are stacked, it is not limited to a cylindrical type and a flat plate type, and may be a hollow flat plate type or other types.

本発明によれば、燃料極が、鉄族金属粒子と、周期律表第3a族元素を含むジルコニア粒子と、マイクロポアとを含むことが重要である。例えば、図1に示したように、固体電解質1の上に燃料極2が形成され、燃料極2は、鉄族金属粒子3と、周期律表第3a族元素によって安定化されたジルコニア粒子4とを含み、これにより、燃料極の比表面積を大きくさらにガスの透過率を高く維持することができる。   According to the present invention, it is important that the fuel electrode contains iron group metal particles, zirconia particles containing Group 3a element of the periodic table, and micropores. For example, as shown in FIG. 1, a fuel electrode 2 is formed on a solid electrolyte 1, and the fuel electrode 2 is composed of iron group metal particles 3 and zirconia particles 4 stabilized by Group 3a elements of the periodic table. Thus, the specific surface area of the fuel electrode can be increased and the gas permeability can be kept high.

本発明によれば、ジルコニア粒子4は鉄族金属粒子3を取り囲むように存在しているのが好ましい。鉄族金属粒子3の径は、ジルコニア粒子4の径に比べて大きいため、ジルコニア粒子4が鉄族金属粒子3を取り囲むように存在させることによって、接触点を増やすことができる。   According to the present invention, the zirconia particles 4 are preferably present so as to surround the iron group metal particles 3. Since the diameter of the iron group metal particles 3 is larger than the diameter of the zirconia particles 4, the contact points can be increased by allowing the zirconia particles 4 to surround the iron group metal particles 3.

燃料極は、鉄族金属を50〜80質量%、ジルコニア粒子を20〜50質量%の割合で含むことが好ましい。特に、鉄族金属を60〜80質量%、ジルコニア粒子を20〜40質量%の割合で含むことが好ましい。このような割合で含有させることにより、ジルコニア粒子が鉄族金属を覆うことが容易になるとともに、充分な導電率を確保することが容易になる。セラミック粒子の含有量が20質量%より低いと、金属のセラミックによる粒成長抑制効果が小さくなり、セラミック粒子が50質量%を越えると、電気伝導性の低下が起こる。   The fuel electrode preferably contains 50-80% by mass of an iron group metal and 20-50% by mass of zirconia particles. In particular, it is preferable to contain 60 to 80% by mass of iron group metal and 20 to 40% by mass of zirconia particles. By containing in such a ratio, it becomes easy for the zirconia particles to cover the iron group metal and to ensure sufficient conductivity. When the content of the ceramic particles is lower than 20% by mass, the effect of suppressing the grain growth by the metal ceramic is reduced. When the content of the ceramic particles exceeds 50% by mass, the electrical conductivity is lowered.

鉄族金属としては、Fe、Co、Mn、Ni、Ru及びこれらの合金を例示できるが、還元雰囲気で安定である点でNiを用いることが好ましく、また、Niを用いると、ジルコニア粒子と固体電解質との密着性を高める効果もある。   Examples of the iron group metal include Fe, Co, Mn, Ni, Ru, and alloys thereof. However, it is preferable to use Ni because it is stable in a reducing atmosphere. When Ni is used, zirconia particles and solids are used. There is also an effect of improving the adhesion with the electrolyte.

前記鉄族金属粒子の平均粒径は、より高い導電率を得るため、2μm以下、特に1.5μm以下、更には1μm以下、より好適には0.8μm以下であることが好ましい。また、同じ目的のために、鉄族金属粒子の最大粒径を5μm以下、特に4μm以下、更には3μm以下にすることがより望ましい。   The average particle size of the iron group metal particles is preferably 2 μm or less, particularly 1.5 μm or less, more preferably 1 μm or less, more preferably 0.8 μm or less in order to obtain higher conductivity. For the same purpose, it is more desirable that the maximum particle size of the iron group metal particles is 5 μm or less, particularly 4 μm or less, and further 3 μm or less.

ジルコニア粒子の平均粒径は、200nm以下、特に150nm以下、更には100nm以下であることが好ましい。このように平均粒径の小さなジルコニア粒子を用いると、三相界面を増加し、反応場を増やすことができる。また、マイクロポアを生成させるためには、ジルコニア粒子の平均粒径が小さいほうが好ましい。金属の凝集、粒成長とガス透過の観点から、金属粒子の平均粒子径が2μm以下、セラミック粒子の平均粒子径が200nm以下、特に金属粒子の平均粒子径が100nm以下、セラミック粒の平均粒子径子が150nm以下の組み合わせが望ましい。   The average particle size of the zirconia particles is preferably 200 nm or less, particularly 150 nm or less, and more preferably 100 nm or less. When zirconia particles having a small average particle diameter are used in this way, the three-phase interface can be increased and the reaction field can be increased. Moreover, in order to produce | generate a micropore, the one where the average particle diameter of a zirconia particle is smaller is preferable. From the viewpoint of metal aggregation, grain growth and gas permeation, the average particle diameter of the metal particles is 2 μm or less, the average particle diameter of the ceramic particles is 200 nm or less, particularly the average particle diameter of the metal particles is 100 nm or less, and the average particle diameter of the ceramic particles Is preferably 150 nm or less.

ジルコニア粒子の平均粒径は、より高いイオン導電性を実現するため、5nm以上、特に20nm以上、更には30nm以上であることが好ましい。   The average particle diameter of the zirconia particles is preferably 5 nm or more, particularly 20 nm or more, and more preferably 30 nm or more in order to realize higher ionic conductivity.

また、ジルコニア粒子の最大粒径は、800nm以下、特に600nm以下、更には500nm以下であることが好ましい。これにより、ジルコニア粒子のイオン伝導性を高く維持することができ、しかも従来よりも多くのジルコニア粒子でNi粒子表面を覆うこと


が容易になるため、三相界面を増加させるとともに、Ni粒子の過焼結を阻害して安定した燃料極を得ることが容易となる。
The maximum particle size of the zirconia particles is preferably 800 nm or less, particularly 600 nm or less, and more preferably 500 nm or less. As a result, the ionic conductivity of the zirconia particles can be maintained high, and the Ni particle surface is covered with more zirconia particles than before.


Therefore, it becomes easy to increase the three-phase interface and to obtain a stable fuel electrode by inhibiting oversintering of Ni particles.

特に、ジルコニア粒子は、メカニカルボンディング(MCB)によってNi粒子と物理化学的結合を有するため、ジルコニア粒子の最大粒径は、500nm以下、更には200nm以下であることが望ましい。   In particular, since zirconia particles have physicochemical bonds with Ni particles by mechanical bonding (MCB), the maximum particle size of zirconia particles is desirably 500 nm or less, and more preferably 200 nm or less.

本発明は、燃料ガスは、主として三相界面で反応するため、平均粒径が200nm以下の微細なジルコニア粒子と鉄族金属粒子の界面付近にマイクロポアを設け、三相界面を増加するものであるが、マイクロポアは燃料極全体に分布していても良いが、燃料ガス流6から燃料極2の内部に燃料ガスが入りやすくするため、比較的太い燃料ガスの主パスと、主パスにつながり、主パスよりも細い副パスと、副パスとつながったマイクロポアとを形成し、所謂大動脈、動脈、毛細血管からなる血管組織に類似した組織であっても良い。   In the present invention, since the fuel gas mainly reacts at the three-phase interface, a micropore is provided near the interface between the fine zirconia particles having an average particle diameter of 200 nm or less and the iron group metal particles, thereby increasing the three-phase interface. However, the micropores may be distributed over the entire fuel electrode, but in order to make it easier for the fuel gas to enter the fuel electrode 2 from the fuel gas flow 6, the main path of the relatively thick fuel gas and the main path It may be a tissue similar to a vascular tissue composed of a so-called aorta, artery, and capillaries, forming a sub-pass that is narrower than the main path and a micropore connected to the sub-path.

本発明におけるマイクロポアは、サイズの小さな気孔を意味するものであり、具体的に、マイクロポアの平均径は、1000nm以下であることが重要である。このような小さい気孔が含まれている場合、燃料極の比表面積を大きくすることができ、それによって、ガスの透過を向上させることができるとともに、固体電解質と燃料極との密着強度を向上することもできる。特に、燃料極の強度維持と信頼性のため、マイクロポア径は、800nm以下、更には600nm以下であることが好ましい。   The micropore in the present invention means a small pore, and specifically, it is important that the average diameter of the micropore is 1000 nm or less. When such small pores are included, the specific surface area of the fuel electrode can be increased, thereby improving gas permeation and improving the adhesion strength between the solid electrolyte and the fuel electrode. You can also. In particular, in order to maintain the strength and reliability of the fuel electrode, the micropore diameter is preferably 800 nm or less, and more preferably 600 nm or less.

なお、ポアのサイズを小さくしても、燃料ガスの流れが悪くなると燃料供給が十分に維持されず、増加した三相界面での反応が十分に行われない危険があるため、燃料極の気孔率は20〜80%、特に30〜60%であることが好ましい。   Even if the pore size is reduced, the fuel supply is not sufficiently maintained if the flow of the fuel gas deteriorates, and there is a risk that the reaction at the increased three-phase interface will not be sufficiently performed. The rate is preferably 20 to 80%, particularly preferably 30 to 60%.

また、ジルコニアを安定化するための周期律表第3a族元素としては、Sc、Y、La、Ce、Pr、Nd、Pm、Sm、Eu、Gd、Tb、Dy、Ho、Er、Tm、Yb、Luを例示できるが、特性の点でSc、導電率が高く安価で強度が安定という理由でY、単位単価当りの特性が高い点でYb、Ceが好ましい。   In addition, as a Group 3a element in the periodic table for stabilizing zirconia, Sc, Y, La, Ce, Pr, Nd, Pm, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb Lu can be exemplified, but Sc is preferable in terms of characteristics, Y is preferable because of its high conductivity, low cost, and stable strength, and Yb and Ce are preferable in terms of high characteristics per unit price.

周期律表3a族元素としては、があるが、このうち、特に特性の面でSc、コストの面でYが好ましい。   The periodic table group 3a element includes, but among these, Sc is particularly preferable in terms of characteristics and Y is preferable in terms of cost.

本発明によれば、燃料極を構成する鉄族金属粒子及びジルコニア粒子が物理化学的に結合させた粒子同士であることが重要である。物理化学的に結合していることにより、凝集がなくなり、マイクロポアのサイズを1000nm以下にすることができる。この物理化学的結合は、具体的には、メカノケミカル結合等を意味するものである。   According to the present invention, it is important that the iron group metal particles and zirconia particles constituting the fuel electrode are physicochemically bonded to each other. By physicochemical bonding, aggregation is eliminated and the size of the micropores can be reduced to 1000 nm or less. This physicochemical bond specifically means a mechanochemical bond or the like.

メカノケミカル結合の有無を見分ける方法としては、表面分析による結合の状態分析を例示することができる。例えば、Ni−YSZ(Y安定化ジルコニア)の場合、オージェ電子分光分析(AES)や、透過型電子顕微鏡(TEM)により結合状態を調べることで、メカノケミカル結合の有無を判断できる。例えば、ジルコニア粒子と接しているNi粒子の部位が酸化物を形成しているかどうかをAESの状態分析から判断できる。   An example of a method for discriminating the presence or absence of mechanochemical bonds is a state analysis of bonds by surface analysis. For example, in the case of Ni-YSZ (Y-stabilized zirconia), the presence or absence of mechanochemical bonding can be determined by examining the bonding state with Auger electron spectroscopy (AES) or transmission electron microscope (TEM). For example, it can be judged from the state analysis of AES whether or not a portion of Ni particles in contact with zirconia particles forms an oxide.

本発明の燃料電池セルは、作動温度が600℃以下、特に400〜600℃、更には400〜500℃であることが好ましい。このように低温で作動することにより、より安全な運転操作が可能となり、小型化や装置の信頼性向上にも寄与できる。また、低温作動により冷却機構が簡便になるため、一定の場所に設置して固定使用するのに加えて、移動体への搭載、例えば飛行機、電車や自動車等の移動車両への搭載も容易となる。   The operating temperature of the fuel battery cell of the present invention is preferably 600 ° C. or lower, particularly 400 to 600 ° C., more preferably 400 to 500 ° C. By operating at such a low temperature, safer operation is possible, which can contribute to miniaturization and improved device reliability. In addition, since the cooling mechanism becomes simple due to low-temperature operation, it can be easily mounted on a moving body, for example, on a moving vehicle such as an airplane, a train or an automobile, in addition to being installed and fixed at a fixed place. Become.



以上のように構成された燃料電池セルは、電気伝導性の高い燃料極を具備し、出力密度が安定しているため、これを容器に収容して固体燃料電池を構成すると、信頼性の高い発電ができる。また、作動温度を低くする(600℃以下)ことも可能なため、車載用燃料電池として好適に利用できる。


The fuel cell configured as described above has a fuel electrode with high electrical conductivity and a stable output density. Therefore, when a solid fuel cell is configured by housing it in a container, the fuel cell has high reliability. Can generate electricity. Further, since the operating temperature can be lowered (600 ° C. or lower), it can be suitably used as an in-vehicle fuel cell.

次に、燃料電池セルの製造方法について図2に示した円筒型燃料電池セルを例として用いて説明する。   Next, a method for manufacturing a fuel cell will be described using the cylindrical fuel cell shown in FIG. 2 as an example.

まず、支持体として固体電解質12を作製する。Sc、Y、Ce、Yb等の周期律表第3a族元素を含むZrO粉末を成形して成形体を作製し、この成形体を焼成する。成形は、押出し成形、プレス成形等周知の方法を採用することができる。 First, the solid electrolyte 12 is produced as a support. A ZrO 2 powder containing a Group 3a element of the periodic table such as Sc, Y, Ce, and Yb is molded to produce a molded body, and this molded body is fired. For the molding, a known method such as extrusion molding or press molding can be employed.

次に、空気極11を作製する。即ち、例えば、LaをCa、Srで10〜20原子%置換したLaMnO系材料を支持体の一方の表面に塗布し、熱処理する。塗布法としては、ディップ法、印刷法等周知の方法を採用することができる。 Next, the air electrode 11 is produced. That is, for example, a LaMnO 2 -based material in which La is replaced by 10 to 20 atomic% with Ca and Sr is applied to one surface of the support and heat-treated. As a coating method, a known method such as a dipping method or a printing method can be employed.

さらに、支持体の他の表面に多孔性の燃料極13を形成する。下記に、燃料極の作製方法として、Ni粉末とY含有ZrO粉末とを用いた一例について詳述する。 Further, a porous fuel electrode 13 is formed on the other surface of the support. Hereinafter, an example using Ni powder and Y 2 O 3 -containing ZrO 2 powder will be described in detail as a method for producing a fuel electrode.

まず、ZrおよびYを含有するオクチル酸塩、ナフテン酸塩、ネオデカン酸塩、エチルヘキサン酸塩、プロピオン酸塩の少なくとも一種をトルエン等の有機溶媒に溶解させた溶液中に、所定の大きさのNiO粒子を分散させる。   First, in a solution in which at least one of octylate, naphthenate, neodecanoate, ethylhexanoate, and propionate containing Zr and Y is dissolved in an organic solvent such as toluene, NiO particles are dispersed.

なお、鉄族金属粒子3は、金属粒子を直接用いても良いが、安全性のため、鉄族金属酸化物粒子を用いて、後で還元処理を行って金属酸化物を金属に還元するのが好ましい。   The iron group metal particles 3 may be metal particles directly, but for safety, the iron group metal oxide particles are used to reduce the metal oxide to metal by performing a reduction treatment later. Is preferred.

次いで、この混合溶液をスクリ−ン印刷、あるいはいわゆるスラリ−ディップ等の周知の方法により固体電解質表面に塗布した後、酸化性雰囲気中で800〜1300℃の温度で1〜10時間熱処理して熱分解を行なわせ燃料極層を形成する。その後、NiO粒子を還元し、Ni粒子を形成する。還元方法は周知の方法を採用でき、例えば、1000〜1350℃のH雰囲気やとHと不活性ガス(Ar)との混合ガス雰囲気での熱処理を例示できる。 Next, this mixed solution is applied to the surface of the solid electrolyte by screen printing or a known method such as so-called slurry dip, and then heat-treated at a temperature of 800 to 1300 ° C. for 1 to 10 hours in an oxidizing atmosphere. Decomposition is performed to form a fuel electrode layer. Thereafter, the NiO particles are reduced to form Ni particles. A known method can be employed as the reduction method, and examples thereof include heat treatment in a H 2 atmosphere of 1000 to 1350 ° C. and a mixed gas atmosphere of H 2 and an inert gas (Ar).

出発原料としてNiを使用する場合、熱処理温度は1000℃以下の温度で、1%以下の酸素を含有するNあるいはAr雰囲気中で熱処理するとよい。 When Ni is used as a starting material, the heat treatment temperature is 1000 ° C. or lower, and heat treatment may be performed in an N 2 or Ar atmosphere containing 1% or less oxygen.

Ni等の金属粒子とセラミック粒子を複合化させるには、比較的低温で混合熱処理するか、あるいは、Ni等の金属の粒子径を小さくして機械的に煎断をかけて混合すると良い。例えば、超音波や振動により粒子を衝突させることができる。   In order to combine the metal particles such as Ni and the ceramic particles, it is preferable to mix and heat at a relatively low temperature, or to reduce the particle size of the metal such as Ni and mechanically cut and mix them. For example, particles can be made to collide by ultrasonic waves or vibration.

インタ−コネクタ14と呼ばれる集電体としては、5〜20モル%のCaO、MgOを添加したLaCrOが気相合成法や溶射法を用いて空気極11と接するように形成される。 The current collector called the interconnector 14 is formed so that LaCrO 3 to which 5 to 20 mol% of CaO and MgO is added is in contact with the air electrode 11 using a vapor phase synthesis method or a thermal spraying method.

なお、本発明の燃料電池セルは、支持管を用いることなく、LaをCa、Srで10〜20原子%置換したLaMnOからなる空気極11を支持管として用いても良い。 In the fuel cell of the present invention, the air electrode 11 made of LaMnO 3 in which La is replaced by 10 to 20 atomic% with Ca and Sr may be used as the support tube without using the support tube.

このようにして、円筒型燃料電池セルを作製することができるが、図3のような平板型セルの燃料極についても、同様にして作製することができる。   In this way, a cylindrical fuel cell can be produced, but a flat cell fuel electrode as shown in FIG. 3 can be produced in the same manner.

本発明の燃料電池は、上記の燃料電池セルと、燃料電池を収納する容器と、改質器とを具備することが重要である。これにより発電が可能となる。   It is important that the fuel cell of the present invention includes the above-described fuel cell, a container for storing the fuel cell, and a reformer. This enables power generation.

尚、本発明の固体電解質型燃料電池セルは、固体電解質の片面に多孔性の空気極、他面に多孔性の燃料極が形成されていれば良く、上記構造に限定されるものではない。   The solid electrolyte fuel cell of the present invention is not limited to the above structure as long as a porous air electrode is formed on one surface of the solid electrolyte and a porous fuel electrode is formed on the other surface.

燃料極を作成するため、純度が99.9%以上で平均粒径が200nmのZrO(6〜12モル%Y含有)粉末と、純度が99.9%以上で平均粒径が150nm以下のZrO(8モル%のY、Yb、Nd、Sc、Sm含有)粉末、純度が99.9%以上で平均粒径が50、100、300nmのZrO(8モル%Y含有)粉末と、純度が99.8%以上で平均粒径が200nmのNiO、CoO、FeO、RuO粉末をそれぞれ準備した。 In order to produce a fuel electrode, a ZrO 2 (containing 6-12 mol% Y 2 O 3 ) powder having a purity of 99.9% or more and an average particle diameter of 200 nm, and a purity of 99.9% or more and an average particle diameter of ZrO 2 (containing 8 mol% Y 2 O 3 , Yb 2 O 3 , Nd 2 O 3 , Sc 2 O 3 , Sm 2 O 3 ) powder having a purity of 99.9% or more and an average particle size of 150 nm or less 50, 100, and 300 nm ZrO 2 (containing 8 mol% Y 2 O 3 ) powder and NiO, CoO, FeO, and RuO powders having a purity of 99.8% or more and an average particle diameter of 200 nm were prepared.

純度が99.9%以上で平均粒径が200nmのZrO(8モル%Y含有)粉末をプレス成形した後、1200℃で3時間焼成して厚み0.3mm、直径30mmで理論密度比の99%以上の固体電解質円板を作製した。その後、この固体電解質円板の一方の面に平均粒子径が1μmのLa0.9Sr0.1MnOを塗布して、1200℃で2時間熱処理して固体電解質への焼き付けを行い、厚み50μmの空気極を形成した。 A ZrO 2 (containing 8 mol% Y 2 O 3 ) powder having a purity of 99.9% or more and an average particle diameter of 200 nm is press-molded, and then calcined at 1200 ° C. for 3 hours to obtain a theoretical thickness of 0.3 mm and a diameter of 30 mm. A solid electrolyte disk having a density ratio of 99% or more was produced. Thereafter, La 0.9 Sr 0.1 MnO 3 having an average particle diameter of 1 μm is applied to one surface of the solid electrolyte disk, and heat-treated at 1200 ° C. for 2 hours to be baked onto the solid electrolyte. A 50 μm air electrode was formed.

次に、上記の燃料極用原料粉末を、表1に示す組成となるように調合し、メタノ−ルを溶媒としてナイロンボ−ルを用いて、充分混合した後、該ペーストを固体電解質層表面にスクリ−ン印刷法により塗布した後、大気中900〜1000℃で2時間熱処理して厚み30μmの燃料極層を形成した。その後還元処理を行った。   Next, the above fuel electrode raw material powder is prepared so as to have the composition shown in Table 1, and after thoroughly mixing using methanol as a solvent and a nylon ball, the paste is applied to the surface of the solid electrolyte layer. After coating by the screen printing method, heat treatment was performed in the atmosphere at 900 to 1000 ° C. for 2 hours to form a fuel electrode layer having a thickness of 30 μm. Thereafter, reduction treatment was performed.

マイクロポアの測定は、破面を走査型電子顕微鏡で観察し、ポアの最大径と最小径の平均値として求めた。   The micropores were measured by observing the fractured surface with a scanning electron microscope and calculating the average value of the maximum and minimum diameters of the pores.

発電は空気極側に酸素を、燃料極側に水素を流しながら600℃で行い、100時間後の出力密度と100時間後の出力密度に対する5000時間後の出力密度の低下率を求めた。

Figure 2005339905
Power generation was performed at 600 ° C. while oxygen was supplied to the air electrode side and hydrogen was supplied to the fuel electrode side, and the reduction rate of the output density after 5000 hours with respect to the output density after 100 hours and the output density after 100 hours was determined.
Figure 2005339905

本発明の試料No.2〜18、20〜31は、600℃以下で作動し、出力密度の低下も33%以下と小さかった。   Sample No. of the present invention. 2-18, 20-31 operate | moved at 600 degrees C or less, and the fall of the output density was also as small as 33% or less.

一方、マイクロポアの平均気孔径が3000nmと大きい本発明の範囲外の試料No.1は、作動温度が750℃と高く、出力密度の低下率も38%と大きかった。   On the other hand, the sample pore size outside the scope of the present invention, in which the average pore diameter of the micropore is as large as 3000 nm. In No. 1, the operating temperature was as high as 750 ° C., and the reduction rate of the output density was as large as 38%.

また、ジルコニア粒子の平均粒径が200nmを越え、物理化学結合の観察されない本発明の範囲外の試料No.19は、作動温度が700℃と高く、出力密度の低下率が40%と大きかった。   In addition, the average particle diameter of the zirconia particles exceeded 200 nm, and no sample physicochemical bond was observed. In No. 19, the operating temperature was as high as 700 ° C., and the reduction rate of the output density was as large as 40%.

純度が99.9%で平均粒子径が8μmのLa0.9Ca0.1MnO粉末を用いて、押し出し成形法により一端を封じた中空の円筒状成形体を作製した後、1500℃で5時間大気中で焼成して、外径20mm、肉厚2mm、長さ200mmの空気極としての機能を付与した円筒状焼結体を作製した。 A hollow cylindrical molded body having one end sealed by an extrusion molding method using La 0.9 Ca 0.1 MnO 3 powder having a purity of 99.9% and an average particle diameter of 8 μm was obtained at 1500 ° C. A cylindrical sintered body having a function as an air electrode having an outer diameter of 20 mm, a wall thickness of 2 mm, and a length of 200 mm was produced by firing in the air for 5 hours.

この後、円筒状焼結体の表面に、溶射法により厚み30μmのZrO(8モル%Y)の固体電解質膜および50μmのLa0.9Sr0.1CrOのインタ−コネクタ膜を形成した。 Thereafter, a 30 μm thick ZrO 2 (8 mol% Y 2 O 3 ) solid electrolyte membrane and a 50 μm La 0.9 Sr 0.1 CrO 3 interconnector are formed on the surface of the cylindrical sintered body by thermal spraying. A film was formed.

次に、上述の固体電解質表面に実施例1の試料No.1、4、8、14、20の燃料極を形成して円筒型燃料電池セルを作製した。   Next, the sample No. 1 of Example 1 was formed on the surface of the solid electrolyte. 1, 4, 8, 14, and 20 fuel electrodes were formed to produce cylindrical fuel cells.

発電は、円筒型セルの内側に酸素を、外側に水素(5%HO含有)を流し、600℃で5000時間発電を行い、出力密度の時間変化を求めた。結果を図4に示す。 For power generation, oxygen was flowed inside the cylindrical cell and hydrogen (containing 5% H 2 O) was flowed outside, and power generation was performed at 600 ° C. for 5000 hours to determine a change in output density with time. The results are shown in FIG.

これより、本発明の燃料極を有する試料No.4、8、14のセルは、従来の燃料極を有する試料No.1および20のセルに比較して高い出力密度と発電性能の劣化の極めて小さな長期安定性のあるセルであった。   Accordingly, the sample No. having the fuel electrode of the present invention was obtained. The cells of Nos. 4, 8, and 14 are sample Nos. Having conventional fuel electrodes. Compared to the cells 1 and 20, the cell had a long-term stability with a high power density and extremely small deterioration in power generation performance.

本発明の燃料極の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of the fuel electrode of this invention. 円筒型固体電解質型燃料電池の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a cylindrical solid electrolyte fuel cell. 平板型固体電解質型燃料電池の構造を示す概略断面図である。It is a schematic sectional drawing which shows the structure of a flat type solid oxide fuel cell. 出力密度の経時変化を示すグラフである。It is a graph which shows a time-dependent change of output density.

符号の説明Explanation of symbols

1・・・固体電解質
2・・・燃料極
3・・・鉄族金属粒子
4・・・ジルコニア粒子
6・・・燃料ガス流
DESCRIPTION OF SYMBOLS 1 ... Solid electrolyte 2 ... Fuel electrode 3 ... Iron group metal particle 4 ... Zirconia particle 6 ... Fuel gas flow

Claims (6)

固体電解質を燃料極及び空気極で挟持してなる燃料電池セルであって、前記燃料極が、鉄族金属粒子と、周期律表第3a族元素を含むジルコニア粒子と、マイクロポアとを含み、前記燃料極を構成する粒子が物理化学的に結合された粒子同士であり、前記ジルコニア粒子の平均粒径が200nm以下、前記マイクロポアが、少なくとも前記鉄族金属とジルコニア粒子との界面付近に存在し、該マイクロポアの平均径が1000nm以下であることを特徴とする燃料電池セル。 A fuel cell comprising a solid electrolyte sandwiched between a fuel electrode and an air electrode, wherein the fuel electrode includes iron group metal particles, zirconia particles containing Group 3a elements of the periodic table, and micropores, The particles constituting the fuel electrode are physicochemically bonded particles, the zirconia particles have an average particle size of 200 nm or less, and the micropores are present at least near the interface between the iron group metal and zirconia particles And the average diameter of this micropore is 1000 nm or less, The fuel cell characterized by the above-mentioned. 前記ジルコニア粒子の最大粒径が800nm以下であることを特徴とする請求項1記載の燃料電池セル。 The fuel cell according to claim 1, wherein the maximum particle size of the zirconia particles is 800 nm or less. 作動温度が600℃以下であることを特徴とする請求項1又は2記載の燃料電池セル。 The fuel cell according to claim 1, wherein the operating temperature is 600 ° C. or lower. 前記鉄族金属粒子がNi、前記周期律表第3a族元素がSc、Y、Ce及びYbの少なくとも1種であることを特徴とする請求項1〜3のいずれかに記載の燃料電池セル。 The fuel cell according to any one of claims 1 to 3, wherein the iron group metal particles are Ni and the group 3a element of the periodic table is at least one of Sc, Y, Ce, and Yb. 前記燃料極が、前記鉄族金属粒子を50〜80質量%、前記ジルコニア粒子を20〜50質量%の割合で含むことを特徴とする請求項1〜4のいずれかに記載の燃料電池セル。 5. The fuel cell according to claim 1, wherein the fuel electrode includes the iron group metal particles in a ratio of 50 to 80 mass% and the zirconia particles in a ratio of 20 to 50 mass%. 請求項1〜5のいずれかに記載の燃料電池セルを容器内に収納してなることを特徴とする燃料電池。

A fuel cell comprising the fuel cell according to any one of claims 1 to 5 housed in a container.

JP2004155198A 2004-05-25 2004-05-25 Fuel cell cell and fuel cell Pending JP2005339905A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004155198A JP2005339905A (en) 2004-05-25 2004-05-25 Fuel cell cell and fuel cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004155198A JP2005339905A (en) 2004-05-25 2004-05-25 Fuel cell cell and fuel cell

Publications (1)

Publication Number Publication Date
JP2005339905A true JP2005339905A (en) 2005-12-08

Family

ID=35493236

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004155198A Pending JP2005339905A (en) 2004-05-25 2004-05-25 Fuel cell cell and fuel cell

Country Status (1)

Country Link
JP (1) JP2005339905A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009060752A1 (en) * 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, process for producing the nickel oxide powder material, and fuel electrode material, fuel electrode, and solid oxide fuel cell using the nickel oxide powder material
JP2010257871A (en) * 2009-04-28 2010-11-11 Sumitomo Metal Mining Co Ltd Fuel electrode for solid oxide fuel cell, and its manufacturing method
JP2011096432A (en) * 2009-10-28 2011-05-12 Kyocera Corp Unit cell of fuel cell, cell stack device, fuel cell module, and fuel cell device
JP2011103210A (en) * 2009-11-10 2011-05-26 Toto Ltd Solid electrolyte fuel cell
WO2012128201A1 (en) * 2011-03-18 2012-09-27 日本碍子株式会社 Solid oxide fuel cell
JP5091346B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
JP5090575B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162120A (en) * 1994-11-30 1996-06-21 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrochemical cell
WO2004038844A1 (en) * 2002-10-25 2004-05-06 Pirelli & C. S.P.A. Ceramic anode solid oxide fuel cell
JP2004200125A (en) * 2002-12-20 2004-07-15 Hosokawa Funtai Gijutsu Kenkyusho:Kk Electrode material, fuel electrode for solid oxide fuel cell, and the solid oxide fuel cell

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08162120A (en) * 1994-11-30 1996-06-21 Mitsubishi Heavy Ind Ltd Solid electrolyte type electrochemical cell
WO2004038844A1 (en) * 2002-10-25 2004-05-06 Pirelli & C. S.P.A. Ceramic anode solid oxide fuel cell
JP2004200125A (en) * 2002-12-20 2004-07-15 Hosokawa Funtai Gijutsu Kenkyusho:Kk Electrode material, fuel electrode for solid oxide fuel cell, and the solid oxide fuel cell

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5218419B2 (en) * 2007-11-05 2013-06-26 住友金属鉱山株式会社 Nickel oxide powder material for solid oxide fuel cell, method for producing the same, fuel electrode material using the same, fuel electrode, and solid oxide fuel cell
US8741502B2 (en) 2007-11-05 2014-06-03 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide type fuel cell and method for producing the same, and anode material, anode and solid oxide type fuel cell using the same
US8557471B2 (en) 2007-11-05 2013-10-15 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder comprising zirconium hydroxide coating layer or zirconium oxide coating layer, SOFC anode material and method of producing the same
WO2009060752A1 (en) * 2007-11-05 2009-05-14 Sumitomo Metal Mining Co., Ltd. Nickel oxide powder material for solid oxide fuel cell, process for producing the nickel oxide powder material, and fuel electrode material, fuel electrode, and solid oxide fuel cell using the nickel oxide powder material
JP2010257871A (en) * 2009-04-28 2010-11-11 Sumitomo Metal Mining Co Ltd Fuel electrode for solid oxide fuel cell, and its manufacturing method
JP2011096432A (en) * 2009-10-28 2011-05-12 Kyocera Corp Unit cell of fuel cell, cell stack device, fuel cell module, and fuel cell device
JP2011103210A (en) * 2009-11-10 2011-05-26 Toto Ltd Solid electrolyte fuel cell
JP5090575B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
JP5091346B1 (en) * 2011-03-18 2012-12-05 日本碍子株式会社 Solid oxide fuel cell
EP2688128A1 (en) * 2011-03-18 2014-01-22 NGK Insulators, Ltd. Solid oxide fuel cell
WO2012128201A1 (en) * 2011-03-18 2012-09-27 日本碍子株式会社 Solid oxide fuel cell
EP2688128A4 (en) * 2011-03-18 2014-08-20 Ngk Insulators Ltd Solid oxide fuel cell
US8945789B2 (en) 2011-03-18 2015-02-03 Ngk Insulators, Ltd. Solid oxide fuel cell

Similar Documents

Publication Publication Date Title
JP2008538543A (en) Precursor material infiltration and coating methods
JP2011514931A (en) Cu-based cermet for high temperature electrochemistry
JP4931362B2 (en) Fuel cell and fuel cell
JP4931361B2 (en) Fuel cell and fuel cell
JP2006318767A (en) Electrode material and fuel cell
JP2012033418A (en) Solid oxide fuel cell and method for manufacturing the same
JP4912576B2 (en) Fuel cell
JP2005310737A (en) Solid oxide fuel cell
JP2005339905A (en) Fuel cell cell and fuel cell
JP2015088490A (en) Solid oxide type fuel battery cell stack
JP2006318769A (en) Electrode material and fuel cell
JPH1021931A (en) Solid electrolyte type fuel cell
JP2007134133A (en) Solid electrolyte fuel cell
KR101572477B1 (en) Anode serving as support of solid oxide fuel cell and manufacturing method thereof
JP2007213891A (en) Power generation cell for solid oxide fuel cell
JP2009230929A (en) Current collector material of solid oxide fuel cell, air pole current collector, and solid oxide fuel cell
JP2008234915A (en) Collector material of solid oxide fuel cell, air electrode collector, and the solid oxide fuel cell
JP4849774B2 (en) Solid electrolyte fuel cell and solid electrolyte fuel cell
JP3667297B2 (en) Solid oxide fuel cell and method for producing the same
JP3730774B2 (en) Solid oxide fuel cell
JP3966806B2 (en) Membrane electrode composite and fuel cell
JP2005174663A (en) Single chamber fuel cell
JP5243782B2 (en) Solid oxide fuel cell
JP2005174664A (en) Solid electrolyte fuel cell
JP6886058B1 (en) Electrolyte material and electrochemical cell

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070320

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20091124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20091222

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100219

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20110118